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Abstract—Multicasting is a key feature of cellular systems,
which provides an efficient way to simultaneously disseminate
a large amount of traffic to multiple subscribers. However,
the efficient use of multicast services in fifth-generation (5G)
New Radio (NR) is complicated by several factors, including
inherent base station (BS) antenna directivity as well as the
exploitation of antenna arrays capable of creating multiple beams
concurrently. In this work, we first demonstrate that the problem
of efficient multicasting in 5G NR systems can be formalized
as a special case of multi-period variable cost and size bin
packing problem (BPP). However, the problem is known to be
NP-hard, and the solution time is practically unacceptable for
large multicast group sizes. To this aim, we further develop
and test several machine learning alternatives to address this
issue. The numerical analysis shows that there is a trade-off
between accuracy and computational complexity for multicast
grouping when using decision tree-based algorithms. A higher
number of splits offers better performance at the cost of an
increased computational time. We also show that the nature of
the cell coverage brings three possible solutions to the multicast
grouping problem: (i) small-range radii are characterized by
a single multicast subgroup with wide beamwidth, (ii) middle-
range deployments have to be solved by employing the proposed
algorithms, and (iii) BS at long-range radii sweeps narrow unicast
beams to serve multicast users.

Index Terms—5G, machine learning, millimeter Wave, multi-
cast, multi-beam antennas, New Radio, optimization.

I. INTRODUCTION

By issuing Release 15 and Release 16 [1]], [2]], 3GPP has
completed most of the efforts towards New Radio (NR) tech-
nology standardization. Operating in both microwave (;Wave)
and millimeter wave (mmWave) bands, the standardized sys-
tems promise to deliver extraordinary rates to the air inter-
face [3[], [4]. Hence, the current focus of both 3GPP and the
research community is shifting toward delivering value-added
services on top of this new radio access technology, with
multicast capabilities being on the list of tasks for coming
Releases [5]], [6].
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Several 5G use cases naturally benefit from multicasting
capabilities of cellular systems, including content dissemi-
nation for enhanced mobile broadband (eMBB), Internet of
Things (IoT), Vehicle-to-everything (V2X) communication,
and public safety applications, among others [[7]-[9]. For these
applications, multicast service provides an effective way to
deliver information to multiple recipients by minimizing the
amount of resources utilized at the air interface and enhancing
user experience [|10]], [[11]. Furthermore, the utilization of the
multicast mode can offer benefits in terms of link bandwidth
saving and application throughput enhancement and is ex-
pected to minimize the power consumption of user equipment
(UE) [12].

5G NR technology comes with several unique solu-
tions [13f], [[14]. To compensate for high propagation losses
and to efficiently suppress inter-cell interference, NR relies
upon large antenna arrays forming directional radiation pat-
terns [[15]], especially at the NR base station (BS) side [[16]]. The
latter induces the inherent trade-off for multicast service [17]],
i.e., the use of smaller half-power beamwidths (HPBW) allows
for expanding the coverage of NR BSs due to higher gain
but decreases the number of UEs that can be served in a
single transmission [18]]. Furthermore, the use of advanced
antenna designs, allowing to form multiple beams at the
same time [19], [20], adds a further dimension to the already
complex problem.

This work analyzes multicast operation in 5G NR systems
with directional multi-beam antennas and offers a computa-
tionally efficient solution for optimal multicast grouping. We
first formalize the problem mathematically as a subclass of
multi-period variable cost and size bin packing problem (BPP)
and provide the exact algorithm for computing the optimal
solution based on the branch-and-bound technique. We then
propose machine learning (ML) algorithms, including decision
trees, random forests, and several types of neural networks
for multicast grouping. Here, the exact solution, which is only
feasible for a limited number of UEs in the multicast group,
is utilized to obtain a training dataset for ML algorithms. The
performance of the algorithms is finally compared based on
the minimum amount of used resources as a metric of interest.

The main contributions of this work are as follows:

o we characterize multi-beam mmWave BS operation under
realistic assumptions at the system level by modeling it as
multi-period variable cost and size BPP minimizing the
amount of resources required to serve UEs and offering
the optimal solution;
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o formulating the task of optimal multicasting in 5G NR
systems with directional multi-beam antennas as a clas-
sification problem, we implement and compare the set
of ML algorithms (logistic regression, decision trees and
forests, and neural networks) and test their efficacy;

o we provide selected numerical results showing that the
use of trees with a high number of splits provides the
best trade-off between the accuracy of multicast grouping
and computational complexity;

« we offer practical considerations for the optimal number
of beams (subgroups) that needs to be utilized, showing
that there is only a small range of distances where
comprehensive multicasting grouping algorithms need to
be utilized; specifically, for the considered system and
environmental parameters, one subgroup is selected for
BS coverage up to 225 m, unicast transmissions to each
user are used when BS coverage is higher than 275 m,
while for the range 225-275m the optimal number of
subgroups need to be calculated by using the proposed
method.

The rest of the text is organized as follows. First, in
Section [lI} we review the related studies. Then, in Section [LLI}
we introduce the system model. In Section we formalize
the problem mathematically, characterize its complexity and
provide the solution algorithm. In Section [V] we introduce
the ML methods to solve the problem. Numerical results are
elaborated in Section M} Finally, conclusions are drawn in the
last section.

II. RELATED WORK

The 5G multicast/broadcast requirements can be classified
into two different operation modes: stand-alone deployment of
dedicated broadcast networks and the mixed unicast/multicast
mode. Requirements for mixed-mode (MM) multicast aim to
incorporate point-to-point (PTP) transmissions in the Radio
Access Network (RAN) as a built-in network delivery opti-
mization feature. This requires seamless switching between
PTP and point-to-multipoint (PMP) transmissions [21]]. Par-
ticularly, 5G NR MM is proposed in the 3GPP Release 17
(Rel-17) to enable the use of multicast and provide a flexible,
dynamic, and seamless switching between unicast and multi-
cast or broadcast transmissions and traffic multiplexing under
the same radio structures. In [22], the authors propose the
RAN multicast area (RMA) mechanism to seamlessly switch
between multicast and unicast modes, which takes into account
UE activity, the number of devices, and their geographical
distribution.

A. Single-Beam Antennas

Several works have been performed on multicast grouping
(stand-alone deployment) and subsequent resource utilization
problems in directional systems with a single antenna lobe.
In [23]], a heuristic algorithm that aims to construct the optimal
multicast subgroups in IEEE 802.11ad networks is presented
to achieve high throughput for scattered multicast devices.
Specifically, multicast beamforming is performed through the
process of an association beamforming training interval and

is divided into two steps. First, the devices are grouped based
on the distances between them. That is, those UEs, whose
distances are smaller than a reference value, belong to the
same set. Then, by utilizing the law of cosine with respect
to the coordinates of two edge UEs in the set, the beamwidth
and optimal data rate (according to the modulation and coding
scheme (MCS) table) are obtained for each multicast subgroup.

