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Abstract—The power synthesis of maximally-sparse arrays 

such to maximize the beam efficiency over a target region Ω is 
addressed. In particular, Ω is the unique input parameter of the 
proposed design procedure and, once it has been fixed, the 
approach allows identifying the minimum number of elements 
required to achieve inside it a beam efficiency close to the 
theoretical maximum. The problem is cast as a Convex 
Programming one which exploits at best the Compressive Sensing 
theory. Comparisons with state-of-the-art methods are provided. 

Index Terms-Beam efficiency, power synthesis, sparse arrays. 

I. INTRODUCTION 
The synthesis of a radiating system is commonly referred 

as “optimal” [1]-[19] if, and only if, it allows satisfying one of 
the two following conditions:  
a) for fixed antenna’s spatial or electrical resources, the 

radiation performances are maximized; 
b) for guaranteed radiation characteristics, the antennas’ 

spatial or electrical required resources are minimized. 
In the following, focusing on array antennas, two different 
instances respectively referring to conditions a) and b) above 
are considered. 

The first instance, which belongs to problems wherein 
condition a) is pursued, is the maximization of the Beam 
Transmission Efficiency (BTE), i.e., the ratio between the 
power deposited over a given ‘target’ area and the overall 
radiated power [2]-[5]. This problem, which will be referred in 
the following as Problem 1, is very important in those 
applications where the transfer of energy (rather than of 
information) is of interest, e.g., wireless power transmissions 
[3] and microwave hyperthermia [6]. 

The second instance, which belongs to problems wherein 
condition b) is pursued, is the synthesis of ‘Maximally-Sparse’ 
Arrays (MSAs) [9]-[17], i.e., arrays able to achieve given 
radiation performances by exploiting the minimum number of 
radiating elements. This problem, which will be referred in the 
following as Problem 2, is crucial in several applications, 
including multiple-input-multiple-output systems and radar or 
satellite communications [10]. 

As far as Problem 1 is concerned, it is usually solved either 

 
 

as an eigenvalue problem [2], or by exploiting the theory of 
prolate spheroidal functions [5], or global optimization [3]. In 
particular, the approach in [2] turned out able to outperform all 
previous methods. Sometime later, by formulating the problem 
as a Convex Programming (CP) one, the technique in [4] 
provided BTE values very close to the ones shown in [2] by 
using a lower number of array elements.  

As far as Problem 2 is concerned, it is usually solved by 
using either global optimization [9], or density taper [10], or 
the matrix pencil method [11]-[13], or Linear Programming 
(LP) procedures exploitable as long as the radiated field is real 
[14]. Recently, several approaches exploiting the Compressive 
Sensing (CS) theory also appeared [15]-[17], and the one in 
[17] allowed lowering the minimum number of array elements 
achievable by all methods in [13]-[16].  

Notably, although the results ‘separately’ accomplished for 
Problem 1 [2]-[5] and Problem 2 [9]-[17] are indeed 
remarkable, there seems being plenty of room for 
improvement when jointly considering both of them. In fact, 
Problem 2 has never been approached by choosing the BTE as 
the parameter which is kept constant while minimizing the 
number of array elements. This can obviously lead to MSAs 
exhibiting poor BTE performances. On the other side, 
Problem 1 has never been approached by using MSAs. This 
circumstance is a relevant limitation, given the advantages 
offered by MSAs with respect to Uniformly Spaced Arrays 
(USAs) in terms of size, weight, bandwidth, and sidelobe level 
[10]. The only contribution addressing the BTE optimization 
through sparse arrays is [3] wherein, however, the elements’ 
excitations are not exploited as a degree of freedom of the 
synthesis and hence (as it will be shown in Section III) the 
achieved elements’ number can be considerably lowered. 

In the attempt of filling such a gap, this paper presents a 
new strategy for the synthesis of arrays being at the same time 
maximally sparse and able to achieve BTE values very close 
to 100%. The technique is conceived as the unification of the 
two design procedures respectively devised in [4] (to solve 
Problem 1) and [17] (to solve Problem 2) in such a way to 
keep the advantages of both of them.  

