
10 January 2025

Università degli Studi Mediterranea di Reggio Calabria
Archivio Istituzionale dei prodotti della ricerca

An integrity-preserving technique for range queries over data streams in two-tier sensor networks /
Buccafurri, F.; De Angelis, V.; Lax, G.. - In: COMPUTER NETWORKS. - ISSN 1389-1286. - 217:109316(2022),
pp. 1-17. [10.1016/j.comnet.2022.109316]

Original

An integrity-preserving technique for range queries over data streams in two-tier sensor networks

Published
DOI: http://doi.org/10.1016/j.comnet.2022.109316
The final published version is available online at:https://www.sciencedirect.

Terms of use:

Publisher copyright

(Article begins on next page)

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website

Availability:
This version is available at: https://hdl.handle.net/20.500.12318/131729 since: 2023-03-03T06:46:48Z

This is the peer reviewd version of the followng article:

This item was downloaded from IRIS Università Mediterranea di Reggio Calabria (https://iris.unirc.it/) When
citing, please refer to the published version.

An Integrity-Preserving Technique for Range Queries
over Data Streams in Two-Tier Sensor Networks

Francesco Buccafurria,∗, Vincenzo De Angelisa, Gianluca Laxa

aUniversity of Reggio Calabria, Via Università, 25, Reggio Calabria, Italy 89124

Abstract

Two-tier sensor networks enable energy and computation saving due to the introduction of non-constrained storage nodes acting
as intermediates between the sensors, which provide data, and the sink, which needs to access these data by submitting queries to
the storage nodes. However, the storage nodes maintain a lot of data coming from different sensors and represent a single point
of failure targeted by the attackers. In this scenario, robust guarantees about the integrity of the query result (i.e., completeness,
freshness, and correctness) should be provided. This is a very well-known problem, traditionally faced through Merkle-Hash-
Tree-based data structures. This paper presents a technique more efficient than the state-of-the-art methods for data insertions
and deletions, supporting range queries over even non-temporal dimensions. Thus, the proposed solution appears suitable to the
considered scenario, in which data can be updated with high frequency and insertions and deletions are executed by constrained
devices.

Keywords: Two-tier Sensor Networks, Query Integrity, Range Queries, Data Streams.

1. Introduction

Two-tier sensor networks are widely investigated in the lit-
erature for the benefits in terms of energy and computational
saving they provide [1, 2]. In the traditional one-tier sensor
networks, data are collected by the sensors and sent, possibly5

through other sensors, to a node called sink. Since the sensors
are involved in the transmission of data towards the sink, the
energy consumption may result too high. Then, in a two-tier
sensors network, the introduction of non-resource-constrained
nodes with large storage capability, called storage nodes, allows10

us to reduce the effort required to the sensors.
In this model, the sensors send data directly to the storage

nodes, that collect and store them. The sink retrieves the data
by submitting some queries to the storage nodes.

Despite the benefits provided when adopting the two-tier ar-15

chitecture, new security problems arise since the storage node
represents a point of failure targeted by an attacker.

The least severe assumption is that the only malicious goal of
the attacker is to illegitimately draw from data some knowledge
useful for its business or matter of commercial exchange. In this20

case, the attacker is defined honest-but-curious, and the security
attribute compromised is confidentiality.

However, it is definitely realistic to consider more pessimistic
threat models, in which the attacker behaves maliciously also
during the executions of processes and protocols, thus attacking25

the integrity of data stored in the storage node and queried by
the sink.

∗Corresponding author
Email address: bucca@unirc.it (Francesco Buccafurri)

This paper is placed in the second case above, specifically
focusing the attention on the problem of query integrity [3].

In a two-tier sensor network, the query integrity problem ap-30

plies when the sink submits a query to the storage node. The
problem is to guarantee three properties for the result of the
query: completeness (no piece of information is omitted), fresh-
ness (the newest version of each data is returned), correctness
(the values of returned data are not altered).35

In the literature, many solutions have been proposed to face
the query integrity problem [4, 5, 6, 7]. These approaches are
based on the definition of new data structures including some
extra information needed to verify the integrity of the query
result.40

However, the above research works are not tailored for sensor
networks and solve a more general scenario in which the entity
querying the data is represented by several clients and not just
a single node (the sink).

In this case, public verifiability of query integrity must be45

provided and this enforces to have revocation mechanisms and
to make assumptions on synchronizations.

On the contrary, in a two-tier sensor network, the general
model is simplified, because only private verifiability is re-
quired and it can be obtained with a secret key shared between50

the sink and the sensors [8, 9].
Therefore, tailored solutions for query integrity in two-tier

sensor networks are proposed in the literature [8, 10, 11, 12, 13]
However, as for queries, we restrict to the case of range

queries [14], over any of the dimensions of multi-dimensional55

data. As matter of fact, range queries are typical queries in the
domain of data streams (in which ranges can be temporal, spa-
tial, or regarding some physical measure).

For range queries, the state-of-the-art solutions are based on

Preprint submitted to Computer Networks September 4, 2022

https://doi.org/10.1016/j.comnet.2022.109316

the notion of Merkle Hash tree (MHT) [15], which has the60

drawback of not being efficient in the case of very dynamic data.
The aim of our work is to find a solution that overcomes the

limits of MHT-based approaches with respect to dynamic data.
As a matter of fact, in this scenario, insertions and deletions
are very frequent, and, importantly, all the extra operations (to65

update the structure used for integrity verification) must be done
at the source, possibly by constrained devices.

Our approach improves the state-of-the-art techniques re-
garding the insertion from O(log(n)) to O(1) (where n is the size
of the stored data stream window), with no asymptotic price in70

terms of verification cost. This paper starts from the results
given in [16], in which only the case of temporal range queries
is considered and only the append operation is allowed as inser-
tion. This study removes the above restrictions, by considering
any possible attribute on which range queries can be performed.75

Consequently, the general case of insertion is handled, because
the insertion of a new tuple into the data stream (i.e., an append
operation with respect to the temporal dimension) corresponds
to a generic insertion with respect to another dimension. Sim-
ilar considerations can be done for cancellations from an ar-80

bitrary position of the dimension domain, which arise from the
implementation of the sliding window mechanism over the data
stream.

The structure of the paper is the following. In Section 2,
we provide an overview of related work. A new data structure,85

called integrity chain, defined to maintain data and verify their
integrity is presented in Section 3. In Section 4, this structure is
applied to the two-tier sensor network architecture. The compu-
tational costs of the operations of our structure are discussed in
Section 5. In Section 6, these costs are compared with the costs90

of MHT operations through an experimental analysis. Section
7 provides a security analysis to show how correctness, fresh-
ness, and completeness are guaranteed. Finally, in Section 8,
we summarize the main outcomes that emerged in this study.

2. Related work95

From a more general point of view, this paper can be con-
textualized in the scientific literature addressing the problem of
secure outsourced data management over untrustworthy third
party. In this context, one of the issues to face is known as
Provable Data Possession (PDP) [17, 18, 19, 20, 21]. PDP100

techniques allow a client that has stored data at an untrusted
server to verify that the server possesses the original data with-
out retrieving it.

Another problem, more related to this paper, is Public Au-
ditability [22, 23], which is about the possibility for the data105

owners to delegate a third-party auditor (TPA) to verify the in-
tegrity of data stored.

The exact context in which this paper falls is Query Integrity
[3]. This problem applies when the data owner submits a query
to the server storing the data and it should be able to verify if110

the returned result satisfies: completeness (no piece of informa-
tion is omitted), freshness (the newest version of each data is
returned), correctness (the values of returned data are not al-
tered).

There are two different types of techniques proposed to face115

the query integrity problem: probabilistic and deterministic ap-
proaches (see [24] for a comprehensive overview).

In probabilistic solutions [25, 26, 27], the result is guaranteed
with a certain degree of confidence. For example, in [25], the
authors propose a probabilistic scheme for multi-dimensional120

range query that uses an ordered preserving hash-based func-
tion. For integrity verification, the authors define a new data
structure called local bit matrix that includes information about
the neighborhood of data. Another probabilistic solution that
guarantees privacy as well as query integrity, is presented in125

[28].
Deterministic solutions [29, 30, 7] resolve the problem with

no uncertainty. In these approaches, the server returns all data
requested and a set of additional information called VO (Verifi-
cation Object) that can be used to verify the integrity of returned130

data. In [7], a solution is presented that allows to perform ag-
gregate queries.

The technique proposed in this paper is deterministic.
Several deterministic techniques [31, 32, 33] are based on

Merkle Hash tree (MHT) structures [15], which actually rep-135

resent the state of the art for this kind of techniques. When
tree-like structures are adopted, logarithmic costs in the size
of the entire database for data insertion/deletion derive, while
verification is linear in the size of the range query. Among
tree-based approaches, there is also a very recent proposal pub-140

lished in [23] which uses a ternary Merkle Hash Tree. However,
this work deals with a more general problem including error lo-
calization with replica for data correction. Moreover, adopted
cryptographic tools (i.e., signatures and bilinear maps) are more
complex than those of our approach. As far as query integrity145

is concerned, the paper does not obtain better asymptotic costs
than the state-of-the-art (MHT-based) techniques.

Besides Merkle-Hash-Tree-based approaches, signature-
based schemes are proposed [34, 35, 36]. In these solutions,
each tuple is signed and an aggregate signature is returned by150

the server storing the data. This reduces the size of the VO
and improves the communication overhead. However, since
these techniques require much more computational power than
Merkle-Hash-Tree-based techniques, they do not outperform
MHT-based techniques.155

Even though the above proposal could be adopted in general
scenarios, in this paper we consider a specific, but very relevant
and well-studied, scenario that is two-tier sensor networks [1,
2].

In this scenario, we can take advantage from the fact that pub-160

lic verifiability (i.e., the possibility that more distributed parties
can verify the integrity of the query result without sharing any
secret key) is no longer needed (just the sink has to verify the
integrity of data).

On the other hand, in these cases, it becomes critical to ob-165

tain efficient update operations since they are performed by
resource-constrained devices.

In the literature, several proposals for query integrity in two-
tier sensor networks are available [8, 10, 11, 12, 13].

However, among these solutions, we refer to those consid-170

ering range queries [10, 37, 11, 12] (i.e., queries involving the

2

values between a lower bound and an upper-bound) in which
the MHT-approach represents again the state of the art.

In this paper, we propose a technique that outperforms tree-
based approaches, moving from O(log(n)) cost of insertion and175

deletion to O(1) (where n is the size of the stored data), with
no asymptotic price in terms of verification cost. This im-
provement can be very relevant whenever sensors produce data
stream (highly dynamic data) and insertion/deletion operations
must be secured at the source by constrained devices.180

Finally, this paper takes origin from a proposal presented in
[16] (and discussed also in [38] from an application point of
view). However, this work represents a significant evolution of
that initial idea in a number of directions. First, in [16], only
range queries over the attribute time are allowed, while we treat185

general range queries (over any totally ordered attribute). More-
over, while [16] supports only append operations (which corre-
spond to insertions of new tuples in a data stream), we allow, in
this paper, insert and delete operations in a generic position of
the attribute order. We observe that this feature makes the ap-190

proach applicable to any situation, thus not just to data streams,
but even when the case of data streams is considered, it allows
us to perform range queries over any other attribute than the
time. Indeed, the insertion of a new tuple into the data stream
(i.e., an append operation with respect to the temporal attribute)195

corresponds to an insertion in a generic point of the domain of
other attributes. Similar considerations can be done for dele-
tions. When a sliding window mechanism over the data stream
is implemented, tuples going out from the sliding window cor-
respond to generic deletions with respect to the other attributes200

than the time.
Another advantage is that we reduce the verification cost and

the VO size with respect to [16]. In fact, to build integrity
chains, we compute the HMAC function not directly on the tu-
ples, but on their digests. This means that the storage node, as205

extra information (i.e., VO), must return only digests (instead of
entire tuples) together with some schema information (i.e., the
markers). Still referring to extra information, this also reduces
the computational effort of the sink to verify the query results,
because HMAC must be applied on short messages (i.e., di-210

gests) instead of tuples. Finally, the submitted paper includes
also a formal proof of security (not included in the conference
paper).

3. A new data structure for efficient update operations

In this section, we describe the model allowing us to guar-215

antee range-query integrity, that corresponds to the following
three properties:

1. Completeness: All tuples involved in the queries have to
be returned.

2. Correctness: The returned tuples have not to be corrupted.220

3. Freshness: The newest version of tuples has to be returned

We consider a traditional two-tiered sensor network scenario
with three actors:

• Sensors: Constrained devices that collect data and send
them to the storage node with high frequency. As com-225

mon in literature [8, 9], they are equipped with a secret
key (stored in tamper-proof hardware) shared with the sink
node.

• Storage node: The node that receives and stores data com-
ing from the sensors and responds to the queries performed230

by the sink node.

• Sink node: The entity who submits range queries (over
any attribute of the data) to the storage node and verifies
the integrity of the result. It shares a secret key with the
sensors. As will be clear in Section 4, the sink node also235

deletes data stored in the storage node.

This section is devoted to the description of a new data struc-
ture allowing efficient update operations.

The approach is based on the construction of one or more
integrity chains, which are chains ordered on the attributes on240

which we want to perform range queries. These chains link
tuples of the database through suitably generated message au-
thentication codes (therefore, whose integrity can be checked
by the sink node).

