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Abstract—A new approach for determining the complex 

scalar field radiated by a finite-dimensional source starting from 
its modulus is proposed and assessed. First, by introducing a 
suitable relaxation, we show that the original problem can be 
conveniently tackled in terms of a finite number of different 
Convex Programming problems. Then, an effective procedure for 
dealing with a small number of hierarchically-ordered 
optimizations is introduced and discussed. Numerical 
experiments, including consideration of an actual radiating 
source and of noisy data, are provided with reference to the 
canonical case of far-field data and array antennas.  

Index Terms—Antenna measurements, antenna pattern 
synthesis, phase retrieval.  

I. INTRODUCTION 
The Phase Retrieval (PR) problem is of high interest in 

very many fields where the full knowledge of a complex 
function is needed but phase measurements are not available 
or not convenient. These scenarios include (but are not limited 
to) astronomy [1], crystallography [2], lithography [3], and 
electronic microscopy [4],[5].  

The problem has been the object of very many studies also 
in the Antennas & Propagation community (see for instance 
[6]-[26]) because of its interest in antenna characterization 
(including near-field [13] or far-field [14] phaseless 
measurements) and in the synthesis of power-pattern nominal 
distributions. PR is also of interest in applications regarding 
radio telescopes [12] and inverse-scattering-based imaging 
[27]. Moreover, since phase measurements require a precise 
positioning which is not always available in UAV and high-
frequency applications, it plays an important role in the THz 
regime [17] and antenna testing through UAV [28]. Finally, 
the possible electromagnetic applications of PR at radio or 
microwave frequency include the magnetic-resonance-based 
electrical properties tomography [29]. 

If f(x) is an unknown signal and T is an operator such that 
F(u)=T[f(x)]=|F(u)|ejφ(u) (x and u denoting the vectors spanning 
the corresponding multidimensional domains), a very wide 
class of PR problems can be formulated as follows:  

 

 
Determine f(x) from |F(u)| and some additional a-priori 
information. 

 
Notably, the above formulation concerns both continuous 

and discrete signals, and the a-priori information may include 
the knowledge of the support of f(x), or of its being positive, 
or other kinds of partial knowledge of f(x). 

A large attention has been devoted in the literature to the 
case where T is a Fourier transform operator. In this case, 
which is the one we will deal with in the remainder of the 
paper, PR is also strictly related to the synthesis of a given 
power pattern by means of linear or planar sources. In 
particular, we will deal in the following with the case of 
discrete sources, i.e., array antennas. Notably, as the far field 
of any non-superdirective source can be processed, in the 
visible part of the spectrum, as it is radiated by a ‘virtual’ 
equispaced array (see for instance [30]-[33]), results which 
follow have a range of validity which is not restricted to 
discrete and equispaced sources. 

As a distinguishing characteristic, differently from 
(essentially all) the approaches available in the literature 
which require two different sets of measurements in order to 
have a reliable retrieval procedure (two near-field surfaces in 
[7]-[9],[11],[13],[18], two different defocus conditions in 
[3],[4], two different probes in [15],[16]), we propose in the 
following a method which just requires a single set of 
measurement (plus some minimum a-priori information or a 
minimal number of additional measurements regarding single 
points rather than a whole plane or the like).  

Also note that while the approach is presented (for the sake 
of simplicity) for the case of far-field measurements, it can be 
applied to near-field measurements in a very simple fashion.  

In the following, Section II recalls some basic theoretical 
and methodological results in PR. Then, in Sections III, IV, 
and V, the proposed solution procedures are respectively 
presented, improved, and assessed. Conclusions follow. 

II. SOME BASIC RESULT IN PHASE RETRIEVAL  
Effective solution of PR requires addressing a number of 

theoretical and operative issues which are intrinsic to the 
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problem itself. In order to highlight the potentialities of the 
new approach we are going to present, these issues (along with 
some of the corresponding way outs) are recalled in the 
following. 

A first important issue is of course concerned with 
uniqueness (or non-uniqueness) of the solution of the problem. 
In this regard, it is well known that in both 1-D and 2-D cases 
PR of band-limited signals1 is affected by the so-called ‘trivial 
ambiguities’ [34], i.e., modifications of f(x) which all lead to 
the same |F(u)| distribution. These latter can either be a 
constant phase, or a translation of f [leading to a linear phase 
on F], or a reversal along x plus complex conjugation of f 
[leading to a conjugation of F], or any combination of them. 
However, while conjugate solutions can be avoided only by 
exploiting some a-priori information on f or F, the ambiguities 
related to a constant phase can be removed by fixing the phase 
of F at a given point once and for all, while the ones related to 
a linear phase can be removed by knowing the f support 
(provided f is not equal to zero all over its border) [34],[35].  

Other than by trivial ambiguities, if T is a Fourier-
transform operator, non-uniqueness of the solution can also be 
induced by the fact that |F|2 can be written as a trigonometric 
polynomial which can be reduced to a product of first-order 
factors where ‘zero flipping’ generates multiple phase 
solutions [36]. This issue does not affect the 2-D case but for a 
zero measure set of instances wherein 2-D polynomials are 
factorable [35]. On the other side, such a zero measure set of 
cases includes ‘u-v factorable’ and circularly-symmetric F 
distributions. In all these instances, however, some additional 
a-priori information (such as a single or a few samples of f as 
well as a single or a few amplitude and phase measurements of 
F) allows fixing ambiguities and restoring theoretical 
uniqueness. 

