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Abstract

In Machine Learning, the data for training the model are stored centrally.

However, when the data come from different sources and contain sensitive

information, we can use federated learning to implement a privacy-preserving

distributed machine learning framework. In this case, multiple client devices

participate in global model training by sharing only the model updates with

the server while keeping the original data local. In this paper, we propose

a new approach, called Partially-federated learning, that combines machine

learning with federated learning. This hybrid architecture can train a unified

model across multiple clients, where the individual client can decide whether

a sample must remain private or can be shared with the server. This decision

is made by a privacy module that can enforce various techniques to protect

the privacy of client data. The proposed approach improves the performance

compared to classical federated learning.
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1. Introduction

The recent digital transformation in mobile networks (e.g., 5G) and com-

puting has driven the growth of Internet users, connectivity, and IoT devices,

as well as the demands on network functions and applications. Several new

devices are launched each year with more capabilities and intelligence. As5

reported in the Cisco Annual Report (2018-2023) [7], the average number of

devices and connections per capita will increase from 2.4 in 2018 to 3.6 in

2023, resulting in billions of devices in the world. However, mobile devices

have limited computing power and battery capacity, making it infeasible or

too resource intensive to manage large amounts of data locally, even if self-10

produced, and perform elaborate tasks. One solution is to move all or part

of the data and tasks to a computing server.

This is done, for example, in standard deep learning techniques, where the

data for model training are stored centrally, and each participant uploads its

data to a single place. However, data may contain sensitive information that15

users do not want to disclose, such as gender, salary, health status, political

orientation, and browsing history. Therefore, transferring these data to a

server may violate the privacy of customers, and the concerns of individual

subscribers may be greater than the benefits of deep learning services. In

addition, Western legal frameworks are emphasizing increasingly strong data20

protection, with the Council of the European Union Commission activating

the General Data Protection Regulation [28] in 2016.

To address this issue, researchers at Google have proposed a privacy-

preserving distributed machine learning system, called Federated Learning,

to train models from decentralized consumer data on IoT devices without25
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violating privacy [16]. Inspired by this framework, multiple client devices

participate in training a global model while keeping the original data local.

In this way, the utility of the data is well preserved while the data remains

local. By definition, raw participant data does not leave client devices in

federated learning environments, and clients only share model updates with30

the server.

The literature is rich with proposals to protect user privacy in federated

learning environments, and these proposals fall into three main categories,

namely model aggregation [27], homomorphic encryption [6, 12], and differ-

ential privacy [2, 9].35

Federated learning solves the privacy problem [5, 14], but has the side

effect of shifting the computational load to the device side.

This paper proposes a new approach called Partially-federated learning

that combines the classical centralized computing framework for machine

learning with the new federated learning framework. To the best of our40

knowledge, this is the first attempt in the scientific community to create such

a hybrid architecture [39]. The intuition behind our proposal is based on the

fact that client-side data contains two types of information: 1) confidential

information, if it is classified as sensitive information; 2) non-confidential

information, if it can be released without risk to the user’s privacy. Since45

not all data stored on clients could violate privacy, we introduce the privacy

module on the client side in our system. This module can implement any

privacy criterion to determine which data can be shared with the server while

respecting the privacy requirements. In our work, we consider the two most

popular privacy criteria, namely k-anonymity and l-diversity. The concept50
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of k-anonymity is based on the fact that each tuple is indistinguishable from

at least k− 1 other records within the dataset [33]. The l-diversity approach

limits the risk of identification by mandating that the sensitive attribute must

have a minimum number of distinct values within each equivalence class,

where an equivalence class is a set of identical quasi-identifiers1 attributes55

sources of k-anonymity.

Briefly, our approach works in four steps:

1. Clients that are to participate in the FL task download from the server

the model with initialized weights.

2. The privacy module of each client decides what data can be shared60

with the server. Thus, the client can start the model training with its

local data. Similarly, the server can also train the model with the data

received from the clients.

3. The model updates coming from both the clients and the server are

collected and aggregated to improve the global model.65

4. The updated model is passed from the server to the clients, and a new

iteration loop begins to improve the model.

To show the effectiveness of our proposal, we describe how k-anonymity

and l-diversity approaches are integrated into our hybrid federated learning

system, and we describe the advantages and disadvantages of our proposal.70

The rest of the paper is organized as follows. In Section 2, we introduce

the concept of federated learning. Section 3 discusses related work. In Sec-

tion 4, we present our proposed hybrid architecture focusing on the privacy

1Quasi-identifiers are attributes that identify individuals using external sources, [35].
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module. Section 5 discusses how our approach can be implemented in a spe-

cific scenario. Section 6 provides a discussion on the validity of the proposal75

and discusses future directions.