In the following, the proposed method is described in 
Section II and assessed in Section III. Conclusions follow. 
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II. THE SYNTHESIS PROCEDURE 
The approach can be used in both cases of linear and 

planar MSAs. However, by the sake of simplicity, in the 
following it will be described only for the case of 1-D arrays. 
The only input parameter is the ‘target’ area over which the 
BTE must be maximized, say Ω. The beam efficiency inside 
this region (which is supposed being in the far-field zone of 
the source) will be expressed as in [2]-[4], i.e., BTEΩ=PΩ/P 
(PΩ and P representing, respectively, the power transmitted 
over Ω and the overall radiated power). The unknowns of the 
problem are both the array elements locations and excitations, 
which represents a relevant novelty as all previous approaches 
aimed at maximizing the BTE exploited only one of these two 
degrees of freedom (see for instance [2]-[4]). 

The design procedure consists of two consecutive steps, 
i.e., a feasibility criterion allowing the dimensioning of the 
source followed by an actual synthesis algorithm, which are 
separately discussed in the two following Subsections. 
 

II.A Step 1: Feasibility criterion and source dimensioning 
Once Ω has been fixed, this step is aimed at identifying: 
 the minimum number of elements required to an USA in 

order to achieve a beam efficiency equal to 99.99%; 
 an optimal power pattern to be exploited as ‘reference’ by 

step 2 in order to finalize the MSA design. 
This can be done by exploiting (as auxiliary ‘virtual’ array) a 
linear USA composed by N isotropic elements and having an 
inter-element spacing equal to d. Note that, by virtue of the 
theory in [7], its power pattern can be expressed as a linear 
function of 2N+1 complex coefficients {Dp} as follows:  
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with β=2π/λ (λ denoting the wavelength) and u=sinθ (θ being 
the angle between the boresight and observation directions). 
Let us also recall the optimization problem cast in [4], i.e.: 
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wherein A is a real constant (such that 0<A<1) and constraints 
(2.b),(2.c) (* denoting complex conjugation) guarantee that 
P(u) is a real non-negative function lower than UB (which can 
be used as a ‘protection’ bound), while the minimization of the 
objective function (2.a) under constraint (2.d) entails that the 
power deposited inside Ω is maximum and that BTEΩ≥A. 

By taking into account the fact that (2) is a LP problem 
(and hence that one can find its unique optimal solution in a 
very fast and effective fashion), once Ω has been fixed step 1 
of the proposed synthesis procedure is performed as follows:  

Set {d= λ/2, UB(θ)=1 ∀θ, A=0.9999} and repeatedly solve 
problem (2) for decreasing values of N until constraints 
become so strict that no solution exists anymore. 

A number of comments are in order about the array coming 
out from such a procedure, denoting with P1(u) and N1, 
respectively, its power pattern and overall elements number.  
First, P1(u) will be factorable as follows: 
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F1(u) being the far field radiated by the ‘virtual’ array at hand 
and a1,…,aN being the corresponding elements excitations. It 
is also worth noting that factorization (3) is not unique, as 2R/2 
different fields satisfying it can be identified (R being the 
number of zeroes of P1 not lying on the unit circle) [7],[18]. 

Second, by virtue of the adopted A value, the array will 
provide over the region Ω a beam efficiency at least equal to 
99.99%, i.e., very close to the maximum theoretical value 
achievable by any antenna of whatever size.  

Third, by virtue of both the adopted decreasing N values 
and λ/2 spacing [7], it will be guaranteed that, excluding 
‘superdirective’ solutions [8], no USAs composed by less than 
N1 elements can achieve the same BTEΩ value. Therefore, the 
above ‘virtual’ array represents the minimally-redundant USA 
associated to the specific problem at hand. 
 