We enable a preliminary segmentation of the attribute do-245

main into buckets which belongs to a common (not alterable)
schema allowing us to minimize the amount of extra informa-
tion the storage node must retrieve together with the result of
the query in such a way that insertions and deletions (performed
by the sensors and the sink, respectively) are very quick (O(1))250

without paying a significant price in terms of result verification.
We start by giving some preliminary definitions.
We denote by H(x), the application of a secure cryptog-

raphy hash function (e.g., SHA256) on a message x and by
HMAC(k,M), the application of the HMAC function [39] (with255

any underlying secure cryptographic hash function) with secret
key k on a message M. For both H and HMAC, the output is
generically called digest.

From now on, throughout the paper, consider given a
database D composed of tuples with attribute schema A =260

(a1, a2, ..., at), and domains, for each attribute a ∈ A, denoted
by U(a). W.l.o.g., we assume that U(a) is discrete. Given a
tuple t of the database, the value of the attribute a ∈ A in this
tuple is denoted by valt(a) (∈ U(a)).

In the next definition, we define the bucket schema for a given265

database. This is done on a given attribute on which the sink
wants to perform range queries, so we assume its domain is to-
tally ordered. Like in histogram-based approaches [40, 41, 42],
buckets can be obtained according to different rules, like equi-
depth, equi-width, etc., but this issue is only affecting perfor-270

mance aspects and has been widely investigated in the liter-
ature also in the specific case of range queries [43, 44, 45].
For this reason, in this paper, we do not focus our attention
on this aspect. The bucket schema entails also what we call
ghost schema, which allows us to record in the integrity chains275

the deletions occurred in each bucket through dummy elements
called ghost elements, in such a way that old versions of the
database can be always distinguished by the sink. Importantly,

3

no information about the content of deleted tuples is included in
the ghost elements which cannot be linked to deleted tuples by280

any party but the sink. This is a needed requirement for privacy
reasons.

Definition 3.1. Given an attribute a ∈ A with U(a) totally or-
dered, a bucket schema B (of cardinality k) on a is a sequence
B = ⟨b1, b2, . . . bk⟩, such that:285

1. bi ∈ U(a) for any 1 < i < k and b1, bk < U(a);
2. bi < b j for 1 < i < j < k
3. The set Û(a) = U(a)∪{b1, bk} is totally ordered by extend-

ing the order of U(a) in such a way that b1 < x < bk for
any x ∈ U(a).290

The elements b ∈ B are named boundaries.
A ghost schema G (on B) is a sequence G = ⟨g1, g2, . . . gk−1⟩,

such that the set Û(a) ∪ {(gs, jt)| jt > 0, 1 ≤ s < k, t > 0} is
totally ordered by extending the order of Û(a) as follows: for
each 1 ≤ i ≤ k − 1 and any positive number j, it holds that:295

1. x < (gi, j) < bi+1, where x is the value of U(a) preceding
bi+1 in the total order of Û(a).

2. (gi, j1) < (gi, j2) for j1 < j2.

The elements g ∈ G are named ghost elements.

Observe that both B and G are public and intentionally gen-300

erable so that they should not be materialized and stored by any
party. The next example shows a possible bucket schema with
an associate ghost schema for a simple case.

Example 3.1. Let a be the score result of an Italian university
student that has passed an exam. So, U(a) = {18, 19, . . . , 30}.305

A possible bucket schema is the following: B = ⟨b1, b2, b3⟩ =

⟨”FirstValue”, 24, ”EndValue”⟩ with standard total order ex-
tended by ”EndValue” > 30 and ”FirstValue” < 18. A pos-
sible ghost schema is G = ⟨1, 2⟩ with total order extended as
follows: ”FirstValue” < 18 < . . . < 23 < (1, 1) < (1, 2) <310

. . . < 24 < . . . < 30 < (2, 1) < (2, 2) < . . . < ”EndValue”.

Now, we are ready to formally define the data structure we
use to guarantee query integrity, which is called (integrity)
chain. This is done on a given ordered attribute, once a bucket
schema is defined on this attribute.315

Definition 3.2. Given a bucket schema B = ⟨b1, b2, . . . bk⟩ on a
given attribute a ∈ A and a ghost schema G = ⟨g1, g2, . . . gk−1⟩

on B, we define the (n-integrity) chain (for D) in a as the se-
quence of elements C = (c1, c2, .., cn) such that:

1. cn = ⟨x, fC(x)⟩ is such that x = bk and fC(x) is NULL;320

2. for any 1 ≤ i ≤ n − 1, ci = ⟨x, fC(x)⟩, where (1) x is
either a tuple of D or a boundary of B or (g, i)||d, where
g is a ghost element in G, i is a positive number and d is
a digest, and (2) fC(x) = HMAC(k,H(x)||H(x′)), where x′

is the left-most component of the element ci+1, and k is a325

secret kept by the sensors and the sink;

3. given ci = ⟨x, fC(x)⟩ and c j = ⟨x′, fC(x′)⟩ such that 1 ≤ i <
j ≤ n, it holds that val(x) ≤ val(x′), where (from now on):

val(x) =


valx(a) if x is a tuple
x if x is a boundary
(g, i) if x = (g, i)||d, g ∈ G, i ∈ N,

and d is a digest

4. c1 = ⟨x, fC(x)⟩ is such that x = b1;
5. given ci = ⟨x, fC(x)⟩ and c j = ⟨x′, fC(x′)⟩ such that i , j330

(1 ≤ i, j ≤ n) and x, x′ are boundaries, it holds x , x′;
6. given ci = ⟨x, fC(x)⟩ and c j = ⟨x′, fC(x′)⟩ such that x is a

boundary and x′ is a tuple and x = val(x′), it holds that
i < j.

An element c = ⟨x, fC(x)⟩ such that x is a boundary is called335

marker. If x is a tuple, the element c is said secured-tuple (s-
tuple, for short), otherwise it is said ghost-tuple (g-tuple, for
short). Two markers m and m′ are consecutive if there is no
other marker with boundary between the boundaries of m and
m′. Given an element c = ⟨x, fC(x)⟩, we define val(c) = val(x)340

(see Definition 3.2).
Observe that, thanks to the definition of val on the elements

of an integrity chain, Property 3 of Definition 3.2 can be also
written as follows: For any ci and c j (∈ C) such that i < j, it
holds that val(ci) ≤ val(c j).345

Given a g-tuple ci = ⟨x = (g, j)||d, fC(x)⟩(∈ C), we denote by
dgs(ci) = d.

The sequence of all the s-tuples and g-tuples c of C such
that val(c) is between the values of two consecutive markers
is called bucket, and the values of the two markers are called350

lower bound and upper bound of the bucket, respectively. The
bucket with boundaries (bi, bi+1) is said the i-th bucket.

In the next definition, we introduce the notion of secured
database, which is the overall organization of data guaranteeing
query integrity. It consists of the outsourced data to the storage355

node together with a number of integrity chains, one per dimen-
sion on which the sink submits queries. Each integrity chain has
a state and the states of the integrity chains define the state of
the secured database. First, we need the following preliminary
definition:360

Definition 3.3. A database D is said nonced if the attribute
schema includes a dummy attribute whose value, in each tuple,
is a nonce. The other attributes are called actual.

Observe that, in a nonced database in which deletion and inser-
tion are allowed, if a tuple t is removed from the database, a365

tuple t′ with the same value as t on all the attributes can never
appear in the database, as they will differ at least for the nonce
attribute value.

Definition 3.4. A secured database Ds consists of:

1. a nonced database D stored in the storage node;370

4

2. at least one integrity chain C (stored in the storage node
too) (in an actual attribute of D) with bucket schema B
publicly available to the sensors, the sink, and the stor-
age node (thus, not subject of integrity issues) and ghost
schema G on B public available to the sink and the storage375

node;
3. for each chain C, a state S C , which is a (kC−1)-sequence of

pairs of natural numbers ⟨(nop1, j1), . . . , (nopkC−1, jkC−1)⟩,
each associated with a bucket, where kC is the cardinality
of the bucket schema of C. nopi (1 ≤ i ≤ kC−1) counts the380

number of insert and delete operations affecting the bucket
with boundaries (bi, bi+1), while ji counts the number of
ghost tuples occurring in the corresponding bucket. From
the state of the integrity chain, only the left-most element
(nopi, 1 ≤ i ≤ kC − 1) of each pair is materialized and385

stored by both the storage node and the sink.

Observe that the sensors neither need to maintain the nop values
nor to access G.

We denote by NOPC the sequence ⟨nop1, . . . , nopkC−1⟩ com-
posed of the first elements of the pairs of S C .390

In the following definition, we define the operations al-
lowed on a secured database. They are INSERT, DELETE,
and RANGE QUERY. INSERT and DELETE must mod-
ify the integrity chains, also by changing their state. The
RANGE QUERY result is given by the storage node to the sink395

together with some extra information taken by the associated
integrity chain (i.e., VO). Thanks to this information, the sink
can verify the integrity of the returned result.

Definition 3.5. On a secured database Ds, the following oper-
ations are allowed:400

• INSERT: This operation receives a tuple t and inserts this
tuple in the database also by updating the integrity chains
and the state of each integrity chain of the database. This
means that, for each integrity chain C of Ds, an s-tuple
with t as left-most component must be inserted in the405

bucket with lower bound less than or equal to valt(a) and
upper bound greater than valt(a) and the state S C is up-
dated by increasing by one the nop value corresponding to
the involved bucket.

• DELETE: This operation receives a tuple t and deletes410

this tuple (if any) from the database also by updating the
integrity chains and the state of the database. This means
that, for each integrity chain C of Ds, the s-tuple with
value t must be eliminated by the chain and a g-tuple
c = ⟨(gi, j)||d, fC((gi, j)||d)⟩ must be inserted, where (1)415

i is the bucket which t belongs to, (2) j is obtained by in-
creasing by one the right-most element ji of i-th pair of
the state S C , and d =HMAC(k,H(t)). S C is then updated
by increasing by one both nopi and ji corresponding to the
i-th bucket (i.e., the bucket involved in the deletion).420

• RANGE QUERY: This operation receives a range query
Qa(l, u), where l and u represent the bounds of an interval
in the domain of the attribute a, on which there exists an

integrity chain C in Ds. The aim of this operation is to
retrieve the sequence of all the tuples t in D such that l ≤425

valt(a) ≤ u. The result of Qa(l, u) is a sequence C̄ whose
elements c̄ = ⟨x, y⟩ ∈ C̄ are such that: either c̄ is either an
s-tuple or a g-tuple or a marker, or x, y are digests.In the
latter case, we call the element c̄ as digest tuple (d-tuple,
for short).430

In the next definition, we introduce the notion of query result
verification-proof, which is based on the satisfaction of four se-
curity invariants.

Definition 3.6. A range-query result C̄ = (c̄1, . . . , c̄k) is said
verification-proof for the range query Qa(l, u) if the following435

security invariants hold:
SI1. There exist three indexes t′, y′, z′ such that:

1. 1 ≤ t′ < y′ ≤ z′ ≤ k.
2. given the bucket schema B on a, c̄1 is a marker with bound-

ary bα = max{bi ∈ B : bi ≤ l}.440

3. for any 1 < i < t′, c̄i is a d-tuple.
4. for any t′ ≤ i ≤ y′, c̄i is not a d-tuple.
5. for any y′ < i < z′, c̄i is a d-tuple.
6. for any z′ ≤ i < k, c̄i is a g-tuple.
7. given the bucket schema B on a, c̄k is a marker with bound-445

ary bβ = min{bi ∈ B : bi > u}.
8. if t′ > 2, val(c̄1) ≤ val(c̄t′) < l ≤ val(c̄t′+1)
9. for any i, j such that t′ ≤ i < j ≤ y′, val(c̄i) ≤ val(c̄ j).

10. for any i, j such that z′ ≤ i < j ≤ k, val(c̄i) ≤ val(c̄ j).
11. val(c̄y′−1) ≤ u < val(c̄y′) ≤ val(c̄z′).450

If the above conditions hold, we say that C̄ is well-formed for
Qa(l, u).

SI2. For any 1 ≤ i ≤ k−1, c̄i = ⟨x, y⟩, c̄i+1 = ⟨x′, y′⟩, denoting
(from now on) by H̄ a function such that H̄(t) = t if t is a digest,
H̄(t) = H(t) otherwise, it holds that:

y = HMAC(k, H̄(x)||H̄(x′))

SI3. Given two consecutive markers c̄i, c̄ j (1 ≤ i < j ≤ k)
with boundaries bv, bv+1 respectively, it holds: nopv = nd(v) +
ns(v) + 2ng(v), where nd(v), ns(v), ng(v) denote the number of455

d-tuples, s-tuples and g-tuples, respectively, occurring in the
bucket.

SI4. Given two consecutive markers c̄i, c̄ j (1 ≤ i < j ≤ k),
denoting by D̄ = {dgs(c̄g) : c̄g is a g-tuple and i < g < j} and
V̄ = {HMAC(k, H̄(x)) : c̄s = ⟨x, y⟩ is a d-tuple or an s-tuple and460

i < s < j}, it holds that D̄ ∩ V̄ = ∅.