2. Preliminaries

In this section, we provide the background needed to understand the

proposal, which focuses on federated learning.

Conventional machine learning algorithms are performed in a centralized80

data center wherein information proprietors add their data. However, data

are privacy sensitive, and data owners are not always willing to distribute.

Similarly, this kind of training procedure suffers from data privacy leakage

threat. To cope with such privacy challenges, a collaboratively distributed

deep learning paradigm, called federated deep learning, has become proposed85

for distributed devices to train a global model while maintaining the training

records at the device side without sharing raw training records [19]. Data

are allotted and scattered among distinct clients, and no single node stores

the entire data set. The workflow of federated learning is that every client

trains a local machine learning model with the usage of its information and90

uploads it to the centralized version for summarizing and averaging. Then,

a global model is performed inside the centralized server. Accordingly, fed-

erated learning prevents a single node from failure effectively. Federated

learning is much like the traditional distributed machine learning [16]. How-

ever, assumptions on local datasets are unique. Particularly, the conventional95

distributed learning pursuits at optimizing the parallel computing energy,

however, data are independent and identically distributed (IID) amongst dis-
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tinctive parties. In contrast, federated learning specializes in heterogeneous

local datasets, which means that training data can be allotted, non-IID, and

unbalanced among numerous clients [38]. That is, every client member trains100

the identical model along with its local records set. The aim is to obtain a

global version with the minimized averaged sum of loss functions amongst

all contributors.

Federated learning approach consists of three main phases: initialization,

aggregation, and update step. In the initialization step, the central server105

broadcasts the current model wt to each client. Following that, each partici-

pant k using a fixed learning rate η computes the average gradient gk for E

epochs on its local data set nk at the current model wt

wk
t+1 ← wt − ηgk

In the aggregation step, the central server performs a collection of local

gradients. Finally, in the update step, the central server uses the federated110

averaging algorithm [23] to obtain a new global model wt+1 for the next

iteration applying the update.

wt+1 ←
K∑
k=1

nk

n
wk

t+1 (1)

where n denotes the global data set. The central server and the clients

iterate the above procedure until the global model reaches convergence. This

paradigm substantially reduces the risks of privacy leakage since there is no115

need to directly get access to the training data on client nodes.
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3. Related Work

Inspired by the aid of the federated framework, multiple client devices

can contribute to the global model training while retaining the original data

locally. Applying the Federated Averaging algorithm (FedAvg) [23], in each120

federated learning round, each contributing device (also known as client),

gets an initial model from the main server, runs stochastic gradient descent

(SGD) on its local data, and sends back the updated gradients. The server

then gathers all gradients from the contributing clients and updates the initial

model. This technology can shield the privacy of the collaborating clients125

successfully since those clients simply need to upload the model gradients or

weights derived from their local records instead of their data [20].

Drawing parallels between the federated learning framework and more

conventional computing architectures, like centralized and distributed ones,

is depicted in [15], where authors discuss recent advances and present an130

extensive collection of open problems and challenges. In a centralized frame-

work (Figure 1a), all computations are executed on the central server, while

the clients request the server to use the computed model. During the training

phase, the server needs to have access to the entire dataset constituted by all

local sets. Differently, in the distributed computing framework (Figure 1b)135

there is the presence of multiple servers, also indicated as cloud, dividing up

the computational load and data sets that might be anonymized. Finally, as

already mentioned, in federated learning (Figure 1c), clients become active

contributors to the computational load and only partially share information

with the central server. The server acquires a new role: it aggregates the140

updates from several clients and then broadcasts back the aggregated infor-
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(a) A centralized computing framework

(b) A distributed computing framework (c) A federated learning framework

Figure 1: An illustration of the distinct computing frameworks.

mation to the end clients.

Moreover, federated learning has lately captivated considerable attention,

and one of the most relevant research challenges is privacy protection. Liu et

al. [21] tackle the privacy issue during model updates. They had the intuition145

to use sketches commonly employed for network measurement and databases

applications. Subject to the model’s size, the computed local updates can be

a vector of up to millions of numbers. Considering that sketches obfuscate
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the original data via independent hash functions, they exploit hash functions

to hide the identities of each round of model updates with client owned150

private hash indices and seeds. Using three representative learning models,

their proposed sketching-based federated learning can provide strong privacy

guarantees without sacrificing accuracy.