II.B Step 2: Actual Synthesis of the MSA 
This step is aimed at synthesizing a MSA able to achieve 

radiation characteristics equivalent to the ones of the ‘virtual’ 
array coming out from step 1 by exploiting less then N1 
elements. This can be done through the following procedure: 

i.factorize P1 and select, amongst all equivalent fields, the one 
having the minimum ℓ1 norm of excitations, say F1REF;  

ii.given the length of the USA coming out from step 1, i.e., 
L1=(N1-1)λ/2, sample with a rate in the order of λ/10 the 
domain [0, L1] into M equispaced points, say x1,…,xM. Then, 
define a further USA having locations x1,…,xM and find its 
excitations b1,…,bM by solving the following CP problem: 
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iii.find the MSA elements locations, say y1,…,yS, by 
performing two operations on the USA coming out from 
step ii: discarding the antennas having a negligible 
excitation amplitude and then substituting each couple of 



elements whose distance is lower than a threshold σ with 
one element placed in the middle point between them; 

iv.determine slight shifts Δy1,…, ΔyS on the above elements 
locations (and the associated optimal excitations c1,…,cS) 
by solving the following optimization problem: 
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wherein F3(u) represents the far field radiated by the MSA 
at the end of the overall synthesis procedure, i.e.: 
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The rationale of the above steps is described in the following. 
Step i is aimed at identifying the far-field distribution to be 

exploited as reference in the subsequent steps. The selected 
solution, i.e., F1REF(u), has the following properties: 
 by coming out from (3), it still provides BTEΩ≥0.9999; 
 by corresponding to the USA’s excitations set having the 

minimum ℓ1 norm, it is the field which more easily lends 
itself to a CS-based ‘sparsification’ process [15]-[17]. 

Step ii is aimed at ‘sparsifying’ the array layout coming 
out from step i. In fact, the ℓ1 norm in (4.a) is the ‘common 
alternative’ to ℓ0 norm when minimizing the number of 
elements of an USA through the CS theory [16]. As far as 
constraints (4.b) and (4.c) are concerned, the former allows 
controlling the power-pattern sidelobes in the angular region 
denoted with τ1 (where g is an upper-bound function chosen 
by the user) while the latter ensures that, in the angular region 
denoted by τ2, the sought array factor fits F1REF with a 
precision ε. As a crucial feature which belongs also to step iv, 
it is worth noting that this step pursues a field fitting just in the 
main-beam zone, while upper bounds are used in the sidelobes 
region. Such a choice allows recovering a significant number 
of degrees of freedom with respect to the cases wherein a field 
fitting is pursued over the whole spectral domain [16],[17].  

Step iii allows a suitable ‘sparsification’ of the USA layout 
coming out from step ii. Obviously, while severely reducing 
the number of array elements, the performed operations may 
induce a worsening of radiation performances. This possible 
worsening is the reason underlying execution of step iv. 

Step iv is aimed at refining the elements locations (and at 
identifying the optimal excitations associated to them) so as to 
recover, without increasing the number of elements, from 
possible radiation losses induced by step iii. In fact, solving 
problem (5) leads to radiation characteristics equivalent to 
those grant by (4) while saving M-S elements. 

It is worth noting that problem (5) may be cast as a ‘nearly 
CP’ one by adding to it the following constraint: 

sys    (6) 
with 0<η<<1. In fact, this linear constraint entails that: 
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which is a linear function of the locations’ shifts. Under these 
conditions, one can also add a linear constraint counteracting 
mutual coupling by avoiding too-small element spacings, i.e.: 

     1,...,111   Ssyyyy SSSS   (8) 
where ψ is an user-defined constant. 

III. NUMERICAL ASSESSMENT 
The approach has been assessed by identifying the savings 

in terms of array elements number (for equivalent or better 
BTE performances) with respect to the state-of-the-art 
methods. In particular, in the first two test cases the synthesis 
of linear arrays is dealt with and the outcomes are compared 
with the ones achievable through the approach in [4] which, in 
turn, allowed a saving of elements with respect to the method 
in [2]. Then, in the third test case, the synthesis a planar array 
is considered and the results are compared with the ones in 
[2]-[4]. In all cases, an isotropic element pattern is considered. 

  

 
Fig. 1. First test case: Ω={u: -0.4≤u≤0.4}. Power patterns radiated by the 
minimally-redundant equispaced array (black curve, BTEΩ=99.99%) and the 
synthesized maximally-sparse array (red curve, BTEΩ=99.98%). 
 

  
Fig. 2. Excitation amplitudes (on the left) and phases (on the right) 
corresponding to the power pattern depicted in red color in Fig. 1. 
 

 
Fig. 3. Second test case: Ω={u: -0.1≤u≤0.1}. Power patterns radiated by the 
minimally-redundant equispaced array (black curve, BTEΩ=99.99%) and the 
synthesized maximally-sparse array (red curve, BTEΩ=99.91%). 
 



