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Abstract

The massive increase in population density in cities has led to several urban
problems, such as an increment of air pollution, traffic congestion, and a faster
spread of infectious diseases. With the rapid innovation in the intelligent sen-
sors technology, and its integration into smart vehicles and Unmanned Aerial
Vehicles (UAVs), a novel sensing paradigm has been promoted, namely vehicu-
lar crowdsensing, which leverages on-board sensors to capture information from
the surrounding environment. Collected data are then analysed to take proper
countermeasures. In this paper, we present a smart coordination mechanism
between UAVs and ground vehicles (GVs), which sense information like body
temperature and breathing rate of people, in order to support a variety of mon-
itoring applications, including discovering the presence of infectious diseases. In
our framework, namely GUAVA, aerial and ground vehicles are equipped with
GPS devices and thermal cameras to monitor specific geographic areas, detect
humans’ vital parameters and, at the same time, discover duplicate data by
identifying matching faces in thermal video sequences with the GaussianFace
algorithm. The sensing tasks in hard-to-reach places are assigned to UAVs,
with the ability to power up wirelessly from the nearest GV and offload the col-
lected monitoring images to it. Simulation results have assessed our proposed
framework, showing good performance in terms of distinct Quality of Service
(QoS) metrics.
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Internet of Vehicles.
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1. Introduction1

In recent years, the Mobile CrowdSensing (MCS) paradigm has made great2

technological leaps [1], thanks to the massive diffusion of mobile devices, rang-3

ing from smartphones to vehicles, equipped with different sensors, including4

cameras, gyroscopes and Global Positioning System (GPS) receivers. The huge5

amount of collected –and sometimes locally processed– data can feed a variety6

of smart city applications in different domains, like environment monitoring,7

intelligent transportation and even healthcare. In particular, MCS can cover a8

key role in discovering infectious diseases, like Covid-19, and/or predicting their9

spread. Several smartphone-based crowdsensing solutions have been developed10

with the aim of preventing Covid-19 infections [2, 3]. Similar approaches to fight11

Covid-19 disease have employed wearable sensors [4, 5], as well as crowdsensing12

solutions based on sensor-equipped vehicles, as the one proposed in [6].13

So far, vehicles have been considered among the major contributors to MCS14

systems because, unlike other mobile devices, they do not have strict energy,15

storage and processing constraints [7]. At the same time, however, vehicles’16

movements are restricted to roads topologies that limit their crowdsensing capa-17

bility. This shortcoming can be overcome by Unmanned Aerial Vehicles (UAVs),18

which can leverage high mobility and minimal costs to collect data at large-scale,19

potentially everywhere [8].20

Nowadays, in such a world-wide pandemic scenario, UAVs are being consid-21

ered for combating the Covid-19 disease [9], by assuming such mobile devices22

augmented with thermal cameras, in order to control and monitor social distanc-23

ing and to gather vital parameters from wearable sensors for further analysis and24

processing on remote cloud facilities. However, despite the great flexibility and25

the highly dynamic mobility patterns provided by UAVs, these latter are still26

confronted with their limited lifetime, since their working time is constrained27

by the on-board battery capacity.28

To cope against this intrinsic limitation and to exploit the best capability29

of vehicular technology, in this paper we propose GUAVA i.e., a ground vehi-30

cle (GV) assisted UAV crowdsensing framework, that performs sensing tasks31

and real-time data collection across large-scale areas to prevent the spread of32

infectious diseases. In the proposed GUAVA framework, GVs assist UAVs in33

the pervasive data collection process, while also providing a prompt recharging34

mechanism. More specifically, the contributions of this paper are summarized35

as follows:36

• We proposeGUAVA (Ground vehicle assistedUAV crowdsensing frAmework)37

aiming to monitor geographic areas and collect vital parameters of people38
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in smart cities, and even in unpaved areas or regions that are hard to1

reach from vehicles (e.g., muddy roads, narrow streets of old cities, parks2

and stadium, etc.). Thermal cameras are used to capture images of the3

monitored areas and also body temperature and breathing rate parame-4

ters of people, which may be crucial to discover the presence of infectious5

diseases like Covid-19;6

• We leverage the facial recognition technology built into thermal cameras to7

detect matching people faces and avoid duplicate data in the crowdsensing8

process; moreover, to solve the power system constraint, we assume that9

GVs carry wireless power chargers to recharge UAVs;10

• Through extensive simulations and comparisons against benchmark schemes,11

we evaluate the effectiveness of our proposal GUAVA for collecting data12

in real time and in a realistic setting.13

The rest of this paper is organized as follows. In Section 2, we introduce14

recent related works dealing with crowdsensing solutions, with a major focus15

on vehicular and healthcare applications. Differently from the state-of-the-art,16

GUAVA aims to contrast pandemic diseases, like Covid-19, through the ex-17

ploitation of both UAV swarms and GVs, equipped with thermal cameras in18

order to detect and monitor infected people. Section 3 presents the proposed19

GUAVA framework, and the different tasks addressed by GVs and UAVs. In20

Section 4 we conduct the assessment of GUAVA’s effectiveness, expressed in21

terms of both network performance and face matching accuracy. Finally, open22

challenges and conclusion are summarized in Section 5.23

2. Related Works24

In this section, we review existing research on mobile crowdsensing based25

on vehicular networks and UAVs. A detailed comparison of existing solutions26

presented in the following subsections is reported in Table 1, where different ap-27

proaches are classified in terms of adopted paradigm (i.e., IoV/VANET/UAV),28

architecture (i.e., centralized (C) and decentralized (D)), accuracy (i.e., low,29

medium, and high), cost, timeliness, energy constraints, coverage (i.e., scalable,30

limited, and full), security issues, trustworthiness and reward.31

2.1. Vehicle-based crowdsensing32

In recent years, many researches have been conducted on vehicular crowd-33

sensing applications with different targets, such as the monitoring of traffic in34

smart cities and, more recently, the support of healthcare services [10]. In par-35

allel, multiple works have considered solutions to cope against the main open36

issues of the crowdsensing paradigm, like the support of privacy and trustwor-37

thiness and the definition of incentive mechanisms for vehicles. Some notable38

solutions are reported in the following.39
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Vehicular traffic applications. Wang et al. introduce the vehicular1