In other words, SI1 states that C̄ is a sequence of buckets (and
markers that delimit such buckets) that starts with the marker
with the highest boundary less or equal to l and ends with the
marker with the lowest boundary greater than u. The first and465

last bucket may include some d-tuples that replace the s-tuples
not involved in the range query but occurring in the bucket.
These s-tuples need not be returned entirely but only their di-
gests are enough to compute the HMAC functions and this re-
duces the number of sink-side hash computations. However,470

5

Figure 1: Graphical representation of integrity chain and result of a range query.

if d-tuples occur in the first bucket, then also an extra s-tuple
must be returned, which corresponds to the tuple with the high-
est value less than l occurring in D. Similarly, if d-tuples occur
in the last bucket, then also an extra s-tuple must be returned,
which corresponds to the tuple with the lowest value greater475

than u occurring in D. The elements of C̄ are ordered accord-
ing to their values. For d-tuples, we mean that they are ordered
according to the order of the corresponding tuples.

SI2 states that the right-most component of each element of
C̄ is computed correctly according to Property 2 of C (see Def-480

inition 3.2).
Regarding SI3, we recall that nopv counts the number of IN-

SERT and DELETE operations carried out on the bucket with
boundaries (bv, bv+1). Thus, each s-tuple/d-tuple corresponds to
an INSERT and each g-tuple corresponds to a DELETE of an485

s-tuple previously inserted (so, it has to be counted twice).
Finally, SI4 states that, for each bucket returned by the stor-

age node, no tuple claimed as still occurring in the database
(i.e., s-tuples and d-tuples) can appear among deleted tuples
(i.e., can correspond to some g-tuple in the bucket).490

In Fig. 1, an example of a range query on an integrity chain
and the corresponding result are depicted.

As we prove in Section 7, for the sink, to receive a query
result verification-proof guarantees that it cannot be compro-
mised in terms of freshness, completeness, and correctness.495

Hence, to verify query integrity it suffices to check if the query
result is verification-proof, that is all the security invariants
hold.

The next step is to provide the previous definition in opera-
tional terms also by highlighting the messages that the sensors,500

the storage node, and the sink have to exchange. The three
operations are then encoded in form of algorithms. In addi-
tion, a SET UP operation is also defined. Specifically, in Al-
gorithm 1, the initialization of the system is described and in
Algorithms 2, 3, and 4 the functions INSERT, DELETE, and505

RANGE QUERY are reported. In the following subsections,
we provide a description of these algorithms. Therein, we de-
note by sn, sk, and st the sensor, the sink and the storage node,
respectively.

3.1. SET UP510

In this subsection, we describe in detail the SET UP opera-
tion, which is used to initialize the secured database Ds (con-
sidered initially empty).

First, sk selects the attributes on which range query will be
performed. Let denote by n the number of such attributes. As515

a consequence, the secured database will contain n integrity
chains (one for each attribute). For each chain (being creat-
ing), sk sets a bucket schema B = ⟨b1, . . . , bk⟩ and a corre-
sponding ghost schema G and makes public them (Lines 5-8
of Algorithm 1). Finally, for each boundary of B, sk builds520

a sequence of k digests H = ⟨h1, . . . , hk⟩ and sends it to st
(Lines 8-12). Each hi ∈ H\{hk} is computed as follows:
hi =HMAC(k,H(bi)||H(bi+1)) (Line 9) and hk =NULL (Line
10). Finally, st retrieves B,H (Lines 17-18) and creates a k-
integrity chain C = (c1, . . . , ck) (Line 21) where ci = ⟨bi, hi⟩525

for 1 ≤ i ≤ k. To conclude the SETUP UP phase, since
no tuple has been added or deleted in/from C yet, the state is
initialized as follows: S C = ⟨(nop1, j1) . . . , (nopk−1, jk−1)⟩ =
⟨(0, 0), . . . , (0, 0)⟩ (Line 22).

The proof that C is a well-formed chain in the sense of Defi-530

nition 3.2, is provided in Appendix A.

3.2. INSERT

In this subsection, we describe in detail the INSERT oper-
ation, which inserts a tuple t on Ds. First, sn sends t to st
(Line 2 of Algorithm 2). For each chain C = (c1, . . . , cn)
with bucket schema B on a given attribute a, state S C and
ghost schema G on B, st (1) recovers the consecutive elements
ci = ⟨x, fC(x)⟩ and ci+1 = ⟨x′, fC(x′)⟩ such that val(ci) ≤
valt(a) < val(ci+1), (2) computes h1=H(x) and h2=H(x′) and
(3) sends them to sn (Lines 15-17). At this point,sn com-
putes h3=H(t), h4=HMAC(k, h1||h3), h5=HMAC(k, h3||h2) and
sends h4, h5 to st (Lines 5-7). This latter creates a new s-tuple
c = ⟨t, h5⟩ (Line 19), updates the value of fC(x) to h4 (Line 20)
and creates a new chain C′ = (c′1, . . . , c

′
n+1) (Line 21) where:

c′z =


cz if 1 ≤ z ≤ i
c if z = i + 1
cz−1 if i + 1 < z ≤ n + 1

Finally, it updates C with C′ (Line 22).
The proof that C′ is a well-formed chain in the sense of Def-

inition 3.2, is provided in Appendix B.535

To conclude this operation, sn finds (Line 8) (bi, bi+1) such
that bi ≤ valt(a) ≤ bi+1 (i.e., it finds the bucket where the s-
tuple has been inserted). Then, it picks a random value R and
sends R, bi, h∗ =HMAC(k,R||bi) to sk (line 9-10). The random
is used to avoid reply attacks.540

sk checks the correctness of h∗ (Line 27) and increments by
one the left-most element (nopi) of the pair (nopi, ji) ∈ S C

(Lines 29-30).

3.3. DELETE

In this subsection we describe in detail the operation545

DELETE which removes a tuple t on Ds.
First, sk sends t (or any unique key able to identify t) to st

(Line 2 of Algorithm 3). For each chain C = (c1, . . . , cn) with
bucket schema B on the attribute a, state S C and ghost schema
G on B, st retrieves ci = ⟨t, fC(t)⟩, ci−1 = ⟨x, fC(x)⟩, and ci+1 =

6

⟨x′, fC(x′)⟩ and computes h1=H(x), h2=H(x′) (Lines 24-25). At
this point, st finds (bv, bv+1) such that bv ≤ valt(a) < bv+1, ck =

⟨bv+1, fC(bv+1)⟩, and ck−1 = ⟨x̄, fC(x̄)⟩ (Lines 26-27). Then, it
computes h3 and h4=H(bv+1) (Lines 28-32) where:

h3 =

H(x̄) if i , k − 1
NULL if i = k − 1

Finally, st recovers, from S C , the pair (nopv, jv) associated
with (bv, bv+1) and sends to sk (h1, h2, h3, h4, fC(x), fC(t), jv)
(Lines 33-34). At this point, sk computes h∗ = H(t) (Line
5) and checks that fC(x) is equal to HMAC(h1||h∗) and fC(t)
is equal to HMAC(h∗||h2) (Lines 6-7). Then, sk computes
h5=HMAC(k, h∗) (Line 8), retrieves (bv, bv+1) and the ghost
element gv (Lines 9-10), computes h7 = H((gv, jv + 1)||h5),
h6, h8 =HMAC(k, h3||h7), h9 =HMAC(k, h7||h4) (Lines 11-16),
where:

h6 =

HMAC(k, h1||h2) if h3 ,NULL (i , k − 1)
HMAC(k, h1||h7) otherwise

and sends the digests (h5, h6, h8, h9) to st (Line 17). st retrieves
gv (Line 36) from G and creates a new g-tuple c = ⟨(gv, jv +
1)||h5, h9⟩ (Line 37), updates the value of fC(x) to h6 and the
value of fC(x̄) to h8 (Line 38), and creates a new chain C′ =
(c′1, . . . , c

′
n) (Lines 39-42) where:

c′z =


cz if 1 ≤ z < i ∨ k ≤ z ≤ n
cz+1 if i ≤ z < k − 1
c if z = k − 1

Finally, it updates C with C′ (Line 43) and changes the state S C

by increasing by one the value of jv (Line 44).
The proof that C′ is a well-formed chain in the sense of Def-

inition 3.2, is provided in Appendix C.550

Once the g-tuple is inserted, sk increments by one the left-
most element nopv of the pair (nopv, jv) ∈ S C (Line 19).

3.4. RANGE QUERY

In this subsection, we describe in detail the RANGE QUERY
operation, which is used to retrieve the result of a range query
Qa(l, u) and verify its integrity. First, sk submits to st the
range query Qa(l, u) (Line 2 of Algorithm 4). st searches
the chain C = (c1, . . . , cn) with bucket schema B on the at-
tribute a and retrieves the elements bα, bβ, ct and cy defined
as: bα = max{bi ∈ B : bi ≤ l}, bβ = min{bi ∈ B : bi > u},
ct = ⟨bα, fC(bα)⟩ and cy = ⟨bβ, fC(bβ)⟩ (Lines 8-10). Now, we
consider two sets: T = {i ∈ N : t < i < y ∧ val(ci) < l} and
Y = {i ∈ N : t < i < y ∧ val(ci) > u}. st computes two indexes
(Lines 11-15):

t′ =

max{T } if T , ∅
t otherwise

y′ =

min{Y} if Y , ∅
y otherwise

Finally, consider another set Z = {i ∈ N : y′ ≤ i < y ∧ ci is a
g-tuple}. st computes the index (Lines 16-18):

z′ =

min{Z} if Z , ∅
y otherwise

In other words, t′ is the index of the element immediately
preceding the first element requested by the range query. Sim-555

ilarly, y′ is the index of the element immediately following the
last element requested by the range query. Finally, z′ is the in-
dex of the first g-tuple following the last element requested by
the range query or it coincides with y.

At this point, st builds (Lines 19-22) the range query result
C̄ = (c̄1, . . . , c̄y−t+1) where, given the element ct+i−1 = ⟨x, fC(x)⟩
such that 1 ≤ i ≤ y − t + 1:

c̄i =


⟨H(x), fC(x)⟩

if 1 < i < t′ − t + 1
∨ y′ − t + 1 < i < z′ − t + 1

ct+i−1 otherwise

Finally, C̄ is sent to sk (Line 24). Now, sk invokes (Line560

4) VERIFY, which is defined by Algorithm 5 and ensures C̄ is
verification-proof. This algorithm is based on the finite state
automaton depicted in Fig. 2. It only represents the structural
part of the SI1 invariant (see Definition 3.6), which correspond
to conditions (1)–(7) of SI1.565

The reading head of the automaton is simulated by the func-
tion readNext(C̄), which returns the next element of C̄. We
define the state transitions according to the type of element. In
Fig. 2, the input symbols are min, d, s, g,m,m f in and denote that
the next element of C̄ is the first marker, a d-tuple, an s-tuple,a570

g-tuple, a marker (different from the first and from the last) and
the last marker of C̄, respectively. Algorithm 5 implements the
automaton of Fig. 2 by enriching its state-transition functions in
order to implement also the remaining part of the SI1 invariant
(conditions (8)–(11)) and the invariants SI2, SI3, SI4. In de-575

tail, Lines 9-93 and Line 99 implement the invariant SI1. Line
97 implements SI2. Finally, Lines 101-112 implement SI3 and
SI4. Then, if the algorithm VERIFY does not end in ERROR
state, then SI1, SI2, SI3, and SI4 hold.

As it results from the operations described above, we remark580

that the only non-schema information the sink node has to keep
to check query integrity is the set NOPC (and not all the state
S C) of each integrity chain C. On the other hand, no infor-
mation has to be maintained by the sensors since the bucket
schema can be intentionally generated.585

4. High-speed data streams in two-tiered sensor networks

In this section, we contextualize the model introduces in the
previous section within the scenario of high-speed data streams
in two-tiered sensor networks in which data are produced by
constrained devices. Specifically, we show how data streams590

7

Algorithm 1 SET UP
1: procedure Sink Node
2: n← set the number of chains of Ds
3: sendToStorageNode(n)
4: for n times do
5: set a bucket schema B← ⟨b1, b2, . . . , bk⟩

6: set a ghost schema G ← ⟨g1, g2, . . . , gk−1⟩ associated with B
7: publish(B,G)
8: for 1 ≤ i ≤ k − 1 do
9: compute hi ←HMAC(k,H(bi)||H(bi+1))

10: hk ←NULL
11: H ← ⟨h1, h2, . . . , hk⟩

12: sendToStorageNode(H)
13: close
14: procedure Storage Node
15: n← receiveFromSinkNode()
16: for n times do
17: retrieve B = ⟨b1, b2, . . . , bk⟩

18: H = ⟨h1, h2, . . . , hk⟩ ← receiveFromSinkNode()
19: for all 1 ≤ i ≤ k do
20: create the element ci ← ⟨bi, hi⟩

21: create the chain C ← (c1, c2, . . . , ck)
22: create the state S C = ⟨(nop1, j1), . . . , (nopk−1, jk−1)⟩ ← ⟨(0, 0), . . . , (0, 0)⟩
23: close

Algorithm 2 INSERT
1: procedure Sensor
2: sendToStorageNode(t)
3: for all chain C = (c1, . . . , cn) with bucket schema B on a given attribute a, state S C and ghost schema G on B do
4: h1, h2 ← receiveFromStorageNode()
5: compute h3 ← H(t)
6: compute h4 ←HMAC(k, h1 ||h3) and h5 ← HMAC(k, h3 ||h2)
7: sendToStorageNode(h4, h5)
8: retrieve, from B, (bi, bi+1) such that bi ≤ valt(a) < bi+1.
9: Pick a random R and compute h∗ =HMAC(k,R||bi)

10: sendToStorageNode(R, bi, h∗)
11: close
12: procedure Storage Node
13: t ← receiveFromSensor()
14: for all chain C = (c1, . . . , cn) with bucket schema B on a given attribute a and ghost schema G on B do
15: retrieve, from C, ci = ⟨x, fC(x)⟩ and ci+1 = ⟨x′, fC(x′)⟩ such that val(ci) ≤ valt(a) < val(ci+1)
16: compute h1 ← H(x) and h2 ← H(x′)
17: sendToSensor(h1, h2)
18: (h4, h5)← receiveFromSensor()
19: create a new s-tuple c← ⟨t, h5⟩

20: update fC(x)← h4
21: create C′ = (c′1, . . . , c

′
n+1)← (c1, . . . , ci, c, ci+1, . . . , cn)

22: update C ← C′

23: close
24: procedure Sink Node
25: for all chain C = (c1, . . . , cn) with bucket schema B on a given attribute a and ghost schema G on B do
26: R, bi, h∗ ← receiveFromSensor()
27: if (HMAC(k,R||bi) , h∗) then
28: return ERROR
29: retrieve, from NOPC , nopi
30: update nopi ← nopi + 1
31: close

8

Algorithm 3 DELETE
1: procedure Sink Node
2: sendToStorageNode(t)
3: for all chain C = (c1, . . . , cn) with bucket schema B on a given attribute a, state S C and ghost schema G on B do
4: h1, h2, h3, h4, fC(x), fC(t), jv ← receiveFromStorageNode()
5: compute h∗ ← H(t)
6: if (HMAC(k, h1 ||h∗) , fC(x)∨ HMAC(k, h∗ ||h2) , fC(t)) then
7: return ERROR
8: compute h5 ←HMAC(k, h∗)
9: retrieve, from B, (bv, bv+1) such that bv ≤ valt(a) < bv+1.