However, this is not the end of the story, as a second 
difficulty, namely the non-linearity of the problem, comes into 
play. In fact, even if the available information allows 
theoretically ensuring the uniqueness of the solution, the non-
linearity of the problem may still result in a retrieved signal 
which is actually different from the ground truth. In fact, while 
procedures based on a local optimization of a cost function 
may get trapped into ‘false’ solutions [37], the computational 
burden of global-optimization techniques exponentially grows 
with the number of unknowns [38], so that they can still fail in 
the limited time one has at disposal. This is one of the main 
reasons for the exploitation of two different sets of 
measurements in essentially all of the existing literature (see 
above). 

Very many different procedures have been proposed to 
solve PR problems. A rather popular approach (using two 
different sets of measures) is given by the so-called alternating 
 
1 

1 Fourier transform of signals having a finite support. 

projections onto (non-convex) sets [39]. However, this 
technique is equivalent to a local optimization, and hence it is 
prone to false solutions. As a variant of the basic alternating 
projections approach, the Hybrid Input-Output (HIO) 
algorithm has been proposed by Fienup in [40]. However, 
while being known as relatively-robust to false solutions, HIO 
does not guarantee convergence to the ground truth. Some 
insight into the false-solutions problem and effective 
procedures have been also possible by formulating PR as a 
quadratic inverse problem [41]. Recently, an approach has 
also been discussed in [42] where PR is reduced to a linear 
problem by introducing a large number of auxiliary variables 
and a relaxation of the original problem. However, the number 
of introduced auxiliary variables quadratically grows with the 
number of actual unknowns. Such a circumstance, along with 
the relaxation of the original non-convex problem into a 
convex one, implies that the false-solutions problem is still an 
open issue.  

A third and final set of difficulties, which is indeed 
specific of antenna applications, concerns the actual 
availability of |F(u)| measurements. In fact, differently from a 
generic PR problem wherein measurements can be taken over 
the whole domain of the function, in antenna applications 
measuring will be possible just over the visible range. By way 
of illustration, this circumstance is represented in Fig. 1 with 
reference to equispaced array antennas and far-field 
measurements: as graphically recalled, the signal domain is 
not always fully available to the measurement system. Further 
details and comments on this issue are given in Appendix I. 

Due to the above limitations, it makes sense to look for and 
eventually introduce different points of view allowing some 
additional understanding of the difficulties related to the non-
linearity of the PR problem, as well as to devise new effective 
solution strategies. This was also the spirit of [43], wherein we 
introduced a technique for solving a wide class of problems by 
means of a ‘tunneling’ strategy which allows escaping from 
false solutions.  

In this paper, by further developing the ‘power inflation’ 
strategy introduced in [43], we present a new approach 
allowing to relax PR into a combination of Convex 
Programming (CP) problems and propose an innovative 
strategy to avoid false solutions. By taking advantage of such 
a setting, a further effective solution procedure approaching 
PR as a minimum number of hierarchically-ordered 
optimizations is introduced and discussed, and antenna 
applications are given and tested.  
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 (a) 

 

 
                                                             (b)        
 

Fig. 1. Comparison between periodicity and visible ranges for power-pattern 
antenna measurements: (a) linear equispaced arrays; (b) planar equispaced 
arrays on a square grid [AF, λ, β, d, u, and v respectively denoting the array 
factor, the wavelength, the wavenumber, the inter-element distance along both 
x and y axes, and the spectral variables (see also Section III and Appendix I)]. 

III. PHASE RETRIEVAL AS A COMBINATION OF CP PROBLEMS  
For the sake of simplicity, we present in the following the 

proposed approach in the 1-D case (while the numerical 
assessment in Section V will also include 2-D experiments). 

Denoting by d and θ the inter-element spacing and the 
angle between the array axis and the observation direction, the 
far field radiated by a one-dimensional array composed of N 
isotropic antennas is given by: 

  





1

0

N

n

jnu
neIuAF  (1) 

wherein u=βdcosθ (β=2π/λ being the wavenumber, with the λ 
wavelength) and the sequence I0,…,IN-1 denotes the elements’ 
complex excitations. Then, by setting AF as the F function 
described in Section I1

2, and by denoting by M2 the measured 
square-amplitude far-field distribution, PR amounts to find 
I0,…,IN-1 in such a way that: 
 
1

2 We stress that such a setting gives to the proposed approach a very large 
application range. In fact, expansion (1) can be used to express the far field of 
a variety of radiating systems, including continuous aperture sources (through 
the technique in [31] and arrays with whatever element patterns and locations 
where mutual-coupling and mounting-platform effects are also present 
(through the method in [32]). Finally, by exploiting the ‘reduced radiated 
field’ concept introduced in [33], expansion (1) can also be used to express the 
near-field distribution associated to a given source. 

 uMeI
N

n

jnu
n

2
21

0






 (2) 

and no additional constraint or information is used in a first 
instance.  

