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Abstract

On-demand computing environments, like Cloud/Grid systems, consist of nodes that individually manage

local resources intended to be served to clients. When a client needs some resources, it has the problem

of finding the most suitable nodes capable of providing them. In addition, a provider node too may be in

need to efficiently locate resources for itself, given the emerging, highly competitive, context of large-scale

federations. Indeed, a node competes, with the other federated ones, to obtain the assignment of available

tasks. To this end, it may decide to publish a set of resources
/

services wider than the one it has currently

available. Should such a node be assigned a job for which its actual resources are insufficient, it could end

up requiring the collaboration of other nodes.

Hence the crucial problem, for nodes and clients alike, to determine the most promising collaborators.

For this purpose, in the competitive and demanding scenarioes considered, we advocate taking into account

the trustworthiness of nodes in declaring their capabilities. I.e., to help it making an effective selection

of possible collaborators, each node should be provided with a trust model for accurately evaluating the

trustworthiness of its interlocutors.

In this paper, a trust-based approach for large-scale federations Utility Computing infrastructures is

proposed. The proposed model is designed to allow any node to find the most suitable collaborators in an

efficient way, avoiding exploration of the whole node space. A fully decentralized approach is employed,

which allows nodes of a federation to be organized in an overlay network on the basis of suitable criteria.

This enables any customer or provider in need of collaborators to determine a suitable set of candidate

nodes within which to search.
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1. Introduction

Since the development of computational Grids [18], started in the middle of 1990s, virtualization tech-

nology [6, 34] and commodity hardware led to the development of the Cloud computational paradigm [19,

25], which is a practical example of a new distributed computing paradigm, i.e. On-demand computing [25].

The next step is represented by the construction of federated computing infrastructures, i.e. Grid Feder-

ations [48] and federated Cloud Computing infrastructures [9, 11, 38, 61]. For instance, we can cite the

Reservoir model developed by IBM [51], in order to “facilitate an open, service-based online economy in

which resources and services are transparently provisioned and managed across clouds on an on-demand

basis at competitive costs with high-quality service”, bringing a vision of “implementing an architecture

that would enable providers of cloud infrastructure to dynamically partner with each other [. . . ] while

fully preserving their individual autonomy in making technological and business management decisions”.

The increasing interest for large-scale federations of utility computing infrastructures is motivated by

the opportunity for providers to mutually “rent” virtualized services and, in turn, allocate unused resources

in order to increase profits [22]. That is one of the main reasons to have interest in federating resources:

establishing a collaborative context at large-scale will help to achieve the above objectives. For instance,

providers of computing infrastructures (IaaS, PaaS, STaaS) are able to provide services like auto-scaling,

advanced monitoring, automation in service deployment to providers which make their business by offer-

ing high level e-services (e.g. SaaS, DaaS) [5]. In such a collaborative scenario, fulfilling computational

requirements of user requests as efficiently as possible becomes crucial: this is a typical problem in a

large-scale distributed system, in which resources are shared by several different organizations [37]. For

instance, a recent study [62] deals with the problem of balancing profit, price and QoS in a typical federated

environment, by proposing policies to help making decisions aimed at outsourcing services, contributing

to the federation or even terminating spot VMs to reject less profitable requests.

Another important issue to address is that service providers – while having interest in joining a feder-

ated network that generally results more attractive for users than a single provider – are in competition with

each other, in order to offer a number of interchangeable on-demand services at any level. The increasing

trend of offering interchangeable services by federated providers leads to the interesting recent develop-

ment [32] of Cloud Service Composition, a popular choice affording clients the opportunity of choosing

among several alternatives. Yet, in a highly competitive environment, this opportunity carries a risk, in that

nodes can declare to provide a better QoS than currently possible, as providers have a “natural” tendency

to gamble with their own reputation [22]. Since Cloud customers tend to prefer paying services in the face

of signed SLAs (Service Level Agreements) [3, 67], when negotiated QoS is not fulfilled, both the node

provider and the user are penalized. While the former will generally pay a refund [3], the activities of the

latter (the customer) will be affected by a measured level of QoS which is not compliant with the SLA,

which may lead to a loss of revenue [5] uncompensated by the refund. In order to avoid penalties and los-

ing reputation with clients, a node, unable to fulfill an assigned client request, may seek collaboration from
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other nodes at a price, effectively outsourcing, in turn, some of the services it should provide. However,

in so doing, it may incur the hazard of not finding collaborators that are able to provide a sufficient level

of reliability themselves. In this scenario, an accurate selection of interlocutors, aimed at finding the most

promising collaborators, can make a great difference. As we discuss below, this is a major issue we deal

with in this work, i.e. to provide a decentralized support to assess the trustworthiness of Cloud providers in

a federated context.

Given these premises, we propose and discuss a decentralized approach, called Hypertrust, for feder-

ated, large scale utility computing infrastructures, aimed at providing a twofold support to customers and

providers. First of all, Hypertrust deals with trustworthiness in a competitive, large-scale distributed sys-

tem. The basic idea is to design a trust system suitable to support the nodes in choosing their interlocutors,

limiting the search space to only those nodes declaring to have the suitable resources for the collaboration.

The second feature is motivated by the fact that, in spite of existing trust models like RRAF [20, 53] were

introduced to combine several different concerns related to trustworthiness of computational nodes into a

unique synthetic trust measure, they demonstrate good performance when applied to a small
/

medium-size

system and, when the system includes a very large number of nodes, as in the case of large-scale federated

computing systems, this selection task becomes infeasible.

The last target, i.e. fulfilling computational requirements of user requests as efficiently as possible is

pursued through a decentralized technique, intended to organize computing nodes as peers of an overlay

network whose ”small world-like characteristics make the resource finding process both effective and ef-

ficient. Indeed, the overlay construction algorithm is guided by resource status similarity, so that peers

featuring a similar amount of resource availability tend to be interconnected (in terms of overlay links),

thus forming clusters which, in turn, are connected together though sparse ”long links1. Not surprisingly,

resource finding by navigating such an overlay network, turns out to be rather efficient. This is how we

address the first issue of (efficient resource finding).

Some special nodes are also introduced, playing the role of Task Allocators (TA): they are mediators,

provided in principle by each organization, which collect users’ feedbacks and, based on these, select a

suitable node for a service. As TAs collect feedbacks about service requests for which they have been

contacted, it makes sense for users to generally rely on them, thus exploiting previous user experiences.

In contrast, a computational node, in need to select backup collaborators to provide a service, will resort

to our decentralized resource finding algorithm to determine a set of candidate nodes, and then exploit the

trust model, to choose a collaborator.

We simulated some experimental scenarioes in order to highlight the advantages introduced by our

proposed approach. Results prove that, in a competitive scenario, recourse to the Hypertrust overlay net-

work, enhanced with the trust model for interlocutor selection, affords a significant advantage with respect

1Such an organization resembles the classical model of small-world networks [66].
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to selection based on resource declaration alone. Moreover, as discussed in Section 5.6, not only do TA

components bridge the gap between the two models performing the selection needed by the Hypertrust

selection system: they also bring a further contribution, in terms of QoS, to the final user. We have also

performed an experimental analysis of our decentralized resource finding algorithm, employed to seek col-

laborators with suitable characteristics. Aptly, it has shown quite a high efficiency, despite the lack of any

centralized directory or index.

The remaining of the paper is organized as follows. Section 2 introduces the competitive, large-scale

distributed scenario we deal with. Section 3 describes the adopted trust model and brings out a brief

discussion about existing models. In Section 4, the Hypertrust overlay construction and resource finding

algorithm is discussed, with particular emphasis on Cloud Federations. In Section 5 we provide an exper-

imental evaluation of the proposed approach. Related work is presented in Section 6. Finally, Section 7

reports our conclusions and discusses possible developments of our ongoing research.

2. The Competitive Hypertrust Scenario

An increasing attention is emerging about the dynamics of resource pricing in multi-cloud
/

grid con-

texts where, similarly to other competitive utility markets, each provider node is driven by profits, while

their clients seek lower costs and
/

or higher quality-of-service.

Several works deal with this topic, but some of them completely ignore the competitive nature of

distributed computing environments, like [64], which discusses a technique to find a market equilibrium

between two different set of providers, or [10] and [69], where authors respectively optimize service queues

and profits, or [46], where a hierarchical cooperative game models cooperative providers. More realisti-

cally, most providers act in a competitive way, to maximize profits in a context where each node is a direct

competitor of the other nodes, in that it provides similar services. Often such scenarios are modeled by a

Nash equilibrium [45], in which each provider gives its best response to the strategies of its opponents, as

in [65] where a normal-form game is proposed to prove the existence and uniqueness of the Nash equilib-

rium to provision and manage SLA-based resources among different providers. However, other approaches

not explicitly involving game theory are available in the literature as, for instance, [52], which is based on

economic models of demand-offer equilibrium, or [60], which tries to maximize profits based on right

pricing and the provider’s data-center size.