Hao et al. [11] suggested a privacy-enhanced federated learning (PEFL)

scheme that is non-interactive in each aggregation. The homomorphic cipher155

text of private gradients is embedded into augmented learning with error

term to achieve their secure aggregation protocol. Their scheme helps pre-

vent private data from being leaked. Nasr et al. [26] presented an exhaustive

privacy analysis framework of deep neural networks using white-box mem-

bership inference attacks. Attackers can both passively inspect the model160

updates and actively impact the target model to retrieve additional informa-

tion. Furthermore, attackers can be equipped with different types of prior

knowledge. Authors show that in federated learning, both the server and

the clients can perform alarmingly accurate membership inference attacks

against other clients. Differently, Wang et al. [37] advanced an architecture165

incorporating Generative adversarial networks (GANs). Although GANs can

reconstruct class representatives of the global data distribution, it is challeng-

ing to attack a single client. Authors proposed a practical reconstruction

attack named mGAN-AI, which employs GAN with a multitask discrimina-

tor, discriminating contemporaneously category and client identity of input170

data. This facilitates the generator on the malicious server to target and

compromise the victim’s training samples.

Few kinds of research have combined federated learning and blockchain
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as a protection mechanism to defend the privacy of model parameters. Lu

et al. [22] present a blockchain-empowered collaborative framework employ-175

ing differential privacy (DP) and federated learning to protect data privacy

further. In addition, data owners can audit the access to shared informa-

tion. Zhao et al. [40] employ multiple existing technologies to build their

system. As usual in a federated learning architecture, clients download and

train the global model with local data. Then, the model is sent and stored180

into the blockchain. In the event of malicious clients or server, the chain is

used instead of the central aggregator. Records on the chain are immutable,

and any activity is traceable. Both in the work conducted by Lu and in the

study by Zhao, the addition of DP noise directly into the local and raw data

instead of the gradients can be a drawback of these approaches with a risky185

incidence on the accuracy.

Orthogonal to all presented strategies, we propose a new hybrid approach

that fuses together classic centralized computing framework for machine

learning with the new federated learning framework. To the best of our

knowledge, this is the first attempt in the scientific community to create a190

hybrid architecture. With respect to the state of the art, our architecture

improves the accuracy of the trained model for federated learning. It reduces

the computational load of clients, yet preserving the privacy of their data.

4. Our Proposal

In this section, we describe the architecture of our proposal and its core195

component, which is the Privacy module.

10



Figure 2: The proposed framework

4.1. Architecture

The basic idea of our proposed hybrid federated learning framework is

straightforward: the hybrid architecture can train a unified model across

multiple clients while letting the single client decide which data can be kept200

private and which can be shared with the server. As depicted in Figure 2,

our framework proceeds in four steps.

Step 1 (Sharing the unified model with clients): Clients that want to par-

ticipate in the federated learning task download the model with the initialized

weights from the server.205

Step 2 (Clients local data extraction and weights update): Each client

collects its local data at regular intervals. The privacy module on the client

side determines which data can be shared with the server according to the

selected privacy logic. Thus, the client can start the model training with

its local data (step 2.a). At the same time, the privacy module sends the210

local data that meets the requirements of the privacy logic to the server

(step 2.b). The server trains the model using this data and then sends the
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updated weights to the Model Aggregation (step 2.c). Another significant

difference with federated learning is that the server can also train its model

using data received from the clients’ privacy modules. In conclusion, the215

updated weights are sent from both the clients (step 2.a) and the server

(step 2.c) to the Model Aggregation module on the server side.

Step 3 (Updated weights aggregation): The updated weights both origi-

nated from the clients and from the server are aggregated/averaged by the

Model Aggregation Module in order to enhance the unified model in a col-220

laborative manner. The aggregation approach used in this task is the same

as FedAvg (see Equation 1 in Section 2).

Step 4 (Sharing the updated unified model with clients): In this final step,

the updated model is passed from the server to the clients, and a new iteration

loop to improve the model can begin.225

We conclude this section by observing that our framework can be en-

riched by including other orthogonal features such as a more complex weight

updating [36] or applying adaptive optimizers [29]. However, this is out of

the scope of our paper.

4.2. Privacy module230

In this section, we describe how the privacy module works to decide

whether a sample does not violate the user’s privacy and, thus, can be for-

warded to the server for training.

A sample may contain confidential data if they are classified as sensitive

information (e.g., salary, health status) or non-confidential information if235

they can be released without violating the individual’s privacy.

Note that in addition to identifier attributes, which allow identification
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of the individual, there are also quasi-identifiers attributes [35] that, in con-

junction with other external information, allow linking and re-identification

of an individual. At first glance, removing all identifying attributes might240

be an option to achieve anonymity [31]. However, thanks to external and

publicly available information, the combination of quasi-identifier data may

lead to re-identification of the data subjects.

Some privacy models can be designed to provide some degree of anonymity.

Consider a table T (a1, ..., an) where ai with 1 ≤ i ≤ n is an attribute.245

The concept of k-anonymity is based on the fact that each tuple in the

table is indistinguishable from at least k − 1 other tuples within the table.

