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Abstract—An innovative deterministic approach to the 

optimal power synthesis of mask-constrained shaped beams 
through concentric-ring isophoric sparse arrays is presented. The 
design procedure exploits at best the state-of-the-art techniques 
respectively available in the cases of circular-ring isophoric 
arrays radiating pencil beams and of linear isophoric arrays 
generating shaped beams. The technique avoids exploitation of 
global-optimization algorithms and allows to significantly 
outperform all the (few) available procedures. 

Index Terms—Power synthesis, shaped beams, sparse arrays. 

I. INTRODUCTION 
Sparse array antennas, i.e., arrays whose elements are 

located over an aperiodic layout such to fulfill given radiation 
requirements, represent an important topic for antenna 
designers. This is shown by a large number of both ‘classic’ 
(e.g., [1]-[3]) and more recent (e.g., [4]-[17]) contributions, as 
well as by many research projects {e.g., the Invitation to 
Tenders (ITT) [18] by the European Space Agency (ESA)}. 

Such a large interest is due to the advantages offered by 
these systems with respect to equispaced arrays. In fact, for a 
fixed aperture size, sparse arrays allow decreasing the number 
of elements without significantly affecting the beamwidth 
[10]. Such a lowering, in turn, mitigates mutual-coupling 
issues (due to the increased value of the average inter-element 
spacing) and implies a reduced cost, weight, and complexity 
of the feeding network [2]. Moreover, the aperiodicity of the 
layout allows reducing grating lobes in the radiation pattern 
and hence an improvement of performance in terms of both 
sidelobes level (SLL) and bandwidth [8]. Finally, aperiodic 
arrays may allow a SLL reduction without resorting to an 
excitation-amplitude tapering [13]. 

The last advantage above led over the years to the large 
diffusion of a particular kind of sparse arrays: the so-called 
‘Isophoric’ Sparse Arrays (ISAs) [8]-[17], i.e., aperiodic 
arrays having a constant excitation amplitude over the whole 
aperture. This feature allows the feeding power amplifiers to 
operate at their point of maximum efficiency and greatly 
simplifies the beam forming network [10],[13].  

Amongst all ISAs planar architectures, Concentric Ring 

 
 

Isophoric Sparse Arrays (CRISAs), i.e., ISAs whose elements 
are disposed onto concentric rings, appear being one the most 
convenient ones due to their capability of uniformly spreading 
the antenna energy over all azimuth directions [9],[12]-[17]. In 
fact, CRISAs constitute one of the usual ESA’s choices to 
realize the satellite multibeam coverage of Earth [9],[14],[15].  

Of course, ISAs adoption has also its disadvantages, the 
most critical one being related to the corresponding synthesis 
procedures. In fact, since the elements’ locations are an 
unknown of the design problem, the synthesis is unaffordable 
through Convex Programming (CP) procedures of the kind 
presented in [19]. Therefore, as done for instance in [4]-[7], 
the antenna designers often recur to Global Optimization (GO) 
procedures. However, due to their high computational weight, 
GO techniques practically result unsuitable for the synthesis of 
ISAs composed by a large number of elements. 

To overcome such difficulties, the following two-steps 
procedure has been recently devised for the design of Linear 
Isophoric Sparse Arrays (LISAs) and CRISAs [8]-[15]: 
1. identify a Reference Continuous Aperture Source (RCAS) 

fulfilling ‘at best’ the radiation requirements at hand; 
2. derive the array layout as a discretization of the RCAS. 
This procedure allowed to outperform previous approaches 
[8]-[15]. In fact, a number of well-assessed methods already 
exist to perform step 1 (e.g., [20],[21]) and, only in the ‘pencil 
beams’ case, step 2 (e.g., [1],[8],[9],[13]-[15]). 