An alternative heuristic solution for multicast grouping
with an adaptive beamwidth is proposed in [18], wherein the
beamwidth that maximizes the sum rate of devices is chosen
incrementally. More precisely, the beamwidth is adaptively
determined based on the UEs locations and the requested
data rates. According to the presented simulation results,
the proposed scheme can improve the overall throughput by
28% to 79% compared to the existing multicast schemes that
consider only a fixed data rate to cover all sectors or one sector.

Unlike the studies mentioned above, those in [24] and [25]]
investigate both optimal and sub-optimal multicast schemes for
mmWave communications in NR with directional beams. The
solution aims to reach an optimal trade-off between achieving
a high signal-to-noise ratio value by utilizing narrow beams
and serving many UEs simultaneously, thereby reducing the
channel usage time. The optimal solution requires solving
a Markov Decision Process (MDP) with a large state and
action spaces, thus resulting in super-exponential complexity
in the number of UEs. To this end, the authors reduced
the complexity of the problem by introducing a practical
hierarchical solution.

B. Multi-Beam Antennas

Although many previous works on mmWave communi-
cations focused on optimizing multicast data transmission
using single-lobe antennas, the problem of multicast group-
ing and associated optimal resource allocation for multi-
beam systems has received limited attention so far. In [26],
switched beamforming-multicastin trade-off is investigated
to minimize the total time required for 100% guaranteed
packet delivery to all multicast UEs. The authors consider
both continuous (Shannon capacity) and discrete rate functions
under two power allocation models, where the power is either
equally split (EQP) or asymmetrically split (ASP) among the
lobes. Both optimal and heuristic solutions are designed for the
continuous rate function, while greedy solutions are provided
for the discrete rate case. It is also shown that in the continuous
rate case, the greedy solution (GREP) provides near-optimal
performance, almost coinciding with the optimal one.

Since neither optimal nor approximate solutions have been
proposed in [26] for the ASP model, the authors in [27]
present several key results. Specifically, for the EQP model,
the authors provide a dynamic-programming-based optimal so-
lution with low complexity of O(B?), compared to the O(B7)
complexity of the optimal solution in [26], where B is the total
number of non-overlapping single-lobe beams, for both con-
tinuous and discrete rate functions. Even though the problem

'Switched beamforming consists of pre-determined beams that cover the
entire azimuth of 360°.



formulated in [27]] is characterized by the polynomial-time op-
timal solutions under the EQP model, the same problem under
the ASP model is NP-hard. Applying generalized-bin-packing
algorithms for the discreet rate function allows for obtain-
ing asymptotic polynomial-time approximation schemes. The
solution enables drastic improvement over GRASP2 in [26],
which handles ASP for the discrete rate case.

Unlike [26], [27]], adaptive beamforming-based multicast
system with multi-lobe antenna pattern is designed in [28]] with
the same goal of minimizing the time of the data dissemination
to the multicast UEs. In case of adaptive beamforming, the
formulated problem is stated to be non-convex and NP-hard
for both discrete and continuous versions. Hence, the authors
present efficient algorithms implemented in an adaptive beam-
forming system for multicasting (ADAM) and suitable for a
practical system design with a complexity of O(BK?K!),
where K is a number of multicast UEs in the multicast
group. In [29], an optimal multicast grouping and resource
allocation problem is formulated based on a variable-sized
bin packing problem, which is known to be NP-hard. To
this end, several heuristics with different complexities and
approximation accuracy are developed to provide practical
algorithms with reduced computational requirements.

C. Machine Learning Solutions

Unlike the above-mentioned studies, several researchers
focus on the beam direction, beam weights, power predic-
tions, and transmission mode selection using ML methods.
In [30], a D2D-assisted multicast grouping that leverages an
unsupervised ML algorithm is designed. In [31]], the authors
utilize reinforcement learning for the smart mode selection
(macrocell broadcasting, mmWave small cell unicasting, and
D2D multicasting) to find the optimal transmission strategy
in every time slot. However, neither multicast grouping nor
multi-beam antennas are considered. Alternatively, in [32],
the vehicle situational awareness is used as an input for ML
algorithms to predict the received power of each beam in
the codebook with low or almost zero feedback overhead.
The authors compare the prediction results among linear
regression, support vector regression, random forest regres-
sion, and gradient boosting regression. It is shown that the
random forest is a good fit for the specific dataset since it is
able to implicitly select the features and generalizes well by
ensembles. In [33]], ML-assisted beam training is performed
for mmWave cellular systems using realistic beamforming data
and GPS coordinates of UEs by leveraging Random Forest
Classifiers and Multilayer Perceptrons.

In this work, we focus on supervised learning algorithms
for classification of users to the multicast subgroups [34]]. The
following classes of classification algorithms are considered:

o Decision Trees are supervised algorithms used both for
classification and regression. Their main advantage is the
building of an interpretable model. Thus, they are also
known as white-box algorithms [34]]. We provide more
details on decision trees in Section [V-C1l

e Logistic Regression is used for the classification problems
to assign observations to a discrete set of classes. This

technique transforms the output by using the logistic sig-
moid function to return a probability value class mapping.

e Naive Bayes is a simple but powerful classification algo-
rithm, “probabilistic classifier”, based on Bayes’ theorem
with the assumption of conditional independence among
considered features of objects.

o Support Vector Machine (SVM) is an algorithm that can
distinguish between two or more classes by defining
a hyperplane that separates those classes. The support
vectors are the closest points to the hyperplane. A change
in the support vectors results in a modification of the hy-
perplane [35]. SVM can be used for solving classification
and regression problems.

e K-Nearest Neighbors (KNN) is a well-known algorithm
used both for solving classification and regression prob-
lems. The output of the algorithm is obtained by com-
paring the input with known data [35].

e Neural network (NN) classifiers are used for multiclass
classifications. These models typically outpace other al-
gorithms in prediction accuracy. However, the flexibility
of NN models increases with the number and size of
connected layers. We offer more details on NN models

in Section [V-C3|

D. Summary

To summarize, optimal multicasting is a complex problem
for both single- and multi-beam mmWave systems that can
be solved exactly for a limited set of UEs only. Specifically,
in [24], authors demonstrate the results considering only 8 UEs
in the system, whereas only 12 UEs are considered in [29] due
to the solution time complexity as well as memory challenges.

In this work, to efficiently solve the multicast problem in NR
systems for a meaningful number of UEs, we advocate the use
of ML techniques. No accurate and computationally efficient
solutions have been proposed so far. In contrast to existing
works, we also consider adaptive multi-lobe beamforming
antennas, which further complicates the problem. To this aim,
in order to determine a computationally efficient and accurate
solution of the multicasting problem, in what follows, we first
provide the exact solution [29] and then utilize it to train
candidate ML alternatives.