Then, a very general PR formulation (see also [43]) can be 
given as: 

Find the sequence I0,…,IN-1 such that: 

 


K

k
k

II
uAF

No 1

2

...,, 1

max  (3.a) 

subject to: 
    ',...,122 KkuMuAF kk   (3.b) 

and to some additional constraint guaranteeing the 
theoretical uniqueness of a solution. 

In (3.a)-(3.b), which will be referred in the following as 
problem 1, u1,…,uK denotes a sufficiently fine discretization. 
In particular, due to bandlimitedness of radiated fields [44], 
K=2N uniformly-spaced samples of |AF(u)|2 are considered in 
(3.a), while some additional sample is needed in (3.b) in order 
to enforce that the tentative square amplitude distribution is 
everywhere below or equal to the square amplitude data [45].  

Obviously, the final goal is that the tentative square-
amplitude distribution collapses onto the measured one. In 
fact, problem 1 can be interpreted as an ‘inflation’ of the 
function |AF(u)|2 until it reaches the ground truth.  

Notably, constraints (3.b) define a convex set [46] and, in 
the actual case where measurements are affected by noise, 
they can be modified into: 

    ',...,11
22 KkuMuAF kk    (3.c) 

(where ε1 is related to the estimated noise) which are still 
convex. 

However, because of the form of (3.a), problem 1 amounts 
to maximize a positive-definite quadratic function in a convex 
set. As such, it belongs to the class of NP-hard problems, with 
the inherent computational difficulties [47]. In particular, it is 
prone to the possible occurrence of local optima where the 
procedure may get trapped, which correspond to the usual 
false solutions issue experienced by other PR approaches [37]. 
In this respect, a possible way out is given by the following 
procedure: 

1. partition the overall search space in such a way that each 
sub-region contains only one possible solution; 

2. solve the optimization problem in each sub-region; 
3. pick the actual solution (amongst all the results coming 

out from step 2) by using some additional information, 
e.g., a single or a few known excitations, or a single or a 
few amplitude-and-phase measurements. 
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Unfortunately, we were not able to perform such a partition 
for functional (3.a). However, an effective strategy allowing 
such a splitting is that of modifying the objective function of 
problem 1 by changing the goal into: 

      





"

1...,,
ImRemax

1

K

k
kk

II
uAFuAF

No

 (3.d) 

wherein, since the array factor is a bandlimited function 
requiring N samples, we assume from now on K”=N. Saying it 
in other words, we relax the original ℓ2-norm optimization 
(3.a) into the ℓ1-norm optimization (3.d). Such a relaxation 
follows somehow (from a different perspective) a recent trend 
in the Signal Processing and Antennas & Propagation 
communities, where a number of relaxations (the one from the 
ℓ0 to ℓ1 norms inherent in Compressive Sensing [48], as well 
as the ones respectively inherent in the Semidefinite 
Relaxation technique [49] and in the Matrix Completion 
method [50]) have been fruitfully introduced. 

Advantages of the proposed relaxation are as follows. 
The maximization problem (3.d) subject to constraints 

(3.b), which will be referred in the following as problem 2, 
can be written as a CP problem in any subspace defined by the 
intersection of the following constraints: 
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(4) 

In fact, any of these intersections represents a ‘hyper quadrant’ 
in the space {Re[AF(u1)],Im[AF(u1)],…, 
Re[AF(uN)],Im[AF(uN)]}. Moreover, by means of a proper 
choice of the signs of the real and imaginary parts of the field, 
the cost function (3.d) can be rewritten as the minimization of 
a linear function of the real and imaginary parts of 
AF(u1),…,AF(uK”). For example, in the first hyper quadrant, 
i.e., {Re[AF(uk)]≥0,Im[AF(uk)]≥0}, k=1,…,K”, the 
optimization problem becomes: 

      





"

1...,,
ImRemin

1

K

k
kk

II
uAFuAF

No

 (5) 

A number of comments are now in order on problem 2.  
First, it is worth noting that PR has been turned into a 

combinatorial problem where one looks for the right 
combination of signs of both the real and imaginary parts of 
AF(uk), k=1,…,K”. In fact, in each hyper quadrant, problem 2 
belongs to the CP class, which entails that a single (and hence 

globally-optimal) solution exists for each of the instances in 
(4). 

Second, we stress that the approach can be safely used also 
in those cases where the unknown signal cannot be turned into 
1-D polynomials and hence the problem cannot be solved 
according to the procedure in [36]. 

On the other side, the new formulation has two drawbacks:  
a) as pictorially represented in Fig. 2, in each hyper quadrant 

the maximum of the cost function of problem 2 does not 
always correspond to the maximum of the cost function of 
problem 1; 

b) consideration of all possible hyper quadrants results in a 
rapid growth of the number P of CP problems, which 
raises as P=22K”. 
As far as point (a) is concerned, in a large set of 

experiments (dealing with both linear and planar arrays – see 
Section V) we experienced that the solution of problem 2 
tends to be an excellent starting point for achieving the 
solution of problem 1. Solutions of the two problems were 
indeed coincident in many cases. This circumstance is related 
to the fact that the additional information needed in order to 
get a theoretically-unique solution is such that the admissible 
set of values is a zero-measure set in the space 
{Re[AF(u1)],Im[AF(u1)],…,Re[AF(uK”)],Im[AF(uK”)]}. 