crowdsensing paradigm in public transports, which are characterized by sched-2

uled and predictable trajectories [11]. An optimization problem has been de-3

signed to select the crowd of participants in order to maximize the spatial–temporal4

coverage. The authors prove that the selection of participants is NP-hard in5

large cities, and they adopt a greedy efficient combination query algorithm to6

solve the problem in a near-optimal fashion.7

Xu et al. in [12] design a trustworthy vehicular crowdsensing framework,8

named TPSense, that augments Road Side Units (RSUs) with fog computing9

capabilities. RSUs acts as fog computing nodes for processing and storing event-10

reports; they collect information from nearby vehicles and share it with a remote11

cloud server, whenever needed. TPSense offers to vehicles data trustworthiness12

and privacy support through the use of blind signature technology, which allows13

to replace the identities of vehicles with random pseudonyms. Finally, in [13]14

Shao et al. present a vehicular crowdsensing scheme that gathers traffic infor-15

mation by taking road topologies into account. In the conceived design, sensing16

vehicles offload the collected data to sponsor vehicles located at the roads junc-17

tions. These latter perform a local processing and identify the traffic condition18

in real time. Computed results are then sent to a central server, which offers a19

global and updated vision of the traffic on a map.20

Healthcare applications. A comprehensive discussion about how vehic-21

ular networking can help in fighting pandemics (and in particular Covid-1922

disease) has been recently reported in [14]. The authors identify public trans-23

ports as a fundamental means for collecting identity and health information of24

the passengers and their travel history. On-board sensors are able to recognize25

individuals that have intentionally broken the quarantine or people with Covid-26

19 symptoms, and they can send notifications to government authorities to take27

proper actions. For instance, in case a person is found to be infected, home28

quarantine can be issued for the passengers of the same public transportation.29

In a previous work [6], Sahraoui et al. propose a framework based on the In-30

ternet of Vehicles (IoV) paradigm to control Covid-19 disease outbreaks in real-31

time. In the envisioned design, vehicles are augmented with thermal cameras32

to sense the pedestrians’ body temperature and their breathing rate. Collected33

data are sent to an edge server where they are processed and displayed in the34

form of a heat map, tracking the potentially affected areas. Simulation results35

show that the proposed design exhibits good Quality of Service (QoS) metrics,36

expressed in terms of packet delivery ratio, delay, and throughput. In the same37

context, to reduce the spread of Covid-19 disease, the authors in [15] present a38

monitoring framework that leverages IoV and a deep learning objects detection39

algorithm through Faster Region-based Convolutional Neural Networks (Faster-40

RCNN), to provide real-time notifications about physical distancing violations.41

Compared to these existing works, in this paper we present a hybrid crowd-42

sensing approach, based not only on UAV devices, but assisted by ground vehi-43

cles, in order to guarantee an extended service coverage. The proposed GUAVA44

framework considers a data collection process based on a coordination mecha-45

nism between vehicles and UAVs.46
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2.2. UAV-based crowdsensing1

Over the last few years, different literature works have focused on crowdsens-2

ing using UAVs in smart cities and wild environments, for emergency scenarios3

and health applications, such as the monitoring of infected people. As a matter,4

recently, the role of UAVs for combating infectious epidemics has largely been5

increasing.6

Monitoring in smart cities. In [16], Barka et al. propose a distributed7

design based on UAVs for real-time urban traffic monitoring, in coordination8

with GVs and RSUs in a trustworthy manner. To provide crowd-related data9

without introducing additional overhead, the proposal focuses on the collection10

of Cooperative Awareness Messages, which include the current position, speed11

and direction of the vehicles, as defined by the European Telecommunication12

Standard Institute (ETSI) to support vehicular safety applications.13

The use of a swarm of UAVs in urban environments for continuous video14

surveillance is introduced in [17]. There, to overcome the energy issue, a car-15

mounted landing platform is used as mobile charging station that allows UAVs to16

be powered based on a smart charging scheduling mechanism. In addition, a task17

coordination method is implemented to properly place the UAVs, by trading-18

off between the video surveillance requirement, i.e., the continuous tracking of19

mobile ground targets, and the operational safety requirement. Another UAV-20

based video surveillance solution is reported in [18], where the authors assume21

that UAVs are equipped with face recognition sensors, working according to the22

Local Binary Pattern Histogram (LBPH) algorithm. Two use cases are consid-23

ered in the experimentation: in the first case, videos are processed locally by24

UAVs, while in the second case, the processing is offloaded to a Mobile Edge25

Computing (MEC) server. Not surprisingly, the results demonstrate that, com-26

pared to the local processing, the MEC-based offloading approach reduces the27

computation time of face recognition and promptly detects suspicious persons,28

while also saving the scarce energy resources of UAVs.29

Monitoring in wild areas. UAVs are a crucial means to monitor wild and30

rough areas. In this context, Zhang and Li in [19] present a framework based31

on UAV for remote sensing in regions that are not covered by public broad-32

band networks. By combining 5G and Long-Range (LoRa) technologies, the33

proposed approach is able to perform data collection at high speed. Conversely,34

the authors in [20] study the use of a single UAV to collect data from clustered35

wireless sensor networks (WSNs) to monitor animals in wide and harsh areas.36

Two distinct data collection methods are considered. In the first one, the UAV37

visits all the cluster heads that received the sensing information from their clus-38

ter members. In the second one, in order to limit the energy consumption at the39

UAV and reduce the flight time, the cluster heads send the sensing information40

to a sink node that aggregates it and makes it available to the UAV.41

Finally, the authors in [21] design a framework for disaster management42

using cloud-assisted UAVs. During their flying time, UAVs are configured to43

record videos of the disaster area and to perform a light pre-processing to filter44

out unnecessary frames. Then, the essential information is sent to the cloud for45

post-processing.46

5



Monitoring and prevention of epidemics. UAVs can provide different1

services in healthcare scenarios, ranging from the remote delivery of medica-2

tions, sanitization, masses screening and patient monitoring to the pervasive3

data collection of information that can prevent the spreading of infectious epi-4

demics [22, 23]. Nowadays, with the Covid-19 outbreak, UAVs have been used in5

several countries to monitor crowds and give instructions to people not in com-6

pliance with social distancing guidelines. Moreover, if equipped with a thermal7

camera, they have been used for screening individuals and monitoring people’s8

temperature and heart rates [23].9

The work in [9] is the first attempt to provide a comprehensive UAV-based10

networked system to fight infectious epidemics like Covid-19. The proposal11

assumes that the geographic area to be monitored is divided into zones, each12

one assisted by a single UAV with a thermal camera. Two main services are13

provided, namely (i) to check the social distancing and sending alerts in case of14