III. SYSTEM MODEL AND ASSUMPTIONS

This section introduces our system model by specifying de-
ployment, traffic, resource, propagation, blockage, and antenna
models. We also present our metrics of interest. The notation
used throughout this paper is offered in Table [I]

A. Deployment, Traffic, and Resource Models

We assume a tri-sector cellular deployment option illustrated
in Fig. [I] for our NR system by concentrating on a randomly
chosen sector of a typical “cell’. K UEs are uniformly
distributed in the cell sector. These UEs are assumed to request
a single multicast session in the downlink direction with the
bitrate of C' Mbps. The height of UEs, NR BS, and blockers
are assumed to be constant and given by hy, hy, and hp,



TABLE I
MAIN NOTATION.

Parameter Definition
K Number of multicast UEs in multicast group
C Bitrate of multicast session, Mbps
hu Height of UEs, m
ha Height of NR BS, m
hp Height of blockers, m
w Available bandwidth, MHz
fe Carrier frequency, GHz
“w 5G NR numerology
WPRB Size of PRB, MHz
Y Three-dimensional distance between UE and NR BS, m
S(y) Distance-dependent SINR, W
Py NR BS transmit power, W
Ga,Gu Antenna array gains at NR BS and UE ends, dBi
My Interference margin, dB
No Power spectral density of noise, dBi/Hz
L(y) Path loss in linear scale
Lag(y) Path loss in decibel scale
A, ¢ Propagation coefficients
pB(Y) Distance-dependent blockage probability
B Radius of blockers, m
AB Blockers density, bl./m>
« HPBW of a linear antenna array, rad
93idb Upper and lower 3-dB points of antenna array, °
O Location of array maximum, °
IE] Antenna array orientation, °
N Number of planar antenna array elements
L Number of beams in the system
Prax NR BS total available power, W
M Number of time slots in 1 ms subframe
Ry Number of available primary resource blocks, PRBs
Sth SINR threshold, dB
S5 Spectral efficiency of the worst UE in subgroup j, bit/s/Hz
R Service (cell) area radius, m

respectively. We utilize W MHz bandwidth available for a
sector antenna, consider the carrier frequency of f. = 28 GHz,
and the corresponding NR numerology ¢ = 3 with the
physical resource block (PRB) size of wprg = 1.44 MHz.
We assume the orthogonal frequency division multiple access
(OFDMA) scheme as specified in NR [36]. Depending on UE
locations, the number of PRBs required to serve multicast UEs
might differ and can be computed using NR MCS according
to the procedure outlined in, e.g., [37].

By following [38]], we use the term term subgroup to denote
the subset of UEs belonging to the multicast group served
by the same beam, whereas a multicast group contains all
UEs interested in receiving a multicast session (i.e., data
flow/content). With the term suit we imply a configuration
of multicast subgroups that covers all UEs (i.e., a multicast
group) without repetitions.

B. Propagation and Blockage Models

The Signal-to-interference-plus-noise-ratio (SINR) at the
distance y between the receiver and the NR BS is given by

PAGAGy
S) = (NoW + M;)L(y)’

where P4 is the transmit power, G 4 and Gy are the antenna
gains at the NR BS and the UE, Nj is the thermal noise power,
W is the bandwidth, M7 is the interference margin, whereas
L(y) is the path loss in linear scale. The path loss measured
in dB is determined according to [|39]] as

Lgp(y) = 32.4+ 211log,o y + 201ogy fes 2)

D
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Fig. 1. The considered deployment scenario.

where f. is the carrier frequency in GHz and y is the three-
dimensional (3D) distance between the NR BS and the UE.

The path loss in the form of (2) can be represented in the
linear scale by utilizing the model in the form of Ayc, where
A and ¢ are the propagation coefficients. By introducing the
coefficients (A1,() and (A, () that correspond to LoS non-
blocked and blocked conditions, we have

Al — 102 logyo fc+3.247 A2 — 102 logq fC—‘y-4.747 C =2.1. (3)

We assume the blockage attenuation by the human body is
15 dB [40] and model blockers as cylinders with the height
and the radius of Ap and rp. The blockers are assumed to
follow Poisson distribution in 2 with density Ap. Hence, the
probability of blockage at distance y is calculated by [41]] as

—2AprB [\/y2—(hA—hU)2 Zf:zg +7‘B] 4)

pe(y) =1—exp

C. Antenna Model

We assume a cone antenna model, where the radiation
pattern is represented as a conical zone with an angle «
coinciding with the HPBW of the antenna array. The HPBW,
«, is determined by [42] as

« :2|9m *93db|5 ®)

where 034, is the angle at which the value of the radiated
power is 3dB below the maximum, whereas 6,,, is the location
of the array maximum and is given by 6, = arccos(—3/7),
where (3 is the phase excitation difference affecting the phys-
ical orientation of the array.

The antenna gain is determined by [42]] as

1 /Q;db sin(N7 cos(0)/2) a0,
0

G=_—+—"— - (6)
034, — O3 Jo,,  sin(mcos(6)/2)
where the upper and the lower 3-dB points are
0, = arccos|—f 4 2.782/(N)], (7

and N is the number of antenna elements.



We also assume that several beams, L > 1, can be formed
simultaneously on the BS NR and be steered in different
directions splitting the total power, P,,.x. The HPBW of these
beams depends on the number of antenna elements and is
limited by a lower bound (5).

D. Metrics of Interest

To optimize the mmWave NR resource utilization with
multi-beam directional antennas, we consider the ratio of
occupied resources to the overall set of available resources,
p, as the optimization criterion. By solving the optimization
problem, we also determine the inter-site distance D and, thus,
n — the minimum NR BS deployment density required for
multicast service provisioning [29].

We emphasize that both multicast and unicast traffic is
simultaneously served at BS in real-life scenarios. However,
the coexistence of these traffic types is a complex problem
that is outside the scope of this paper. For example, network
operators may inherently prioritize the multicast traffic as more
UEs will be served with a single transmission, increasing
overall network utility. Alternatively, the priority might be
given to unicast traffic. Thus, in what follows, without loss
of generality, we neglect unicast traffic.

IV. PROBLEM FORMALIZATION

This section introduces our framework for optimal resource
allocation of UEs in a multi-beam environment [29]. We first
formulate the problem as a bin packing formalism. We then
discuss the complexity of the proposal.

We consider a multicast group formed by K UEs deployed
in the 5G NR BS sector coverage served by a multi-beam
system, L > 1. We assume the OFDMA scheme with M
time slots in the time horizon t € 7, T = {1,..., M}. The
maximum number of PRBs available in the system is M LRy,
where Ry, is the available number of resource blocks for the
beam in the time slot t. The potential maximum number of
subgroups served during the time horizon is limited to M L.