 
Fig. 4. Excitation amplitudes (on the left) and phases (on the right) 
corresponding to the power pattern depicted in red color in Fig. 3. 
 
  In the first test case, the target region has been set as Ω={u: -
0.4≤u≤0.4}. By performing step 1 of the procedure, N1=17 
resulted the minimum number of elements required to get a 
BTEΩ=0.9999 through an USA. The achieved power pattern is 
shown in Fig. 1. Then, by executing step 2, a MSA composed 
by 9 elements located over an aperture of length 7.34λ with a 
minimum inter-element spacing of 0.66λ has been synthesized. 
The achieved excitations and locations are depicted in Fig. 2. 
The corresponding power pattern, which is shown in Fig. 1, 
gives BTEΩ=0.9998. Therefore, by losing just the 0.01% of 
the beam efficiency, the synthesized MSA allowed saving 
47% of elements with respect to the minimally-redundant 
USA achievable through method in [4]. 

In the second test case, the target region has been set as 
Ω={u: -0.1≤u≤0.1}. Execution of step 1 of the procedure 
allowed ascertaining that the minimum number of elements 
required to achieve a BTEΩ=0.9999 through an USA is N1=37. 
The power pattern coming out from this step is reported in 
Fig. 3. Then, by means of step 2, a MSA composed by 18 
elements located over an aperture of length 13.43λ with a 
minimum inter-element spacing of 0.79λ has been synthesized. 
The achieved MSA elements excitations and locations are 
depicted in Fig. 4. The corresponding power pattern, which is 
shown in Fig. 3, provides a BTEΩ=0.9991. Therefore, by 
losing just the 0.08% of the beam efficiency, the MSA 
allowed saving the 51% of elements with respect to the 
minimally-redundant USA achievable by the method in [4]. 

As a third test case, the problem dealt with both in [2] and 
[3], i.e., the synthesis of a square array such to optimize the 
BTE inside the region Ω={(u,v): -0.2≤u≤0.2, -0.2≤v≤0.2} has 
been considered. The maximum BTEΩ achieved in [2] and [3] 
by exploiting a 100-elements array is reported in Table I. To 
assess the present approach, the problem has been first solved 
by exploiting the technique in [4]. By so doing, it has been 
possible to get (for an equal number of array elements) a 
BTEΩ increase of 6.8% and 1.4% with respect to [3] and [2], 
respcetively. Then, the problem has been solved through the 
present approach. In particular, we applied step 1 of the 
procedure with Ω={u: -0.2≤u≤0.2} and then applied step 2 to a 
square array having factorable excitations and generating, 
along both the u and v cuts, a far-field equal to the F1REF 
distribution coming out from step 1. The achieved power 
pattern and array layout (wherein the minimum spacing is 
0.47λ) are shown in Fig. 5. Notably, the present method 
allowed at the same time saving 46% of elements and 
increasing of 8.6%, 3.2%, and 1.7% the BTEΩ with respect to 
[3], [2], and [4], respectively. These results, which are 
summarized in Tab. I, confirm the efficacy of the approach. 

 

IV. CONCLUSIONS 
A new approach to the optimal synthesis of maximum-

efficiency beams through sparse arrays has been presented. 
The technique allows minimizing the elements number of 
arrays able to achieve a beam efficiency very close to 100%, 
and hence it is expected to keep competitive even in case of 
slight manufacturing errors.  

The joint use of both a Compressive-Sensing engine and a 
Convex-Programming formulation allowed outperforming the 
state-of-the-art methods. 

 

 
Fig. 5. Third test case: Ω={(u,v): -0.2≤u≤0.2, -0.2≤v≤0.2}. Synthesized array 
layout (on the left) and power pattern [dB] (on the right). BTEΩ=99.61%. 
 

 

 
TABLE I 

COMPARISON WITH PREVIOUS TECHNIQUES (PLANAR ARRAYS CASE) 
 

 Ref. [3] Ref. [2] Ref. [4] This method 

BTEΩ (%) 91.06 96.45 97.89 99.61 

Number of 
elements 100 100 100 54 
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