Unfortunately, much less alternatives to perform step 2 are 
available in the ‘shaped beams’ case. The reason of such lack 
derives from a simple circumstance: while the RCASs 
required to generate sufficiently-narrow pencil beams are real 
functions [20], in the shaped beams case they result complex 
[21]. This issue, which drastically complicates step 2 [14], has 
been recently solved for the case of LISAs in [12] but still 
results unsolved for CRISAs. In fact, the unique approach 
currently available to perform step 2 in the CRISAs case is the 
‘rough’ one in [14], which bypasses the problematic of the 
RCAS’s complexity by: 
a) identifying the elements’ locations by applying the 

technique presented in [9] only to the RCAS’s amplitude; 
b) assigning to each array element an excitation phase equal 

to value assumed in its location by RCAS’s phase. 
This procedure neglects the fact that, as discussed in [12], the 
array elements locations must be a function of both the 
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RCAS’s amplitude and phase distributions, and hence its 
performance is considerably improvable (see Section III). On 
the other side, beyond [14], the unique contribution addressing 
the synthesis of CRISAs in the shaped beams case is [7] 
which, however, relies on GO and hence is exploitable only in 
case of CRISAs composed by a low number of elements.  

In the attempt of filling such a gap, this paper proposes a 
new approach to the mask-constrained power synthesis of 
shaped beams through CRISAs. The technique can be seen as 
the extension of the approach in [12] to the case of ring-
symmetric array layouts, and results fast and effective even in 
case of arrays composed by a large number of elements. 

In the following, Section II describes the proposed 
synthesis procedure while Section III assesses it against all the 
other available techniques. Conclusions follow. 
 

 
Fig. 1. Pictorial view of the m-th ring of a generic CRISA 

II. RATIONALE OF THE DESIGN PROCEDURE 
The proposed approach consists in synthesizing the CRISA 

by performing a discretization of a RCAS which optimally 
fulfills a given circularly-symmetric power mask. Let us 
denote by s(ρ) such a RCAS, having a circularly-symmetric 
distribution and covering a disk of radius R over the xy plane, 
ρ=(x2+y2)1/2 being the radial coordinate spanning the aperture. 
Moreover, let us denote with N the overall number of CRISA 
elements and with ϕ the aperture azimuth coordinate.  

The CRISA is conceived as the union of M concentric 
rings on which a given number of radiating elements is located 
with an uniform angular spacing (see Fig. 1). The unknowns 
are the elements’ locations and excitation phases and the aim 
is to determine them in such a way to minimize the mean 
square difference between the far-field distributions 
respectively corresponding to the RCAS [let us say FRCAS(u)] 
and the CRISA [let us say FCRISA(u)]. Apart from inessential 
constants, these two fields can be written as: 
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wherein u=sinθ (θ denoting the elevation angle with respect to 
boresight), β=2π/λ (λ denoting the wavelength), rm and Nm 
respectively are the radius of the m-th CRISA’s ring and the 

number of elements located over it, and φk,m is the azimuth 
coordinate of the k-th element belonging to the m-th ring (see 
Fig. 1). Under these assumptions1, it will be: 
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wherein S(ρ) and SA(ρ) represent the cumulative distributions 
associated to the functions s(ρ) and sA(ρ), respectively, i.e.: 
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0
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Therefore, minimizing the mean square difference between 
FRCAS(u) and FCRISA(u) with 1/u2 weighting is equivalent to 
minimize the mean square difference between the functions 
(5) and (6). This can be done, once M and N have been 
chosen, by means of the following procedure: 
1. represent S(ρ) as a curve in a three-dimensional space 

where the first and second coordinates are its real and 
imaginary parts, respectively, and the third coordinate is ρ 
(see Fig. 2). Then inscribe in this curve an equilateral 
polygonal composed by N segments; 

2. for m=1,..,M, determine the value of Nm in such a way that 
the N segments above can be grouped into M contiguous 
subintervals, the m-th of which is composed by Nm 
segments and guarantees that the following ratio: 
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m
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is constant (wherein ρm and ρm+1 denote the endpoints of 
the m-th subinterval, with ρ1=0 and ρM+1=R); 

3. for m=1,..,M, determine rm in such a way to fulfil the 
following equation: 
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4. assign to all the elements belonging to the m-th ring, for 
m=1,..,M, an excitation phase equal to the angle subtended 
in the complex plane by the real axis and the segment 
connecting S(ρm) and S(ρm+1). 

The motivations underlying the procedure are in the following. 
Concerning step 1, it derives from a simple principle: the 

fact that the CRISA must be composed by N isophoric 
elements entails that S(ρ) must be partitioned in N segments 
having the same length. 