The set of K multicast UEs of the multicast group is
denoted by K = {1,...,K}. There are 2% — 1 options for
assigning K UEs to multicast subgroups [24], that is, IC; is a
set of UEs forming a subgroup j,j € J,J = {1,...,25 -1},
whereas |K;| is the number of UEs in subgroup j. We define
Gy as a collection of subgroup’s indices from set J such that
the corresponding subgroups cover all the UEs from set K
without repetition. Let {2 be the set of all such collections of
subgroup’s indicies. We note that each multicast UE belongs
to one and only one subgroup; therefore, G is restricted by
Ujeg, K5 = K and K, Ky, = 0,51 # Jj2, Vj1.J2 € Gk
We also define the so-called “suits” g,g as the subset of indices
from Gy, which is planned for beam [ by the scheduler, g,i, -
Gk, | = 1,2, ..., L. Therefore, suits G satisfy G, = U1L:1 gl
and Gi' G2 = 0,11 # Iy, Vi, 1o € {1,2,...,L}.

We model the optimization problem by introducing a binary
indicator, g§ € {0, 1}, which denotes the subgroup assignment
decision variable. Let g§- = 1 if subgroup j is served at time
slot ¢, and g§ = 0 otherwise. Then, we have a vector-indicator,

g' = (g1,---,9[7) of subgroups that are served at time slot
t

We assume the constraint on the maximum number of
subgroups to be served (or beams to be swept) in the system
at each time slot ¢, that is,

d gh<LVteT. (8)
Jj€Gk
A suit service time should not exceed the time horizon, i.e.,
oY g <MVI=1,.,LVk=1,..9. (9
JEGLET

We also have to ensure the following constraint to be held on
the transmit power budget per antenna that serves subgroup j,

> giP; < Paa, VEET, (10)
JEGk
where P; is the transmit power of beam that serves subgroup
7 and is calculated as
_ A1 Ao Sy (NoW + M)
GAGudS [As(1 = pp(d;)) + A1pp(d;)]

where Sy, is the SINR threshold corresponding to a chosen NR
MCS, where Ay, Az, and ( are the propagation coefficients,
d; is the NR BS-worst multicast UE distance.

We assume that the session requires a constant bit rate C.
Then, cost a; is represented in terms of the number of PRBs
for the assigned beam for subgroup j and is given by

C

b
S;jWpPRB

; (1)

J

12)

a; =

where s; is a spectral efficiency in bit/s/Hz of the worst UE
in subgroup j, wprp is a PRB size.

Note that the scheduler’s time slot assignment is reflected
in vector g; = (g},...,g}") with

> g = [ZW,WEJ.

teT
We assume that the scheduler assigns a beam to the
subgroup such that the following holds true

a; < MRy, Vj e J.

13)

(14)

Finally, in constraints () and (I4), the following condition
for the maximum available resources in the system should be
satisfied

> a; <MLRy,Vj€ J,k=1,..,]Q. (15)
J€Gk

Recall that the goal is to determine the optimal grouping
of multicast UEs, which minimizes the total cost of service
in terms of the ratio of occupied PRBs to the total available
number of PRBs for the entire time horizon. We formalize the
multi-beam operation optimization problem as a special class
of BPP. Thus, the optimization problem takes the form of

. aj
3 16
ket 2= MLRy (16)
Jj€GK

st. ®, ©), [0, [@, ).



Algorithm 1: Optimal Solution [29]]

Input: Deployment of UEs, ¢ € K
Output: Optimal solution for multicast grouping
Create 2% — 1 multicast subgroups
for each subgroup K; do
find the farthest UE ¢ and the distance from BS to
this UE: y + max Yis

oA W N -

find HPBW needed to cover the subgroup K;;
find P; from using d; = y;
find the cost a; from (I2);

e e O &

end
Solve the problem (T6) with exhaustive search.

—
>

Here the objective function > g ﬁij is the ratio of the
amount of utilized resources for k-th multicast grouping to all
the resources in the system. We refer to such ratio as p and
use it as the key metric in our work.

The Algorithm [I] describes the globally optimal solution.
The complexity of the Algorithm [I] is determined by the
underlying BPP. Thus, Algorithm [I] is NP-hard, while the as-
sociated complexity is exponential. We note that the proposed
solution cannot solve the problem in a reasonable time when
the number of UEs in a multicast group is higher than 12.
Table [[I] offers execution times in minutes for different UE
density scenarios.

V. MACHINE LEARNING SOLUTION ALGORITHMS

In this section, we propose the set of ML techniques for
resource optimization for multicasting. As the problem of in-
terest is the classification of users into multicast subgroups, we
consider three classes of algorithms with varying complexity
suitable for this task, including (i) logistic regression model,
(ii) decision trees and forests, and (iii) neural networks.

A. Type of ML Problem: Classification

In this work, the problem at hand is a classification of users
into multicast subgroups. Furthermore, due to availability of
limited training data, supervised ML-based classification algo-
rithms can be utilized. The exploited ML algorithm has to be
as simple as possible to run in real-time, on the BS side, when
a new UE joins the multicast group or leaves it. Therefore,
the execution time and the training phase (preferably) have
to be small. Since we aim at a practical implementation, low
complexity ML tools receive the priority in what follows. That
is, we first consider simple supervised classification algorithms
based on logistic regression and decision trees. To evaluate

260 minutes is an execution time limit. When reaching 60 minutes, the

algorithm provides the current solution that can be different from optimal.

TABLE II
EXECUTION TIME IN MINUTES FOR ALGORITHM[I]

[Tme/K [2 |5 [7 [10 [12 |15 |
[ Optimal [29] [ 0.008 [ 0.01 | 0.06 [ 10.03 | 5435 | 60:| ]

whether advanced supervised classification techniques may
provide more accurate results, we further consider random
forests and neural networks. Note that the decision tree is
computationally faster in comparison to the random forest
because of the ease in generating rules. Several factors need
to be considered in a random forest classifier to interpret the
patterns among the data points.

B. Data Preprocessing, Features, and Metrics

We aim to use the obtained data from the direct solution
for a limited number of UEs in a multicast group to design
an algorithm capable of solving it for more UEs in a group,
thereby utilizing supervised algorithms. In a supervised learn-
ing model, the algorithm learns on a labeled dataset (e.g.,
data from the direct solution) and provides the results that
the algorithm can evaluate in terms of accuracy based on the
training set. The algorithm can be implemented as an offline
learning tool within the recently standardized ML framework
for 5G systems, see [43]-[45].

We consider the following model’s features as parameters
that form the dataset for the training of supervised algorithms:
(i) UE’s coordinates, (ii) number of UEs K, (iii) service area
radius R, (iv) bandwidth W, (v) session data rate C, and
(vi) number of clusters (subgroups). Model’s features form
predictor’s set P. We choose these parameters since they
all may affect the results of the classification. Later, in the
numerical result section, we explore which of those param-
eters are more important, i.e., have the higher importance
level. The algorithms learn from the dataset (provided by the
optimization presented in Section by predicting the data
and adjusting it for the correct answer of multicast subgroup
formation 5G NR systems.