As far as point (b) is concerned, a first obvious strategy 
amounts to reduce as much as possible the number of CP 
problems to be actually considered. In this respect, it proves 
useful to exploit the available information on the location of 
zeroes (or nearly-zero values) in the data. In fact, if 
|AF(uk)|2=0 then the four different possibilities for 
{Re[AF(uk)],Im[AF(uk)]} degenerate in the single constraint 
AF(uk)=0. Therefore, if |AF(u)|2 is equal to zero in δ of the K” 
sampling points then the number of CP problems to be 
actually solved reduces to P=22K”/4δ=4K”-δ.  

A second strategy amounts then to reduce as much as 
possible the number of ‘feasible’ CP problems, i.e., the 
number of CP problems such that the intersection of the 
different constraints is not void. In fact, such a circumstance 
will avoid entering into an actual optimization, thus saving 
resources. In this respect, it proves useful exploiting all the 
available a-priori information about the ground truth which is 
available on AF(u) or I0,…,IN-1. Moreover, it is worth noting 
that any constraint of the kind: 

    2
22  kk uMuAF  (6) 

can be relaxed into: 

        3ImRe  kkk uMuAFuAF  (7) 

where ε2 (which is determined from the measurement 
accuracy) and ε3 are small positive constants. In fact, this 
constraint is convex (and actually linear) in any of the 
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subspaces corresponding to the four different possibilities for 
the signs of {Re[AF(uk)],Im[AF(uk)]} (see Fig. 3 for a better 
understanding). Note such a strategy also reduces the 
possibilities to get into the (undesired) situation depicted in 
Fig. 2(c). 

As a third strategy, let us note that the CP problems are 
independent each from the other, so that advantage can be 
eventually taken from parallel computing.  

Finally, it is worth noting that the choice of the most 
convenient signs for {Re[AF(uk)],Im[AF(uk)]} can also be 
tackled as the optimization of a binary string, for which 
effective global-optimization procedures do exist [51]. 
 

 

 
(a) 

 
 (b) 

 
(c) 

 
Fig. 2. Pictorial comparison of the results achievable through the 
maximization (in the light-blue convex set) of the functionals (|x1|+|x2|) (point 
A) and (x1

2+x2
2) (point B): coincident maxima (a); non-coincident maxima, A 

being an excellent starting point to achieve B (b); non-coincident maxima, A 
being a local maximum of (x1

2+x2
2) (c). 

IV. HIERARCHICALLY-ORDERED OPTIMIZATIONS FOR PHASE 
RETRIEVAL 

A further possibility to solve problem 1 arises from the fact 
that, in many cases, the maximum of either problem 1 or 
problem 2 will lie on the boundary of the corresponding hyper 
quadrant. In fact (see Fig. 4), the optimization procedure will 
often tend towards a different hyper quadrant. By taking into 
account such a circumstance, and the fact that data samples 
having a larger intensity will have a major impact on the value 
of the cost functions (3.a) and (3.d), a more effective way to 
explore the tree of all possible alternatives can be devised. In 
particular, one can avoid considering all the possible sign 
combinations, and can instead tackle the PR problem by 
means of the following procedure: 
(i) solve problem 2; 

(ii) if data fitting is not satisfactory, then solve problem 1 by 
exploiting the solution of step (i) as the starting point; 

(iii) if data fitting is not satisfactory, then repeat steps (i) and 
(ii) in each of the four convex sets defined by: 
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or 
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  
  







0Im
0Re

MAX

MAX

uAF
uAF  (8.d) 

where uMAX is the sampling point corresponding to the 
largest |AF(u)| value; 

(iv) if data fitting is not satisfactory, then repeat steps (i) and 
(ii) in each of the sixteen sets determined by the 
intersection of each of constraints (8) with each of the 
following constraints: 

  
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0Im
0Re

II

II

uAF
uAF  (9.a) 
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

0Im
0Re

II

II

uAF
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or 
  
  







0Im
0Re

II

II

uAF
uAF  (9.c) 

or 
  
  







0Im
0Re

II

II

uAF
uAF  (9.d) 

where uII is the sampling point corresponding to the 
second largest |AF(u)| value; 

(v) if data fitting is not satisfactory, then iterate the 
procedure by enforcing constraints relative to data 
samples having a smaller and smaller intensity until a 
fully-satisfactory fitting between the solution and the 
ground truth is achieved. 

 

 
Fig. 3. Pictorial comparison between the curves involved in the relaxation of 
(6) into (7). 
 

 
Fig. 4. Pictorial representation of a case wherein the solutions of problem 1 
and problem 2 tend to escape from the first hyper quadrant. 
 
 
In the worst case the procedure will still need to explore all the 
22K” hyper quadrants. However, it is expected that the 
consideration of a few larger subspaces will allow a 
satisfactory data fitting, thus leading to the retrieval of the 
actual ground truth. This expectation has been confirmed by a 
large number of numerical examples (a part of which is 
reported in the next Section). 