As far as step 2 is concerned, it must be noted that S(ρ) 
represents the volume subtended by the RCAS over the circle 
of radius ρ. Therefore, this step allows to subdivide the 
aperture into M concentric annular sectors, the m-th of which 
contains Nm ‘iso-volume’ sectors (see Fig. 2). This operation 
can be performed by exploiting the fast iterative procedure in 
[9], which exploits an equation analogous to (7) and provide 

 
1 Differently from the RCAS’s far field, the CRISA’s array factor depends 
also on the azimuth angle. However, as shown in [9], such dependence is 
negligible for u<<Nmλ/(2πrm), m=1,…,M. In all examples of Section III, as 
well as in very many applications, these angular sectors cover the whole 
region wherein the power pattern is significant, and hence the circularly-
symmetric representation (2) can be exploited. 



an analytic way to determine the optimal Vm value. On the 
other side, it should be noted that [9] addresses only the 
synthesis of pencil beams through real and positive RCASs, 
so that the additional steps 3 and 4 are necessary herein. 

Step 3 allows identifying, for m=1,..,M, the optimal radius 
the m-th CRISA’s ring inside the interval [ρm, ρm+1]. In fact, by 
virtue of steps 1 and 2 above, it will be: 
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where H is the unit step function. By substituting (9) into (4) 
one achieves: 
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with S(0)=SA(0)=0. By equating to zero the derivative of (10) 
with respect to rm, one exactly obtains equation (8). Therefore, 
the radius of the m-th CRISA ring must be determined by 
projecting the midpoint of the m-th polygonal segment onto 
S(ρ) and then reading the corresponding ρ value. 

Finally, step 4 is perfectly coherent with previous steps and 
allows to assign to the CRISA’s elements the required 
circularly-symmetric excitation-phase distribution. 

III. ASSESSMENT AGAINST ALL PREVIOUS APPROACHES 
We tested the effectiveness of the proposed approach by 

comparing it to the only two techniques available today for the 
synthesis of shaped beams through CRISAs (i.e., the 
deterministic procedure in [14] and the global-optimization 
algorithm in [7]). In the two following test cases, the synthesis 
of the RCAS has been performed through the method in [21], 
and the subsequent discretization steps respectively required 
1.16 and 1.04 seconds to be performed by a calculator having 
an Intel Core i7 2.50 GHz CPU and a 10 GB RAM. 

III.1 Comparison with the synthesis procedure in [14] 
In [14], considering the mission scenario of the ESA ITT 

[18], authors synthesized a flat-top beam covering almost all 
of the Earth disc as seen from a geostationary satellite. The 
adopted power mask is depicted in Fig. 3. It is circularly 
symmetric and enforces a maximum ripple equal to ±0.5 dB 
for θ≤8° and a maximum SLL of -20 dB for 11°≤θ<16° and of 
-10 dB for 16°≤θ≤90°. These requirements were fulfilled 
through a CRISA composed by 966 elements located over an 
aperture of diameter 42λ. An uniform circular aperture of 
diameter 0.8λ was used as elementary radiator, and the CRISA 
provided a minimum directivity of 18.3 dBi in the flat zone. 

Notably, by exploiting the proposed approach, we have 
been able to fulfill the same mask through a CRISA composed 
by 460 elements located over a circular aperture of diameter 
18.4λ. An uniform circular aperture of diameter 0.5λ has been 
used as elementary radiator, and the CRISA provided a 
minimum directivity of 19.77 dBi in the flat zone. Therefore, 
with respect to the technique in [14], the proposed approach 
allowed saving the 52% of elements. Moreover, although 
exploiting 0.3λ smaller feeds, the synthesized array provided a 
1.47 dBi higher directivity inside the Earth disc. The 

synthesized power pattern and array layout are respectively 
shown in figures 3 and 4. Notably, the achieved maximum 
directivity, i.e., 20.77 dBi, is just 2.39 dBi lower than the one 
pertaining to an ‘ideal’ theoretical power pattern being 
constant in the region θ≤8° and zero elsewhere. 