violations and (ii) to collect people vital parameters from wearable sensors. The15

proposal also focuses on the design of a smart mobility algorithm that improves16

the movements of the UAVs in their zone and avoids collisions. However, it does17

not address strategies to cope against the main constraint faced by UAVs, that18

is the limited battery life.19

Leveraging on the above motivations and open issues, in this paper we pro-20

pose a crowdsensing platform where UAVs are assisted by GVs offering nearby21

wireless charging services. Similarly to other approaches [23], UAVs and GVs are22

augmented with thermal cameras that capture the temperature and breathing23

rate of people. To properly detect human body temperature through thermal24

cameras in GUAVA, we can refer to several existing works, including the In-25

ternational Organization for Standardization (ISO) guidelines on how to deploy26

thermal camera systems with high accuracy 1, and recent studies, like the one in27

[24]. There, it has been shown that, although sunlight conditions can impact on28

the body temperature measurements, thermal cameras provide the possibility29

of setting emissivity and reflected temperature compensation to cope against30

this issue and provide reliable results. In addition, in order to avoid that data31

from the same person are wrongly collected multiple times, we leverage a high32

performing facial recognition algorithm to discard redundant data.33

1See ISO/TR 13154:2017 at https://www.iso.org/standard/69347.html).
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3. GUAVA Framework1

This section describes the GUAVA framework and its main tasks. Specif-2

ically, we first introduce the reference system model, where UAVs and GVs3

collaborate for data sensing and transmission. The algorithm for the detection4

and alerting of infected people is then presented in Subsection 3.2, while the5

face recognition approach is described in Subsection 3.3.6

3.1. System model7

The gathering process can be performed during night and day and even in8

difficult circumstances, since thermal cameras work efficiently even in low light9

conditions, and they are generally not affected by adverse weather, including10

fog, rain and high temperatures. As shown in Figure 1, the proposed GUAVA11

crowdsensing system includes aerials and ground vehicles (in the following sim-12

ply referred to as collectors), equipped with thermal cameras and GPS devices13

to collect (i) images of the monitored area and (ii) body parameters of the14

people present in the monitored area. Data are then sent to a Collection Center15

for further processing.16

In the following, we provide a description of main entities and related tasks17

of GUAVA framework, with reference to Figure 1.18

Collectors. GVs and UAVs are collector nodes that work cooperatively19

to perform the sensing tasks and ensure full coverage in the designated area.20

While GVs operate on some predefined streets, as determined by government21

and local authorities, UAVs are remotely controlled2 to fly at low altitudes and22

collect data in rough areas, especially those that are difficult to access by GVs,23

such as stadiums, parks, etc.24

The considered thermal cameras combine facial recognition and vital sign25

monitoring functions. They are configured to provide a surveillance service26

of the monitored area and to measure in real time with high precision two27

parameters of the people there present, namely (i) body temperature and (ii)28

breathing rate, which are widely used to assess the degree of infection of respira-29

tory diseases like Covid-19 [26]. Specifically, to properly measure the breathing30

rate of people in places of mass gathering, we refer to the approaches designed31

in [27, 28]. It was shown that the breathing rate can be inferred from images32

captured by thermal cameras by monitoring how the temperature of the nasal33

area changes during inhalation and exhalation. As a result, the temperature34

of the nasal region increases during exhalation and decreases during inhalation35

and the thermal camera can capture such a variation. The respiration rate is36

then determined from the breath-to-breath intervals.37

When the sensed body temperature exceeds the threshold of 38℃ and the38

breathing rate is higher than 30 times/minute, the collectors detect a potential39

2We assume that a remote Control Center is in charge of remotely monitoring the missions
of UAVs.
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Figure 1: General design of our GUAVA framework.

infected individual. In addition, to avoid duplicate sensing data, a face recog-1

nition algorithm is implemented by the Collectors. Based on facial landmarks2

extraction, the method is able to detect matching faces with high accuracy [29],3

according to some features such as distance between the eyes, ears shape and4

size, nose size, lip shape, as it will be clarified in the next section.5

When performing their mission in a certain geographic area, the collectors6

associate the sensed body parameters (i.e., breathing rate and temperature) to7

the corresponding human face. Then, by accessing the previous collected infor-8

mation, they check if the same person has been already sensed. If a matching9

is found, then the information is discarded; otherwise, it is transmitted to an10

edge server, where the data Collection Center is located, as it will be clarified in11

the following. As a result, if the collectors encounter the same person multiple12

times during their mission, no redundant data is transmitted.13

To cope against the power limitations of UAVs, which mainly depend on the14

distance traveled during hover time and the speed, we assume that every GV15

is equipped with a wireless power charger on its roof. When the battery level16

of a UAV drops below a certain threshold, a notification is sent to the Control17

Center, which promptly redirects it to the nearest power supply vehicle. Notice18

that several variables can impact on the UAV’s power consumption, including19

aerodynamic layout and structure design of the device, the weather conditions,20

the service type, the battery type, the hour of the day and the use of solar21

power as energy resource [30]. Therefore, it is not possible to provide an a22

priori precise estimation of the duration of the UAV battery. However, recent23

9



works like [31, 32, 33] have shown that, on average, recent UAVs are able to1

flight with a sensor payload, e.g., camera and GPS device, for about 30 minutes2

of time with a fully-charged battery. This allows the full coverage of many3

hard-to-reach areas. However, in the presence of large areas or when many4

people have to be sensed, multiple UAVs can be simultaneously used to avoid5

the interruption of the service and the consequent QoS degradation. In our6

proposal, each UAV is responsible for a specific area that is not overlapping7

with the other UAVs monitoring areas. As an instance, Figure 2 shows the case8

of four UAVs monitoring adjacent areas where UAVs mobility follows a growing9

helical rectangular trajectory. With an average speed of 20 m/s, a range of10

200 m, and a rectangle enlargement of 200 m at each step, a single UAV can11

cover about 1 km2 every half an hour, considering that according to the recent12

developments the average flight time of UAVs is about 30 minutes.13

Figure 2: Example about UAVs monitoring trajectory.