Notably, all the presented solution procedures can be 
applied to generic sources provided that (1) is replaced with 
the actual field distribution over a given surface. For instance, 
if the source is an equispaced planar array lying on the x-y 
plane and composed, according to a rectangular grid, by Q 
elements along x (with a spacing equal to dx) and S elements 
along y (with a spacing equal to dy), then it will be: 

   









1

0

1

0
,,

Q

q

S

s

svquj
sq eIvuAF  (10) 

wherein u=βdxsinαcosφ and v=βdysinαsinφ (α and φ being the 
aperture elevation and azimuth angles, respectively) while Iq,s 
denotes the excitation of the element located on the 
intersection between the s-th row and the q-th column of the 
array layout. In this case, in order to have a number of 
independent data not smaller than the number of unknowns, a 
lower bound on the inter-element spacing as detailed in 
Appendix I has to be fulfilled. 

V. NUMERICAL ASSESSMENT 
Several numerical experiments have been performed in 

order to assess the proposed approach in both cases of 1-D and 
2-D sources. 

The square-amplitude field measurements have been 
simulated under the hypothesis of far-field data and, in order 
to make the PR scenario as realistic as possible, each sample 
has been corrupted by an additive white Gaussian noise such 
to realize a given value of Signal to Noise Ratio (SNR). 
Therefore, a smooth scaling of the upper-bound function in 
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(3.b) has been used in such a way that the actual square-
amplitude distribution can be safely allocated within the upper 
mask.  

In order to counteract the occurrence of trivial ambiguities 
and other kinds of non-uniqueness, in all experiments the 
support of the source and one excitation have been assumed a-
priori known.  

The numerical tool adopted to solve the different problems 
is the local-optimization ‘fmincon’ routine of Matlab™, 
whose starting point has been chosen in step (i) as excitations 
equal to zero over the whole array aperture. By exploiting a 
calculator having an Intel Core i7-3537U 2.50GHz CPU and a 
10 GB RAM, the solution of every single optimization 
required less than 10 seconds in all 1-D examples and less 
than 1 minute in all 2-D cases (but for the final experiment 
dealing with a 100-elements planar array). 

In order to perform a quantitative assessment, according to 
the common habit in PR problems (see for instance [52]), in 
each test case we evaluated the Normalized Mean Square 
Error (NMSE), i.e.: 

2

2

ref

retrievedref

I

II
NMSE


  (11) 

wherein Iref and Iretrieved denote the vectors containing the true 
and retrieved excitations, respectively. Then, we considered 
‘satisfactory’ the retrieved sources allowing NMSE<10-1. 

In the following, the outcomes achieved in the cases of 1-
D and 2-D sources are separately described in Subsections 
V.A and V.B, respectively. 
 
V.A One-dimensional arrays 

In order to assess the proposed approach in 1-D problems, 
we present in the following the outcomes achieved by 
exploiting as reference some ‘popular’ fields adopted in 
benchmarking synthesis procedures which are relative to 
isotropic element patterns as well as a ‘realistic’ field 
generated through full-wave simulations. Notably, the latter 
takes into account the actual element patterns as well as 
mutual-coupling and mounting-platform effects. All 
experiments have been performed by setting SNR=25 dB. 

In the first test case, we considered as radiating source the 
array synthesized in [53], which is composed by N=16 
isotropic elements (with a d=λ/2 constant spacing) and 
generate, under the excitations depicted in blue color in Fig. 5, 
the square-cosecant power pattern [53],[54] shown in blue 
color in Fig. 6.  

Execution of step (i) of the procedure led to the excitations 
depicted in red color in Fig. 5 (NMSE=0.3006). The 
corresponding power pattern is shown in green color in Fig. 6. 
As it can be seen, the fitting between data and solutions did 
not result fully satisfactory. Therefore, step (ii) of the 

procedure has also been executed. By so doing, a much better 
fitting (i.e., NMSE=0.0024) has been achieved. The 
excitations retrieved through step (ii) and the corresponding 
power pattern are depicted in red color in figures 7 and 6, 
respectively. 
 

   
                                 (a)                                                          (b) 
Fig. 5. Excitation amplitudes (a) and phases (b) concerning the retrieval of the 
source synthesized in [53]: comparison between the ground truth (blue curve) 
and the solution achieved by performing only step (i) of the proposed 
procedure (red curve). The a-priori known excitation is plotted in green color. 

 

 
Fig. 6. Power patterns corresponding to PR of the source designed in [53]: 
ground truth (blue curve); solution achieved by performing only step (i) of the 
proposed procedure (green curve); solution achieved by performing steps (i) 
and (ii) of the proposed procedure (red curve). SNR=25 dB. 
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                                 (a)                                                          (b) 
Fig. 7. Excitation amplitudes (a) and phases (b) concerning the retrieval of the 
source synthesized in [53]: comparison between the ground truth (blue curve) 
and the solution achieved by performing steps (i) and (ii) of the proposed 
procedure (red curve). The a-priori known excitation is plotted in green color. 