 
 

Fig. 2. Representation of S(ρ) in the complex plane (green color: reference 
function; red color: discretized function) and as a curve in a three-dimensional 
space where the first and second coordinates are its real and imaginary parts, 
respectively, and the third coordinate is the radial coordinate (blue curve). 
 

 
Fig. 3. Upper and lower bounds (red lines) and power pattern radiated by the 
synthesized array (blue curves, superposition of cuts along the azimuth angle). 
 

 
Fig. 4. CRISA radiating the power pattern in Fig. 3 (feed diameter: 0.5λ). 
 

III.2 Comparison with the synthesis procedure in [7] 



In [7] authors synthesized a CRISA composed by 220 
elements located over an aperture of diameter 10λ in order to 
fulfill the circularly-symmetric power mask depicted in Fig. 5. 
The latter enforces a maximum SLL equal to -12.18 dB for 
19.6°≤θ≤90°, an Half Power Beamwidth (HPBW) equal to 
31.2°, and a maximum ripple equal to ±0.41 dB for θ≤13.4°. 

Although results in [7] were generated by means of a 
Simulated Annealing GO algorithm aimed at jointly 
minimizing the maximum ripple and the maximum SLL, the 
proposed procedure allowed a significant improvement of 
performance. In particular, we have been able to fulfill the 
same mask by exploiting a CRISA composed by 163 isotropic 
elements located over an aperture of diameter 5.86λ. 
Therefore, the presented approach allowed a 26% reduction in 
the elements’ number without experiencing any radiation loss.  

The synthesized array layout is shown in Fig. 6, while the 
corresponding square-amplitude array factor is shown on Fig. 
5. The CRISA guarantees in the flat zone a minimum 
directivity of 15.98 dBi and a maximum directivity of 16.8 
dBi (which is just 1.87 dBi lower than the directivity 
pertaining to a theoretical power pattern being constant in the 
region θ≤13.4° and zero elsewhere). 
 

 
Fig. 5. Synthesized square-amplitude array factor (blue curves - superposition 
of cuts along the azimuth angle) and adopted mask (red lines).  
 

 
Fig. 6. CRISA radiating the power pattern in Fig. 5 (isotropic feeds). 

IV. CONCLUSIONS 
The problem of the optimal synthesis of shaped beams in 

the presence of completely-arbitrary lower and upper bounds 
on the power distribution has been solved by exploiting ring-
symmetric isophoric sparse arrays. The proposed technique 
allowed to considerably improve the performance achievable 
through previous approaches. In particular, for equal power-

pattern masks, the required number of array elements has been 
significantly reduced.  

The approach can be used in conjunction with the 
techniques in [13],[15],[17] in such a way to exploit also the 
feeds’ shape and size as a degree of freedom of the design and 
hence to get a further enhancement of performance. 

REFERENCES 
[1] M. I. Skolnik, “Chapter 6. Nonuniform Arrays” in R. E. Collin and 

F.Zucker (eds), Antenna Theory, New York, McGraw-Hill, 1969. 
[2] A. Ishimaru, “Theory of unequally-spaced arrays,” IRE Transactions on 

Antennas and Propagation, vol. 10, no. 6, pp. 691–702, 1962. 
[3] R. E. Wiley, “Space tapering of linear and planar arrays,” IRE Trans. on 

Antennas and Propagation, vol. 10, n. 4, pp. 369–377, 1962. 
[4] D. G. Kurup, M. Himdi, and A. Rydberg, “Synthesis of uniform 

amplitude unequally spaced antenna arrays using the differential 
evolution algorithm,” IEEE Transactions on Antennas and Propagation, 
vol. 51, n. 9, pp. 2210-2217, 2003. 

[5] N. Jin and Y. Rahmat-Samii, “Advances in particle swarm optimization 
for antenna design: Real-number, binary, single-objective and 
multiobjective implementation,” IEEE Transactions on Antennas and 
Propagation, vol. 55, n. 3, pp. 557-567, 2007. 

[6] E. Rajo-Iglesias and O. Quevedo-Teruel, “Linear array synthesis using an 
ant-colony-optimization-based algorithm,” IEEE Antennas and 
Propagation Magazine, vol. 49, n. 2, pp. 70-79, 2007. 