10: retrieve, from G, the ghost gv
11: compute h7 ← H((gv, jv + 1)||h5)
12: if h3 ,NULL then
13: compute h6 ← HMAC(k, h1 ||h2).
14: else
15: compute h6 ← HMAC(k, h1 ||h7).
16: compute h8 ←HMAC(k, h3 ||h7), h9 ←HMAC(k, h7 ||h4)
17: sendToStorageNode(h5, h6, h8, h9)
18: retrieve, from NOPC , nopv
19: update nopv ← nopv + 1
20: close
21: procedure Storage Node
22: t ←receiveFromSinkNode()
23: for all chain C = (c1, . . . , cn) with bucket schema B on a given attribute a, state S C and ghost schema G on B do
24: retrieve, from C, ci = ⟨t, fC(t)⟩, ci−1 = ⟨x, fC(x)⟩ and ci+1 = ⟨x′, fC(x′)⟩.
25: compute h1 ← H(x) and h2 ← H(x′)
26: retrieve, from B, (bv, bv+1) such that bv ≤ valt(a) < bv+1.
27: retrieve, from C, ck = ⟨bv+1, fC(bv+1)⟩ and ck−1 = ⟨x̄, fC(x̄)⟩.
28: if i , k − 1 then
29: compute h3 ← H(x̄)
30: else
31: h3 ← NULL
32: compute h4 ← H(bv+1)
33: retrieve, from S C , the pair (nopv, jv) associated with (bv, bv+1).
34: sendToSinkNode(h1, h2,h3,h4, fC(x), fC(t), jv)
35: (h5, h6, h8, h9)← receiveFromSinkNode()
36: retrieve, from G, the ghost gv
37: create a new g-tuple c← ⟨(gv, jv + 1)||h5, h9⟩

38: update fC(x)← h6, fC(x̄)← h8
39: if i , k − 1 then
40: create C′ = (c′1, . . . , c

′
n)← (c1, . . . , ci−1, ci+1, . . . , ck−1, c, ck , . . . cn)

41: else
42: create C′ = (c′1, . . . , c

′
n)← (c1, . . . , ci−1, c, ci+1, . . . cn)

43: update C ← C′

44: update jv ← jv + 1
45: close

9

Algorithm 4 RANGE QUERY
1: procedure Sink Node
2: sendToStorageNode(Qa(l, u))
3: C̄ = (c̄1, . . . , c̄k)← receiveFromStorageNode()
4: VERIFY(C̄,Qa(l, u))
5: close
6: procedure Storage Node
7: Qa(l, u)← receiveFromSinkNode()
8: retrieve the chain C = (c1, . . . , cn) with bucket schema B on the attribute a
9: retrieve, from B, (bα, bβ) such that bα = max{bi ∈ B : bi ≤ l} and bβ = min{bi ∈ B : bi > u}

10: retrieve, from C, ct = ⟨bα, fC(bα)⟩ and cy = ⟨bβ, fC(bβ)⟩
11: t′ ← t y′ ← y
12: if T = {i ∈ N : t < i < y ∧ val(ci) < l} , ∅ then
13: t′ ← max{T }
14: if Y = {i ∈ N : t < i < y ∧ val(ci) > u} , ∅ then
15: y′ ← min{Y}
16: z′ ← y
17: if Z = {i ∈ N : y′ < i < y ∧ ci is a g-tuple } , ∅ then
18: z′ ← min{Z}
19: for 1 ≤ i ≤ y − t + 1 do
20: create the element c̄i ← ct+i−1 = ⟨x, fC(x)⟩
21: if (1 < i < t′ − t + 1) ∨ (y′ − t + 1 < i < z′ − t + 1) then
22: c̄i ← ⟨H(x), fC(x)⟩
23: C̄ ← (c̄1, . . . , c̄y−t+1)
24: sendToStorageNode(C̄)
25: close

Figure 2: Finite state automaton underlying the verification of the query result
procedure.

can be managed, as well as the integrity-preserving update op-
erations. Consequently, we describe how range queries are per-
formed on data streams so organized and how query integrity
can be verified.

We consider several sensors that capture data from the sur-595

rounding environment. Those data, together with other infor-
mation (e.g., a timestamp, the id of the sensor, etc.) are sent to
the storage node to be stored. Each data can be thought as a
tuple with several attributes, including the attribute time. For a
given attribute (also different from the attribute time), the sink600

node can submit a range query to the storage node asking for all
data whose values are within a given interval of this attribute.
We are interested in guaranteeing query integrity, so that the
result of the query returned by the storage node is correct, com-
plete, and fresh.605

We consider the case of low-powered sensors that collect and
send data with very high frequency. As data must be secured at
the source (thus, by constrained devices), the efficiency of the
operations required to update the verification object becomes
critical. On the contrary, the verification task is less critical610

since it is performed by the sink that owns much more compu-
tational power than the sensors. The same considerations of the
sink apply for the storage node [10].

As often done in the field of data streams, we refer to a
sliding-window-based approach, in which new data are added615

and the oldest are removed.
Now, we show how the model described in Section 3 is in-

stantiated to this scenario.
Let A = (a1, . . . , at) be the attributes of the tuples captured

by the sensors. Let denote by a the attribute that represents the620

insertion timestamp of a tuple, and by D the data stream of tu-
ples produced by the sensors. From now on, consider given a
secured database Ds (built on D) containing an integrity chain
C on the attribute a, with bucket schema B = (b1, . . . , bk) of car-
dinality k and ghost schema G. Ds may contain other integrity625

chains in addition to C, one for each attribute on which range
queries are performed by the sink node.

Definition 4.1. Given a bucket schema B = (b1, . . . , bk) and a
positive number s, a sliding window W (of cardinality w) with
shift parameter s on B is a subsequence of B composed of all630

the w boundaries of B belonging to the interval [bs, bs+w−1] such
that: 1 ≤ s < s + w − 1 ≤ k (i.e., W is a substring of B).

From now on, we consider given a sliding window W on B
(where, recall, B is the bucket schema of C) with shift parameter
s.635

In other words, the sliding window is updated when a new
insertion saturates a bucket and a new bucket must be included

10

Algorithm 5 VERIFY

1: input: C̄,Qa(l, u)
2: retrieve, from B (on a), (bα, bβ) such that bα = max{bi ∈ B : bi ≤ l} and

bβ = min{bi ∈ B : bi > u}
3: V̄ ← ∅
4: ¯nop← 0
5: S ← S IN
6: c = ⟨x′, y′⟩ ← readNext(C̄)
7: cp = ⟨x, y⟩ ← null
8: val1
9: if (C.length < 2) then

10: S ← S ERR

11: while (S , S ERR ∧ c , null) do
12: switch(S)
13: case S IN
14: if (c is a marker and val(c) = bα) then
15: S ← S Min
16: else
17: S ← S ERR

18: break
19: case S Min
20: if (c is a d-tuple) then
21: S ← S Din

22: if (c is an s-tuple ∧ val(c) ≥ l) then
23: S ← S S

24: if (c is a g-tuple) then
25: S ← S G

26: if (c is a marker and val(c) = bβ) then
27: S ← S M f in

28: if (c is a marker) then
29: S ← S M
30: else
31: S ← S ERR

32: break
33: case S Din
34: if (c is a d-tuple) then
35: S ← S Din

36: if (c is an s-tuple ∧ val(c) < l ∧ bα ≤ val(c)) then
37: S ← S S
38: else
39: S ← S ERR

40: break
41: case S S
42: if (c is a d-tuple ∧val(cp) > u) then
43: val1 ← val(cp)
44: S ← S D f in

45: if (c is an s-tuple ∧ val(cp) ≤ u) then
46: S ← S S

47: if (c is a g-tuple) then
48: S ← S G

49: if (c is a marker and val(c) = bβ) then
50: S ← S M f in

51: if (c is a marker) then
52: S ← S M
53: else
54: S ← S ERR

55: break
56: case S G
57: if (c is a g-tuple) then

58: S ← S G

59: if (c is a marker and val(c) = bβ) then
60: S ← S M f in

61: if (c is a marker) then
62: S ← S M
63: else
64: S ← S ERR

65: break
66: case S M
67: if (c is an s-tuple) then
68: S ← S S

69: if (c is a g-tuple) then
70: S ← S G

71: if (c is a marker and val(c) = bβ) then
72: S ← S M f in

73: if (c is a marker) then
74: S ← S M
75: else
76: S ← S ERR

77: break
78: case S D f in
79: if (c is a d-tuple) then
80: S ← S D f in

81: if (c is a g-tuple ∧val1 < val(c)) then
82: S ← S G

83: if (c is a marker ∧val(c) = bβ ∧ val1 < bβ) then
84: S ← S M f in
85: else
86: S ← S ERR

87: break
88: case S M f in
89: if (c = null) then
90: S ← S FIN
91: else
92: S ← S ERR

93: break
94: cp ← c
95: c← readNext(C)
96: if (c , NULL) then
97: if (y ,HMAC(H̄(x)||H̄(x′))) then
98: S ← S ERR

99: if (cp and c are not d-tuples ∧ val(cp) > val(c)) then
100: S ← S ERR

101: if (c is an s-tuple ∨ c is a d-tuple) then
102: V̄ .add(HMAC(k, H̄(x′)))
103: ¯nop← ¯nop + 1
104: if (c is a g-tuple) then
105: ¯nop← ¯nop + 2
106: if (dgs(c) ∈ V̄) then
107: S ← S ERR

108: if (c is a marker) then
109: retrieve the index γ such that bγ = val(c) ∈ B
110: retrieve, from NOPC , nopγ
111: if ¯nop , nopγ then
112: S ← S ERR

113: ¯nop← 0
114: V̄ ← ∅

11

into the sliding window by discarding the oldest one. This is
done by increasing the shift parameter. The above mechanism
corresponds to the insertion of new tuples done by the sensors.640

It could appear that the delete operation is not necessary, be-
cause the only removed tuples are those moving out from the
sliding window. However, according to Definition 3.5, the pres-
ence of non-temporal integrity chains results in deleting tuples
internal to buckets. This corresponds to a suitable re-definition645

of the INSERT operation given in Definition 3.5, as follows.

Definition 4.2. INSERT SW This operation receives a tuple t
and inserts this tuple into the database Ds as explained in the
INSERT procedure of Definition 3.5. If valt(a) is greater than
the greatest boundary contained in W, the sliding window shifts650

forward opportunely by updating the shift parameter s and
all the tuples preceding the new smallest boundary of W are
deleted, by calling the DELETE operation of Definition 3.5.

The pseudo-code of INSERT SW is reported in Algorithm 6.
First, the sensor invokes the INSERT method by passing as a655

parameter the tuple t (Line 3). In the chain C, which is ordered
according to the insertion time of t, the tuple is appended. For
any other chain, the position of the tuple depends on the value
of the corresponding attribute. As effect of the INSERT oper-
ation the sink receives (Line 7) from the sensor the boundary660

bi corresponding to the greatest boundary smaller than valt(a).
Then it sets a new index s∗ = i + 2 − w (Line 8). Now, if s , s∗

then the sliding window has to shift forward, otherwise no fur-
ther operation is required (Line 9). Suppose s , s∗, the sink
finds the boundaries (bs, bs∗) and obtains from the storage node665

all the tuples t∗ such that bs ≤ valt∗ (a) < bs∗ by checking their
integrity (Line 11). All these tuples are removed from Ds (Line
13) Finally, the shift parameter of W is updated from s to s∗

(Line 14). This way, the sliding window shifts forward, that is,
its first boundary becomes bs∗ and all the tuples which values670

precede bs∗ are removed from Ds.
To conclude this section, observe that the INSERT SW oper-

ation can require a significant number of DELETE operations
performed by the sink. Even though the sink has no particular
issues from a computational point of view, our approach guar-675

antees also very efficient DELETE operations.