The novelty and originality of our proposal lie in our considering a competitive distributed scenario,

where nodes belonging to different domains and geographical locations: i) advertise pay-per-use services

in a competitive fashion, and ii) cooperate in order to satisfy a node service request. Therefore, in this

competitive/cooperative context, it is assumed that: (i) each service is associated with a category c stored

in a catalog C; (ii) the availability of software and computational resources (e.g. CPU time, RAM, disk

space) changes over time. Resource availability is managed and published by local resource managers, as

PaaS/IaaS middlewares [72] coupled with suitable VMMs [6, 34] or conventional job schedulers which,
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Figure 1: The Hypertrust scenario: (A) - The address of a Task Allocator (TA) is known to the client and the request is sent to it;

(B) - The address of the TA is not known or the TA is not alive. The client will gossip the request to its own neighbors to find a TA.

by sharing computational resources within Grid Virtual Organizations [18], are also able to manage and

publish the catalog C in a distributed way. Nodes are organized in an overlay network featuring certain

characteristics and constructed by using the algorithm explained in Section 4; therefore, each node is

interconnected with one or more neighbors.

2.1. Interaction Model

We assume that, for each administrative domain, there is a special node which offers a “mediator

service” to the other nodes of its domain; we call it the Task Allocator (TA): it is the main interface for

clients and performs the handling of their requests. We assume that, in order to improve the level of fault

tolerance, the role of TA is replicated on several nodes of the same domain, but, at a given time, only one

TA can be active for each domain. Whenever a client needs a certain service, it starts an interaction protocol

which involves all the entities of our scenario; the interaction dynamics is depicted in Figure 1 and detailed

in the description below.

Let us to consider a client which asks for a service sc associated with a category c ∈ C. The first

operation performed by the client is the selection of an organization which could provide the service; sub-

sequently, the client contacts the TA of that organization and sends the request to it. This initial interaction

is represented by step (1) in Figure 1. We suppose that the TA is known to the client; if this is not the case,

it can be searched for using a gossiping algorithm detailed in Section 2.2.

The TA, after receiving the request, performs a selection of a possible node that, in the opinion of TA,

can be the most suitable for executing the task (step (2.A) of Figure 1); this selection is made by using the

knowledge, gathered by the TA itself, about the effectiveness shown in the past by the various nodes, in

providing the services of category c. The basis of such a selection is a preference index which is a result
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of the feedbacks gathered by the TA about the services offered in the past. Such information are properly

handled by the trust and reputation model which is discussed in Section 3. In particular, the selection is

based on the PTA index computed according to Section 3.5.

The selected node, say a, will receive the request forwarded by the TA (step (2.A) of Figure 1) and, in

turn, may decide:

1. To directly serve the request, given that it has enough resources; in this case, the request is assigned

to a which will execute the task according to the specifications.

2. To ask the collaboration of another node, if it does not have the adequate amount of resources but

wants, in any case, to provide sc.

In the second case, node a will need to contact other nodes which could provide the missing amount

of resources; to this aim, it starts a resource finding process which is represented by the step (2.A.1) of

Figure 1. The algorithm exploited in this case, which is detailed in Section 4, has the objective of finding

the set of possible nodes which possess (or claim to possess) the required amount of missing resource for

sc. Such a set is referred as the admissible region; the reason why it is named as a “region” (a term which

suggests some spatial considerations) will be made more clear in Section 4, where the overall resource

finding protocol will be described in-depth.

Since we are in a competitive environment, during this search process, contacted nodes could announce

the availability of the requested resources without really having all or part of them. If a request is assigned

to a node falling into this case, a possible outcome could be a service provisioning having a quality lower

than that promised. To avoid it, once the admissible region is found and a node b has been selected as the

best candidate, then node a, in order to confirm this choice, can ask to a third node, say k, a recommen-

dation about the expertise of b (step (2.A.2) of Figure 1). As explained in Section 3, this recommendation

represents a subjective index of the Quality of Service (QoS) provided by b in the past, as it is perceived

by k. After the service has been supplied by the selected nodes (e.g. nodes a and b), the TA receives a

feedback from the client, that is an evaluation of the QoS of any node involved into the service provided

to the client. This phase is referred as step (3) of Figure 1. This way, node a, which provided the service,

updates its internal state (trust model) about the set of collaborators (i.e. node b), and the TA updates its

own trust model, with respect to c, which is used to evaluate the preference index for further requests on

services belonging to c.

2.2. Task Allocator Dynamics

The TA plays a central role in the proposed scenario because it holds the (updated) information needed

to perform a direct and aware selection of the node a; moreover, for the client, the TA represents the

reference node to which sending the requests. We therefore assume that: (i) the TA must possess the

adequate amount of information to allow a proper selection of node a, and (ii) a live TA must be always

found by any client.
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Assumption (i) is not true when a TA is started for the first time and also when it consider the infor-

mation of its own trust model not enough (or too bad) to make an adequate selection. In both of these

situations, the TA cannot perform a direct selection but it has to find a suitable node; to this aim, it starts a

resource finding process (step (2.B) of Figure 1), as specified in Section 4.2. Also in this case the selected

node can look for one or more collaborators within the admissible region and can ask recommendation as

discussed above (step 2.A.2 of Figure 1).

The second assumption implies that clients should always know a TA. If this is not the case, a simple

gossip-based protocol, inspired from [31], is exploited. To this aim, the client prepares a TA search mes-

sage, which includes its ClientAddress, a unique MessageID and a Time-To-Live, and sends it to one or

more of the nodes it knows2. If the node receiving the message is a TA, it answers directly to the client.

Otherwise, it performs the following operations:

1. If a message with the same MessageID has been already received, it is simply discarded.

2. The Time-To-Live field is decremented; if it has reached zero, the message is discarded.

3. Otherwise, the node forwards the message to its neighbors with a probability v which is called

gossiping threshold.

In this way, as we further discuss in Section 5.3 an evaluation of the algorithm reported below, a peer

able to contact a Task Allocator can be found in a very few time-steps even when a high number of TA

leave from the network. The case described above3 is depicted as (B) in Figure 2.

TA Finding Gossip Protocol.

1: if gossip message arrived (ClientAddress,MessageID, TTL) then
2: if node is the TA then
3: send OK to ClientAddress
4: end if
5: if the MessageID has been already received then
6: Discard message
7: else
8: TTL← TTL− 1
9: if TTL = 0 then

10: Discard message
11: end if
12: for node ∈ neighbours do
13: if random uniform(0, 1) < v then
14: send (ClientAddress,MessageID, TTL) to node
15: end if
16: end for
17: end if
18: end if

3. The Trust Model

2We suppose that the client knows at least one of the nodes of the system, no matter its role.
3We also report, in Figure 2, for convenience, step (1) of Figure 1 as step (A).
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Figure 2: Contacting the Task Allocator TA for a service request: (A) - The address of a Task Allocator (TA) is known to the client

and the request is sent to it; (B) - The address of the TA is not known or the TA is not alive and, therefore, the client exploits a simple

gossip-based protocol for forwarding its service request to a TA.

In the context of e-services, when two agents interact with each other, one of them (the truster) assumes

the role of a service requester and the other (the trustee) acts as an e-service provider. According with [21,

24], this study considers trust as the set of quantified beliefs by a truster with respect to the integrity,

benevolence, competence and predictability of a trustee in a specific context.

In this scenario, the trust given by the truster to the trustee can be based on the combination of reliability

and reputation measures. The former is a direct measure derived by subjective observations (or perceptions)

obtained by the truster during its direct interactions with the trustee; the latter is an indirect measure based

on the opinions (or recommendations) about the trustee coming from the other actors of the community

which act as witnesses or third parties with respect to both the truster and the trustee.

In the literature, several trust models have been proposed for representing both reliability and reputa-

tion [24, 56, 57]. The RRAF model [20, 53], for instance, was introduced to suitably combine these two

measures into a unique synthetic trust measure. In RRAF, each node selects, among all the nodes, the most

promising collaborators based on such a trust measure. However, although RRAF demonstrated a good

effectiveness when applied to a small
/

medium-size system, when the size of the system becomes too large

with a very large number of nodes, as in the case of large-scale federated computing systems, this selection

task becomes infeasible.

In this Section we present the trust model of Hypertrust; it is based on the combined computation of

reliability and reputation, and an additional preference (i.e. trust index) is introduced for the Task Allocator,

as discussed in Section 3.5. To model the trust system, we denoteA as the set of all the nodes belonging to

the Hypertrust network, and let ai be the i-th element ofA. Each node ai maintains a set of five mappings,

each of them related to measure a specific aspect of the trust model; each measure is represented by a

number ranging in [0, 1] ∈ R, where 0
/

1 represents the minimum
/

maximum value. Measures belong

to two different categories, i.e. Reliability/Recommendation measures and Preference measures. The
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former set includes the following mappings:

SRi(j, c): it is the Service Reliability that ai assigns to a node aj for services belonging to category

c ∈ C by taking account its past direct experiences occurred with aj . A value 0
/

1 means that aj is

evaluated as completely unreliable
/

reliable.