Collection Center. Sensed data are sent to a Collection Center, which14

consists of an edge server offering local storage and additional low-delay data15

processing. While GVs transmit in real time both surveillance images and body16

parameters to the Collection Center, UAVs are programmed to stream only the17

body parameters, which are supposed to be smaller in size i.e., a few kbytes.18

More specifically, each data unit includes the person’s geolocation information,19

body temperature, and breathing rate. In addition, a flag is associated to every20

data unit showing if its source is a UAV or a GV. To save energy resources,21

UAVs offload the collected surveillance images to the GV during the re-charging22

process. This latter will then forward the images to the Collection Center.23

The main target of Collection Center is to maintain a database of the mon-24

itored areas and to create a heatmap showing the geographical areas where25

there are potentially infected people. By visualizing the heatmap, government26

authorities can issue additional control checks in the potentially affected area27

10



to prevent the spread of the disease.1

By following the 3GPP-V2X (vehicle-to-everything) specification in [34], the2

Collection Center can be implemented as a V2X Application Server according3

to the Multi-Access Edge Computing (MEC) paradigm. By providing storage4

and computing resources close to where data are produced, the Collection Cen-5

ter ensures that data are processed in real-time at the network edge thus also6

limiting the traffic load in the core network. Multiple Collection Centers can7

be deployed in different geographic areas and their storage and processing re-8

sources can be sized according to the estimation of the amount of data that9

are received. Depending on their role, the interested consumers can access the10

data from a Collection Center or from multiple ones. For instance, Health De-11

partment Inspectors working on a specific area will access only the data from12

that area; vice versa, if the Health Ministry is interested in an overall map of13

the suspected infection cases, the data from multiple Collection Centers will be14

accessed.15

Communication. To ensure low delay in the data delivery process, the16

communication between Collectors and Collection Center leverages 4G/5G Long17

Term Evolution (LTE) connectivity. As depicted in Figure 1, aerial and ground18

vehicles transfer the sensed data to LTE base stations through, respectively,19

UAV-to-Infrastructure (U2I) and Vehicle-to-Infrastructure (V2I) communica-20

tions. The base stations then forward the information to the edge server via21

wired links. Finally, UAV-to-Vehicle (U2V) connectivity is used during the22

recharging process to offload the surveillance images from the UAV to the GV.23

Notice that, in GUAVA framework, in order to limit the energy consump-24

tion, we neglected to implement an additional communication exchange between25

UAVs for discarding possible duplicate data, e.g., caused by people moving be-26

tween areas covered by distinct devices. As for the redundancy caused by ground27

vehicles and UAVs monitoring the same area, we recall that collected data is28

labeled with time and GPS position before being sent to the Collection Center.29

This latter can then perform a spatio-temporal overlapping to filter out the re-30

dundant data. Also, for energy issues, the GUAVA framework is not able to31

track specific people who move between collectors, but it reports an estimation32

of the areas where possible infectious cases are present, in order to take proper33

countermeasures.34

3.2. Remote sensing process35

The pseudocode of the conceived GUAVA crowdsensing process is presented36

in Algorithm 1. Let us assume that the data collectors consist of a set of GVs, i.e.37

G = {g1, g2, . . . , gN} with N ∈ N, and a set of UAVs, i.e. U = {u1, u2, . . . , uM}38

with M ∈ N. Each collector is assigned to a geographic area in order to collect39

surveillance images and vital signs of the available people, represented as a set40

P = {p1, p2, . . . , pK} with K ∈ N. The localisation of the i-th GV (i.e., gi with41

i ≤ N) can be captured by the local GPS device as
−→
l gi = (xgi , ygi). Similarly,42

the localization of the j-th UAV (i.e., uj with j ≤ M) can be expressed as43

−→
l uj

= (xuj
, yuj

, zuj
).44

11



The k-th person (i.e., pk with k ≤ K) is identified by its face, and has a 2D1

location information compared to GVs i.e.,
−→
l pk

= (xk, yk), and a 3D location2

information compared to UAVs i.e.,
−→
l pk

= (xk, yk, zk). In order to be detected,3

the k-th person must be within the sensing range of the i-th GV i.e., r
(i)
s , or4

within the sensing range of the j-th UAV i.e., r
(j)
s , as follows:5

∥
−→
lgi −−→pk∥ ± ε ≤ r(i)s OR ∥

−→
luj −−→pk∥ ± ε ≤ r(j)s . (1)

where we included the absolute error ε defined as ε =∥dm − d̃∥, with dm [m] as6

the measured distance and d̃ [m] as the estimated one.7

Based on the experimental results in [35, 36], Long-Wave Infrared (LWIR)8

thermal cameras on-board of UAVs and GVs are able to recognize human faces9

from a distance of 30 m with 100% accuracy, but reasonably the face recognition10

performance decreases as the distance increases. No sensing can be performed11

when the distance exceeds 90 m. Therefore, we set the maximum sensing range12

for adequately detecting people’s parameters in our framework to the value of13

30 m, i.e., r
(i)
s = r

(j)
s = 30 m.14

As defined in [37, 38], the following threshold values for, respectively, body15

temperature and breathing rate are used to detect a potentially infectious indi-16

vidual, namely τ1 = 38 ℃, and τ2 = 30times/min.17

An individual pk is considered potentially infected if, and only if, its sensed18

body temperature
−→
V s1,k and the sensed breathing rate

−→
V s2,k are higher than19

given thresholds τ1 and τ2, respectively, i.e.,20

−→
V s1,k ≥ τ1 AND

−→
V s2,k ≥ τ2, (2)

and we also considered the temperature measurement response time
−→
T s1 and21

the breathing rate measurement response time Ts2 should be lower than given22

thresholds (i.e., val1,2 [ms]), such as:23

−→
T s1 ≤ val1 AND

−→
T s2 ≤ val2. (3)

Data from different collectors are integrated to support decisions at the24

Collection Center. Specifically, we assume to have a data table as a form of25

triplet i.e., < infected case, GPS coordinates, face image >, associated to a26

given collector responsible to the data acquisition. Notice that redundant data27

are omitted in this work. If the sensed parameters are associated to a face that28

does not match any other previously detected, they will be considered as a new29

potential infectious case. Therefore, GVs send the sensed (and not redundant)30

vital signs satisfying the above mentioned condition expressed in Eq. (2), directly31

to the Collection Center, together with the images of the monitored area. Being32

represented with the tuple {geo-localization, temperature, breathing rate}, the33

collected parameters allow to identify the position of possibly infected people34

and to take additional countermeasures. Conversely, to save energy resources,35

UAVs transmit in real-time only the sensed parameters and temporarily cache36

12



the surveillance images. As shown in Algorithm 1, these latter will be offloaded1

during the re-charging process to the closest GV and then sent to the Collection2