In other words, the table T satisfies k-anonymity if each tuple of quasi-

identifier attributes of the table appears at least with k occurrences (the

interested reader can find the formal definition of k-anonymity in [1]). The250

k-anonymity technique can be achieved through two complementary opera-

tions: 1) generalization, which replaces a quasi-identifier value with a general

value and, 2) suppression, which consists of removing some values of quasi-

identifiers (e.g., a single cell, column, tuple).

Another approach to obtaining privacy is l-diversity. Consider equiva-255

lence classes Ei, ..., Em consisting of tuples t that share a combination of sen-

sitive attribute values. A table guarantees l-diversity if, for each Ei, ..., Em,

there exists at least l well-represented values of each sensitive attribute (the

interested reader can find the formal definition of l-diversity in [1]).

We conclude this section by formalizing the algorithm used to implement260

the privacy module. We recall the standard notation from machine learn-

ing: Let D = {s1, . . . , s|D|} be a data set of samples, F be the descriptive
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attributes of samples, and l(si) (label) be the class to which the sample si

belongs.

Let I = {i1, . . . , i|I|} ⊆ F be a subset of features, which is an input of the265

algorithm: how to determine such a set depends on the specific application

(this aspect is discussed in Section 5). Given a sample sa and a feature ib,

we denote by val(sa, ib) the value of the sample for the feature ib.

A client runs Algorithm 1 to decide whether a sample can be sent to the

server or not. In this algorithm, the input is the set of all samples, and the270

output is a vector that stores the value false at position x if the x-th sample

can be sent to the server without violating privacy requirements. A key-

value mapping associates a set of attribute values (keys) with a non-negative

integer (values) that counts how often such values occur in the dataset. With

a little abuse of notation for simplifying the presentation, Line 1 represents275

the initialization of such counters to zero. Then, the mapping is updated by

incrementing the value of each key by one each time a sample with such a

key is found (Lines 2-5). Once the cardinality of each key is calculated, in

the final step (Lines 6-11), the x-th sample is marked as to be sent to the

server (Line 9) if its key is present in at least k other samples.280

For the sake of completeness, we specify in Algorithm 2 the procedure

carried out by each client when l-diversity is applied. In this case, the input

also contains the labels of the samples, and the main difference from Algo-

rithm 1 is that the key includes the label value in such a way that there are

at least l samples with the same values of both the features in I and the285

label.

It is worth noting that the proposed algorithms also work with features
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Algorithm 1: k-anonymity

Input k: privacy protection degree

Input D: samples

Output keep: boolean vector

1: M [∗] = 0

2: for each sx ∈ D do

3: key =
(
val(sx, i0), . . . ,val(sx, i|I|)

)
4: M [key] + +

5: end for

6: for each sx ∈ D do

7: key =
(
val(si, i0), . . . ,val(si, i|I|)

)
8: if M [key] ≥ k then

9: keep[x] = false

10: end if

11: end for

12: return keep;

that have an unbounded number of combinations. For example, consider

non-categorical features such as <name, surname, city> and assume that

the desired privacy protection degree is k = 10. In this case, if there are at290

least k people with the same name, surname, and city, we can disclose some

information related to them. For example, we could disclose that “Giuseppe

Rossi living in Rome is COVID positive” without violating the user’s privacy

(according to the privacy protection degree set above) because there are

about 28 citizens with this name/surname in Rome (the name Giuseppe and295
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Algorithm 2: l-diversity

Input l: privacy protection degree

Input D: samples

Input L: sample labels

Output keep: boolean vector

1: M [∗] = 0

2: for each sx ∈ D do

3: key =
(
val(sx, i0), . . . ,val(sx, i|I|, l(sx))

)
4: M [key] + +

5: end for

6: for each sx ∈ D do

7: key =
(
val(si, i0), . . . ,val(si, i|I|, l(sx))

)
8: if M [key] ≥ k then

9: keep[x] = false

10: end if

11: end for

12: return keep;

the surname Rossi are very common in Italy).

Moreover, observe that k-anonymity and l-diversity also works for non-

tabular data, such as images. It is sufficient to define a measure of similarity

between two images so that we can determine if two images have the same

“key” (this is used in Lines 3 and 4 of Algorithms 1 and 2). The reader300

interested in this aspect can find an example of using k-anonymity for images

in [25].
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A final remark is that the choice of the approach to be used in the privacy

module and the value of k or l are parameters of our architecture and strongly

depend on both the specific application context and the required privacy305

protection degree. An example of application of these approaches is presented

in the next section.