RRi(j, c): it is the Recommendation Reliability that ai assigns to the opinions provided by aj that are

referred to services belonging to c ∈ C. It measures the reliability for ai of the gossip coming from

aj about the other nodes belonging to A with respect to a category of services c; in other words

RRi(j, c) represents how ai weights the recommendations provided by aj .

Ri(j, c): it is the Reputation assigned by ai to aj , based on some recommendations coming from other

nodes of the community and represents how the community perceives the reputation of aj with

respect to services associated with c. A value 0
/

1 means that aj is evaluated by the other nodes of

the community as completely unreliable
/

reliable.

The latter set, i.e. Preference measures, includes the following mappings:

γi(j, c): it is the reliability preference; it represents the weight that ai assigns to the value of service

reliability (SRi) with respect to the reputation (Ri) in evaluating the overall trust score referred to

aj and the service c ∈ C. As we discuss later, the percentage of relevance to give to the reliability

is represented by the value γi(j, c), while the percentage to assign to the reputation is given by

(1− γi(j, c)). The value of γi(j, c) ∈ [0, 1] can be fixed by each node.

Pi(j, c): it is the overall trust score that the node ai, based on its perceived reliability and reputation,

assigns to aj .

The TA, together with the mappings described so far, manages also another measure, called PTA(j, c),

and represents the overall trust score that the TA itself, based on the collected feedbacks, assigns to a node

aj , concerning services belonging to category c.

3.1. Computation of SR mapping

As discussed in Section 2, in the step (3) of Figure 1, the TA collects the feedbacks for the service s

provided by a node ai; since ai might have asked a collaboration to other nodes, such feedbacks represent

the quality of not only ai but also of the collaborator nodes aj . In turn, such feedbacks are forwarded by

the TA to the node ai which updates its own mapping FEEDi(s, j) ∈ [0, 1] ∈ R. A feedback equal to

0
/

1 means the minimum
/

maximum quality of the service.

Let Servicesi(j, c) be the set of services provided by ai with the collaboration of aj at the previous

step, then the current service reliability sri(j, c) shown by aj is computed as:
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sri(j, c) =

∑

s∈Servicesi(j,c)

FEEDi(s, j)

||Servicesi(j, c)||

where sri(j, c) is the service reliability of node aj computed by the node ai with respect to all the services

s assigned to the node ai for which the node aj provided a collaboration, i.e. Servicesi(j, c).

For instance, let us to consider a situation in which the node ai receives three services in the category

c from the node aj , and let FEEDi(1, j)=1, FEEDi(2, j)=0.2, FEEDi(1, j)=0.3 be the three corre-

sponding feedbacks. In such a situation, we compute sri(j, c) = (1 + 0.2 + 0.3)/2 = 0.5.

The next step performed by ai is the updating of the Service Reliability SRi, by averaging its value at

the previous step and the current service reliability previously computed:

SR
(t)
i (j, c) = α · SR

(t−1)
i (j, c) + (1− α) · sri(j, c)

where α ∈ [0, 1] ∈ R represents the relevance that ai gives to the past evaluations with respect to the

current contribution. In other words, α measures the relevance given to the memory with respect to the

current time. Note that in the Hypertrust model α does not change by considering the different categories

of C. For instance, suppose that at the time t− 1 the service reliability SR
(t−1)
i (j, c) was equal to 0.8, and

that the currently service reliability is that previously computed in the example above, i.e. sri(j, c) = 0.5.

Also suppose that α = 0.5, giving the same importance to both past evaluations and current contribution.

In this situation, the new service reliability SR
(t)
i (j, c) = 0.5 · 0.8 + 0.5 · 0.5 = 0.65

3.2. Computation of RR.

RRi(j, c) represents the reliability assigned by ai to the recommendations provided by aj . This value

is computed by properly comparing the recommendations received by ai and the feedbacks, about the

same nodes, collected by the client
/

TA. To this aim, a further mapping for collecting recommendations,

RECCi(k, j, c), is defined; it contains the recommendations received by a node ai during step (2.A.2) of

Figure 1. Also in this case, each value is in the range [0, 1] ∈ R and represents the recommendation that

ak provided to ai about aj with respect of a service c ∈ C.

On this basis, the Recommendation Reliability is updated as follows:

RR
(t)
i (k, c) = β · RR

(t−1)
i (k, c) + (1− β) · (1− erri(k, c))

where

erri(k, c) =
∑

j∈Si(k,c)
s∈Servicesi(j,c)

|RECCi(k, j, c)− FEEDi(s, j)|

‖Si(k, c)‖ · ‖Servicesi(j, c)‖
.
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Here, Si(k, c) is the set of the nodes of the community that provided a collaboration to ai for services

belonging to category c ∈ C, and such that node ak has provided a recommendation to ai; Servicesi(j, c)

is the set of services provided by ai with the collaboration of aj at the previous step; β ∈ [0, 1] ∈ R, has

the same meaning than for the coefficient α.

For instance, suppose that ai received recommendations from ak about two nodes, namely j1 and j2,

and that the recommendation about j1 is RECCi(k, j1, c) = 0.4while that about j2 is RECCi(k, j2, c) =

0.8. Also suppose that the feedback for the actual services provided by j1 is FEEDi(s, j1) = 0.2 and that

for the services provided by j2 is FEEDi(s, j2) = 0.3. In this situation, erri(k, c) = (0.2 + 0.5)/2 =

0.35. If the recommendation reliability RR
(t−1)
i (k, c) at the time t− 1 was equal, for instance, to 0.7, and

the coefficient β is equal to 0.5, the new recommendation reliability a the time t will be RR
(t)
i (k, c) =

0.5 · 0.7 + 0.5 · 0.35 = 0.525

3.3. Computation of R.

The Reputation Ri(j, c) that ai has of another node aj , with respect to c, is then computed as the

average of all the recommendations received by the other nodes of the community, suitably weighted by

their Recommendation Reliability in order to hinder malicious behaviors:

Ri(j, c) =

∑

k∈ASj

RRi(k, c) ·RECCi(k, j, c)

∑

k∈ASj

RRi(k, c)

where ASi(j, c) is the set of the nodes of the community that provided ai with a recommendation about aj

for services falling in c ∈ C.

For instance, suppose that ai received recommendations about the node aj with respect to c from two

nodes, namely k1 and k2, and that these recommendations were RECCi(k1, j, c) = 0.4 andRECCi(k2, j, c) =

0.8. Moreover, suppose that the recommendation reliability of k1 is RRi(k1, c) = 0.2 while that of

k2 is RRi(k, c) = 1. In such a situation, the reputation that ai assigns to aj with respect to c is

Ri(j, c) = (0.4 · 0.2 + 0.8 · 1)/(1.2) = 0.73

3.4. Computation of P

As discussed in Section 2, each node ai, at the end of the resource finding process —see step (2.A.1) of

Figure 1— has to select a set of nodes within the admissible region which are the supposed most suitable

candidates for requesting a collaboration. To this aim, ai has to exploit the mapping Pi which computes

the overall preference in the node aj by taking into account both the service reliability SRi(j, c) and the

reputation Ri(j, c) as:

Pi(j, c) = γi(j, c) · SRi(j) + (1− γi(j, c)) · Ri(j, c)
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where the value of the mapping γi(j, c) ∈ [0, 1] ∈ R, is used to weight the service reliability SR with

respect to the reputation R.

For instance, if ai computed the reliability and reputation of aj as described in the example above, i.e.

SRi(j) = 0.65 and Ri(j, c) = 0.73, and we suppose that γi(j, c) = 0.2 (giving more importance to the

reputation with respect to the reliability), then we have Pi(j, c) = 0.2 · 0.65 + 0.8 · 0.73 = 0.71

3.5. Computation of PTA.

As explained in Section 2 the TA is a mediator which assigns client requests, receives feedbacks from

clients and forwards them to the nodes involved in the service provisioning.

In particular, in order to select (i) a node —step (2.A.2) of Figure 1— or (ii) a set of nodes —step (2.B)

of Figure 1— the TA computes its own preference PTA(j, c) with respect to the category c by considering

all the feedbacks received by the clients in the past for the node j and referred to services belonging to c.

Formally, let s ∈ c ∈ C be the generic service assigned to node i, and {j1, j2, . . . , jn} be the set of

involved nodes with n ≥ 1 and (i == jk), where k ∈ (1, n). Note that i is included into the list of

nodes which have provided a contribution for the service s for convenience. Since each node in the set

{j1, j2, . . . , jn} provides a part of the service s, at the end of the service provisioning the client sends the

feedback mapping {FEED(sc, jl) ∈ (0, 1), l = 1 . . . n} to the TA.