To evaluate the accuracy of ML algorithms, we introduce
two types of similarity metrics. The first metric is based on the
number of clusters and UEs in each cluster. More precisely, the
following criterion is used: numbern‘fﬂfggiﬁl{e;m;;fed data . 100%.
The second metric measures the actual resource usage and is
thus considered the ultimate metric in our work.

C. Utilized ML Algorithms

1) Decision Trees and Forests: The idea of a decision tree
is to form queries with which the algorithm accesses data.
When using the classification and regression trees algorithm
(CART), questions, known as node separations, are defined to
reduce the Gini impurity index

J

Gini; = 1 - Y p?,, (17)
k=1

where J is a set of classes, |J| = J is a number of classes,

Di i 1s the probability that an observation ¢ belongs to class k,

keJ.

In this work, we consider two decision tree algorithms,
namely, Fine and Coarse trees, that differ in terms of accuracy
and model flexibility. A fine tree contains many leaves (which
helps to make many fine distinctions between classes) and is
usually highly accurate on the training dataset. However, such




a leafy tree tends to overtrain, and its validation accuracy is
often far lower than the training one. Differently, a coarse tree
with a lower number of leaves does not attain high training
accuracy but can be more robust because its training accuracy
can approach that of a representative testing dataset. Hence,
we aim to compare those two borderline tree algorithms in
terms of accuracy and practical applicability.

Among ensemble classifiers, we select Random Forest
(bagged trees) since Boosted trees can usually perform better
but might require searching many parameter values, which is
time-consuming. Random Forest classifier is a model consist-
ing of a set of decision trees, see Algorithm [2] Instead of
averaging different trees’ predictions (this concept is called
a “forest”), this model uses two key concepts that make
the forest random. First, samples are randomly chosen by
bootstrapped training samples Z* from a dataset when building
trees (line 2). Second, when splitting nodes, random sets of v
parameters (i.e., variables) are selected (line 4). An unpruned
tree is grown from each bootstrap sample so that at each node,
v predictors are randomly selected as a subset of predictor
variables out of p predictors from predictors’ set P (usually
v = ,/p), and the best separation from among these variables
is selected (lines 4-5). We note that the selected number of
prediction variables that ensure sufficiently low correlation
with adequate predictive power is critical. The final forecast
is made by averaging the forecasts from all the trees (lines
8-9). Further, the variables’ importance can be calculated by
exploiting the out-of-bag (OOB) data [46]. Here, each variable
is randomly permuted, and the permuted cases of the OOB are
sent down the tree again. Subtracting the number of correctly
classified cases using permuted data from the number of
correctly classified cases using non-permuted data reveals the
importance value of the variable. For each tree, these values
are different. Averaging values across all the trees in the forest
provides an importance score for each variable.

Moreover, suppose that we fit the algorithm with features
(or, equally, variables) that are not useful. In that case, the
algorithm simply will not use them to split into the data and get
the lowest importance level. We expect that UEs’ coordinates,
BS coverage radius, and the number of clusters will receive
the highest importance in our task. We emphasize that random
forests forces each split to consider only a random subset of
v predictors, making the resulting trees’ average less variable
and, hence, more reliable.

2) Logistic Regression, Naive Bayes, SVM, and KNN:
Logistic regression is one of the most common classification
algorithms, especially if there are only two classes to be
categorized. In statistics, the binary logistic regression model
is a statistical model that models the probability of one event
(out of two alternatives) taking place by having the logarithm
of the odds for the event be a linear combination of one or
more independent variables (features). Later, in Section
we demonstrate that Logistic regression works well until the
number of classes is higher than two.

Naive Bayes classifiers are useful for multiclass classifica-
tion. The naive Bayes algorithm leverages the Bayes theorem
and assumes that predictors are conditionally independent,
given the class. Kernel Naive Bayes, more flexible than

Algorithm 2: Random Forest Classification

1 Input training set, including predictors set P of size p;
number of selected predictors v; number of trees B;
for b=1 to B do

2 Draw a bootstrap sample Z* from the training
dataset;
3 Grow a random forest tree 7} to the bootstrapped

data by recursively repeating the following steps
for each node of the tree until the minimum node
Size Nmin 1S reached;

4 (i) Select v variables at random from p variables;
5 (i1) Pick the best variable/split-point among v;

6 (ii1) Split the node into two daughter nodes;

7 end

8 Output the ensemble of trees {73} 2.

9 To make a prediction at a new observation z let J,(z)
be the class prediction of the b-th random forest tree.
Then, J2(z) = majority vote{J,(z)}%.

Gaussian ones, can work with our dataset. Support Vector
Machine (SVM) and Nearest Neighbor (KNN) Classifiers are
also popular ML algorithms. KNN classifiers typically have
good predictive accuracy in low dimensions but might not
when dimensions are large. We found that Cubic SVM and
Weighted KNN Classifiers give the best result within the
classifier type.

3) Neural Networks: Neural Network is an ML system that
emulates brain behavior. The basic component is the percep-
tron, which is composed of linear and non-linear parts. The
former is a weighted sum, whereas the latter is an activation
function. Examples of activation functions are rectified linear
unit (ReLU), exponential linear unit (ELU), and leaky ReLU.
An NN is composed by a set of perceptrons divided into layers
of three types: input layer, hidden layer, and output layer. Two
particular types of NNs are Convolutional Neural Network
(CNN) and Recurrent Neural Network (RNN). CNN involves
the use of matrix multiplications and convolutional filters to
reduce the input size. RNNs are capable of analyzing and
predicting time series and are characterized by loops between
layers [35].

NN classifiers represent fully connected neural networks for
the classification tasks. The first neural network layer has a
connection to the network input (dataset created with the help
of optimization of multicast grouping), and each subsequent
layer connects with the previous one. Each layer multiplies
the input data by a weights matrix and adds a bias vector. The
activation function tracks each layer (the activation function
for the last fully connected layer is always softmax). The last
layer and the subsequent softmax activation function deliver
the output data of the network (multicast grouping).

We note that there are different NN types, such as Bilayered,
Narrow, Medium, Wide, and Trilayered neural networks. In
our case, Narrow NN shows the best accuracy on our dataset.
In Table we summarize the ML algorithms used in this
paper and the types the algorithms belong to. Generally, we
use the best algorithm from a given class. However, we test



TABLE III
UTILIZED ML ALGORITHMS.
[ Algorithm Type [ Algorithm |
Decision Trees Fine Tree
Decision Trees Coarce Tree

Ensemble Classifiers Random Forest (bagged trees)

Logistic Regression Classifiers | Logistic Regression

Naive Bayes Classifiers Kernel Naive Bayes

Support Vector Machine Cubic SVM
Nearest Neighbor Classifiers Weighted KNN
Neural Network Classifiers Narrow NN
TABLE IV

DEFAULT PARAMETERS FOR NUMERICAL ASSESSMENT.
Parameter Value
Operating frequency, f. 28 GHz
Bandwidth, W 50 MHz
PRB SiZC, WPRB 1.44 MHz
Subcarrier spacing, A 0.12 MHz
Height of BS, h 4 10m
Height of blocker, hp 1.7m
Height of UE, hy 1.5m
Interference margin, My 3dB
SINR threshold, Sy -9.47dB
Transmit power, Py 33dBm
Power spectral density of noise, No -174 dBm/Hz

UE planar antenna elements, N 4el

UE receive gain, Gir 5.57 dBi
Session data rate, C' 25 Mbps
BS antenna array 32x4
BS transmit gain, G 4 14.58 dBi
Service area radius, R 250 m
Number of UEs, K 2-30
Subframe duration 1ms
Slot duration 125 ps
5G NR numerology, p 3
Number of time slots in 1 ms subframe, M 8
Number of available resource blocks, Ry, 32
Number of beams available in the system, L 1,3,5

more trees since their computational complexity is low.