5. Case study

This section aims to show how to deploy our approach, particularly the

privacy module, in an application scenario. We recall that we propose a new310

strategy to perform machine learning by a hybrid approach between central-

ized and federated learning. Thus, the situations in which this approach can

be used are extensive: the most crucial aspect is to build the privacy model to

handle quasi-identifier attributes and the desired level of privacy protection.

Among all the possible scenarios, probably the most significant and timely315

one is the case in which we need to build a model to predict COVID-19

severity and we can conduct a study using data of patients with COVID-19

infection hospitalized in a large number of health centers [8, 10]. Federated

learning leads each center to participate in the training of a global model

while retaining the original data locally.320

Unfortunately, just for privacy reasons, there is no dataset available for

the problem of predicting COVID-19 severity. The desired dataset should

have the following properties:

• to have a large number of samples. Indeed, the dataset should provide

data for both training and testing sufficient for any client;325
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• to have features involved in privacy concerns. This is very important

to motivate the use of the privacy module;

• to have been used in other research activities in order to be relevant

and sound.

We observe that there are very few datasets offering these three proper-330

ties. The dataset we use in this section has these properties and refers to

a prediction problem that is general and exhaustive. Specifically, we con-

sider a classification task to predict whether a person’s income exceeds a

given threshold. Knowing some details about this person, in some situa-

tions, could allow the person identification. The dataset is known by the335

name Adult Census Income and has been widely analyzed in many other

pieces of research [18, 13, 4, 30]. These data are extracted from the Census

bureau database [34] and contain 14 features, including age, race, sex, native

country, education, occupation, marital status, relationship, capital gain or

loss, and working hours per week. The attribute income is the attribute to340

predict and states whether a person makes over $50K a year (the reader can

see [34] for details). The dataset is composed of 32561 rows. In the following,

we show how our approach can be instantiated in this scenario, and we com-

pare its performance with respect to both centralized learning and federated

learning.345

5.1. Pre-processing and setting

To implement our approach, we built a Python simulator that uses the

Tensorflow library as learning framework. In the pre-processing task, we fol-

low the same operation as done in [32, 17]: we deleted from the dataset the

18



2399 rows with missing values, we removed the attribute fnlwgt (final weight)350

because not useful for prediction and the attribute education because it is de-

rived from education-num. The continuous attributes hours-per-week, capital-

gain and capital-loss were mapped to ordinal attributes. The text attributes

workclass, marital-status, occupation, relationship, race, sex, native-country,

and income were encoded with integer values between 0 and the number of355

different classes. We call this first encoding E1, and the resulting dataset

is available as research data for this paper. Finally, each feature value was

scaled to the range [0,1].

Concerning the text attributes workclass, marital-status, occupation, re-

lationship, race, native-country, a concern is about the use of label encoding360

(i.e., converting each value of a feature to a number) for nominal (i.e., non-

ordinal) features. Thus, we considered a second encoding E2 that encodes

these text attributes by adding a new binary feature for each category, in

which the value 1 represents the presence of that category (this is called One

Hot Encoding).365

Concerning the setting of the learning parameters, we used standard

choices: we set the training and test sets as 70% and 30% of the whole

dataset, respectively, and we used the accuracy for evaluating the model

performance (as done in [18]).

We used ten clients that train their local model in the considered scenario370

by the training set. To implement the heterogeneity of the data distribution

among the parties [17], we trained each client by samples of people with the

same age interval.
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5.2. Privacy module

As discussed in section 4.2, the implementation of the privacy module and375

the value of its parameters strongly depend on the considered application.

We implemented both the k-anonymity approach and l-diversity approach,

where k and l are parameters whose values depend on the level of privacy

required in the considered scenario [3]. When the k-anonymity is used, quasi-

identifier attributes have to be detected. We selected age, race, sex in our380

application as quasi identifier attributes. Thus, a client does not process a

sample locally if there are at least k people with equal values of the attributes

age, race, sex. Concerning the parameter k, we used several values in the

range 1 ≤ k ≤ 550. The privacy module has also been implemented with the

l-diversity approach. In this case, a client does not process a sample locally385

if there are at least l well-represented values for the attribute income (i.e.,

at least l people with equal values of quasi-identifier attributes and income).

5.3. Building the model

We need a classification model to solve the Adult Census Income classifi-

cation problem. As usual in this context, we used a neural network. Among390

the several learning models with different parameters, we used the model

proposed in [18]: it uses one hidden layer having the same size as the input

layer, ReLU activation, and the Adam optimization as a stochastic gradient

descent method.

The accuracy of the selected model measured for the training and test395

set for each encoding E1 and E2 varying the number of epochs is reported in

Figure 3. We observe that the second encoding (E2) shows lower accuracy,

even though One Hot Encoding is the preferred encoding for nominal data.
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This result can be explained by considering that nominal encoding may not

be as effective when:400

1. a large number of categories are present in data. In this case, several

dummy features similar to the number of categories have to be added.