In the second test case, we set as signal source the array 
designed in [36]. The latter, which is composed of N=15 
isotropic elements with a d=λ/2 constant spacing, generates 
(under the excitations shown in blue color in Fig. 8) the flat-
top power pattern depicted in Fig. 9. 

By executing step (i) of the procedure, the excitations 
depicted in red color in Fig. 8 and the power pattern depicted 
in green color in Fig. 9 have been achieved. As it can be seen, 
the fitting between data and solutions did not result fully 
satisfactory (i.e., NMSE=1.6102). Therefore, step (ii) of the 
procedure has been also executed. By so doing, the excitations 
shown in Fig. 10 have been achieved. The corresponding 
power pattern is depicted in red color in Fig. 9. As it can be 
seen, execution of step (ii) of the procedure allowed a fully 
satisfactory (i.e., NMSE=0.0021) fitting between data and 
solution. 

 
 

    
                                  (a)                                                         (b) 
 

Fig. 8. Excitation amplitudes (a) and phases (b) concerning the retrieval of the 
source synthesized in [36]: comparison between the ground truth (blue curve) 
and the solution achieved by performing step (i) of the proposed procedure 
(red curve). The a-priori known excitation is depicted in green color. 
 
 
 
 

 
 

Fig. 9. Power patterns corresponding to retrieval of the excitations sequence 
synthesized in [36]: comparison amongst the ground truth (blue curve), the 
solution achieved by performing only step (i) of the proposed procedure 
(green curve), and the solution achieved by performing steps (i) and (ii) of the 
proposed procedure (red curve). SNR=25 dB. 

  
                                  (a)                                                         (b) 
Fig. 10. Excitation amplitudes (a) and phases (b) concerning PR of the source 
synthesized in [36]: ground truth (blue curve), and solution achieved by 
performing steps (i) and (ii) of the proposed procedure (red curve). The a-
priori known excitation is plotted in green color. 
 

 
In the third test case, in order to validate the applicability 

of the proposed approach to cases where mutual-coupling and 
mounting-platform effects play a role, we exploited as 
reference the power pattern radiated by the antenna shown in 
Fig. 11, i.e., an array of 10 truncated rectangular metallic 
waveguides. These latter measure 10.37mm x 1.32mm and 
have been placed on a perfectly conductor plane (in order to 
avoid radiation effects behind the antenna) with a constant 
inter-element spacing equal to 7.52mm. The radiated field 
(whose directivity behavior is shown in Fig. 12) has been 
computed through a full-wave simulation by exploiting the 
CST Microwave Studio™ software at the usual Ka frequency 
for satellite communications, i.e., f=19.95GHz. In order to 
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generate a general pencil beam, the reference excitations have 
been set as real and positive random variables (uniformly 
distributed in the interval [0,1]). Finally, in order to execute 
the PR procedure described in Section IV, the far field has 
been processed, by exploiting the guidelines in [31],[32], as 
the array factor of a ‘virtual’ equispaced array composed by 
15 elements. 

By performing step (i) of the procedure, we achieved 
NMSE=0.6679 and the power pattern shown in green color in 
Fig. 13. As in the previous test cases, execution of step (ii) of 
the procedure allowed achieving both a relevant improvement 
of performance (i.e., NMSE=0.0081) and a fully-satisfactory 
PR solution. The superposition of reference and retrieved 
solutions is shown in Fig. 13. 

Notably, in all the above test cases there was no need to 
enter into step (iii) of the procedure. Such a circumstance can 
be attributed to the fact that many zeroes are present in the 
data, so that the reduction of the ambiguities induced by these 
zeroes (see the discussion above as well as [41]) and by the 
known excitation allows a fast retrieval. Hence, in order to 
enhance the difficulty of the problem, in the fourth and final 1-
D test case we kept the array geometry exploited in the second 
example above and replaced the reference excitations with 
complex sequences whose real and imaginary parts are 
random variables uniformly distributed in the interval (-1,1). 
These excitations and the corresponding radiation pattern are 
shown in cyan color in figures 14 and 15, respectively. In this 
harder scenario, in order to achieve a satisfactory fitting 
between the reference and retrieved solutions (i.e., 
NMSE=0.06) it has been necessary to iterate the proposed 
procedure beyond step (iv) by considering the five data 
samples having the largest intensity. The retrieved excitations 
and the corresponding power pattern are shown in magenta 
color in figures 14 and 15, respectively. As it can be seen, 
despite the increased problem difficulty, the approach kept 
ensuring a high PR accuracy. These results support, on the one 
hand, the generality of the proposed technique (as it can be 
used on any reference signal) and, on the other hand, its higher 
performance in antenna synthesis and characterization. In fact, 
in these problems the reference signal corresponds to the 
source and, rather than being randomly set, is usually chosen 
in such a way to generate a pencil or a shaped beam and a 
good radiation efficiency [48] (which, in turn, implies many 
zeroes on the data). 

The NMSE values achieved in all numerical simulations 
are summarized by the figure reported at the end of the 
Section. Besides the accuracy of the overall solution 
procedure, these results testify the actual capability of strongly 
reducing the number of actual optimizations required to 
achieve a satisfactory recovery of the ground truth. As 
expected, this reduction becomes more and more noticeable as 

the field’s number of zeroes increases (which is indeed the 
case for the actual signals relative to antenna applications). 