[7] A. Trastoy-Rios, M. Vicente-Lozano, and F. Ares-Pena, “Shaped beams 
from circular apertures and arrays with uniform amplitude,” Electronics 
Letters, vol. 36, n. 14, pp. 1180-1182, 2000. 

[8] O. M. Bucci, M. D’Urso, T. Isernia, P. Angeletti, and G. Toso, 
“Deterministic synthesis of uniform amplitude sparse arrays via new 
density taper techniques,” IEEE Transactions on Antennas and 
Propagation, vol. 58, n. 6, pp. 1949-1958, 2010. 

[9] O. M. Bucci, and S. Perna, “A deterministic two dimensional density 
taper approach for fast design of uniform amplitude pencil beams arrays”, 
IEEE Trans. on Antennas and Prop., vol. 59, n. 8, pp. 2852-2861, 2011.  

[10] M. C. Viganó, G. Toso, G. Caille, C. Mangenot, I. E. Lager, “Sunflower 
array antenna with adjustable density taper”, International Journal of 
Antennas and Propagation, vol. 2009, Article ID 624035, 10 pages. 

[11] A. F. Morabito, T. Isernia, and L. Di Donato, “Optimal synthesis of 
phase-only reconfigurable linear sparse arrays having uniform-amplitude 
excitations,” Progress in Electromagnetics Research, vol. 124, pp. 405-
423, 2012. 

[12] O. M. Bucci, T. Isernia, and A. F. Morabito, “An effective deterministic 
procedure for the synthesis of shaped beams by means of uniform-
amplitude linear sparse arrays,” IEEE Transactions on Antennas and 
Propagation, vol. 61, n. 1, pp. 169-175, 2013.  

[13] P. Angeletti, G. Toso, and G. Ruggerini, “Array antennas with jointly 
optimized elements positions and dimensions Part II: Planar Circular 
Arrays,” IEEE Transactions on Antennas and Propagation, vol. 62, n. 4, 
pp. 1627-1639, 2014. 

[14] O. M. Bucci, T. Isernia, A. F. Morabito, S. Perna, and D. Pinchera, 
“Isophoric sparse arrays: a synthesis procedure for circularly symmetric 
shaped beams,” Proceedings of the 6th European Conference on 
Antennas and Propagation, pp. 832-836, 26-30 March 2012, Prague. 

[15] A. F. Morabito, A. R. Lagana, and T. Isernia, “Isophoric array antennas 
with a low number of control points: a ‘size tapered’ solution,” Progress 
In Electromagnetics Research Letters, vol. 36, pp. 121-131, 2013.  

[16] M. Carlin, G. Oliveri, and A. Massa, “Hybrid BCS-deterministic 
approach for sparse concentric ring isophoric arrays,” IEEE Transactions 
on Antennas and Propagation, vol. 63, n. 1, pp. 378-383, 2015.  

[17] O. M. Bucci, T. Isernia, A. F. Morabito, S. Perna, and D. Pinchera, 
“Density and element-size tapering for the design of arrays with a 
reduced number of control points and high efficiency,” Proceedings of 
the Fourth European Conference on Antennas and Propagation, 12-16 
April 2010, Barcelona, Spain. 

[18] ESA/ESTEC Invitation to Tenders n° AO/1-5598/08/NL/ST, “Innovative 
architectures for reducing the number of controls of multiple beam 
telecommunications antennas”. 

[19] A. F. Morabito and P. Rocca, “Optimal synthesis of sum and difference 
patterns with arbitrary sidelobes subject to common excitations 
constraints,” IEEE Antennas Wireless and Propagation Letters, vol. 9, pp. 
623-626, 2010. 



[20] O. M. Bucci, T. Isernia, and A. F. Morabito, “Optimal synthesis of 
directivity constrained pencil beams by means of circularly symmetric 
aperture fields,” IEEE Antennas Wireless and Propagation Letters, vol. 8, 
pp. 1386–1389, 2009.  

[21] O. M. Bucci, T. Isernia, and A. F. Morabito, “Optimal synthesis of 
circularly symmetric shaped beams,” IEEE Transactions on Antennas and 
Propagation, vol. 62, n. 4, pp. 1954-1964, 2014. 