Given that any single node il does not give the same contribution for the service s, the overall feedback

is calculated by the TA as:

ServFEED(i, s) =

n
∑

l=1

w(s, jl) · FEEDi(s, jl)

where w(s, jl) ∈ (0, 1) is the contribution given by the node il for the service s, and

n
∑

l=1

w(s, jl) = 1.

At a given step, the overall feedback for the services falling in c for which the node j was responsible

at the previous step, is obtained by averaging over the values of ServFEED(s) with s ∈ c:

srTA(i) =
1

‖Servicesi(c)‖

∑

s∈Servicesi(c)

ServFEED(i, s)

where Servicesi(c) is the set of services assigned to node ai in the last step. The overall trust score for the

node i is calculated by the TA as:

P
(t)
TA(i, c) = δ · SR

(t−1)
TA (i, c) + (1− δ) · srTA(i, c)

where δ ∈ (0, 1) has the same meaning of α and β that have been explained before.

Note that the trust evaluation methods we propose here are similar from the analogous techniques de-

veloped in recommender systems field. However, in this first version of our approach, in order to evaluate
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a recommendation provided by a node, we only use a content-based approach, i.e. we compare the recom-

mendation with the actual result associated with that recommendation, as observed a posteriori. We do not

use more sophisticated techniques, as collaborative-filtering or item-based approaches. As for the future,

we plan to evaluate the implementation of other recommendation techniques for improving the precision

of our evaluation.

4. Hypertrust overlay network and Resource finding

In this section we discuss the resource finding procedure which is part of the proposed model. Its basis

is the construction and the maintenance of an overlay network, which eventually expresses convenience

properties allowing a fully decentralized resource finding approach.

The proposed procedure has been developed and studied by the authors in the recent years [42, 43],

and eventually interleaved in the wider context of federated utility computing infrastructures. We discuss

the construction of the Hypertrust overlay network – along with the correlation of resource attributes with

issues related to the trustworthiness of the nodes – in Section 4.1, and the resource finding algorithm in

Section 4.2.

4.1. Overlay Construction Algorithm

The topological model of the Hypertrust overlay network is based on a suitable n−dimensional space

(or hyperspace) where each coordinate represents the available quantity declared by the nodes for a given

resource or any attribute value for a specific service or resource. Figure 1 shows an example of such a

network with two dimensions. Each node is represented as a point in the hyperspace, and its position

will change due to any coordinate variation, i.e. allocation or release of resources, or any changes in

the statement policy of the node itself. The “distance” between two nodes is computed as the Euclidean

distance among node’s coordinates, and represents a measure of how much two nodes are “far” in terms of

resource availability.

Overlay construction is a key aspect of Hypertrust and it is performed by means of a decentralized

algorithm which runs on each node of the network, by executing the following steps:

1. let n∗ be a generic node; node n∗ contacts its linked
/

neighbour nodes in order to obtain, in turn,

their linked nodes; this operation allows a node to obtain the set of L linked nodes at 2-hops;

2. the set L is ordered by using the Euclidean distance of each node from n∗;

3. on the basis of some threshold parameter k and h, the node n∗ rearranges its links, interconnecting

itself with at least k near nodes, not most than h nodes. Node n∗ could exceed the threshold h
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whenever the so-called “essentially critical neighbors”4 as discussed in [42], have to be preserved.

The steps above are executed by each node continuously (with a given period) in order to let the links

organize properly; moreover, since a node, during its life, may change the quantity of declared resources,

its position in the hyperspace will change. The continuous execution of the overlay construction algorithm

will re-arrange its link in order to preserve the overlay network characteristics.

As detailed and proved in [42], the effect of the algorithm described above is twofold. Since the nearest

nodes are preferred for link organization, the network exploits the formation of communities or clusters

of nodes featuring a short intra-cluster distance. Moreover, keeping long links between clusters allows

the system to preserve its connectivity. Since the Euclidean distance is a measure of resource availability

similarity, such clusters are characterized by nodes with a resource status very closed to each other.

By exploiting short links within clusters, a fast navigation it is possible, e.g. to refine a resource

finding process, while by using long links it is possible to quickly reach the region (i.e. the cluster) in the

hyperspace where the nodes offering the requested resources reside.

In other words, the resulting overlay network features a structure quite similar to a small-world net-

work [66]; as it is known, such networks exhibit a high clustering degree and a very low average path

length, characteristics which are very important to make resource finding effective (for the evaluation see

Section 5.7).

Figure 3 shows some steps in the construction of a bi-dimensional simulated overlay network. In this

case, we started the simulation from a connected random network with a set of nodes whose coordinates

were uniformly distributed in the hyperspace. Nevertheless, it can be verified that by constructing an

overlay network over an hyperspace with an initial “skewed” distribution (e.g. clusters having the same

values
/

attributes for resources) eventually leads to a network with the characteristics discussed above.

4.2. Mapping federated infrastructures into Hypertrust networks

Tables 1 and 2 reports samples of attributes which can be used for building Hypertrust network. In

particular, since attribute describing services and computational resources are different in nature, a common

solution is represented by the construction of several Hypertrust networks enclosing nodes of Grid Virtual

Organizations [18], federated Grid VOs [48], federated Cloud providers [11, 38], and so forth. Therefore, a

Hypertrust overlay network can be constructed among a number of federated Data Centers by offering IaaS

services or by mapping a number of relevant attributes of interoperable PaaS services made available by a

number of federated Cloud providers. Moreover, due to the decentralized nature of the resource finding and

overlay network (described in Section 4.1), the resulting overlay networks can be maintained by high level

of efficiency, and several parallel finding process can be performed to find suitable nodes for the customer,

4This solution ensures that the network will never partition, a situation which is highly undesirable, since it would imply that a set

of nodes became unreachable.
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Figure 3: The overlay network construction

Infrastructure Measure / attribute Infrastructure Measure / attribute

Grid VO

No. of available CPUs

Grid Federation

No. of available CPUs

Available memory Available memory

Average waiting time (scheduler) Level of interoperability

Available disk space VO scheduling policy

Table 1: Sample parameters for large scale Grid infrastructures

even the number of nodes is very high (see also Section 4.2).

4.3. Resource Finding

A so-formed Hypertrust network is the basis for the interaction steps (2.A.1) and (2.B) of Figure 1,

in which a set of nodes able to fulfill a certain resource
/

job request needs to be found. Indeed, as a

Hypertrust network can ensemble, in principle, heterogeneous nodes belonging to different infrastructures

(cf. tables 1 and 2), a request may be a Grid job submission, a request for a set of VMs or a request for

a composition of PaaS
/

SaaS services. Each request is modeled by means of a tuple containing a set of

values for different resource attributes, each one appropriately encoded in a suitable numerical domain.

As a consequence, a resource request can be described as a point in the hyperspace, which represents the

lower-left corner of a semi-space or the admissible region whose internal nodes are those claiming some

resources having suitable attributes. The decentralized approach for resource finding we present in this
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Measure / attribute Service Example

type

Availability XaaS 99.5%

Reliability XaaS 88.0 %

Response time SaaS, PaaS 95th percentile≤ 100ms

Network bandwidth XaaS 100 MiB/s upstream, 1GiB downstream

Average processing capability SaaS ≥ 100 transactions per minute

Development & testing tools PaaS App Engine Environment

Open Platform PaaS Various REST-styles APIs

OS PaaS Linux

Development environment PaaS Specific Header
/

libraries

Software licenses PaaS Matlab for 100 CPUs

Max #CPUs per VM IaaS 16

Max amount of memory per VM IaaS 1 GiB

Virtualization platform IaaS Xen, VMware

Inter-Cloud migration Capability IaaS APIs, agreements with third party

Auto Scaling IaaS, PaaS Level of responsiveness and accuracy

Security measures IaaS VMI capabilities, secure code

execution[13]

Table 2: Sample parameters for large scale Cloud Federations

Section is based on the following check-and-forward procedure:

1. a node receiving the request checks its capability to fulfill it; in this case the node belongs to the

admissible region, so we reached the target and can continue with step 4;

2. if the node does not declare suitable resources, it contacts its neighbors and, on the basis of their

resource status, forwards the request to one of them, selected by using an appropriate heuristic; such

an heuristic is chosen in order to help the request to reach the admissible region as soon as possible;

3. the algorithm keeps track of all the nodes visited (this set is carried out together with the request), if

all the possible nodes to jump onto are already analyzed, the system does not include a node suitable

to host the request, so the algorithm terminates with failure;

4. when we found a node belonging to the admissible region, by suitably navigating through links, we

can reach other valid nodes, in order to build the set needed by the reputation model.