 
 

 
 

Fig. 11. External structure of the array of truncated waveguides exploited as 
source in the third test case of Section V.A. 
 

 

 
 
Fig. 12. Directivity pattern of the realistic array shown in Fig. 11 (CST™ full-
wave simulation). 

This  is  the post-print  of  the  following  article: A.  F.  Morabito,  R.  Palmeri,  V.  A.  Morabito,  A.  R.  Laganà,  and  T.  Isernia,  “Single-Surface

https://ieeexplore.ieee.org/document/8502061.


 

 

Phaseless Characterization of Antennas via Hierarchically Ordered Optimizations,” IEEE Transactions on Antennas and Propagation, vol. 67, n. 1, pp. 461-474, 
2019. Article has been published in final form at: https://ieeexplore.ieee.org/document/8502061. DOI: 10.1109/TAP.2018.2877270. 

0018-926X © [2018] IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or 
lists, or reuse of any copyrighted component of this work in other works.” 
 
 

 
Fig. 13. Power patterns corresponding to the retrieval of the excitations of the 
realistic array shown in Fig. 11: ground truth (blue curve); solution achieved 
by performing only step (i) of the proposed procedure (green curve); solution 
achieved by performing steps (i) and (ii) of the proposed procedure (red 
curve). SNR=25 dB. 
 
 

    
                                (a)                                                            (b) 
Fig. 14. Excitation amplitudes (a) and phases (b) concerning the retrieval of a 
complex random signal: comparison between the ground truth (cyan curve) 
and the achieved solution (magenta curve). The a-priori known excitation is 
depicted in black color. 
 

 

 
Fig. 15. Power patterns corresponding to retrieval of the random excitations 
shown in Fig. 14. SNR=25 dB. 

 
Fig. 16. Reference power pattern exploited in the first test case in Subsection 
V.B (25-elements square array, SNR=25 dB). 
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Fig. 17. Solution retrieved in the first test case of Subsection V.B by 
performing only step (i) of the procedure: reference (in the top) and retrieved 
(in the bottom) excitations. Amplitude and phase distributions are shown on 
the left and right sides, respectively. The a-priori known excitation is marked 
with a circle. 
 

 
Fig. 18. Solution retrieved in the first test case of Subsection V.B by 
performing steps (i) and (ii) of the procedure: reference (in the top) and 
retrieved (in the bottom) excitations. Amplitude and phase distributions are 
shown on the left and right sides, respectively. The a-priori known excitation 
is marked with a circle. 

 
Fig. 19. Reference power pattern exploited in the second test case in 
Subsection V.B (25-elements square array, SNR=20 dB). 
 

 
Fig. 20. Solution retrieved in the second test case of Subsection V.B by 
performing steps (i) and (ii) of the proposed procedure: reference (in the top) 
and retrieved (in the bottom) excitations. Amplitude and phase distributions 
are shown on the left and right sides, respectively. The a-priori known 
excitation is marked with a circle. 
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Fig. 21. Solution retrieved in the second test case of Subsection V.B by 
performing steps i-iv of the proposed procedure: reference (in the top) and 
retrieved (in the bottom) excitations. Amplitude and phase distributions are 
shown on the left and right sides, respectively. The a-priori known excitation 
is marked with a circle. 
V.B Two-dimensional arrays 

We present in this Subsection the outcomes achieved in the 
retrieval of 2-D arrays’ excitations and fields. In particular, we 
deal with arrays radiating a field given by (10) with Q=S and 
dx=dy=λ/2 (according to the rules given in Appendix I). 

In order to test the method under severe conditions, we 
also consider herein random excitations 1

3. In particular, the 
reference coefficients have been set as complex sequences 
whose real and imaginary parts are random variables 
uniformly distributed in the interval (-1,1).  

As a first test case, an equispaced square array composed 
of 25 isotropic elements has been set as signal source and an 
SNR=25 dB has been adopted. The reference power pattern 
and excitations are respectively shown in figures 16 and 17. 

By executing step (i) of the procedure, the excitations 
depicted in Fig. 17 have been achieved (NMSE=1.27). As a 
slight discrepancy between the results and the ground truth 
was present, step (ii) of the procedure has also been executed. 
By so doing, excitations shown in Fig. 18 have been retrieved, 
leading a much better fitting (NMSE=0.0166).  

In order to test the approach in a harder scenario, we 
repeated the experiment by setting SNR=20 dB. The reference 
power pattern and excitations pertaining to this case are 
respectively shown in figures 19 and 20. 

To carry out PR, we first performed steps (i) (leading to 
NMSE=2.0509) and (ii) (leading to NMSE=1.8483) of the 
procedure, which provided the solution shown in Fig. 20. As it 
 
1

3 Note that such a circumstance allows anyway not incurring into factorable 
fields where, at least in the case of u-v factorable patterns, more than one 
single information would be needed for theoretical uniqueness. 

can be seen, due to the lower SNR value, this time the 
execution of only these two steps did not suffice to achieve a 
good fitting between data and solution. However, it has been 
possible to successively solve the PR problem by performing 
just the two successive steps of the procedure. In particular, a 
fully-satisfactory fitting between data and solution has been 
achieved through the execution of steps (iii) (leading to 
NMSE=0.9498) and (iv) (leading to NMSE=0.0231). The 
retrieved excitations are shown in Fig. 21. 