For example, in our case, encoding E1 produces 12 features, whereas

encoding E2 generates 95 features. Thus, encoding E2 introduces spar-

sity in the dataset because many columns have 0s and a few have 1s.405

The result is to enlarge the dataset without adding much information.

2. encoded attributes have a low correlation with the class to predict.

Thus they do not give a great contribution to the prediction. This is

true in our case: we observed that the text attributes considered above

have a low correlation with the label income.410

Concerning encoding E1, which is the one used in the following, we observe

that the obtained results are the same as the results reported in Figure 3.(a)

of [18], which used the same dataset. This makes us confident that the used

model and its implementation are sound.

The results of encoding E2 show that 1) accuracy on the test set is com-415

parable with that on the training test and 2) a good accuracy (about 0.80) is

reached after 100 epochs, and, then, accuracy very slightly increases until 400

epochs (about 0.02), and no further increase is measured after 400 epochs.

The latter result allows us to focus on the first 100 epochs.

5.4. Partially-federated learning420

In this section, we study how the proposed approach is implemented in

the considered scenario.
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Figure 3: Accuracy of the learning model.

We recall that the privacy module decides whether a sample has to be

trained locally or externally (i.e., by the central model) depending on the

requested privacy protection degree (see section 4.2). We implemented both425

the k-anonymity and l-diversity approach and measured the number of sam-

ples that are processed externally for different values of k and l. The results

of this experiment are reported in Figure 4. We observe that k = 1 and l = 1

are the lowest privacy-request levels and assume that no privacy issue occurs:

thus, all samples can be trained externally, and a client does not have any430

data to process (the load reduction of each client is 100%). In practice, this
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Figure 4: Reduction of the client load vs privacy protection degree k and l.

is a situation in which there is no privacy request, and all data are trained

centrally by a server (we denote this case as C.L. in the following). In this

case, we measure the highest accuracy.

As k and l increase, data are gradually processed by clients, and accuracy435

decreases, showing how the federated model can be biased towards different

clients, as also observed in [24]. Specifically, when k ≥ 554 or l ≥ 402

(observe that such thresholds are specific for this dataset), no sample can be

sent to the central model because this would result in a privacy violation:

as a consequence, the load reduction is zero. This is the case of standard440
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Figure 5: Accuracy vs privacy protection degree (k-anonymity).

federated learning (i.e., FedAvg). Intermediate values of k and l produce

intermediate load reductions as reported in Figure 4.

This experiment shows the first advantage f our approach, which is to

reduce the resources consumption on the client side (i.e., computation power

required by the complex task of training the local model). The second ad-445

vantage concerns the improvement of the accuracy of the model, and this

aspect is analyzed in the next experiments.

The third experiment aims to measure the model’s accuracy versus the

chosen privacy protection degree when the privacy module implements the
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k-anonymity approach. The obtained results are depicted in Figure 5. Ac-450

cording to the results discussed in the previous experiment, the curve k = 554

represents the case of federated learning FedAvg, because all samples are pro-

cessed locally by each client. Thus, this curve has the same trend as the curve

Testing depicted in Figure 3 (note that the considered number of epochs is

different). In contrast, the curve k = 1 represents the case of centralized455

learning C.L. (i.e., all samples are trained only by the central model) and

shows (i) a quick convergence to the highest accuracy and (ii) the best ac-

curacy. The curves for 1 < k < 554 show intermediate accuracy and this

allows us to conclude that by partially relaxing the privacy constraints we

can obtain better and faster converging accuracy than using federated learn-460

ing. Moreover, by reducing k, the model reaches higher accuracy with fewer

training samples (i.e., few epochs are necessary). This experiment highlights

the effectiveness of the privacy module in reaching a better classification

accuracy after a fixed number of epochs.

In the fourth experiment, we replace the k-anonymity approach with the465

l-diversity in the privacy module and measure the resulting accuracy again:

the result of this experiment is reported in Figure 6. Whereas the curves

centralized learning C.L. (l = 1) and FedAvg (l = 402) follow the expected

trend and we can repeat the same considerations done for the cases k = 1

and k = 554 of the third experiment, the remaining curves show a surprising470

trend. In the curves l = 100 and l = 200, the accuracy decreases after about

epoch 20, and the curve l = 300 shows less accuracy than l = 402: these

surprising results lead us to investigate the matter further.

Consequently, we measure the accuracy after 100 epochs for 1 ≤ l ≤ 402
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Figure 6: Accuracy vs privacy protection degree (l-diversity).

with higher granularity, and the measured values are reported in Figure 7.475

We observe that the l-diversity approach allows us to improve the accuracy

of the model if l ≤ 200, whereas higher values of l do not improve the model

performance.