The decentralized approach presented above can be formally described by the pseudo-code shown in

Algorithm 1, by which we assume that a Hypertrust network built over the nodes of a Cloud Federa-

tion [38]. Algorithm 1 is composed of two distinct phases, called SLA-Testing & Allocation (SLA-TA)
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and Forwarding (FWD), respectively identified by lines (1-23) and (24-33). In the SLA-TA phase, the

algorithm checks whether the node, or one of its neighbors, exposes a set of characteristics matching with

the requirements of the customer. Line 1 of Algorithm 1 assumes that the request has landed into the node

n to start services
/

allocate resources for request q. The SLA negotiation [3] is modeled by means of the

function testSLA(x, q), which is used to perform, on node x, a full check on the potential agreement on the

QoS parameters for the services required to host the request q.

Algorithm 1. Resource finding procedure at node n for request q, allocation heuristic Salloc, forward

heuristic Sfwd, neighbors N .

1: Rq,n ← testSLA(n, q)

2: if (Rq,n = success) ∧ (Salloc = First Fit) then

3: startService(n, q)

4: return /* The request is hosted on n, SUCCESS */

5: end if

6: Na ← {n
∗ ∈ N ∪ {n}, checkResources(n∗, q) = True}

7: Ns ← nsort(Salloc, Na, q)

8: Nalloc ← {x : x ∈ {Ns[1], . . . , Ns[i
∗]}, Ns[i

∗] = n}

9: l ← |Nalloc|, c← 1

10: while (c ≤ l) do

11: na ← Nalloc[c]

12: Rq,na
← testSLA(na, q)

13: if (Rq,na
= success) then

14: if (na = n) then

15: startService(na , q)

16: return /* The request is hosted on n, SUCCESS */

17: else

18: fwd(nf , Sfwd, q)

19: end if

20: return

21: end if

22: c← c+ 1

23: end while

24: Nfwd ← nsort(Sfwd, N, q)

25: l ← |Nfwd|, c← 1

26: while (c ≤ l) do

27: nf ← Nfwd[c]

28: Fnf ,q ← fwd(nf , Sfwd, q)
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29: if (Fnf ,q = success) then

30: return

31: end if

32: c← c+ 1

33: end while /* The request cannot be forwarded at all, FAILURE */

The allocation heuristic, Sselect, specifies how a choice has to be made in the case more nodes are

valid candidates. The second phase (FWD) is executed if the node is not appropriate for the request, or

an SLA could not be signed by the counterparties. In this case, a neighbor will be selected by means of a

forward heuristic Sfwd. Function fwd(x, Sfwd, q) routes the request q to the node x. Sfwd is also passed

as parameter, in order to recognize the case on which the strategy belongs to the first group in Table 3,

thus the request is not forwarded to a node which has been already visited5. Function nsort(S,N, q) sorts

the node in the set N , returning a set ordered on the basis of heuristic S. Function checkResources(x, q)

checks whether node x is able to host request q, i.e. if x belongs to the admissible region; finally function

startService(x, q) actually starts the service for the request q. As discussed in Section 5.7, on which

experimental results about resource finding are also presented, procedure described in this section and

formalized in Algorithm 1 for Cloud Federations performs well by adopting strategy BFMC (see Table 3).

Table 3: Resource finding forward strategies [BF=Best Fit, WF=Worst Fit, MC=Mass Center, BFMC=Best Fit
/

Mass Center,

MCON=Max Connection, FF=First Fit]

Name Use Final selection

BF Salloc, Sfwd x : d(x, q) is minimum ∀x ∈ N(n).

WF Salloc, Sfwd x : d(x,O = {0, . . . , 0}) is maximum ∀x ∈ N(n).

MC Sfwd x : d(MC(x), q) is minimum ∀x ∈ N(n). MC(x) is the Mass Center of x.

BFMC Sfwd If d(q, histq(t− 1)) ≤ d(q, histq(t− 2)) then BF; else MC.

MCON Sfwd x : |N(x)| is maximum, ∀x ∈ N .

FF Salloc, Sfwd Random.

4.4. Trust related issues

As discussed above, resource allocation is performed by means of Algorithm 1, on the base of the

establishment of an SLA (testSLA), i.e. customer and providers sign an SLA (Service Level Agreement) [3]

which contains a clear statement about all the characteristics of the service. Furthermore, as stated in

Section 4.1, the topological model of the Hypertrust overlay network is based on the declared value of

5This special behavior implies that, in such cases, data forwarded from node to node must also include, together with the request,

the list of (the ids of) the nodes already visited.
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Figure 4: Resource allocation and trust system

service parameters in the n−dimensional space. In other words, any nodes which declare a number of

attributes (i.e. its own coordinates in the hyperspace) compatible with the customer request may decide or

not to sign the SLA (i.e. function testSLA – line 12 of Algorithm 1 – will give success). Whether or not a

node decides to sign the proposed SLA will depend on the business model adopted by the provider [40].

And, whenever the provider performance are not compliant with the constraints specified in the SLA, the

customer will give a low value of feedback (i.e. FEEDi(s, j), defined in Section 3) with high probability.

As a consequence, values of SRi(j, c) will drop accordingly.

In Figure 4 it is represented a simple schema of the main phases related to the process discussed above:

the first one is related to resource finding, whose success is based on the resource attributes declared by

the node (and the tendency of the node to take a certain level of risk, i.e. to accept constraints specified in

the SLA); next one includes the assessment of SLA violations and assignment of a value FEED by the

customer.

A particular concern of the process depicted in Figure 4 is the assignment of the feedback FEED.

For instance, we may take into account a number of sample parameters listed into table 2, and conceive

an example on which customer submits a request for a SaaS containing constraints about availability,

response time. Any of these parameters can assume a different importance in the reliability evaluation

when assessing compliance with SLA, e.g. availability might assume a greater weight than response time.

As a consequence, the level of reliability assigned by the customer might be related to the weights given to

the different QoS parameters. As we explain in Section 5, we model the capacity of the single node to be

compliant with the customer request with the ratio between the available resources and those declared, and

final QoS is measured accordingly.

5. Evaluation

In this Section we report an experimental evaluation of the proposed approach, organized as follows.

Section 5.1 contains the description of the experimental test bed. Section 5.2 contains the results of the

simulation of the trust model presented in Section 3; these results involve a scenario on which the the

selection of the nodes for services is driven only by the information about trust. It is a first step aimed

at performing a preliminary tuning of the relevant parameters of the trust model. It has been useful to
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simulate Hypertrust as a whole in a subsequent step. Section 5.3 contains the experimental results that

make evidence of the level of resilience of the hypertrust overlay network with respect to the possible

shortage of Task Allocators (e.g. due to failures) discussed in Section 2.2. In Section 5.4 the computation

of QoS adopted in the experimental test bed is illustrated. Section 5.5 presents the results related to the

improvements, in terms of overall QoS, due to the adoption of the Hypertrust model, i.e. the trust-aware

decentralized resource finding and allocation discussed in the previous sections. Section 5.6 analyzes the

contribution, in terms of QoS, of the Task Allocators and in Section 5.7 discusses the efficiency of the

resource finding process, i.e. Algorithm 1 presented in Section 4. Finally, in Section 5.8 we draw our

conclusion on the experimental evidences.

5.1. Experimental Test bed

All the simulations were carried by means of a C-based simulation framework which allowed us to sim-

ulate the overlay network employed into the Hypertrust system. The simulator was a preliminary version

of ComplexSim [44], a C-based general purpose simulation framework specifically designed to simulate

complex
/

P2P systems.

Table 4 reports the main parameters used to set the simulations. We indicate, for convenience, in

column 2 (resp. column 5), the section number on which the parameter has been defined (resp. used) for

the experiments.

Simulations were performed on a test bed of 50k nodes distributed in a bi-dimensional space made by

two resource attributes spanning between 0 and 50k, and 50 different organizations. Requests for services

– indicated in row no.2 of Table 4 – were also generated randomly with attributes uniformly distributed

between 0 and 50k, as resource attributes. Nodes have been equally assigned to the organizations which,

in turns, provides its own Task Allocator (see Section 2).

Experimental results were obtained by running a variable number of 50-100 simulations with the same

configuration. Afterwards, in order to obtain summary data (e.g. median values and outliers) a random

set of results was taken into account. As we used a discrete event simulator [44], we performed several

simulations with a variable number of epochs, such that a first analysis of results has given the minimum

number of epochs from which one could obtain stable results. Since the number of epochs depends on the

characteristics of the experiments and we do not consider it as relevant for our purpose, we do not include

this information in Table 4.

The nodes behavior was designed in two different manner, depending on the simulation to execute, as

indicated on the last row of Table 4. Indeed, as stated in the first part of this section, the results discussed

in Section 5.2 rely on the trust model only, while, in order to obtain the results discussed into Sections 5.5

to 5.7, the nodes behavior was designed by combining the execution of the reliability-reputation model

discussed in Section 3 and the decentralized resource finding process and overlay network construction

and maintenance discussed in Section 4. Finally, nodes acting as Task Allocators were instructed to adopt
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the behavior described into Section 3.5. We will make further reference to Table 4 in the following sections

as we discuss the experimental results.