Center. Notice that the sensing process of the j-th UAV occurs if its energy3

level (i.e., Euj
) is enough to accomplish this task i.e.,4

Euj
> χ, (4)

where χ is a given energy threshold. If Eq. (4) does not hold, the j-th UAV5

computes the distance to the closest GV i.e.,6

min
j

duj ,gi , ∀gi ∈ G, (5)

in order to move to that position (i.e.,
−→
lgi) and recharge its battery level, as7

well as offload the set of collected images. Notice that the UAV can move8

autonomously to the nearest GV or also driven by the Control Center.9

Finally, when the monitoring process in the designed area has been com-10

pleted (i.e., the whole area has been covered) the collectors can be assigned to11

a new one.12

3.3. Face recognition process13

Deep Neural Network. The face recognition process used in our GUAVA14

framework leverages existing studies on deep neural network architectures [39]15

and consists of the following steps i.e., (i) localization of human face in the16

video images –face detection– using bounding boxes, (ii) normalization of the17

face to extract features from it and, finally, (iii) classification –face recognition–,18

in order to find the matching faces based on existing database. The deep neural19

network architecture for face recognition consists of a convolutional layer as a20

set of trainable filters, then the input passes through the pooling layer to reduce21

its spatial size [39]. The output of convolutional/pooling layers is flattened and22

fed it into a fully connected layer, to be classified using an activation function.23

As expected, the use of this architecture has led to a massive increase in24

the performance, which has approached and, in recent times, even exceeded the25

human level capacity. Nevertheless, some conditions still affect the performance26

of face recognition, including head poses, illuminations, facial expressions and27

occlusions [40].28

GaussianFace model. To improve the face recognition performance and29

avoid the transmission of duplicated sensing, in this paper we propose to use the30

GaussianFace model, originally described in [29], which is one of the best tools31

currently available to capture matching faces from images obtained by surveil-32

lance cameras. The GaussianFace model surpasses humans-level performance33

in identifying matching faces, reaching the accuracy ratio of 98.52%, as com-34

pared to 97.53% for humans, when using the Labeled Faces in the Wild (LFW)35

dataset [41].36

As shown in Figure 3, after detecting the human face and extracting it from37

a streaming video, the facial feature extraction process begins with adjusting38

the thermal input image to a specific size i.e., 150 × 120 pixels, depending on39

13
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Figure 3: GaussianFace model for face verification used in GUAVA framework.

some facial landmarks, including both mouth corners, eyes and nose. Then,1

each face image is divided into overlapping regions of 25× 25 pixels, the multi-2

scale uniform LBP histograms are extracted in each region, and create a feature3

vector. In the face recognition stage, this model is used either as a Binary4

Classifier (GaussianFace-BC) or as a Feature Extractor (GaussianFace-FE) and5

compares the face with a given face dataset to match similar faces and reveal6

similarities.7

In our scenario, the GaussianFace model is selected to avoid duplicate crowd-8

sensing data. Firstly, we measure the similarity vector xi = (x1, x2, . . . , xp)
T

9

between a pair of face images A and B as an input to the GaussianFace-BC10

model, or the joint feature vector xi = [(xA
i )

T , (xB
i )

T ]T with its flipped version11

xflipped
i = [(xB

i )
T , (xA

i )
T ]T , as an input to the GaussianFace-FE model. Then,12

we perform the assessment of the latent vector
−→
F , in a similar way as in [42], as13

each input point xi has a latent variable fi. Then, we use a squashed function14

in order for the output yi to be into [0, 1], Π(fi) = p(yi = 1|fi). Finally, we15

predict the matching face image(s).16

4. Experimentation17

In this section, we evaluate the proposed GUAVA design by first targeting18

two main aspects i.e. (i) assessing the efficiency of the selected face recognition19

process and (ii) assessing the QoS of the overall crowdsensing process.20

Then, we compare GUAVA against a benchmark crowdsensing platform,21

namely BUCST [16] in terms of (i) amount of monitored area over time, (ii)22

traffic overhead. Finally, we focus on the energy consumption issue and an23

optimization process related to the minimization of the number of GVs and24

UAVs, subject to performance requirements, is investigated.25

14



4.1. Simulation setup and performance metrics1

To assess the QoS of the proposed crowdsensing process, we leveraged the2

Network Simulator 3 (ns-3) software to build the reference scenario as in Fig-3

ure 1, where a set of collectors perform the crowdsensing service in a city area4

and send the collected parameters to the edge server of the Collection Center.5

In particular, we considered a set of pedestrian users walking the streets of the6

Annaba city center (Algeria). There, GVs move according to the realistic Sim-7

ulation of Urban MObility (SUMO) model [43], while UAVs move according8

to the Gauss Markov Mobility Model in 3D environment [44]. This mobility9

model assumes that when the UAV gets closer to an obstacle, it will change its10

direction to avoid collisions; it thus depicts a more realistic behavior for UAVs.11

Of course, we are aware that realistic flight conditions can strongly impact on12

the UAV mobility, as well as on the energy consumption and the QoS metrics,13

causing higher delay and lower throughput. However, UAV flight conditions can14

be corrected by the Control Center that can intervene in some cases, such as to15

redirect the UAV to the nearest GV for wireless charging.16

To simulate the collection of vital signs from the pedestrian users, possibly17

affected by Covid-19, we considered the daily average number of Covid-19 cases18

reported by the local authorities in the area, during the past autumnal months,19

w.r.t. the population density. Based on this value, we created a synthetic data20