5. Cost analysis

In this section, we provide a detailed analysis of the per-
formance of the operations supported by our data structure.
Specifically, we want to determine the computational costs in680

terms of number of elementary hash function applications that
have to be computed to perform the operations defined above.
For elementary application of the hash function H we mean the
application of the function on a message with size not greater
than the size of blocks on which the function is defined (accord-685

ing to the Merkle-Damgard scheme). From now on, we denote
by l the size (in bits) of such block.

Definition 5.1. Given a hash function H, we define as unitary
cost (uc), the computational cost of H over a message of l bits.

Clearly, the computational cost of the application of H on a690

message of size x, is C(x) = x
l uc. From now on, uc is consid-

ered as default unitary cost, thus omitted.
In the following analysis, we do not consider the cost of con-

catenation, assignment, padding, and XOR, because they are
negligible compared to the hash computations.695

Moreover, we do not consider the hash computations per-
formed by the storage node since it is not resource-constrained.
Finally, to obtain a fair comparison, we assume that all hash
computations are performed by using the same hash function
H. Thus, H is also the hash function underlying HMAC.700

5.1. Cost of HMAC
All operations defined above need the computation of the

HMAC function. Now, we express the cost of HMAC in terms
of uc.

Throughout this section, consider given a message M of size
m and a hash function H (based on Merkle-Damgard scheme)
that operates by dividing M into blocks of l bits and returns a
digest of p bits. The definition of HMAC is:

HMAC(K,M) = H ((K ⊕ opad)||H((K ⊕ ipad)||M))

where: ipad= the byte 0x36 repeated l
8 times (l bits), opad=705

the byte 0x5c repeated l
8 times (l bits) and K is a secret key of

arbitrary size |K|. We can distinguish two cases:

1. if |K| ≤ l, then we add zero-padding to |K| = l;
2. if |K| > l, them we compute H(K) = K′ (the output is a

string with size t < l) and then we add zero-padding again.710

Since K is arbitrary, we assume that |K| = l, so that we can
neglect the costs of the above padding operation. Moreover,
as suggested by [39], it is possible to compute K ⊕ opad and
K ⊕ ipad only once. Then, these values can be stored and used
when required. Thus, we can neglect also the cost of the XOR715

operation.
We show that the cost of HMAC is: CHMAC = 3 + m

l .
First, we evaluate the cost of H((K⊕ipad)||M). As (K⊕ipad)

returns a block of size l, ((K ⊕ ipad)||M) returns a block of size
l + m. Therefore, H((K ⊕ ipad)||M) costs l+m

l = 1 + m
l . At this720

point, we can evaluate the cost of HMAC by considering that
the hash function H operates on (K ⊕ opad)||H((K ⊕ ipad)||M),
which has size l + p. We can assume that, as it happens for
common hash functions, p < l. Therefore, the message of size
l + p is padded to the size 2l. Consequently, the overall cost is:725

2l
l + 1 + m

l = 3 + m
l .

5.2. Cost of operations
Now, we can determine the computational costs of the op-

erations: INSERT, DELETE, RANGE QUERY, INSERT SW
presented in Sections 3 and 4.730

For simplicity, w.l.o.g., we consider a secured database Ds

with only one integrity chain. We refer to Algorithms 2, 3, 4, 6.
We denote by x the size of a generic tuple (assuming that such
a size is the same for all tuples).

Moreover, we denote by p the size of the digests of H and735

assume to use a hash function for which 2p = l (e.g., SHA256).

12

Algorithm 6 INSERT SW
1: procedure Sensor
2: Given a secured database Ds containing at least an integrity chain C on a with bucket schema B and a sliding window W with shift parameter s on B.
3: INSERT of t in Ds
4: close
5: procedure Sink Node
6: Given a secured database Ds containing at least an integrity chain C on a with bucket schema B and a sliding window W with shift parameter s on B.
7: bi ←receiveFromSensor()
8: set s∗ ← i + 2 − w
9: if s , s∗ then

10: retrieve, from B, (bs, bs∗)
11: C̄ ← RANGE QUERY(Qa(bs, bs∗))
12: for all s-tuple c̄i = ⟨t, fC(t)⟩ do
13: DELETE t from Ds

14: update s← s∗

15: close

Finally, we assume that the size of (g, j)||d, where g is a g-value
and d is a digest, and boundaries is l (this assumption is realistic
by considering the value l of common hash functions).

• INSERT: The only hash computations performed by the740

sensor are h3, h4, h5 (see Algorithm 2, Lines 5-6). The
computation of H(t) can be performed with cost x

l . In-
stead, h4, h5 are computed by applying the HMAC func-
tion on the concatenation between two digests (h1||h3 for
h4 and h3||h2 for h5, respectively). Thus, the input of the745

HMAC function has size l = p + p and the cost of each
HMAC is 3 + l

l = 4. The total cost is then:

CINS =
x
l
+ 2 · 4 =

x
l
+ 8

• DELETE: We refer now to Algorithm 3. The reasoning
is similar to the case of INSERT. First, the sink computes
h∗ = H(t) (Line 5) with cost x

l . Then, to perform the check
at Line 6, it applies, two times, the HMAC function with
input of size l = 2p and the cost is 4 · 2 = 8. At this
point, it has to compute h5, h6, h7, h8, h9. Regarding h5, it
is obtained by applying the HMAC function on h∗ (Line 8).
The input of HMAC has size p bits, but it is padded to the
size of l bits, so, again, the cost of HMAC is 4. Regarding
h6, h8, h9 (Lines 12-16), as for the case of INSERT, HMAC
is applied on the concatenation of two digests and the cost
is 4. Finally, for h7 (Line 11), the input of hash function H
is l = 2p and the cost is l

l = 1. The total cost is then:

CDEL =
x
l
+ 8 + 4 · 4 + 1 =

x
l
+ 25

• RANGE QUERY: For this operation, the evaluation of the
computational costs is a bit more complicated than the pre-
vious. In fact, it depends on the number of s-tuples, d-
tuples, markers, and g-tuples involved in the range query.
Given the sequence C̄ (Algorithm 4, Line 3), we denote
by N(s), N(m), N(g), N(d) the number of s-tuples, mark-
ers, g-tuples, and d-tuples, respectively, occurring in C̄.
We highlight that N(s) are the actual tuples (except for
at most two extra tuples) that the sink requires while the
others N(d) + N(m) + N(g) elements are additional infor-
mation used to verify query integrity (i.e., VO). For each

element of C̄, the sink computes (at Line 97 of Algorithm
5) H̄(x) and H̄(x′) and applies the function HMAC. How-
ever, H̄(x′) can be used for the next iteration. Therefore,
the sink applies the H̄ function only once for each element
c ∈ C̄. The cost of H̄ varies according to the type of the
element c. Specifically, if c is a d-tuple, no hash computa-
tion is requested. If c is a marker or a g-tuple, the function
H̄ coincides with the hash function H and the input has
a size equal to l, thus, the contribution to the total cost is
N(m) + N(g). Otherwise, if c is an s-tuple, again the func-
tion H̄ coincides with H and the cost of H is x

l per s-tuple.
Thus, the overall contribution is N(s) x

l . Now, the for each
elements of C̄, except from the last, at Line 97, the sink
computes an HMAC with input of size 2p = l with total
cost of 4(N(s) + N(m) + N(g) + N(d) − 1). Finally, an-
other HMAC is applied, for each s-tuple and d-tuple of C̄
(Line 101), with input p < l. The cost of these HMAC
is, by considering the padding operation to l bits as above,
4(N(s) + N(d)). The total cost is then:

CRQ = N(s) x
l + (N(m) + N(g)) + 4(N(s) + N(d))

+4(N(s) + N(d) + N(m) + N(g) − 1)
(1)

We remark that in the proposed scenario, the operation
RANGE QUERY operation is performed by the sink that
is not resource-constrained, thus it is not critical in our750

analysis.

• INSERT SW: The sensors pay the cost of one INSERT
and the cost of D DELETEs, where D is the number of
tuples falling outside the sliding window.

755

CS W =
x
l
+ 8 + D

(x
l
+ 25
)

6. Performance Comparison

In this section, we perform a comparative analysis between
our proposal and the Merkle-Hash-Tree-based solution that rep-
resents the state of the art. Even though there are different (even

13

recent) variants of MHT-based solutions, we refer to the basic760

one, by considering that the efficiency improvement of our ap-
proach is asymptotic. As we will see in the sequel of the sec-
tion, we pass from O(log(n)) cost of any tree-based approach
for insertion and deletion to O(1) (where n is the size of the
stored data), with no asymptotic price in terms of verification765

cost.
We remark that this is the core contribution of our approach

aimed to break down the cost of insertion/deletion in those (rel-
evant) cases in which their security must be guaranteed at the
source (and thus, possibly, by constrained devices). There-770

fore, a little price in terms of exact operations (not asymp-
totic) of query verification can be tolerated, according to our
goal, as verification is always performed by the sink that is not
resource-constrained. The subsequent section of experiments
aims to confirm analytical results by also studying the compar-775

ison when parameters change.

6.1. Merkle Hash Tree
In this section, we recall how a classical Merkle Hash Tree

[15] works to guarantee query integrity. Data are divided into
blocks (in our model the blocks coincide with the tuples of the780

database ordered according to their value). A Merkle Hash Tree
(MHT) is a binary tree in which the leaves are the digests of
these tuples. The rest of the nodes (internal nodes) are obtained
by applying the hash function H on the concatenation of their
two children. For example, in Fig. 3 the leaf associated with x1785

is H1 = H(x1), the leaf associated with x2 is H2 = H(x2) and
the internal node H12 = H(H1||H2).

This data structure may be used to verify query integrity as
follow. First, the root is digitally signed and publicly available
(or it may be transferred through a trusted channel). Suppose790

now that the sink submits a query and receives, from the storage
node, a set of tuples that have to be authenticated. For this pur-
pose, the storage node has to return the tuples involved in the
query, the two boundary tuples not included in the query, and a
set of digests necessary to re-calculate the path from the leaves795

to the root. The two boundary tuples, extra s-tuples for our al-
gorithm, are necessary to avoid that the storage node omits the
first or the last tuples involved in the query. By using the di-
gests, the sink is able to compute the root of the tree and to
compare it with the trusted public root. If they match, the in-800

tegrity of the query is verified. For example, by considering
again Fig. 3, if we submit a query whose result is {x4, x5, x6} (in
red), the storage node returns also the tuples {x3, x7} (in green)
and the set of digests {H8,H12} (in blue). In fact, the root may
be obtained with the following steps:805

1. H3=H(x3), H4=H(x4), H5=H(x5), H6=H(x6), H7=H(x7)
2. H34=H(H3||H4),H56=H(H5||H6),H78=H(H7||H8)
3. H14=H(H12||H34), H58=H(H56||H78)
4. Hroot=H(H14||H58)

Now, we evaluate the computational cost of the INSERT,810

DELETE, and RANGE QUERY operations, when an MHT is
adopted. We denote by F the total number of leaves of the tree.

Independently of the version of MHT used, the insertion of
a tuple of size x requires to compute its hash value (with cost

Figure 3: Range query in a Merkle Hash Tree (x4, x6).

x
l) to generate a new leaf of the tree and re-compute the digests
that constitute the path from the leaf to the root (recall that l
is the size of the elementary blocks on which H works). Since
there are F leaves, the total cost is:

C̄INS =
x
l
+ O(log(F))

For the deletion, instead of re-computing entirely the tree,
when the sink removes a tuple, it substitutes such a tuple with
a dummy tuple (which is similar to a g-tuple). Thus, F in-
cludes regular (i.e., not dummy) and dummy tuples. Now, if
we assume that the size of a dummy tuple is equal to l, the
sink applies the hash function H with unitary cost. Then, it
re-computes the path to the root. The total cost is:

C̄DEL = 1 + O(log(F))

By comparing MHT to our approach, the number of dummy
tuples is equal to the number of g-tuples since, for each dele-
tion, a g-tuple is generated. Moreover, the regular tuples in the815

MHT correspond to the s-tuples in the corresponding integrity
chain. Therefore, F represents also the total number of s-tuples
and g-tuples occurring in the integrity chain.

Finally, regarding the verification procedure, the storage
node returns a set of tuples that includes regular and dummy tu-820

ples. By using the notation of the previous section, the number
of regular tuples is N(s) (number of s-tuples actually requested
by the sink) and the number of dummy tuples is N(g) (number
of g-tuples occurring in the result of the range query). Then,
the sink computes H for each of these tuples. The cost of this825

computation is x
l per regular tuple and 1 per dummy tuple (as

discussed earlier). Finally, the digests resulting from the com-
putation of H are concatenated as pairs and the function H is
applied to these pairs. The input of H has size l = p + p. The
hash function H is applied at least once per level. Thus, being830

log(F) the number of levels of the tree, we obtain:

C̃RQ = N(s)
x
l
+ N(g) + O(log(F))

In conclusion, we note that for MHT-based approaches, the
costs of INSERT, DELETE (and consequently INSERT SW)
increase as log(F), while our approach is constant with respect
to F and depends only on the size of the tuples.835

14

Figure 4: Insertion cost with x=64 bytes.

Figure 5: Insertion cost with x=8192 bytes.

Concerning verification, by considering range queries with
size of the order of the size of buckets (coherently with our set-
ting, we are not interested in punctual queries), on the basis of
the above expression and the expression (1) given in Section 5,
it is easy to see that, asymptotically, the verification is O(N(s))840

for both techniques, as N(m),N(d) and N(g) are all in O(N(s)).