VI. NUMERICAL RESULTS

In this section, we provide our assessment campaign. Our
simulations are performed in the MATLAB environment.
Note that the algorithms are implemented using the reference
MATLAB implementations by adapting them to the specifics
of the multicast deployment described in Section To
evaluate the performance of the considered ML algorithms
for optimal multicasting in mmWave systems and identify the
best candidates, we utilize the following approach. First, we
consider using ML algorithms for 10 UEs and compare the
performance with the exact solution obtained by the proposed
optimization algorithm. At this stage, we also identify the
training set size sufficient for the best performing ML candi-
dates. Then, in the next step, we proceed with an assessment
of the extrapolation capabilities of the best ML candidates
identified in the first step. To this aim, we train ML algorithms
based on 10 UEs in the cell coverage and apply them to
evaluate the case of 13 UEs. By comparing these results to
that of the optimization framework, we further discriminate
the considered candidates identifying those providing the best
extrapolation capabilities. Finally, we report the performance

evaluation results by utilizing the specified algorithms for
standard 3GPP scenarios with 30 and 60 UEs. The parameters
used in this Section are provided in Table

Recall that the identified metric of interest in the optimiza-
tion framework is the ratio of the amount of utilized resources
to all the resources in the system, p, as per (I6). The first
metric of interest that we utilize for accuracy assessment, o,
is based on the exact matching of the number of multicast
subgroups and UEs assigned to these subgroups. We consider
the data to be classified correctly if the ML classification
resulted in the same number of multicast subgroups and the
same composition of UEs for each subgroup as the result
of the optimization framework. Observe that if the match
between ML and optimization results is perfect, the considered
metrics pope and pasr, coincide. However, due to the discrete
nature of resource allocation and mapping between MCSs
and spectral efficiency, the considered metrics p,,; and pprr,
might be close even when the different number of subgroups
and UEs assignment to these subgroups is observed. Since
resource utilization is the main metric of interest, in addition to
perfect matching between UEs assignments, we also consider
the metric v = (parr./popt)100%. This metric measures the
closeness of resource allocation produced by the considered
ML algorithm and optimization framework.

We utilize 30 and 60 UEs in the numerical results as these
values are generally recommended by 3GPP [47] for perfor-
mance assessment of various LTE and 5G NR functionalities.
Note that due to the presumed usage type of the algorithm, we
do not consider the operation of the algorithm in dynamics,
i.e., when UEs enter and leave the multicast session. UE arrival
and departure from the multicast session may introduce rather
large changes in multicast subgroup formations. To this aim,
we assume that whenever UE leaves the multicast session or
new UE joins it, the algorithm has to be rerun producing new
subgroups.

A. Accuracy Assessment of ML Algorithms

We start with the accuracy assessment of the ML candidates
for optimal multicasting by presenting the results for 10 UEs
uniformly distributed in the cell coverage area. Here, we train
all the algorithms by preparing the training sets of length H;
for 10 UEs in the system, apply them to the testing sets of
Hj in length, and, finally, compare the results to those of the
optimization framework with 10 UEs.

First, we take into account the parameter o to explore
how closely the ML algorithms classify UEs to the multicast
subgroups as a function of the cell radius R as illustrated
in Fig. [2] and Table [V] for H; = 5000, H, = 5000. Here,
we see that up to the cell coverage of R = 225m there
is a perfect match between the optimal solution and all the
considered algorithms. However, the rationale is that up until
this distance, only one multicast subgroup is utilized for the
optimal solution, which is correctly predicted by the algorithm.
Starting from R = 250 m, we see that all the algorithms begin
to deviate from the optimal solution, with the best providing
70% of matching accuracy at most. It is also interesting to note
that most algorithms perform the same way, with only simple
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Fig. 2. Group assignment accuracy, o, for H1 = Ho = 5000, K = 10.

logistic regression providing significantly worse results than
the rest. The explanation is the simplicity of the model that
cannot capture complex dependencies in the training data.
Note that the perfect matching of UE allocations to
subgroups is sufficient for optimal resource usage but (i) may
not be a unique solution optimizing resource allocation and
(ii) does not imply that other UE allocations to subgroups
result in significantly worse resource utilization. To this aim,
Table |Y| also shows the accuracy of resource matching, -,
for the considered ML algorithms with respect to optimal
allocations obtained from the exact algorithm. As one may
observe, even those algorithms characterized by drastic devi-
ation from the optimal solution in terms of UE allocations to

TABLE V
GROUP AND RESOURCE MATCHING ACCURACY, H1 = 5000, Ho = 5000,
K =10.
Radius 100m 150- 250m 275m 300m
225m
Fine Tree
UE assignment, o | 100% 100% 98.68%| 73.14%| 63.89%
Resources, v 100% 100% 100% 96.07 98.08%
Logistic Regression
UE assignment, o | 100% 100% 99.96%| 9.80% | 8.88%
Resources, v 100% 100% 100% 98.03%| 98.03%
Kernel Naive Bayes
UE assignment, o | 100% 100% 99.20%| 74.30%| 69.31%
Resources, v 100% 100% 100% 98.07%| 98.07%
Cubic SVM
UE assignment, o | 99.98%| NaN 99.90%| 63.58%| 45.64%
Resources, v 100% | NaN 100% | 93.73%| 98.07%
Weighted KNN
UE assignment, o | 100% 100% 99.34%| 68.94%| 64.89%
Resources, v 100% 100% 100% 96.14%| 91.81%
Random Forest
UE assignment, o 100% 100% 99.28%| 74.40%| 70.11%
Resources, v 100% 100% 100% 98.03%| 95.99%
Narrow NN
UE assignment, o | 100% 100% 99.98%| 75.42%| 37.62%
Resources, v 100% 100% 100% 98% 96.07%
Coarse Tree
UE assignment, o | 100% 100% 94.94%| 70.40%| 66.90%
Resources, v 100% 100% 100% 97.27%| 100%

TABLE VI
TRAINING TIME IN SECONDS, R = 300, H1 = 5000, K = 10.
[ Algorithm [ Time, s |
Fine Tree 5.60
Logistic Regression 17.64
Kernel Naive Bayes 38.82
Cubic SVM 51321
Weighted KNN 0.81
Random Forest 5.66
Narrow NN 43.02
Coarse Tree 1.03
1 7
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Fig. 3. Group assignment accuracy, o, for Ho = 5000, R = 250m, K = 10.

multicast subgroups, o, show very good matching in terms
of resources, 7. Specifically, only one algorithm, Weighted
KNN, provides resource matching accuracy of less than 95%
for R = 300m. Four algorithms, the Fine Tree, Coarse
Tree, Random Forest (Bagged Tree), and Kernel Naive Bayes,
provide excellent agreement in terms of UE allocations, o, and
resource matching, v, with the latter being higher than 98%
for all the considered distances.