set, as in [45], that we imported in ns-3 to randomly simulate the presence of21

potential infectious people in the scenario. Table 2 summarizes the considered22

simulation settings.23

To evaluate the performance of our GUAVA proposal in ns-3 environment,24

we used the following metrics:25

• Packet Delivery Ratio (PDR), which expresses the ratio of packets26

sent by the Collectors that have successfully reached the Collection Center.27

We assume that the sensed information per each potentially infectious28

individual, as described in Section 3, fits a single data packet;29

• End-to-End (E2E) delay de2e [ms], which expresses the time interval30

since the packet has been transmitted from the source (i.e., UAV or GV)31

to the instant when it reaches the Collection Center successfully;32

• Throughput Θ [Kbit/s], which refers to the number of bits per second33

that are successfully delivered to the Collection Center;34

• Mean jitter or delay variation [ms], which refers to the variation in35

the delay of packets delivered to the Collection Center.36

For face matching evaluation, we used facial images obtained from FERET37

dataset [46] that were normalized to a size of 150 × 130 pixels in order to38

obtain equal footing and allow processing and features extraction. The training39

dataset for the recognition test consisted of 100 images, and we used a gallery40

as reference set consisting of 1000 images, and one probe set containing 62341

images with different facial expressions, such as smile, astonishment, contempt,42

fear, and anger.43

15
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Figure 4: E2E (network) delay vs. the UAVs/GVs density.

To estimate the accuracy of the recognition process, we considered the recog-1

nition rate or success rate metric, which is calculated by dividing the correctly2

identified probe images on the total testing samples.3

4.2. Results4

In this subsection, we first assess the accuracy of the selected GaussianFace-5

FE recognition process and then we investigate the performance of the GUAVA6

proposal in terms of the above mentioned QoS metrics.7

8

4.2.1. Accuracy of the face recognition algorithm9

As shown in Table 3, we consider the selected dataset and compare it against10

gallery images. The dataset contains images of facial expressions and provides11

a high success rate (and a consequent low error rate, i.e, only 3.69%) with low12

training. The model is typically highly accurate, but it can be affected by the13

A-PIE (Ageing, Pose, Illumination, Expression) problems for face recognition.14

It can be generally observed that the GaussianFace algorithm is a very ef-15

ficient approach in term of accuracy at the expenses of a slightly high delay,16

i.e., about 1.02 s per face recognition with i-5 4300U CPU @1.90 GHz processor17

speed and 4 GB RAM, without dedicated graphic card. In particular, when18

considering the overall E2E delay per each crowdsensed information, which in-19

cludes the time needed for data sensing, face recognition and data delivery to20

the Collection Center, we can notice that the major contribution is due to the21

face recognition.22

To better assess this aspect, we distinguish the network delay (needed for23

the data delivery) and the recognition delay. Figure 4 illustrates the network24

16
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Figure 5: Total E2E delay vs. the UAVs/GVs density.

delay i.e., de2e [ms], when varying the UAVs/GVs density (without taking into1

account the delay introduced by the face recognition process). It shows that the2

use of LTE technology in UAVs and GVs provides an extremely low E2E delay,3

which does not go beyond 120 ms. As the density of the collectors increases,4

the delay increases due to the higher chances of packet collisions. Vice versa,5

Figure 5 shows the total E2E delay, which is higher due to the impact of the face6

recognition process. The targeted monitoring application can however tolerate7

such a delay, which is lower than 1.2 s even in the worst case.8

It is worth observing that there are multiple available face recognition algo-9

rithms in the literature, some of them are faster than the considered Gaussian-10

Face algorithm but also less accurate. For instance, when we tested a traditional11

algorithm for face detection, i.e., the Viola Jones’ algorithm [47], which uses the12

Haar Classifier for face detection, and couples it with a real-time face recognition13

pattern, using the LBPH algorithm, the average time taken per frame for face14

recognition is about 34.90 ms. The price to pay is however the lower accuracy,15

i.e., a higher false positive rate. In our scenario, this also means that the system16

would not be able to properly recognize duplicate sensed information, which is17

instead crucial in our design. Therefore, we recommend selecting a successful18

recognition algorithm like GaussianFace.19

Finally, to study the feasibility of adding other features besides the facial20

recognition, we used Faster R-CNN algorithm in order to (i) detect the moni-21

tored object (i.e., persons) and (ii) measure its surface to distinguish from the22

objects with a different surface. In addition to GUAVA, where only face recogni-23

tion is performed, we consider GUAVA+ that combines both facial recognition24

and object surface measurement as illustrated in Figure 6.25

Furthermore, using the monitored objects mobility patterns, we created an-26

17
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Figure 7: A recognition comparison between GUAVA different versions.

other version, namely GUAVA++, that besides facial recognition and object1

surface measurement, it filters out the potential duplication through the con-2

sideration of the mobility patterns of the monitored objects. This means that3

two objects with similar mobility patterns are considered as a same object. Ob-4

tained accuracy results are shown in Figure 7 and depict that adding these two5

features (i.e., object surface measurement and mobility patterns) - surprisingly6

- results in a decrease of the overall accuracy. Indeed, since the surfaces of7

the people change with the movement of the arms and feets, the same person’s8

surface is variable and hence considered as a different one. The mobility of per-9

sons can be effective only in sparse cases, not in high density scenarios. Hence,10

considering only the facial recognition can offer at least a 12% higher accuracy.11

Hence, considering only the facial recognition can offer at least a 12% higher12

accuracy.13

14

4.2.2. Evaluation of QoS metrics15

Figure 8 shows the packet delivery ratio when varying the UAVs/GVs den-16

sity. It can be observed that the proposed scheme gives a significantly high PDR17

in the LTE environment. It is always above 99%, with a preference for UAVs18

but, as the density increases, it begins to gradually decrease due to the higher19

chances of packet collisions between simultaneous transmissions.20

Other QoS metrics, such as the throughput and jitter, are depicted in Fig-21

18
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ure 9 and Figure 13, respectively. As expected, Figure 9 describes how the1

average throughput Θ in the network increases with the UAVs/GVs density,2

thanks to the higher number of collected information. Similarly, in Figure 133

the mean jitter shows an increase while varying the vehicular density, due to4

higher collisions and congestion.5

To show the benefits of the cooperation between GVs and UAVs, we com-6

pare GUAVA against a crowdsensing platform named BUCST [16], where the7

monitoring process is the task of UAVs only, while GVs act as communication8

backbone. As metrics, we study the traffic overhead and the convergence of9

both frameworks with respect to the monitored area and the required monitor-10

ing time.11

It can be observed from Figure 10 that GUAVA introduces a reduced over-12

head compared to the BUCST monitoring overhead. This is due to (i) the13

cooperation of GVs and UAVs that act both as Collectors and (ii) the face14

recognition algorithm that avoids the transmission of duplicated data.15

Figure 11 instead shows the time for monitoring an area taken by the BUCST16

and GUAVA, in a scenario consisting of 2 UAVs, 10 GV, and only 1 edge server17

(i.e., Collection Center) in every 1 km2. Obtained results shown that even with18