6.2. Experiments

In order to validate our proposal, we perform an experimental
analysis on synthetic data structures to evaluate insertion costs.
In detail, we implemented a basic version of MHT (described in845

the previous subsection) and an integrity chain. Then, we study
how the insertion cost of a tuple varies versus the total number
F of elements (i.e., regular tuples plus dummy tuples or s-tuples
plus g-tuples). We note that, for the integrity chain, the inser-
tion cost is independent of the number of s-tuples, g-tuples, and850

markers. Similarly, in MHT, the presence of dummy tuples in
F does not affect the insertion cost. Thus, we consider an MHT
with F regular tuples and no dummy tuple and a chain with F
s-tuples and no g-tuple (the markers occur but do not affect the
cost). Finally, we evaluate the costs for different values of the855

size x of tuples: 64, 512, 2048, and 8192 bytes. Due to space
limitations, we show only the results obtained for x=64 bytes
and x=8192 bytes in Figures 4 and 5.

Clearly, the costs of insertion increase as the size of the tu-
ples x increases for both the data structures. However, our ap-860

proach overcomes the MHT approach for each value of x (64-
512-2048-8192 bytes) and any plausible value of F. According

Figure 6: Verification cost of a range query of size k

to the results given in Sections 5 and 6, our approach has a con-
stant cost, while MHT varies as log(F).

Just to show that, apart from the asymptotic analysis given865

in the previous section, also exact costs do not penalize our
solution, we perform a comparative analysis on the perfor-
mance of the range query verification. We consider tuples with
size x=8KB. For MHT, we consider 224 regular tuples and 220

dummy tuples. Similarly, for the integrity chain, we have 224
870

s-tuples, 220 g-tuples, and 216 + 1 markers. Besides, we as-
sume that the buckets of the chain contain the same number of
s-tuples z = 256 and the same number of g-tuples ng = 16.
Thus, also in MHT, we assume there are on average 16 dummy
tuples every 256 regular tuples.875

This experiment evaluates the verification costs on range
queries of size k, with k ranging from 1000 to 100000. As
this cost depends on the start position of the query, we repeat
the same query 10 times in different positions and calculate the
mean value. The result of this experiment is reported in Fig.880

6 and shows that MHT performs slightly better, but the perfor-
mances of the two solutions are basically comparable.

7. Security analysis

The purpose of this section is to provide a security analysis
of the model proposed in Section 3. The considered actors are885

the sensor, the sink, and the storage nodes. As in [8] and [10],
in our adversary model, the sensor and the sink shares the secret
key k used to compute the HMAC function, and the attacker is
the storage node, for which we do not make any assumption
about its trustworthiness. We observe that to guarantee query890

integrity does not mean that the storage node is not able to store
wrong versions of the database, but that any anomalous portion
of the database is detected by the sink node when required.

The basic assumptions we make are:
A1: the bucket schema B and the ghost schema G are public895

and not alterable;
A2: the sink maintains the set NOPC for each chain C and they
are not alterable by the attacker;
A3: the secret key k shared between the sink and the sensor is
not guessable;900

A4 the hash function used is unbreakable (pre-image resistant,
second pre-image resistant, collision resistant).

We define the following security compromises:

15

Definition 7.1. Cfrs. The query result C̄ of a range query
Qa(l, u) is compromised on freshness if it differs from the ac-905

tual query result and is obtained from an old (valid) integrity
chain Cold.
Ccrr. The query result C̄ of a range query Qa(l, u) is compro-
mised on correctness if it differs from the actual query result
and at least one of the following cases holds:910

1. There exists an s-tuple c̄∗ = ⟨x∗, y∗⟩ ∈ C̄, such that x∗ is
obtained by the storage node by altering an original tuple
x.

2. A new s-tuple c̄∗ = ⟨x∗, y∗⟩ is forged by the storage node
and included in C̄.915

Ccmp. Given tuple t of D with value between l and u, the query
result C̄ of a range query Qa(l, u) is compromised on complete-
ness if it differs from the actual query result and there is no
s-tuple in C̄ with left-most component equal to t.

In the next definition, we state what query integrity formally920

means.

Definition 7.2. The query result C̄ of a range query Qa(l, u) is
integrity-proven if ¬C f rs ∧ ¬Ccrr ∧ ¬Ccmp holds.

We show now that the logical conjunction of the four in-
variants introduced in Definition 3.6 (i.e., the fact that the925

query result is verification-proof) is sufficient to prove that the
query result is integrity-proven, and thus the security of our
approach. In other words, this proves the effectiveness of the
RANGE QUERY operation as a way for the sink to have assur-
ance about the integrity of the range-query results returned by930

the storage node.

Theorem 7.1. The query result C̄ of a range query Qa(l, u) is
integrity-proven if it is verification-proof, according to Defini-
tion 3.6.

Proof. By contradiction we prove that if C̄ is not integrity-935

proven, then it is not verification-proof. Recall that, by Def-
inition 3.6, C̄ is verification-proof iff SI1 ∧ SI2 ∧ SI3 ∧ SI4.
Moreover, C̄ is not integrity-proven iff C f rs∨Ccrr ∨Ccmp holds.

First, suppose that C f rs holds. We show that C f rs implies that
¬ SI3 holds. Recall that, by definition of C f rs, the query result C̄940

is obtained from an old (valid) integrity chain Cold. Being a past
integrity chain, Cold misses at least one INSERT or DELETE
operation performed by the sensor or the sink, respectively.
Suppose (bv, bv+1) are the boundaries delimiting the bucket in-
volved in this missing operation. If an INSERT is omitted,945

then either an s-tuple or a d-tuple is missing from such bucket.
Therefore, nopv = nd(v)+ ns(v)+ 2ng(v)+ 1, being such bucket
included in the result C̄ (otherwise we can exclude that the
query result C̄ is different from the actual one) and due to As-
sumptions A1 and A2 guaranteeing that nopv cannot be neither950

tampered nor associated to boundaries different from (bv, bv+1)
by the adversary. Otherwise, if a DELETE is omitted, then an
extra s-tuple (or d-tuple) occurs in the bucket while one g-tuple
is missing. Therefore, nopv = nd(v)+ ns(v)+ 2ng(v)− 1+ 2, for
the same reason as before. In both cases, the invariant SI3 (i.e.,955

nopv = nd(v)+ ns(v)+ 2ng(v)) is invalidated, and this concludes
this part of the proof.

Now, suppose that CCrr holds. We show that CCrr im-
plies that ¬ SI2 ∨¬ SI3 ∨¬ SI4 holds. According to Defini-
tion 7.1, we have to consider two possible cases. The case960

(1) is that there exists an s-tuple c̄∗ = ⟨x∗, y∗⟩ ∈ C̄, such
that x∗ is obtained by the storage node by altering an origi-
nal tuple x. To keep valid the invariant SI2, the storage node
should be able to obtain the pair yp=HMAC(k, H̄(xp)||H̄(x∗)),
y∗=HMAC(k, H̄(x∗)||H̄(xs)), where xs is the left-most compo-965

nent of the element following c̄∗ and xp is the left-most com-
ponent of the element preceding c̄∗ in the query result. By
Assumptions A3 and A4 the storage node cannot forge them.
The only possibilities for the storage node are: (i) to reuse
HMACs computed by the sensor or sink in the legal execution970

of the protocol, (ii) to obtain HMACs by deceiving the sen-
sor or the sink during the execution of the protocol. (i) occurs
only if the storage node obtained yp=HMAC(k, H̄(xp)||H̄(x∗)),
y∗=HMAC(k, H̄(x∗)||H̄(xs)) because x∗ has been previously in-
serted by the sensor in the database, and then removed the sink.975

Therefore, two cases may hold. The first is that the storage
node does not tamper g-tuples. In this case, the invariant SI4
is invalidated, because of the presence of x∗ in the query re-
sult. The other case is that the storage node removes the g-tuple
corresponding to x∗, to keep SI4, but this invalidates SI3. Due980

to Assumptions A3 and A4, no way to restore the valid num-
ber of g-tuples exists for the storage node in order to keep SI3.
Now, we consider (ii). Concerning INSERT, the sensor com-
putes HMACs on values that always include the tuple being in-
serted, therefore there is no way for the storage node to obtain985

neither yp nor y∗. Concerning DELETE, considering that the
storage node could keep old HMACs working as legal bypasses
to implement the deletion of tuples, the storage node could take
advantage of deletions to deceive the sink and obtain the aimed
HMACs (i.e., yp and y∗). But, the way in which DELETE is de-990

fined eliminates this possibility. Indeed, when a tuple t must be
removed, the storage node provides the sink with H(x), fC(x),
H(x′) and fC(t) and the sink computes HMAC(k,H(x)||H(x′))
by previously checking the correctness of the HMACs of the
sub-chain including x, t, x′. If this sub-chain is the legal one,995

we fall into case (i). The only way for the storage node to re-
turn a correct but not legal sub-chain is to use an old version
of this sub-chain. The storage node could have an advantage
only if, in an old version of the database, either a sub-chain
xp, t, x∗, or a sub-chain x∗, t, xs exists. In fact, in the first case,1000

the sink computes yp, in the second case computes y∗ (which
are the HMACs aimed by the storage node). Suppose that the
first case occurs, that is the storage node finds an old sub-chain
xp, t, x∗. Two cases may happen. The first is that x∗ is still in
the database. In this case, being the old sub-chain not legal,1005

other elements besides t are included between xp and x∗ in the
legal sub-chain. Therefore, the attack on correctness results in
a bypass excluding some tuples and then invalidating the in-
variant SI3. The other case is that x∗ has been removed from
the database. In this case, the attack on correctness could result1010

in changing a tuple x with x∗, but this would invalidate the in-
variant SI4 because x∗ corresponds to a g-tuple in the bucket.

16

A similar reasoning can be applied to the case in which a sub-
chain x∗, t, xs exists. The proof of case (1) is then concluded.

Now we consider case (2) in which the storage node forges1015

a new s-tuple c̄∗ = ⟨x∗, y∗⟩ and includes it in the query result
C̄. Similarly to case (1), the only possibilities for the storage
node to forge y∗ (to keep valid the invariant SI2) are (i) and (ii)
above. Therefore at least one between SI3 and SI4 is violated.

Thus, we proved that CCrr implies that ¬ SI2 ∨¬ SI3 ∨¬ SI41020

holds. It remains to prove that Ccmp implies that ¬ SI1 ∨¬ SI2
∨¬ SI3 ∨¬ SI4 holds.

Suppose now that Ccmp holds. By definition of Ccmp, an ex-
pected s-tuple is missing in C̄. Due to Assumptions A1 and
A2, to keep valid the invariant SI3, the storage node should be1025

able to replace the reduced number of s-tuples by increasing the
number of g-tuples or d-tuples. The increment of s-tuples falls
in the case of correctness compromise and has been already
treated above.

First, consider the case of g-tuples. Since no old version of1030

the chain can contain more g-tuples than the current version,
the storage node should forge entirely the new g-tuples. By
Assumptions A3 and A4, HMACs cannot be forged, thus they
only can be obtained as in (i) and (ii). Therefore, either SI2 or
SI4 will be invalidated.1035

Now, we consider the case of d-tuples. We have to consider
two cases: forged d-tuples or d-tuples obtained from s-tuples.
In order to forge a d-tuple c = ⟨x, y⟩, due to Assumptions A3
and A4, y cannot be forged, thus the only possibilities for the
storage node to obtain a valid y are (i) and (ii). In this case1040

either SI2 or SI4 will be invalidated.
Finally, a d-tuple can always be obtained from an s-tuple (i.e.,

the s-tuple missing in the query result) by replacing the left-
most component with its digest. However, due to properties (3)
and (5) of the Invariant SI1, the d-tuples have to be consecu-1045

tive and must occur only in the left-most and in the right-most
bucket of the query result. Therefore, the only s-tuples which
can be transformed in d-tuples are the first s-tuple c̄t′ following
the d-tuples in the first bucket and the last s-tuple c̄y′ preceding
the d-tuples in the last bucket. However, due to the property (8)1050

of SI1, c̄t′ must have value strictly less than l and the succes-
sive s-tuple c̄t′+1 must have value greater or equal to l, thus by
replacing c̄t′ with a d-tuple, the Invariant SI1 is invalidated. A
similar reasoning applies for c̄y′ . The proof is then concluded
and the theorem is proved.1055

8. Conclusion

In this paper, we propose a new solution to guarantee query
integrity in a two-tier sensor network scenario. The focus of
this work is to show that in this context, where insertion oper-
ations are very frequent, our approach outperforms the existing1060

techniques. In order to accomplish this, we performed a com-
parative analysis between our solution and MHT approaches
that represent the state of the art. From this analysis, it re-
sults that our technique has a constant cost of insertion against
the logarithm cost of the MHT solution. Moreover, we do not1065

have substantial differences in terms of computational cost in

the verification phase. We stress that, typically, the critical op-
erations are insertion and deletion, because their security must
be guaranteed at the source (and thus, by constrained devices).
In contrast, query verification is performed by the sink, that is1070

not resource-constrained. Finally, in order to validate our re-
sults, we provided an experimental analysis on synthetic data
structures and a formal security analysis that shows that query
integrity is guaranteed if the query-result verification succeeds.