However, the most evident result is that the obtained curve is very dif-

ferent from that of the k-anonymous approach, and we further investigate480

to understand why. Finally, to provide an intuitive explanation, we analyze

the loss of accuracy and find two main reasons. The first reason for accuracy

loss is because the federated learning approach (which occurs when l = 402)
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Figure 7: Accuracy vs privacy protection degree (l-diversity).

results in reduced accuracy with respect to the centralized learning (when

l = 1). We can try to measure this error by exploiting the results of the485

fourth experiment, where the accuracy reduction was measured when the

k-anonymity approach was implemented. We report this error in Figure 8

by the curve named ’component 1’.

Implementing the l-diversity approach introduces the second component

of error that is explained by recalling how l-diversity works. Specifically, a490

sample with the attribute’ income’ higher than or equal to 50k is sent to the

server if there are at least l other samples with the same characteristics. The
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Figure 8: Accuracy loss (l-diversity).

same filter is applied to samples lower than 50k. However, by looking at the

dataset, we realize that the two classes of the attribute income (i.e., ’≥ 50k’

and ’< 50k’) have different frequencies. Thus, for l increasing, the server495

receives more samples of a class, and the clients receive more samples of the

other class. The consequence is that both models (i.e., the local models of the

client and the global model of the server) are biased toward one or the other

class and the accuracy is reduced. This phenomenon reaches the maximum

effect when the difference in the number of samples trained by each model500

is minimum. By looking at Figure 4, we observe that for l about 200, 50%

28



samples are sent to the server, and 50% are trained by clients. Thus, this is

the point at which the considered component of the error is maximum. We

report in the curve ’component 2’ of Figure 7 the accuracy trend when only

this component is present. However, observe that the curves’ component 1’505

and ’component 2’ represent just ideal trends because their real values cannot

be measured. This is why the reader cannot find a complete correspondence

between the curves illustrated in Figures 7 and 8.

In the last experiment, we compare the running time of the centralized

approach (i.e., k = l or l = 1), federated learning FedAvg (i.e., k ≥ 554 or l ≥510

402), and our hybrid partially-federated learning technique (i.e., remaining

values of k and l). The aim of this experiment is to determine how the

additional tasks required to execute our approach (i.e., determining whether

a sample is sensitive or not and sending that sample to the server) affect the

overall task.515

As in the previous experiments, the scenario under consideration has ten

clients and one server, and we measure the time required to execute 100

epochs. In this experiment, we need to set two additional parameters related

to communication rate and computing capability. We set a transmission rate

of 500 KB/s for communication between clients and server, which is a low rate520

for current technology. As for the computing capability, we distinguish two

cases: 1) equality of computational power between server and clients, and 2)

inequality of computational power, where the server is ten times faster than

the clients.

In Table 1 and Table 2 we show the results of this last experiment. We525

measure the following values:
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• the time taken by the server to build the model (column Server side);

• the time taken by the slowest client to train the model (column Client

side), since the clients are in parallel;

• the time taken to transfer data from the clients to the server (column530

Transfer) also in this case, transfers are in parallel);

• the total running time as the sum on the individual times (column

Total).

Observe that the time taken to transfer model weights between the server

and the clients is negligible with respect to data size.535

Table 1 shows the results for the first case where the computational power

of the server and clients is equal. We analyze these results starting from the

case of centralized learning (i.e., k = 1 or l = 1). All clients run the privacy

module and send their data to the server in about 0.79s, whereas the server

takes about 126s to train the model. For increasing values of k and l, a540

smaller amount of data are sent to the server, and the parallel processing

of clients can reduce the execution time. The last row shows that when

FedAvg is used, no data are transmitted (transfer is zero) and, thus, the

server processing time is zero.

The results for the second case, where the server’s computing power is545

10 times that of a client, are shown in Table 2. This value was chosen to

“cancel” the advantage of distributed computing power given by the feder-

ated approach (indeed, there are 10 clients). We find that the best execution

time (about 13s) holds for centralized learning (k = 1 and l = 1): also, in
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k Server side Client side Transfer Total

C.L. 126,00 0,00 0,79 126,79

100 110,64 13,18 0,69 124,51

200 78,58 15,05 0,59 94,22

300 66,97 15,95 0,41 83,34

400 42,53 19,55 0,27 62,36

500 24,12 21,13 0,12 45,38

FedAvg 0,00 24,75 0,00 24,75

l Server side Client side Transfer Total

C.L. 126,00 0,00 0,79 126,79

100 91,88 5,61 0,63 98,12

200 55,52 13,28 0,41 69,21

300 31,71 22,41 0,35 54,47

FedAvg 0,00 24,75 0,00 24,75

Table 1: Running time in seconds with equal computational power of server and clients.

this case, the time required to transfer data (about 0.79s) is negligible with550

respect to the total time to build the model.