Parameter/concern Defined in Contribution Value Used in

Section(s) Section(s)

1 No. of nodes – – 50k 5.2-5.7

2 No. of requests – – 50k 5.2-5.7

3 No. of organizations (TAs) 2.2 – 50 5.5-5.6

4 No. of service categories 3 – 1 5.5-5.6

5 No. of resource attr. 4 – 2 5.5-5.6

6 Attributes values 4 – [0,50k] 5.5-5.6

7 Ratio of TA failures 2, 3.5 – [0.1,0.9] 5.3

8 α, β 3.1, 3.2 SR, RR V.R. / 0.5, 0.5 5.2 / 5.5-5.6

9 γ, δ 3.4, 3.5 P , PTA V.R. / 0.6, 0.5 5.2 / 5.5-5.6

10 RECC 3.2, 3.3 R, RR = SR 5.2 / 5.5-5.6

11 FEED 3.3 SR, RR V.R. 5.2, 5.5-5.6

12 Node selection 3, 4 Measured QoS Trust-based 5.2

13 Node selection 3, 4 Measured QoS Hypertrust (T) or

Algorithm 1 (WT)

5.5

14 Node selection 3, 4 Measured QoS Hypertrust with

and without TAs

5.6

15 Node selection 2 Efficiency Cases (2.B) and

(2.A.1) of Fig. 1

5.7

Table 4: Simulation parameters. V.R.:=variable within a range

5.2. Preliminary evaluation of the trust system

In this section we present the results of a number of experiments aimed at characterizing the behavior of

the trust model – discussed in Section 3 – with respect to the parameters α, β, γ. These results allowed us to

balance the values of the three parameters above in order to gain maximum benefits. In these simulations,

Algorithm 1 (see Section 4) is not used to perform resource finding; instead, the preference of a node

for services is based only on the evaluation of data concerning nodes trustworthiness (cf. Section 3), as

indicated in line 12 of Table 4.

Parameters involved in these experiments are those cited in rows 1− 2, 8− 11 of Table 4. Furthermore,

whenever a node i asks a recommendation to a node k about j (cf. Sections 3) we assume that k sends its

current value of SRi(k) (row no.10 in Table 4).
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The study was carried as follows:

• a parameter p ∈ {α, β, γ} assumes value within the range [0.1 − 0.9], and the others two remain

fixed around a value of 0.5 (e.g. α ∈ [0.1− 0.9] and β, γ fixed);

• feedbacks were sampled by means of three different performance curves:

lowPerf Low average performance (i.e. feedback) with low variance, AV G(feed) = 0.3.

highPerf High average performance (i.e. feedback) with low variance, AV G(feed) = 0.9.

highVar Variable performance (i.e. feedback) with high variance, AV G(feed) = 0.5.

Therefore, the simulations has focused on the generation of feedbacks (which reflect the performances

of the nodes) by means of the three cited profiles, which were obtained by sampling values of feedbacks

by means of the Beta distribution [63] tuned with appropriate parameters. PDFs (Probability Distribution

Functions) of the three curves are reported in Figure 5a. Parameters used for the Beta distribution were

tuned with the only purpose to obtain specific PDF, and are not relevant for our purposes.

In particular, the first two performance curves have been conceived in order to take into account situa-

tions on which nodes show a level of trustworthiness which is almost the same, without excessive changes.

The third one represents a different situation on which nodes may assume variable behaviors.

By means of the three profiles described above, we studied, at first glance, how parameters α and β ac-

tually affect the accuracy of computed service reliability (cf. SR expression in Section 3.1) and reputation

(cf. R expression in Section 3.2) respectively. The same simulations were performed to characterize the

impact of different values of the parameter γ, which is used to balance service reliability SR and reputation

R, as discussed in Section 3.4. All the results are presented and discussed below.

• Parameterα. Figure 6a and 6b report the results obtained in the cases lowPerf and HighPerf described

above. In particular, candlestick charts report minimum, First Quartile (FQ), median, third quartile (TQ),

and Maximum values of the difference |SR−Feed|, i.e. the error between the Service Reliability (SR) and

the feedback released by the nodes according to several values of parameters α. It can be noted that, when

the variance of the feedbacks around the average value is very low, the behavior (in terms of measured

reliability) of the nodes is very similar for the nodes of the system, therefore parameter α does not affect

the difference |SR − Feed|, as expected. Figure 5b reports the results obtained in the case HighVarPerf.

In this case, (see PDF shown in figure 5a), nodes show a diverse behavior, as sampled feedbacks show high

variability. Moreover, setting α ∈ [0.4 − 0.6] seems to give optimal results, i.e. it allows the nodes to

minimize the error |SR − Feed|. Indeed, remembering that final preference P (Section 3.4) is computed

over Service Reliability (SR) and Reputation (R), then appropriate values of α will allow to be more

effective in selecting suitable nodes.

• Parameter β. Similar simulations were performed to study how the parameter β – involved into

the computation of Recommendation Reliability RR (cf. Section 3.2) – will affect the accuracy of the
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reputation R (cf. Section 3.3) with respect to the effective reliability (i.g. collected feedback). As the

results are very similar to those discussed above for parameter α, only the median values of the difference

|R − Feed| – where R is the reputation as described in Section 3.2 – are shown by means of figure 7a.

Indeed, similarly to the results obtained for parameter α, we observe that it is worth maintaining parameter

β in the range 0.3− 0.7 (see curve HighVarPerf ), with a minimum (as for parameter α) around value 0.5.

• Parameter γ. The same experiments were performed on the parameter γ which is used to combine

reliability and reputation (see Section 3.4), by measuring the difference |P −Feed|. A summary of results

(median values) is shown in Figure 7b. As for parameters α and β, results for HighPerf and lowPerf do

not show relevant variation among different values of γ, while the curve HighVarPerf reveals that a stable

behavior (with minimum error) can be reached with a value of γ between 0.4 and 0.7, with a minimum on

the value 0.6.

From this preliminar study we used the setting {α, β, γ} = {0.5, 0.5, 0.6} for the simulations presented

in Sections 5.5 - 5.6, as reported in lines 8 and 9 of Table 4.

5.3. Resilience in presence of TA shortage

As discussed in Section 2, the first phase of task
/

service assignment in Hypertrust involves the TA

or Task Allocator (cf. Figure 1), which is provided by each organization joining the Hypertrust network.

Nevertheless, as stated in Section 2, the absence of a TA (e.g., it is temporary down) can lead the clients to

forward their own requests to their own neighbors by means of a simple gossip protocol which is described

in Section 2.2.

In order to simulate this particular scenario we selected a gossip protocol provided with a minimal set

of features – cache, Time-To-Live and threshold – intended to halt the process in a few steps and limit the

number of messages. In particular, the threshold – indicated as v – is a probability value: when v has a

value close to 1, each gossip message is likely to be propagated to the whole agent’s neighborhood, and

the hubs of the network will generate, in average, an amount of messages which represents an excessive

amount of traffic and workload. Therefore, in order to reach most of the nodes, the threshold v should be

not too low.

For this study the generated network is identical to that described at the beginning of this section,

in particular it is based on parameters listed in rows 1, 3, 5, 7 of Table 4. A first study of the behavior

of the gossip protocol in the Hypertrust overlay network was performed by generating messages from

random nodes and eventually tracking the total number of visited nodes (coverage), and the total number

of replicated messages (overhead). Results reported into Figure 8 show that setting parameter v in the range

0.5 − 0.6 and TTL = 3 can be enough to reach about the 80% of the nodes (coverage) with an overhead

of no more than 3n messages.
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The same experiment was replicated, by including a variable number of TAs failures as reported into

line 7 of Table 4, which represents the range of shortage simulated for the TAs. In this case it is interesting

to measure the number of times the gossip-based procedure has failed to find another TA in the Hypertrust

network. Related results are shown in Figure 9, and make evidence that the impact of TAs failures is

minimal (less than 10%) even when there is a shortage of about 50%− 60% of the TAs, in other words the

Hypertrust network shows a good resilience when TA shortages happen.

We remember that, in order to deal with such a failure, in addition to the gossip protocol exploited in

Hypertrust , the clients are always able to start the finding algorithm described into Section 4, in order to

find a node claiming the requested resources, which is a case similar to the step (2.B), Figure 1.
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5.4. Computation of QoS

As stated at the beginning of this section, the final step of the experimental evaluation is represented

by a further set of simulations designed to measure the improvements, in terms of overall QoS, due to the

adoption of the Hypertrust model. Related results are presented and discussed into Sections 5.5 and 5.6.