References1075

[1] A. Bari, S. Wazed, A. Jaekel, S. Bandyopadhyay, A genetic algorithm
based approach for energy efficient routing in two-tiered sensor networks,
Ad Hoc Networks 7 (4) (2009) 665–676.

[2] J. Pan, L. Cai, Y. T. Hou, Y. Shi, S. X. Shen, Optimal base-station loca-
tions in two-tiered wireless sensor networks, IEEE Transactions on Mo-1080

bile Computing 4 (5) (2005) 458–473.
[3] P. Samarati, Data security and privacy in the cloud, in: International Con-

ference on Information Security Practice and Experience, Springer, 2014,
pp. 28–41.

[4] F. Li, M. Hadjieleftheriou, G. Kollios, L. Reyzin, Dynamic authenticated1085

index structures for outsourced databases, in: Proceedings of the 2006
ACM SIGMOD international conference on Management of data, ACM,
2006, pp. 121–132.

[5] R. Sion, Query execution assurance for outsourced databases, in: Pro-
ceedings of the 31st international conference on Very large data bases,1090

VLDB Endowment, 2005, pp. 601–612.
[6] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, C. Papamanthou, vsql:

Verifying arbitrary sql queries over dynamic outsourced databases, in:
2017 IEEE Symposium on Security and Privacy (SP), IEEE, 2017, pp.
863–880.1095

[7] Q. Zheng, S. Xu, G. Ateniese, Efficient query integrity for outsourced dy-
namic databases, in: Proceedings of the 2012 ACM Workshop on Cloud
Computing Security Workshop, CCSW ’12, ACM, New York, NY, USA,
2012, pp. 71–82. doi:10.1145/2381913.2381927.
URL http://doi.acm.org/10.1145/2381913.23819271100

[8] R. Li, A. X. Liu, S. Xiao, H. Xu, B. Bruhadeshwar, A. L. Wang, Privacy
and integrity preserving top- k query processing for two-tiered sensor
networks, IEEE/ACM Transactions on Networking 25 (4) (2017) 2334–
2346. doi:10.1109/TNET.2017.2693364.

[9] H. Dai, G. Yang, X. Qin, Emqp: An energy-efficient privacy-preserving1105

max/min query processing in tiered wireless sensor networks, Interna-
tional Journal of Distributed Sensor Networks 2013 (07 2013). doi:

10.1155/2013/814892.
[10] F. Chen, A. X. Liu, Privacy- and integrity-preserving range queries in

sensor networks, IEEE/ACM Transactions on Networking 20 (6) (2012)1110

1774–1787. doi:10.1109/TNET.2012.2188540.
[11] J. Bu, M. Yin, D. He, F. Xia, C. Chen, Sef: A secure, efficient, and flexible

range query scheme in two-tiered sensor networks, International Journal
of Distributed Sensor Networks 7 (1) (2011) 126407. arXiv:https:

//doi.org/10.1155/2011/126407, doi:10.1155/2011/126407.1115

URL https://doi.org/10.1155/2011/126407

[12] B. Sheng, Q. Li, Verifiable privacy-preserving range query in two-tiered
sensor networks, in: IEEE INFOCOM 2008-The 27th Conference on
Computer Communications, IEEE, 2008, pp. 46–50.

[13] X. Kui, J. Feng, X. Zhou, H. Du, X. Deng, P. Zhong, X. Ma, Securing top-1120

k query processing in two-tiered sensor networks, Connection Science
33 (1) (2021) 62–80.

[14] M. McCarthy, Z. He, X. S. Wang, Evaluation of range queries with predi-
cates on moving objects, IEEE Transactions on Knowledge and Data En-
gineering 26 (5) (2013) 1144–1157.1125

[15] R. C. Merkle, A certified digital signature, in: Advances in Cryptol-
ogy—CRYPTO’89 Proceedings, Springer, 1989, pp. 218–238.

[16] F. Buccafurri, G. Lax, S. Nicolazzo, A. Nocera, Range query integrity in
cloud data streams with efficient insertion, in: International Conference
on Cryptology and Network Security, Springer, 2016, pp. 719–724.1130

[17] H. Wang, D. He, A. Fu, Q. Li, Q. Wang, Provable data possession
with outsourced data transfer, IEEE Transactions on Services Computing
(2019).

17

http://doi.acm.org/10.1145/2381913.2381927
http://doi.acm.org/10.1145/2381913.2381927
http://doi.acm.org/10.1145/2381913.2381927
https://doi.org/10.1145/2381913.2381927
http://doi.acm.org/10.1145/2381913.2381927
https://doi.org/10.1109/TNET.2017.2693364
https://doi.org/10.1155/2013/814892
https://doi.org/10.1155/2013/814892
https://doi.org/10.1155/2013/814892
https://doi.org/10.1109/TNET.2012.2188540
https://doi.org/10.1155/2011/126407
https://doi.org/10.1155/2011/126407
https://doi.org/10.1155/2011/126407
http://arxiv.org/abs/https://doi.org/10.1155/2011/126407
http://arxiv.org/abs/https://doi.org/10.1155/2011/126407
http://arxiv.org/abs/https://doi.org/10.1155/2011/126407
https://doi.org/10.1155/2011/126407
https://doi.org/10.1155/2011/126407

[18] C. Lin, Z. Shen, Q. Chen, F. T. Sheldon, A data integrity verification
scheme in mobile cloud computing, Journal of Network and Computer1135

Applications 77 (2017) 146–151.
[19] C. C. Erway, A. Küpçü, C. Papamanthou, R. Tamassia, Dynamic provable

data possession, ACM Transactions on Information and System Security
(TISSEC) 17 (4) (2015) 15.

[20] Y.-J. Ren, J. Shen, J. Wang, J. Han, S.-Y. Lee, Mutual verifiable prov-1140

able data auditing in public cloud storage, Journal of Internet Technology
16 (2) (2015) 317–323.

[21] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
D. Song, Provable data possession at untrusted stores, in: Proceedings
of the 14th ACM conference on Computer and communications security,1145

Acm, 2007, pp. 598–609.
[22] Q. Wang, C. Wang, K. Ren, W. Lou, J. Li, Enabling public auditabil-

ity and data dynamics for storage security in cloud computing, IEEE
Transactions on Parallel and Distributed Systems 22 (5) (2011) 847–859.
doi:10.1109/TPDS.2010.183.1150

[23] T. M, P. Varalakshmi, Enabling ternary hash tree based integrity verifica-
tion for secure cloud data storage, IEEE Transactions on Knowledge and
Data Engineering (2019) 1–1doi:10.1109/TKDE.2019.2922357.

[24] B. Zhang, B. Dong, W. H. Wang, Integrity authentication for sql query
evaluation on outsourced databases: A survey, IEEE Transactions on1155

Knowledge and Data Engineering (2019).
[25] F. Chen, A. X. Liu, Privacy and integrity preserving multi-dimensional

range queries for cloud computing, in: 2014 IFIP Networking Confer-
ence, 2014, pp. 1–9. doi:10.1109/IFIPNetworking.2014.6857083.

[26] M. Xie, H. Wang, J. Yin, X. Meng, Integrity auditing of outsourced data,1160

in: Proceedings of the 33rd international conference on Very large data
bases, VLDB Endowment, 2007, pp. 782–793.

[27] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Sama-
rati, Efficient integrity checks for join queries in the cloud 1, Journal of
Computer Security 24 (3) (2016) 347–378.1165

[28] W.-S. Ku, L. Hu, C. Shahabi, H. Wang, A query integrity assurance
scheme for accessing outsourced spatial databases, Geoinformatica 17 (1)
(2013) 97–124.

[29] F. Li, M. Hadjieleftheriou, G. Kollios, L. Reyzin, Authenticated index
structures for aggregation queries, ACM Trans. on Information and Sys-1170

tem Security (TISSEC) 13 (4) (2010) 32.
[30] H. Pang, J. Zhang, K. Mouratidis, Scalable verification for outsourced

dynamic databases, Proceedings of the VLDB Endowment 2 (1) (2009)
802–813.

[31] P. Devanbu, M. Gertz, C. Martel, S. G. Stubblebine, Authentic data pub-1175

lication over the internet, Journal of Computer Security 11 (3) (2003)
291–314.

[32] D. Ma, R. H. Deng, H. Pang, J. Zhou, Authenticating query results in data
publishing, in: International conference on information and communica-
tions security, Springer, 2005, pp. 376–388.1180

[33] M. S. Niaz, G. Saake, Merkle hash tree based techniques for data integrity
of outsourced data., in: GvD, 2015, pp. 66–71.

[34] H. Pang, A. Jain, K. Ramamritham, K.-L. Tan, Verifying completeness
of relational query results in data publishing, in: Proceedings of the 2005
ACM SIGMOD international conference on Management of data, ACM,1185

2005, pp. 407–418.
[35] M. Narasimha, G. Tsudik, Authentication of outsourced databases us-

ing signature aggregation and chaining, in: International conference on
database systems for advanced applications, Springer, 2006, pp. 420–436.

[36] W. Cheng, K.-L. Tan, Query assurance verification for outsourced multi-1190

dimensional databases, Journal of Computer Security 17 (2009) 101–126.
doi:10.3233/JCS-2009-0315.

[37] Y.-T. Tsou, C.-S. Lu, S.-Y. Kuo, Privacy- and integrity-preserving range
query in wireless sensor networks, in: 2012 IEEE Global Communica-
tions Conference (GLOBECOM), 2012, pp. 328–334. doi:10.1109/1195

GLOCOM.2012.6503134.
[38] F. Buccafurri, G. Lax, S. Nicolazzo, A. Nocera, Range query integrity

in the cloud: the case of video surveillance, in: 2016 11th International
Conference for Internet Technology and Secured Transactions (ICITST),
IEEE, 2016, pp. 170–175.1200

[39] H. Krawczyk, R. Canetti, M. Bellare, Hmac: Keyed-hashing for message
authentication (1997).

[40] V. Poosala, P. J. Haas, Y. E. Ioannidis, E. J. Shekita, Improved histograms
for selectivity estimation of range predicates, in: ACM Sigmod Record,

Vol. 25, ACM, 1996, pp. 294–305.1205

[41] Y. E. Ioannidis, V. Poosala, Balancing histogram optimality and practi-
cality for query result size estimation, in: Acm Sigmod Record, Vol. 24,
ACM, 1995, pp. 233–244.

[42] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. C. Sevcik,
T. Suel, Optimal histograms with quality guarantees, in: VLDB, Vol. 98,1210

1998, pp. 24–27.
[43] F. Buccafurri, G. Lax, D. Saccà, L. Pontieri, D. Rosaci, Enhancing his-

tograms by tree-like bucket indices, The VLDB Journal 17 (5) (2008)
1041–1061.

[44] F. Buccafurri, D. Rosaci, L. Pontieri, D. Saccà, Improving range query1215

estimation on histograms, in: Proceedings 18th International Conference
on Data Engineering, IEEE, 2002, pp. 628–638.

[45] S. Guha, N. Koudas, D. Srivastava, Fast algorithms for hierarchical
range histogram construction, in: Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database sys-1220

tems, ACM, 2002, pp. 180–187.

Appendix A. SET UP

We prove that C, as obtained in Section 3.1, is a well-formed
chain in the sense of Definition 3.2.

First, since ck = ⟨bk,NULL⟩ and c1 = ⟨b1, h1⟩, Properties 11225

and 4 hold. Given two markers ci = ⟨bi, hi⟩ and c j = ⟨b j, hi⟩,
bi , b j for definition of B and Property 5 holds too. Triv-
ially, there is no s-tuple in C, so also Property 6 holds. Now,
for 1 ≤ i ≤ n − 1, given ci = ⟨bi, hi⟩, ci+1 = ⟨bi+1, hi+1⟩,
hi =HMAC(k,H(bi)||H(bi+1)) and Propriety 2 is satisfied. Fi-1230

nally, given ci = ⟨bi, hi⟩, c j = ⟨b j, h j⟩, val(ci) = bi < val(c j) =
b j if i < j, for definition of B and also Property 3 is satisfied.
Therefore, C is a well-formed chain.

Appendix B. INSERT

We prove that C′, as obtained in Section 3.2, is a well-formed1235

chain in the sense of Definition 3.2.
First, c′1 = c1 = ⟨b1, fC(b1)⟩ and c′n+1 = cn = ⟨bk, fC(bk)⟩,

thus Properties 1 and 4 are satisfied.
Concerning Property 5, given two markers c′x and c′y (x , y),

we distinguish three cases:1240

1. 1 ≤ x, y ≤ i then c′x = cx and c′y = cy. Since Property 5
is verified in C, then val(c′x) = val(cx) , val(cy) = val(c′y)
and Property 5 is satisfied also in C′.

2. 1 ≤ x ≤ i and i + 1 < y ≤ n + 1 then c′x = cx and c′y = cy−1.
Since y − 1 , x and the Property 5 is verified in C, then1245

val(c′x) = val(cx) , val(cy−1) = val(c′y) and Property 5
holds in C′ too.

3. i + 1 < x, y ≤ n + 1 then c′x = cx−1 and c′y = cy−1. By
following the same reasoning as in case (1), it is easy to
see that Property 5 holds in C′.1250

Concerning Property 6, given c′x, c
′
y ∈ C such that c′x is a

marker, c′y is an s-tuple and val(c′x) = val(c′y):

1. if 1 ≤ x, y ≤ i, then c′x = cx, c′y = cy. Since Property 6
is satisfied in C, then x < y (i.e., Property 6 is satisfied in
C′,too).1255

2. if i + 1 < x, y ≤ n + 1, then c′x = cx−1, c′y = cy−1. Since
Property 6 is satisfied in C, then x − 1 < y − 1 and x < y
(i.e., Property 6 is satisfied in C′, too).