In summary, the analysis of the two results shows that most of the time

is spent on the model training, whereas the data transfer has a negligible

impact on the total running time.
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k Server side Client side Transfer Total

C.L. 12,60 0,00 0,79 13,39

100 11,06 13,18 0,69 24,93

200 7,86 15,05 0,59 23,50

300 6,70 15,95 0,41 23,06

400 4,25 19,55 0,27 24,08

500 2,41 21,13 0,12 23,67

FedAvg 0,00 24,75 0,00 24,75

l Server side Client side Transfer Total

C.L. 12,60 0,00 0,79 13,39

100 9,19 5,61 0,63 15,43

200 5,55 13,28 0,41 19,24

300 3,17 22,41 0,35 25,93

FedAvg 0,00 24,75 0,00 24,75

Table 2: Running time in seconds in the case of inequality of computational power, with

the server 10 times faster than each client.

6. Discussion and Conclusion555

In this section, we discuss the advantages and disadvantages of the pro-

posed approach. In the literature, federated learning approaches assume

that each client trains all data locally for privacy reasons. However, there

are many application contexts where some data should be processed locally

by a client. In contrast, other data can be sent to a server without causing560

a privacy problem: an example was presented in Section 5. Therein, if there
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are too few participants (i.e., below a certain threshold) with equal values

of quasi-identifier attributes, their personal data will be processed locally by

the client, otherwise, their data will be sent to the server for training the

model. Of course, this possibility should be included in the privacy policy.565

For construction, our approach gives results similar to centralized learn-

ing when privacy protection degree is low and similar to federated learning

when privacy protection degree is high. Incidentally, our approach includes

centralized and federated learning as special cases. It is well known that cen-

tralized learning is usually more performing than federated learning. Thus,570

the possibility of reducing the privacy protection degree provided by the pro-

posed approach can improve (in efficacy and efficiency) the prediction task

with respect to federated learning.

Observe that, we do not compare the proposed architecture with other

proposals different from standard federated learning (FedAvg) and central-575

ized learning since our proposal is orthogonal to these studies. In principle,

we could choose an improved version of federated learning and modify it by

applying our strategy to allow some data to be processed centrally. Whenever

centralized learning is more accurate than federated learning (this happens

often), we improve the accuracy of such a particular federated learning tech-580

nique.

Another observation is about the use of accuracy to measure the per-

formance of the prediction task. Accuracy is one of the most commonly

used metrics in this domain: for example, accuracy was used in [18] for the

same dataset. Of course, we could also use other metrics, such as sensi-585

tivity when minimizing false negatives or specificity when minimizing false
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positives. However, in the scenario considered here, there is no such need.

Even though accuracy is not the best metric to measure the performance

of a model in absolute terms, we can use it since we performed a compara-

tive analysis between centralized learning, partially federated learning (i.e.,590

our approach), and federated learning. From a quantitative point of view,

using k-anonymity, we can achieve up to 3.75% improvement in accuracy

(from 0.80 to 0.83) by reducing k and achieving faster convergence to maxi-

mum accuracy (i.e., fewer epochs are needed to achieve the same accuracy).

Concerning the use of l-diversity, we have similar results when classes are bal-595

anced, while in the case of unbalanced classes, the approach is only effective

for low values of l (l about less than half the maximum value).

Besides improving performance, another interesting result is that using k-

anonymity or l-diversity reduces the load of client computations when k and l

decrease: this is an essential benefit since client hardware and computational600

resources are typically more limited than those of a server (e.g., a client may

not be able to perform training of extensive learning models). The use of

the privacy module with appropriately set parameters k or l (their value

depends on the particular scenario) allows us to reduce the amount of data

to be trained locally without violating privacy.605

In summary, our architecture is a hybrid solution between the centralized

and federated learning systems. By appropriately setting the privacy level

(i.e., the values of k and l), we can move towards one or the other and thus

achieve benefits in terms of client load and model accuracy without violating

privacy constraints.610

This hybrid architecture can train a unified model across multiple clients
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while letting each client decide which data must be kept private and which

data can be shared with the server. Specifically, our system enforces both

the k-anonymity and l-diversity model to protect the privacy of clients’ data.

To the best of our knowledge, this is the first attempt in the scientific615

community to create such a hybrid architecture.

As future steps, we intend to study how the proposed framework can

be enriched by including other orthogonal features such as a more complex

weight updating [36] or applying an adaptive optimizer [29].
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