Here we explain how we measured the final QoS each time a node has provided a service to another node.

First of all, we modeled the capacity of the single node to provide a certain level of quality of service

by means of the ratio Q = q∗/q, where q∗ is the actual amount of resources hold by the single node, and q

is the amount of declared resources. This ratio is closer to 1 when the amount of resources really owned by

a node is close to quantity claimed. In fact, ratio Qi represents the probability that node ni will be reliable

in providing a service which needs an amount q of resources.

Since the Hypertrust overlay network is constructed by mapping resource attributes, which may have

qualitative or quantitative nature, we measured the ratio q∗/q as follows. Let be Dj , (j = 1 . . . l) numerical

domains for resource attributes which assumes values in numeric ranges (e.g. the computing capability of

a CPU in GFLOPS). For convenience we call them N-domains. In this case, qij > q∗ij means that the ith

node is declaring more resources that those actually possessed. Let be Dk, (k = l + 1 . . . n) domains for

resource attributes which do not take values in numerical ranges. We call them C-domains. For instance,

in the case “Open Platform” shown into Table 2, a node can offer a subset of different Web APIs over those

potentially available. In this case, offering more resources than those actually hold, it means publishing a

set of choices greater than those actually available. We indicate as Rij ⊂ Dj the set of declared resources

of node ni for domain Dj , and R∗

ij ⊂ Dj the actual set of resource attributes hold by the ith node for the

same domain Dj .

Given the definitions above, we measure the ratio Qi as follows:

Qi =
q∗i
qi

=
1

N





l
∑

j=1

q∗ij
qij

+

N
∑

j=l+1

‖R∗

ij‖

‖Rij‖



 (1)

which refers to a N -dimensional Hypertrust network.

In order to measure the average QoS provided to the clients, we distinguished the different cases on

which domains are N-domains or C-domains, as follows:

QS(qr, i) =
1

N

N
∑

j=1

qsrij (2)

qsrij =























min

(

q∗ij
qrj

, 1

)

1 ≤ j ≤ l,

1 l + 1 ≤ j ≤ N ∧ qrj ∈ R∗

ij ,

0 l + 1 ≤ j ≤ N ∧ qrj /∈ R∗

ij .

(3)

where qsrij is the QoS measured on the resource j provided for the request qr by the node i; qrj is the

amount of resource j in the request qr, q∗ij is the actual amount of resource j hold by the node i. In
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particular, the case C-domain, l + 1 ≤ j ≤ N , has been included by means of the step function specified

in the last two rows of equation 3. Since the trust model discussed in Section 3 is based on the feedbacks

released by the users, the computed values of QoS are also used as feedbacks.

5.5. Evaluation of overall QoS

In this section we discuss the results obtained by simulating the dynamics specified by involved in the

Hypertrust model as a whole. Here, the trust-based node selection and the overlay network organization

and resource finding are employed together (see row no. 13 of Table 4). Resource attributes assigned

to the nodes were randomly generated within the range specified in the row no. 6 of Table 4, such that

the 50k nodes were uniformly distributed in the overlay network in order to reflect heterogeneity of both

resources and services. Furthermore, as specified in Section 5.2, whenever a node i asks an opinion (i.e.

a recommendation) to a node k about j, we assume that k sends its current value of SRi(k) (row no. 10

in Table 4). All the parameters used for these simulations are indicated into rows 1 − 6, 8− 11 and 13 of

Table 4.

In order to set the level of reliability of cloud resources in the simulated hyperspace, i.e. the ratio
q∗

q
,

we considered some studies characterizing performance variability of cloud applications [29, 30]. First

of all, results discussed in [29] show that availability is the strength of production cloud services, as it

assumes, in average, values very close 100%; this can be daily verified through the various cloud status

services provided around the worlds, e.g. CloudHarmony [27]. On the other hand, the same study [29]

has shown that performance of common production cloud services is denoted by a significant level of

variability, especially in the middle-long term. Variability of performance is due to two main components:

the first is mainly due to the sharing of the same physical resource among different VMs [30], while

the second is basically due to the real capability of the resources made available by the cloud providers

with respect to the requirements dictated by the customers, which can lead to some SLA violations (see

Section 4.4). The cited works make evidence of the need – for the customers – to use some “metrics”

useful to trigger the switching from a provider to another one, which is the purpose of the trust system

presented here. Furthermore, results discussed in [29] show several examples on which median variation

of some performance indicators is above 50%. As a consequence, in order to reflect the trend of measures

performed in the production clouds, we set the ratio
q∗

q
to span in the range 0.4− 1.0.

The results presented in this section make evidence of the contribution of the trust model presented

in this paper. The nodes were categorized into two sets: set T (with Trust model) includes a number of

nodes instructed to exploit the reliability-reputation model whenever they have to select their collaborators;

set WT (Without Trust model) includes those nodes which do not use the reputation model nor relative

information, and select service providers (or collaborators) basing on the decentralized resource finding

algorithm discussed in Section 4. Two kind of tests have been performed, as described below.

By means of the first test, we measured the final QoS with respect to the ratio Q = q∗/q (see Sec-
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tion 5.4), and thus on the basis of how much the nodes (on average) claims an amount of resources which

is different from those actually owned; to this aim, we fixed the percentage of nodes with trust model to

50%, and the ratio Q vary from 0.4 to 1.0, as discussed and motivated above.

During the second set of simulations, we fixed the ratio Q = q∗/q to 0.5 and let the percentage of

nodes supported by the trust model varying in the range 20% to 80%. Also in this case, the average QoS

was evaluated.
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Figure 10: Average QoS for the sets WT (Without Trust) and T (with Trust)

The first set of results is represented in Figure 10 and shows that, on one hand, the nodes using trust

information (“T”) provide better QoS than the others (“WT”), but, on the other hand, such QoS, in any

case, decreases as soon as nodes expose a value different than the real one with a higher probability. Such

results mean that the trust model is able to compensate the effect of “lies” when a competitive system is

considered, but such a compensation is limited to a certain extent. If the discrepancy between resources

held and resources advertised is high, nodes could not be able to find proper collaborator and thus to offer

the amount of resources requested, with a obvious consequence of a low QoS provisioning.

The said compensation ability of the model is also confirmed by the results provided in Figure 11,

which clearly shows that perceived QoS increases as soon as the number of nodes which do not use the

trust model decreases.

5.6. QoS contribution of the TA

In order to analyse the contribution, in terms of QoS, due to the TAs (Task Allocators, cf.Section 3.5),

we repeated the same experiments reported in Section 5.5. Therefore, these simulations were executed

with the same settings, but node’s selection was performed in different way, as specified into row no. 14 of

Table 4. Indeed, two kind of experiments have been performed: by using and not using the TA to allocate

client requests, and related results are depicted in Figure 12. As expected, the “TA” case is very similar to
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the curve labeled “T” of Figure 10, but, more important, it shows a better behavior in term of QoS than the

“NO TA”, i.e. the provided QoS is lower than in the “TA” case. Hence, the behavior of the system, in terms

of provided QoS, improves when TAs are queried for task allocation.

5.7. Decentralized resource finding

In this Section we report some results strictly related to the resource finding process (Algorithm 1

discussed in Section 4) that is employed whenever the node selected by the Task Allocator needs the help

by another node, or the TA doesn’t hold enough information to select a node for service provisioning. This

scenario was discussed into Section 2 and depicted as (2.B) and (2.A.1) in Figure 1. Furthermore, settings

of these simulations are basically the same used for experiments of Section 5.5, with the exception of the

last block of parameters in Table 4, for which the reader has to refer row no.15.
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value) to find the admissible region.

First of all, we studied the sub-scenario (2.A.1) depicted in Figure 1. In this case the node has been

selected by the TA by means of the trust information hold by the TA itself. As a consequence, the node may

reside or not into the admissible region and, basing on its capacity to satisfy the request, the node itself may

decide to look for a collaborator by the resource finding process explained in Section 4.3. Therefore, the

greater the “selectivity” of the request q submitted to the TA, the greater the probability that the selected

node will start a resource finding process. Figure 13a reports the results of this study in terms of percentage

of times the node selected for the task allocation starts a resource finding process to find a set of candidate

for a collaboration. It shows that, when the ratio of the node suitable to satisfy the request q is about 50%,

also the probability that the node starts a resource finding process is around 50%. Differently, when the

task is very selective (i.e. the ratio of suitable nodes is around 0.1 ÷ 0.2), the probability that the node

starts with the resource finding process is very high, as expected. In this case, as specified in Section 2,

the trustworthiness of the nodes which reside into the admissible region should be evaluated by (i) recom-

mendation or by (ii) information already hold by the node which started the resource finding process. In

the performed simulations, we tuned the behavior of the nodes to use own trust information as first choice,

and, if such information is not available, to ask recommendation to another node. We verified that, as trust

information spread among the node of the Hypertrust network, after a brief transitional phase, nodes will

ask recommendation only in the 10% of cases, in average. It means that the adopted trust system benefits

of the decentralized nature of Hypertrust.