the considered minimal simulation settings, GUAVA is able to monitor up to19

16 km2 in about 10 minutes clearly bypassing the state-of-art work BUCST that20

reached less than 9 km2 in a similar period of time. Again, this is mainly due21

to the efficient UAV-to-GV cooperation in GUAVA.22

23

4.2.3. Energy consumption analysis24

By introducing a separated energy model for the thermal cameras, we per-25

form a simulation campaign to show how the UAVs batteries are affected with26

and without thermal cameras using the same mobility patterns [48]. Obtained27

19
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results depicted in Figure 12 show that the overall energy consumption is very1

slightly affected by the use of thermal cameras which is very acceptable com-2

pared to the additional value and applications brought by such devices.3

To obtain further insight about the available lifetime of UAVs w.r.t. QoS4

guarantees, we can address the following optimization problem related to the5

minimization of the number of GVs and UAVs collectors (i.e., NGV/UAV ) that6

can provide a minimumQoS level, expressed as (i) guaranteed minimum through-7

put Θ [Mb/s] and (ii) maximum achievable E2E delay de2e [ms] i.e.,8

minNGV/UAV

s.t. Θ ≥ Th

de2e ≤ δ

(6)

where Th [Mb/s] represents the lower bound of achievable throughput threshold9

and δ [ms] is the upper bound of delay.10

From Figure 4 and Figure 9, assuming different values of throughput Th11

and delay δ thresholds, we observe that the optimization problem defined in12

Eq. (6) provides the following solutions collected in Table 4. Notice that the13

minimum UAV/GV collector configuration comprised of N = 10 and U = 1014

is achieved only for Th = 10 Mbit/s and δ = [20, 40, 60] ms. For increasing15

throughput thresholds, the number of UAVs increases while still guaranteeing16

the QoS requirements, but the minimum number of GVs is not achieved. Finally,17

in case of very high throughput requirement, neither UAVs or GVs can provide18

20
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Figure 10: GUAVA additional overhead compared to BUCST.

the minimum configuration (i.e., not available configuration).1

5. Discussion and conclusion2

5.1. Remarks3

In this paper we presented a crowdsensing solution that takes advantage of4

both ground and flying vehicles to fight pandemic situations. The proposal,5

namely GUAVA, involves thermal camera based vital signs scanning and facial6

recognition to help identifying potentially infectious individuals and discarding7

duplicate sensed parameters. The performance assessment has consisted of two8

main parts i.e., (i) the evaluation of the accuracy of the facial recognition algo-9

rithm, and (ii) the evaluation of the crowdsensing process in terms of network10

QoS metrics and overhead, which has been obtained through simulations with11

ns-3. Indeed, a first target of our analysis was to demonstrate the feasibility12

of the proposed approach in a realistic network scenario. Performance evalua-13

tion has shown that our design gives high performance in terms of various QoS14

metrics, as well as face recognition rates.15

Compared to other existing models such as [9, 16, 17], our architecture en-16

ables the cooperation between UAVs and GVs, to detect and monitor the spread17

of Covid-19 in real time. It also provides the following benefits i.e., (i) it ensures18

full coverage of city environments and hard-to-reach areas, (ii) it provides an19

energy efficient solution for the UAVs through wireless GV chargers, leveraging20

the GPS technology that provides location information of the nearest GV, (iii)21

it implements data offloading from UAVs to GVs, to deal with storage capacity22

and power consumption challenges, (iv) it leverages the LTE radio technology23

for data transmission, which gives the high performances in terms of QoS met-24

rics, and (v) it can be exploited in various other applications, including fighting25

future pandemics and other disease like Ebola, tracking and identification of26

lost children or fugitives in crowded public places, such as streets, stadiums and27

21
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Figure 11: GUAVA area monitoring convergence compared to BUCST.

parks. The selected face recognition algorithm, namely GaussianFace, adopted1

in thermal cameras for real-time data duplication checks, outperforms most2

existing algorithms in terms of accuracy, with low training.3

5.2. Implications for stakeholders4

The proposed GUAVA framework involves three different groups of stake-5

holders with different roles and implications, i.e., (i) Government authori-6

ties and agencies, (ii) citizens, and (iii) local authorities and health officials.7

The first category includes the Health Ministry and other permanent or semi-8

permanent state agencies that oversee, manage and issue at high level all the9

services related to the Covid-19 emergency. This implicates the need of ensur-10

ing privacy support to the citizens since GUAVA framework collects face images11

and body parameters of people in public areas, then exposing citizens to privacy12

risks. Although different countries have different societal norms and values, in13

principle Government Authorities and Agencies should ensure that collected14

data are not used for purposes beyond the pandemic. Moreover, they should15

guarantee that (i) the sensed data are not released to the public and (ii) they16

are treated and processed according to the existing privacy regulations. This17

aspect is very important also in case of false positive Covid-19 results: although18

the GUAVA framework is able to recognize people with Covid-19 symptoms,19

the final result about Covid-19 positivity should be always proved with a diag-20

nostic test e.g. a molecular swab. Therefore, people recognized as potentially21

infectious should be quickly monitored with an additional test to prevent a false22

positive claim.23

Also, it results necessary to estimate the economic impact of the adoption24

of GUAVA service, due to the set-up and management of the wireless crowd-25

sensing devices with thermal cameras. Governments Authorities and Agencies26

have to perform a thorough feasibility study to identify the geographical areas27
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Figure 12: UAVs overall energy consumption at the end of the experiments both with and
without thermal cameras.