As final test case, we assessed the approach by setting the 
signal source as a much larger array. In particular, we 
considered a 100-elements square array and exploited as 
reference the random excitations depicted in Fig. 22. The 
corresponding power pattern, which has been corrupted by a 
noise such that SNR=25 dB, is shown in Fig. 23. Notably, by 
executing steps (i) (leading to NMSE=2.6544) and (ii) 
(leading to NMSE=0.0816), the excitations shown in Fig. 22 
have been achieved. As it can be seen, despite the 
considerably-increased number of unknowns, the proposed 
technique kept providing a good fitting between data and 
solution. 

The NMSE values achieved in all numerical simulations 
are summarized by Fig. 24. As in the 1-D cases, these results 
confirm the effectiveness of the proposed approach as well as 
its capability of achieving a fully-satisfactory solution by 
means of a small number of hierarchically-ordered 
optimizations. 

 
Fig. 22. Reference (in the top) and retrieved (in the bottom) excitations for the 
100-elements array. Amplitude and phase distributions are shown on the left 
and the right, respectively. The known excitation is marked with a circle. 
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Fig. 23. Reference power pattern exploited in the third test case in Subsection 
V.B (100-elements square array, SNR=25 dB). 

VI. CONCLUSIONS 
A completely new point of view to the problem of 

determining the complex scalar field radiated by a finite-
dimensional source starting from the knowledge of just its 
modulus, along with a corresponding solution procedure, has 
been proposed, discussed, and tested. 

The problem has been formulated as the constrained 
maximization of a cost function related to the energy of the 
signal whose phase has to be retrieved. Then, by using a 
proper relaxation of the cost function as well as effective field 
representations, the overall problem has been reduced to a 
series of hierarchically-ordered optimizations. The introduced 
procedures can be used in a simple fashion in both cases of 
far-field and (by reasoning in terms of the so-called ‘reduced 
radiated field’ [33]) near-field measurements. 

Numerical examples involving realistic noise levels and 
real-world array antennas confirmed the capabilities of the 
approach to recover the actual ground truth in a reliable 
fashion and with a limited computational burden starting from 
a single set of measurements and a minimal number of 
additional information.  

 
 

(a) 
 
 

 
 

(b) 
 
Fig. 24. NMSE achieved through the different steps of the proposed 
procedure: (a) test cases involving 1-D arrays; (b) test cases involving 2-D 
arrays. 
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APPENDIX I 

The aim of this Appendix is that of providing some details 
concerning the measurement domain which is actually 
available when the far field can be expressed as in (2) or (10). 
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Let us first consider the 1-D case relative to expression (2). 
In this scenario, differently from a generic PR problem 
wherein measurements can be taken over the whole domain of 
the function, measuring will be possible just over the visible 
range, i.e., -βd≤u≤βd. Therefore, since AF(u) is a periodic 
trigonometric function (with periodicity range -π≤u≤π), one of 
the two following circumstances will come into play: 
 if d>λ/2 then the visible space will be larger than the 

periodicity interval of the field (and hence it will suffice to 
pick power-pattern samples just in the range -π≤u≤π); 

 if d=λ/2 then the visible space will exactly cover the whole 
periodicity interval of the field; 

 if d<λ/2 then the signal domain will not be fully available 
to the measurement system [see Fig. 1(a)], enhancing the 
difficulty of the PR problem with respect to a conventional 
one.  

Therefore, an inter-element spacing d≤λ/2 is preferable.  
A very similar rule holds true also for 2-D arrays. To 

derive it, let us now turn on the 2-D scenario given by the field 
expression (10). In this case, supposing Q=S=N and dx=dy=d 
(which leads to a square array composed by N2 elements), the 
visible space turns out to be a circle of radius βd centered in 
the origin of the spectral plane [see Fig. 1(b)]. Then, the actual 
value of d will bring into play one of the two following 
circumstances: 
 if d≥0.707λ then the visible space covers the whole 

periodicity range {(u,v): -π≤u≤π, -π≤v≤π} of the field; 
 if d<0.707λ then a portion of the signal to be retrieved will 

not be measurable [see Fig. 1(b)], enhancing the PR 
difficulty. 

While in the first event the number of independent power-
pattern measurements, say W, by virtue of the theory in [44] 
results equal to: 
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in the second event such number will decrease proportionally 
to the ratio between the sizes of the visible space and of the 
periodicity range, i.e.: 
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Since W, as a necessary condition for any PR feasibility, must 
be equal to or larger than the overall number of unknowns, 
relation (13) allows identifying the minimum value of d, say 
dMIN, such to enable the solution procedures (including the 
ones described in this Sections III and IV). In fact, by equating 
(13) to the actual number of unknowns, i.e., 2N2 (note one is 
looking for N2 complex excitations), one achieves: 
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