Note that different considered algorithms are characterized
by different training complexity that may affect implementa-
tion in functioning 5G NR systems [43]], [45]. To this aim,
Table [VI] shows the training time in seconds for cell radius
R = 300m and training set of length H; = 5000, wherein
each training sample includes input and desired output. Here,
we see that the most computationally demanding algorithms
are Cubic SVM, Narrow NN, and Kernel Naive Bayes. Recall
that the latter one showed excellent performance in terms
of matching both UE allocations to multicast subgroups, o,
and resource matching, v. Observe that although tree algo-
rithms are much simpler, the computational time is also non-
negligible. One of the ways to decrease the computational
time is to reduce the training set size. However, this may
lead to worse performance. We now proceed with evaluating
the minimum training set size providing a sufficient level of
accuracy.

The accuracy of UE allocations to multicast subgroups and
resource matching is shown in Fig. [ and Table [VII] Here,
we see that UE allocation to multicast subgroups accuracy,



o, increases with H; as expected. However, starting from
approximately H; = 1000, the accuracy plateaus and does
not increase any further. At the same time, note that perfect
resource matching with an optimal solution approach is ob-
served for this considered distance even for very small values
of H 1-

Summarizing the results of this section, we state that
tree-based algorithms, including Fine Tree, Coarse Tree, and
Random Forest demonstrate excellent performance in terms of
UE allocations to multicast subgroups and resource matching.
Furthermore, the accuracy of all the considered algorithms
(except for Random Forest) remains virtually unchanged when
increasing the training sample size from H; = 1000 to higher
values. This allows considering the latter as the lower bound
on the training set size in practical implementations.

B. Extrapolation Capabilities of ML Algorithms

We now proceed with analyzing the extrapolation capabil-
ities of the ML algorithms. To this aim, we train these algo-
rithms by utilizing the training sample of length H; = 1000
for 10 UEs and then applying the trained algorithms to the
system with 13 UEs. The accuracy metrics are calculated
for the system with 13 UEs solved by applying the optimal
solution.

Fig. @] shows the accuracy of multicast subgroup formation
for H; = Hy = 5000 and K = 13 UEs. As one may observe,
the match is perfect up to approximately 2 = 250 m and then
drops abruptly for R = 275 m and beyond. The rationale is that
the considered metric accounts for specific UEs classified into
subgroups. Up to R = 275 m only one subgroup is utilized,
explaining the perfect match between solutions. We also note
that for service area radius higher than R = 300m, UEs are
served by using unicast transmissions.
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Fig. 4. Group assignment accuracy, o, for H1 = Ha = 5000, K = 13.

Being incapable of learning specific UEs allocations to
individual multicast subgroups shown by o does not indicate
that the considered ML algorithms cannot learn other specifics
of UEs classification. To demonstrate it, we provide resource
matching accuracy, v, for various BS service area distances,
R, in Table[VIII} As one may observe, several algorithms show
excellent performance. Specifically, of interest are tree algo-
rithms showing excellent extrapolation capabilities as well.
As one may notice, Random Forest and Fine Trees provide
almost 100% accuracy in terms of resource utilization, -,
over all the considered distances. Surprisingly, simple logistic
regression with minimal computational complexity also shows

TABLE VIII
GROUP AND RESOURCE MATCHING ACCURACY, H1 = 5000, H2 = 5000,
TABLE VII K =13.
GROUP AND RESOURCE MATCHING ACCURACY FOR H1, Hy = 5000,
R =250M, K = 10. [ Radius [ 100m [ 150-225m [ 250m [ 275m [ 300m ]
§ Fine Tree
[ Sample size /1, [ 50 [ 200 [ 500 [ 1000 [ 5000 | UE assignment, o | 100% | 100% 99.02%| 29.35% | 29.58%
Fine Tree Resources, y 100% 100% 100% | 98.51 96.97%
UE assignment, o | 90.00%| 94.50%| 96.60%| 97.70%| 98.68% Logistic Regression
Resources, v 100% 100% 100% 100% 100% UE assignment, o | 100% 100% 99.96%| 29.41% | 31.30%
Logistic Regression Resources, y 100% 100% 100% 100% 98.53%
UE assignment, o | 98.00%| 98.50%| 99.60%| 99.80%| 99.96% Kernel Naive Bayes
Resources, v 100% 100% 100% 100% 100% UE assignment, o | 100% 100% 99.17%| 28.88% | 30.19%
Kernel Naive Bayes Resources, v 100% 100% 100% 98.44% | 95.39%
UE assignment, o | 94.00%| 97.00%| 97.80%| 98.40%| 99.20% Cubic SVM**
Resources, -y 100% | 100% | 100% | 100% | 100% UE assignment, o | 99.98%| NaN/100% | 99.92%| 20.74% | 20.66%
Cubic SVM Resources, v 100% NaN/100% | 100% 85.00% | 96.88%
UE assignment, o | 98.00%| 98.00%| 98.80%| 99.20%| 99.90% Weighted KNN
Resources, v 100% 100% 100% 100% 100% UE assignment, ¢ | 100% 100% 99.67%| 24.72% | 26.91%
Weighted KNN Resources, 100% 100% 100% | 96.92% | 98.53%
UE assignment, o 92.00%| 96.50%| 98.80%| 98.90 99.34 Random Forest
Resources, v 100% 100% 100% 100% 100% UE assignment, o | 100% 100% 99.21%| 29.86% | 29.13%
Random Forest Resources, v 100% 100% 100% 96.92% | 100%
UE assignment, o | 47.00%| 47.00%| 47.60%| 56.10%| 99.28% Narrow NN
Resources, v NaN NaN NaN 100% 100% UE assignment, o 100% 100% 99.96%| 30.67% | 30.84%
Narrow NN Resources, 100% 100% 100% | 98.53% | 100%
UE assignment, o | 98.00%| 98.00%| 99.00%| 99.90%| 99.98 Coarse Tree
Resources, v 100% 100% 100% 100% 100% UE assignment, o | 100% 100% 99.55%| 26.65% | 26.83%
Coarse Tree Resources, y 100% 100% 100% 59.42%*| 90.2%*
UE assignment, o | 94.00%| 94.50%| 95.00%| 94.90%| 94.94 *the algorithm defines 5 clusters (on average) instead of 13
Resources, v 100% 100% 100% 100% 100% ** no solution for 150, 200 m, accuracy is 100% is for 225 m
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Fig. 5. Tree models predictions for: (a) Fine Tree (13 subgroups), (b) Random Forest (13 subgroups), and (c) Coarse Tree (5 subgroups). Here, crosses denote
incorrect predictions, circles correspond to the correct ones, whereas colors represent different subgroups.

excellent performance. By recalling that trees are characterized
by rather small computational efforts, we choose them as the
best candidates for multicast subgroup formation.