where the GUAVA services are really required (e.g., based on the reported daily1

cases, population density, etc.), thus balancing benefits and costs. To further2

maximize the benefits of investing in the GUAVA framework, other applications3

beyond the Covid-19 pandemic, e.g., fugitive tracking, can be introduced in the4

framework. Finally, for local authorities and health officials, like the Police or5

specific public/private companies managing the GUAVA framework in practice,6

the usage of GUAVA implies the guarantee of people privacy, as well as the7

remote control of GV/UAV collectors.8

5.3. Open Challenges9

Although the conceived framework proved its effectiveness in the data col-10

lection process, there are still some open challenges in its practical deployment,11

as reported below:12

• Energy consumption of UAVs. The recharging process of UAVs,13

which is needed from time to time, may lead to a temporary interrup-14

tion of the crowdsensing service. To overcome this issue and guarantee15

a seamless service, an optimization strategy can be implemented. Based16

on the size of the geographic area to be covered and the approximately17

number of people to be detected and sensed, the duration of the UAV18

mission can be estimated. If this time exceeds the current battery lifetime19

of a single device, then the targeted geographic area can be divided into20

smaller regions that are assigned to more UAVs. Alternatively, a simpler21

approach would be to foresee the presence of a backup UAV that can22

complete the mission during the re-charging process of a previous UAV;23

• Smart selection of the targeted geographic areas. Since the Col-24

lectors are wireless devices, the GUAVA crowdsensing process can be per-25

formed dynamically in different regions and according to the evolution of26
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Figure 13: Mean jitter variation vs. UAVs/GVs density.

the epidemic. Of course, to maximize the benefits of GUAVA, its service1

cannot be executed indiscriminately but only in specific geographic areas,2

typically places of mass gathering or places were a high rate of infections is3

expected (i.e., the so-called red zones). A non trivial preliminary task to4

be performed is therefore the identification of the areas to be sensed, to-5

gether with other related information that can make the best of the UAVs6

usage, like the expected number of people to be sensed and the expected7

weather conditions;8

• Management of UAV flight operations. As known, UAVs’ missions9

are affected by weather conditions, especially strong winds, which may10

divert them from their path. Therefore, how to choose the optimum flight11

height to ensure full coverage in the designated area, without interference12

with other devices and obstacles, is not trivial, as well as if the UAV13

battery voltage drops down suddenly or a damage occurs, there is a crash14

risk and it is necessary to adopt security solutions, such as using small15

parachutes;16

• Twins detection. Concerning the face recognition process, we observe17

that the possible presence of look-alike faces, like twins, can make the pro-18

cess more challenging and additional techniques are needed to cope against19

such similarity issues. Moreover, with the advancements of face recogni-20

tion technology, Deepfakes techniques that deceive existing algorithms [49]21

can also spread. It is therefore necessary to use a hybrid system that does22

not rely on a facial recognition technique only, but also associates it with23

other recognition modalities, such as upper-body recognition [50] (e.g.,24

shoulder-to-shoulder width, neck length/width, chest/waist size and back25

length, etc.). Fusing the two recognition modalities would allow us to26

24



improve the accuracy of the overall recognition process.1

Our future work will be devoted to solving the above mentioned open issues.2

In particular, after proving the feasibility of the GUAVA framework, the next3

evaluation step will be the creation of a prototype including a small set of4

Collectors, e.g., a GV acting as collector and re-charging station and a couple5

of UAVs. The prototype will be also devoted to better study and improve6

the accuracy of the face recognition process in presence of look-alike people7

like twins. This can be done by combining other existing biometric technologies8

with facial recognition, such as gait biometrics, in order to address the similarity9

issue in people’s faces.10
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Algorithm 1: Pseudocode of the GUAVA crowdsensing process for
UAVs
Input :
G = {g1, g2, . . . , gi, . . . , gN} with i ≤ N and N ∈ N ▷ Set of GVs
U = {u1, u2, . . . , uj , . . . , uM} with j ≤M and M ∈ N ▷ Set of UAVs
P = {p1, p2, . . . , pk, . . . , pK} with k ≤ K and K ∈ N ▷ Set of people
Is ▷ Set of stored images
Euj

▷ Battery level of UAV uj

χ ▷ Warning threshold for batter level
Output: Is ▷ Updated set of suspected cases
if Euj

> χ then

while ∥
−→
luj
−
−→
lpk
∥ ≤ r

(j)
s do

−→
V s1,k,

−→
V s2,k ▷ Sensing vital signs from the thermal video

Γ ▷ Extract faces from thermal video
foreach Γ /∈ Is do
Is ← Is ∪ Γ

if
−→
V s1,k ≥ τ1 AND

−→
V s2,k ≥ τ2 then

Send the information to the edge server ▷ Possible pk
infected

else
Discard this case

else
mini duj ,gi , ∀gi ∈ G ▷ Compute the distance to the closest GV

Move to position
−→
lgi ▷ Wireless charging from the closest GV

Offloading Is to gi

while ∥
−→
lgi −

−→
lpk
∥ ≤ r

(i)
s do

−→
V s1,k,

−→
V s2,k ▷ Sensing vital signs from the thermal video

Γ ▷ Extract faces from thermal video
foreach Γ /∈ Is do
Is ← Is ∪ Γ

if
−→
V s1,k ≥ τ1 AND

−→
V s2,k ≥ τ2 then

Send the information to the edge server ▷ Possible pk infected
else

Discard this case
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Table 2: Simulation parameters.

Simulation parameters Values

G
e
n
e
ra

l

Communication technology LTE + wired

Simulation Time 50 seconds

UAVs density 2, 5, 10, 20, 40 [UAV/km2]

Number of eNB 1

UAVs’ mobility model Gauss Markov 3D

Simulation flight area 200× 200 m

Speed of UAVs (velocity) 20 m/s

UAVs flight height 30 m

Data packet size 1024

L
T
E

GVs propagation loss model Nakagami

UAVs propagation loss model Friis

LTE data packet type TCP

Transmission power eNB (49 dBm)/UE (23 dBm)

GVs density 2, 5, 10, 20, 40 [UAV/m2]

Simulation ground area 1471.47× 1989.8 [m2]

Table 3: Error rate result.

Probe dataset size Probe images Error rate

623 images 3.69%

Facial expressions
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Table 4: Configuration pairs of minimum UAVs (i.e., N) and GVs (i.e., U) collectors achieving
different throughput Th (i.e., Th = [10, 20, 30] Mbit/s) and E2E delay (i.e., δ = [20, 40, 60] ms)
thresholds.

E2E delay threshold

20 40 60

Throughput threshold

10 (N = 10, U = 10) (N = 10, U = 10) (N = 10, U = 10)

20 (N = 0, U = 20) (N = 0, U = 20) (N = 0, U = 20)

30 n/a n/a (N = 0, U = 40)
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