18

https://doi.org/10.1109/TPDS.2010.183
https://doi.org/10.1109/TKDE.2019.2922357
https://doi.org/10.1109/IFIPNetworking.2014.6857083
https://doi.org/10.3233/JCS-2009-0315
https://doi.org/10.1109/GLOCOM.2012.6503134
https://doi.org/10.1109/GLOCOM.2012.6503134
https://doi.org/10.1109/GLOCOM.2012.6503134

3. By contradiction, if 1 ≤ y ≤ i and i + 1 < x ≤ n + 1, then
c′y = cy, c′x = cx−1, but x − 1 > y and this violates Property1260

6 in C, so this is not possible.
4. By contradiction, if y = i + 1 and i + 1 < x ≤ n + 1,

then c′y = c, c′x = cx−1. If x − 1 > i + 1 then val(cx−1) ≥
val(ci+1), but val(c′y) = val(c′x) = val(c) = val(cx−1), so
val(c) ≥ val(ci+1) and this is impossible. If x − 1 = i + 1,1265

then val(c′y) = val(c) = val(cx−1) = val(ci+1) and again
it is not possible. Therefore, the case y = i + 1 ≤ i and
i + 1 < x ≤ n + 1 cannot occur.

5. in all the other cases, trivially, x < y (i.e., Property 6
holds).1270

Concerning Property 2, given an element c′x ∈ C′:

1. if 1 ≤ x < i, then c′x = cx and c′x+1 = cx+1, so since
Property 2 is satisfied in C, it holds in C′.

2. if x=i, then c′x=cx=ci=⟨x, fC(x)⟩ and c′x+1=c=⟨t, h5⟩.
Moreover, fC(x) = h4=HMAC(k, h1||h3)=HMAC(k,H(x)||1275

H(t)), so Property 2 is verified.
3. if x=i+1, then c′x=c=⟨t, h5⟩ and c′x+1=cx=ci+1=⟨x′, fC(x′)⟩

where h5=HMAC(k, h3||h2)=HMAC(k,H(t)||H(x′)) and
Property 2 holds.

4. if i + 1 < x ≤ n, then c′x = cx−1 and c′x+1 = cx. Since1280

Property 2 is satisfied in C, it holds in C′ too.

Regarding Property 3, again, we have several cases. Given
c′x, c

′
y ∈ C′ such that x < y:

1. if 1 ≤ x < y ≤ i then c′x = cx, c′y = cy and since Property 3
is satisfied in C, val(c′x) = val(cx) ≤ val(cy) = val(c′y) (i.e.,1285

Property 3 is verified).
2. if 1 ≤ x ≤ i and y = i + 1 then c′x = cx and c′y = c = ⟨t, h5⟩.

If x = i, val(c′x) = val(cx) = val(ci) ≤ valt(a) = val(t) =
val(c) = val(c′y). Otherwise (x < i), val(c′x) = val(cx) ≤
val(ci) ≤ val(c) = val(c′y) (thus, Property 3 is satisfied).1290

3. If 1 ≤ x ≤ i and i + 1 < y ≤ n + 1 then c′x = cx, c′y = cy−1.
Clearly x < y − 1, thus val(c′x) = val(cx) ≤ val(cy−1) =
val(c′y) (i.e., Property 3 holds).

4. If x = i+ 1 and i+ 1 < y ≤ n+ 1 then c′x = c = ⟨t, h5⟩, c′y =
cy−1. If y = i + 2 then y − 1 = i + 1 and val(c′x) = val(c) ≤1295

val(ci+1) = val(cy−1) = val(c′y). Otherwise (y > i + 2) then
y− 1 > i+ 1 and val(c′x) = val(c) ≤ val(ci+1) ≤ val(cy−1) =
val(c′y), (i.e., Property 3 is verified).

5. If i + 1 < x < y ≤ n + 1 then c′x = cx−1, c′y = cy−1 and
val(c′x) = val(cx−1) ≤ val(cy−1) = val(c′y) (thus, Property 31300

holds).

Therefore, C′ is a well-formed chain.

Appendix C. DELETE

We prove that C′, as obtained in Section 3.3, is a well-formed
chain in the sense of Definition 3.2.1305

First, c′1 = c1 = ⟨b1, fC(b1)⟩ and c′n = cn = ⟨bk, fC(bk)⟩, thus
both Properties 1 and 4 hold.

Concerning Property 5, given two markers c′x and c′y (x , y),
we distinguish 5 cases:

1. if 1 ≤ x, y < i or k ≤ x, y ≤ n, then c′x = cx and c′y = cy.1310

Since Property 5 is satisfied in C, then val(c′x) = val(cx) ,
val(cy) = val(c′y) and Property 5 is satisfied in C′ too.

2. if 1 ≤ x < i and k ≤ y ≤ n, then c′x = cx and c′y =
cy. Similarly to case (1), we can argue that Property 5 is
verified in C′.1315

3. if 1 ≤ x < i and i ≤ y < k − 1, then c′x = cx and c′y =
cy+1. Since y + 1 , x and Property 5 is satisfied in C, then
val(c′x) = val(cx) , val(cy+1) = val(c′y) and Property 5 is
satisfied also in C′.

4. if k ≤ x ≤ n and i ≤ y < k − 1, then c′x = cx and c′y = cy+1.1320

Since y + 1 , x, again, we can apply the same considera-
tions as in case (3).

5. if i ≤ x, y < k − 1 then c′x = cx+1 and c′y = cy+1. By
following the same reasoning as in case (1), Property 5
holds in C′.1325

Regarding Property 6, given c′x, c
′
y ∈ C such that c′x is a

marker, c′y is an s-tuple and val(c′x) = val(c′y):

1. if 1 ≤ x, y < i or k ≤ x, y ≤ n, then c′x = cx, c′y = cy. Since
Property 6 is satisfied in C, then x < y (thus, Property 6 is
satisfied in C′ too).1330

2. if i ≤ x, y < k − 1, then c′x = cx+1, c′y = cy+1. Since
Property 2 is satisfied in C, then x + 1 < y + 1 and x < y
(thus, Property 6 is satisfied in C′ too).

3. by contradiction, if 1 ≤ y < i and k ≤ x ≤ n, then c′y = cy,
c′x = cx. Since k > i, then x > y and this violates Property1335

6 in C, so this case is not possible.
4. by contradiction, if 1 ≤ y < i and i ≤ x < k − 1, then

c′y = cy, c′x = cx+1. Since x + 1 > y, Property 6 in C is
violated, thus this case is not possible.

5. by contradiction, if i ≤ y < k − 1 and k ≤ x ≤ n, then1340

c′y = cy+1, c′x = cx. We have that y + 1 < k, so y + 1 < x.
Again, this violates Property 6 in C, thus this case is not
possible.

6. in all the other cases, it holds that x < y, so that Property 6
is trivially verified.1345

Regarding Property 2, given c′x ∈ C′:

1. if 1 ≤ x < i − 1, then c′x = cx and c′x+1 = cx+1. Since
Property 2 is satisfied in C, it is also satisfied in C′.

2. if x = i − 1, then c′x=c′i−1=ci−1=⟨x, fC(x)⟩. If
i = k − 1, then c′x+1=c′i=c′k−1=c=⟨gv|| jv + 1||h5, h9⟩ and1350

fC(x)=h6=HMAC(k, h1||h7)=HMAC(k,H(x)||H(gv|| jv+1||
h5)) and thus, Property 2 is satisfied. Otherwise (i ,
k − 1), c′x+1 = c′i = ci+1 = ⟨x′, fC(x′)⟩ and fC(x) =
h6 =HMAC(k, h1||h2)=HMAC(k,H(x)||H(x′)), thus Prop-
erty 2 is satisfied.1355

3. if i ≤ x < k − 2, then c′x = cx+1 and c′x+1 = cx+2. Similarly
to case (1), Property 2 is satisfied.

4. if x = k − 2 and i , k − 1, then c′x=c′k−2=ck−1=⟨x̄, fC(x̄)⟩
and c′x+1=c′k−1=c=⟨gv|| jv + 1||h5, h9⟩ where fC(x̄) =

h8 =HMAC(k, h3||h7) =HMAC(k,H(x̄)||H(gv|| jv + 1||h5)),1360

thus Property 2 is verified. (If i = k − 1, we fall in case
(2).)

19

5. if x = k − 1, then c′x = c′k−1 = c = ⟨(gv, jv + 1)||h5, h9⟩

and c′x+1 = c′k = ck = ⟨bv+1, fC(bv+1)⟩ where
h9=HMAC(k, h7||h4)=HMAC(k,H((gv, jv+1)||h5)||H(bv+1)1365

(Property 2 verified)
6. if k ≤ x ≤ n− 1, then c′x = cx and c′x+1 = cx+1. Similarly to

case (1), Property 2 is verified.

Regarding Property 3, given c′x, c
′
y ∈ C′ such that x < y:

1. if 1 ≤ x < y < i, then c′x = cx, c′y = cy and val(c′x) =1370

val(cx) ≤ val(cy) = val(c′y) (Property 3 is verified).
2. if 1 ≤ x < i and i ≤ y < k − 1, then c′x = cx, c′y = cy+1 and,

since x < y + 1, val(c′x) = val(cx) ≤ val(cy+1) = val(c′y)
(Property 3 is satisfied).

3. if 1 ≤ x < i and y = k − 1 then c′x = cx, c′y = c = ⟨(gv, jv +1375

1)||h5, h9⟩ and val(c′x) = val(cx) ≤ val(ci) = valt(a). By
definition 3.1, s < (gv, j) < bv+1 for any j, where s ∈ U(a)
is the value preceding bv+1 in the total order of Û(a). Since
valt(a) ∈ U(a) and valt(a) < bv+1, then valt(a) < (gv, jv +
1) < bv+1. Thus, val(c′x) ≤ valt(a) < (gv, jv + 1) = val(c′y)1380

(Property 3 is verified).
4. if 1 ≤ x < i and k ≤ y ≤ n then c′x = cx, c′y = cy and, as in

the case (1), Property 3 is satisfied.
5. if i ≤ x < y < k − 1 then both c′x = cx+1 and c′y = cy+1.

Therefore, val(c′x) = val(cx+1) ≤ val(cy+1) ≤ val(c′y) (Prop-1385

erty 3 is verified).
6. if i ≤ x < k − 1 and y = k − 1 then c′x = cx+1,

c′y = c = ⟨(gv, jv + 1)||h5, h9⟩. Since i < x + 1 < k,
then val(ci) ≤ val(cx+1) ≤ val(ck) = bv+1. But bv ≤

val(ci) < bv+1, so bv ≤ val(cx+1) ≤ bv+1. By contradiction,1390

if val(cx+1) = bv+1 = val(ck), then cx+1 cannot be a g-tuple
(because its value ∈ U(a)). Moreover, cx+1 cannot be an
s-tuple because, for Property 6, x + 1 should be greater
than k. Finally, cx+1 cannot be even a marker because ck

and cx+1 would be two markers with the same boundary1395

(in contrast with Property 5), thus bv ≤ val(cx+1) < bv+1.
Again, suppose, by contradiction, that cx+1 = ⟨bα, fC(bα)⟩
(i.e., cx+1 is a marker). Then, it would be bv ≤ val(cx+1) =
bα < bv+1 and it is not possible for definition of B, so
cx+1 is an s-tuple or a g-tuple. If cx+1 is an s-tuple, then1400

val(cx+1) ∈ U(a) and val(cx+1) < bv+1. Thus, val(c′x) =
val(cx+1) < (gv, jv + 1) = val(c′y) < bv+1 and Property 3 is
satisfied. If cx+1 is a g-tuple, since bv ≤ val(cx+1) < bv+1,
then val(cx+1) = (gv, j) for some j ≤ jv. Thus, val(c′x) =
val(cx+1) = (gv, j) < (gv, jv + 1) = val(c′y) and Property 31405

holds.
7. if i ≤ x < k − 1 and k ≤ y ≤ n, then c′x = cx+1, c′y = cy and,

since x + 1 < y, val(c′x) = val(cx+1) ≤ val(cy) = val(c′y)
(Property 3 holds).

8. if x = k−1 and k ≤ y ≤ n, then c′x = c = ⟨(gv, jv+1)||h5, h9⟩,1410

c′y = cy. If y = k, then c′y = ck = ⟨bv+1, fC(bv+1)⟩, val(c′x) =
val(c) = (gv, jv + 1) < bv+1 = val(c′y) (Property 3 holds).
Otherwise (y > k), val(c′x) = val(c) = (gv, jv + 1) < bv+1 =

val(ck) ≤ val(cy) = val(c′y) (Property 3 holds).
9. if k ≤ x < y ≤ n, then c′x = cx, c′y = cy and, as in case (1),1415

Property 3 is satisfied.

Therefore, C′ is a well-formed chain.

20

	Introduction
	Related work
	A new data structure for efficient update operations
	SET_UP
	INSERT
	 DELETE
	RANGE_QUERY

	High-speed data streams in two-tiered sensor networks
	Cost analysis
	Cost of HMAC
	Cost of operations

	Performance Comparison
	Merkle Hash Tree
	Experiments

	Security analysis
	Conclusion
	SET_UP
	INSERT
	DELETE