C. Trees’ Characteristics and Comparison

Having identified trees as the algorithms capable of provid-
ing high accuracy for the considered multicast problem, we
now proceed by providing deeper insights on decision tree
learners considered in this works, such as random forest, fine,
and coarse trees, as summarized in Table First, we recall
that according to Table [V, coarse tree outperforms random
forest and fine trees in terms of training time. However, one
should investigate the other parameters responsible for the
accuracy and the quality of predictions, e.g., model flexibility.

The flexibility of the tree-based model generally increases
with the maximum number of splits. Here, a fine tree has high
flexibility and operates with many leaves to make many fine
distinctions between classes (the maximum number of splits
in our case is set to 100). Thus, a fine tree with many leaves
is usually highly accurate on the training datasets. Random
Forest has medium to high flexibility, which increases with
the number of learners or the maximum number of splits.
They can usually do better than bagged trees but might require
parameter tuning and more learners. Differently, a coarse
tree is characterized by low model flexibility. It ensures few
leaves only to make coarse distinctions between classes (the
maximum number of splits is 4, hence, the maximum number
of classes is 5). Hence, the model specifics can explain the
unsatisfactory performance of coarse tree, especially in terms
of UEs assignment, which we can see in Table [VIII] for the
area radius of 275 m and 300 m, where according to the exact
optimal solution the model should have 13 unicast subgroups,
whereas it provides in average only 5 clusters for 13 UEs.

TABLE IX
COMPARISON OF DECISION TREE ALGORITHMS.
Characteristics Fine Random Forest Coarse
Tree Tree
Prediction speed, obs/s ~99000 ~24000 ~330000
Max. no. of splits 100 20 (30 learners) 4
Flexibility High Medium-high Low

In Fig. 5] we show the impact of the model flexibility, or
equally, the maximum number of splits in the model for ran-
dom forest, fine, and coarse trees. Here, z- and y-coordinates
are the UE coordinates and are two dataset features. As one
can observe, a coarse tree indeed distinguishes fewer classes
than the fine tree and random forest. Therefore, in the next
section, we analyze the performance of random forest and fine
trees only.

1) Predictors’ Importance Estimation: Recall that to con-
struct a dataset, we selected many variables of interest. How-
ever, these variables may or may not be utilized by the
algorithms for classifications. Note that all algorithms are
trained on the same dataset, while each algorithm may select
a particular set of input predictor variables to build the final
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classification. In practical work, an intelligent feature selection
is essential to boost the predictive power of ML algorithms.
For this purpose, we now proceed by exploring the question
of which variables mainly affect the performance of the algo-
rithms. To this aim, in Fig. [f] we provide predictor importance
for the classification ensemble of decision trees. We use the
Matlab function predictorlmportance that computes estimates
of predictor importance for the dataset by summing these
estimates over all weak learners in the ensemble. Note that
a high value indicates that this predictor is important for the
model.

First, Fig. [6(a) illustrates the importance of the complete
dataset, where we analyze the model’s behavior as a function
of the service area radius, . Hence, it is predictable that R
variable has a high importance estimate. However, we expected
UEs coordinates to be the most important model’s features.
In contrast, the number of clusters obtained from the exact
optimization problem solution and the cell radius are two key
predictors that affect the learning process, followed by UEs
coordinates.

Further, by studying Fig. one can deduce that the
importance of the predictors is dataset-specific. Here, fixing

the radius R leads to the UEs coordinates domination. This
behavior can be explained by the fact that in directional
multicast systems, the radius of the service area impacts the
type of transmission utilized for service (i.e., multicast for
multiple UEs or unicast for all multicast UEs). Our numerical
results confirm that the solution mainly depends on the cell
radius. For example, we can observe that a single multicast
subgroup is selected for the radius range 100 — 225 m when
we vary the number of UEs in the system. Then, for the
range 275 m and further, unicast transmissions are exclusively
utilized to serve multicast UEs, whereas the proposed ML
solution can be utilized for the radius around 250 m.

D. Performance Assessment of Optimal Multicasting

We finalize our numerical exposition with examples of the
ML solution for a realistic number of UEs in the multicast
group. Following the 3GPP guidelines for evaluating 5G NR
system performance, the number of UEs in the system is 30
or 60 [47]. To this aim, Fig. [7| shows the amount of occupied
resources for multicast service with 30 UEs and 60 UEs in the
system provided by the best-identified algorithms, including
Fine and Bagged Trees (Random Forest), Logistic Regression
and Narrow Neural Network.

By analyzing the data presented in Fig. [/| we observe that
the trends observed for both numbers of UEs in the system are
self-consistent. Specifically, both figures demonstrate the same
results in terms of the number of utilized resources up to 250 m
of the radius of interest as a single multicast subgroup can be
utilized for serving all the UEs. Further, there is a sharp jump
when the system changes its operational regime from multicast
to unicast. Here, one can notice an almost doubled number of
PRBs for the case of 60 UEs compared to 30 UEs, which is
typical behavior for the case of unicast transmissions.

VII. CONCLUSIONS

In this paper, motivated by the need to support multicast
services in 5G mmWave NR systems with directional antennas,
we evaluated the suitable ML approaches for optimal multi-
casting. To this aim, we first developed an exact optimization
framework. However, as the optimization test belongs to the
class of mixed-integer programming problems and is thus
characterized by exponential complexity, we then proceed by
evaluating several ML techniques for optimal multicasting.

By applying the discrimination procedure via comparing
modeling and exact optimal solution to the considered set of
ML approaches, we revealed that tree algorithms show the
best performance for the multicast problem. The number of
splits of the trees also matters as Fine and Bagged Trees
outperform the Coarse Tree, which has a much smaller amount
of splits. The factors mainly responsible for the accuracy of
ML approximations are the cell service area and UE coordi-
nates, in addition to “external” knowledge of the number of
multicast subgroups provided during the training process. We
also discovered a narrow range of the cell area radius R where
one has to solve multicasting problems in 5G NR systems
with directional systems. Specifically, multicasting with one
wide beam for small cell radii leads to the optimal solution.



For large cells, unicast transmissions represent the optimal
solutions to the multicast problem. There is a narrow range
between these two extremes, reported to be 225 — 275 m for
the considered system parameters, where the optimal solution
is non-trivial.
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