The second issue to consider is the efficiency of the decentralized resource finding process. We verified

that the selection heuristic which gives the best results in terms of percentage of failures and average

efficiency (i.e. number of steps to find the admissible region) is BFMC (see Section 4.3). As a consequence,

in this section we report the median of the number of steps for the given heuristic by means of Figure 13b,

observing that is very low even when the percentage of nodes able to satisfy the request q is very low.
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5.8. Discussion

Hypertrust is a combination of two different models taking into account several different concerns,

i.e. trust and efficient decentralized resource finding into large-scale computing infrastructures. The two

models have been combined in the scenario depicted into Section 2, and detailed into Section 3 – the

trust model – and 4 – the decentralized solution to organize the nodes of the overlay network for efficient

resource finding and allocation – such that the experimental results discussed in this section belong to

several experimental steps, which correspond to the different scenarios presented into Section 2.

Main parameters of the trust model have been tuned by means of simulations discussed in Section 5,

afterwards Hypertrust has been simulated in order to take into account different aspects of the proposed

solution. Related results, presented in Sections 5.5-5.7, make evidence that the injection of the proposed

trust system into the Hypertrust overlay network will result in major advantages in terms of final QoS given

to providers looking for suitable collaborators and final users.

In the comparison between Hypertrust and RRAF [20, 53], which is a trust model based on the combi-

nation of reliability and reputation into a unique synthetic trust measure, it can be noted that, in RRAF, the

most promising collaborators are selected by analyzing the information about trust among all the nodes of

the system. Clearly, this solution can be applied only on a small medium-size system, as stated in Section 1.

With Hypertrust the issue above is solved, because it couples different solutions having decentralized na-

ture:

1. The introduction of a variable number of TAs among the several organizations of the federation.

Indeed, Task allocators are able to collect past experiences (i.e. reliability), allowing actors (clients

or provider) looking for suitable service providers to exploit these information in a decentralized

manner. The effectiveness of this approach has been highlighted by experimental results shown into

Section 5.6, while the non-functional aspect of resilience with respect to the shortage of TAs, have

been proved into Section 5.3. Task Allocators represent, in fact, a hierarchical solution which helps

requesters to select suitable nodes in the less “complicated” cases, as remarked in the next point.

2. As TAs rely only on reliability information coming from past experiences within their own organi-

zations, these information might be not enough to provide good suggestions. In Hypertrust several

additional chances are given to the customer and/or any service provider looking for collaborators.

Indeed, by approaching the admissible region by means of the decentralized Algorithm 1 (Section 4),

the analysis of trustworthiness of the nodes can be limited only to those nodes of the federation. The

efficiency of this approach, in terms of average number of steps needed to approach the admissi-

ble region, has been described into Section 5.7. These additional features clearly exploit the fully

decentralized features of the Hypertrust overlay network.

From the observations above it can be stated that Hypertrust outperforms the centralized, trust-based

solution based on the combination of reliability and reputation (e.g. RRAF). We will discuss some other

decentralized trust systems in Section 6.
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The nature of Hypertrust allows requesters to find nodes having suitable attributes with high efficiency

and fault tolerance, as proved in Section 5.7. Authors of [15] have presented a two-layered gossip based

protocol to support a greedy resource finding process similar to that developed for Hypertrust. The two

layers are built by means of a random overlay network providing network connectivity, and an additional,

structured network to perform resource finding with minimum overhead. Decentralized resource finding

approach of Hypertrust is different because the overlay construction does not rely on additional networks.

Indeed, as explained in [42] and in Section 4, the “essentially critical neighbors” are preserved, such that

the network will never disconnect and the average minimum path is maintained low. Resource finding

approach is different due to the different structure of the network. In particular, although the overhead

related to the path necessary to approach the target, shown in [15], is comparable with that of Hypertrust,

discussed in Section 5.7, the topology of Hypertrust reflects the resource attributes of the nodes, allowing

the set of nodes compatible with the request to be explored with a low overhead. In other words, this feature

is important because is coupled with the features of the trust system, which benefits from the structured

organization of the Hypertrust network, as stated in the previous point 2.

6. Related Work

Trust models [26, 47, 50, 57] allow to exploit information derived by direct experiences (reliability)

and
/

or opinions of others (reputation) to trust potential partners by means of a single measure [2, 28, 54,

68]. Trust measures will be as accurate as greater the number of reputation information is [7], even though

virtual environments encourage malicious behaviors.

Distributed trust systems have been studied since 1990s. The main contribution of [70] was to clarify

that formal reasoning about trust in distributed systems is not possible and, consequently, made distinction

between direct experiences (reliability in Hypertrust) and recommendation.

Ntropi [1] continued to study trust in distributed systems by proposing a framework for building trust

protocols which do not rely on third parties (Trust Authorities). Trust information are propagated by means

of interactions between agents that, in order to adjust trust measures, provide to rate their past experi-

ences. They basically introduced the concept of trustworthiness of recommenders, which, in Hypertrust,

we measured as recommendation reliability.

EigenTrust [33] deals with the problem of identifying inauthentic files in a Peer-to-Peer (P2P) file shar-

ing network in order to decrease the number of downloads. Each peer build its local trust representation

by assigning a rate to any other peers, while a global trust is built by exploiting a transitivity criteria for

which peers honest about files they have uploaded, will be also honest when providing recommendations.

Conversely, in Hypertrust the trust model we measure recommendation reliability (RR). Since the Hyper-

trust scenario is different from P2P file sharing, we can’t assume that honesty in characterizing services is

equal to honesty in providing recommendation, although they are related concepts.
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A distributed system handling uncertainty and variability is presented in [23]. The authors propose a

trust model to deal with the discrepancy between the information provided by other agents, and experience

is used to anticipate the behavior of the other (i.e. the “quality” of that actions) agents. In this way, the

agent is able to adapt more effectively its behavior to changes in the environment for its own benefit. This

approach is due to the considerations that different agents may use a different framework to represent and

reason about things. Nevertheless, in Hypertrust we categorized services so that we assume that trust agents

assisting users, providers and TAs agree on a common meaning of, e.g. availability and set of criteria to

evaluate it. On the other hand, the assumption above results from the fact that computing infrastructures

are federated.

The multidimensional aspect of trust in a cooperative agent systems was investigated in many studies.

For instance, in REGRET [55] the aggregation of multiple faces of reputation, i.e. information coming from

witnesses, social relations, roles and general properties, is adopted. A similar agent system is FIRE [28],

which deals with open, benevolent and honest agents by considering direct experiences, relationships,

witnesses and certified reputations. Such multiple sources give versatility to FIRE but require to tune many

parameters. In Hypertrust the concept of multidimensionality is used to construct the overlay network,

which eventually supports the decentralized resource finding. Once the admissible region for the requested

resources has been found, trust information are exploited to select the best node.

In general, all the cited trust systems use both reliability and reputation measures, similarly to Hyper-

trust, to trust agents in different contexts by combining such measures. Some of them i) weight opinions

provided by other agents by means of their trust, ii) adopt a “mentor”, iii) use discrepancies between

computed trust and observed behaviors or iv) exploit a trust measure specifically designed for a particular

scenario. Finally, all the presented systems, similarly to Hypertrust, do not use cryptographic techniques.

In the context of cloud services, the Cloud Security Alliance6 —an international organization for pro-

moting best-practices for security assurance in cloud computing— issued a specification called Cloud

Control Matrix[14], which defines a set of assets and principles that cloud computing provides should met

to design secure services. It is somewhat a trust verification by-design, which, while begin sound and

meaningful, does not ensure that, at run-time, the desired trust level is always kept. Moreover, it focuses

more on security aspects rather than reliability, as instead in our approach.

The approach used for decentralized resource finding presented in this work has been studied by the

authors in [41, 42, 43]. Similar studies [35, 59] aimed at characterizing how a typical “greedy search”

based on local information is able to find the short path with high probability on scale free and small

world networks respectively. Hypertrust overlay network is based on exploiting local information, and

provides the desired convergence in a few steps, as shown into the experimental section, proving also

that the network remains connected over time. Moreover the resource finding over the Hypertrust overlay

6http://cloudsecurityalliance.org
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network has been tested on highly dynamic environments, i.e. nodes change their attributes as allocations

have been performed. Heuristics provided to optimize the finding show that resource finding still performs

well in dynamic conditions or very limited resources.

A similar area of interests includes some works [4, 8, 16, 17, 22, 39, 49] aiming at using different

economic models for trading resources on large-scale distributed systems for different application domains,

including CPU cycles and storage space. In particular, in [39] a market-based approach to computational

grid resource management is presented. As in the work discussed in this paper, the authors of [39] consider

a competitive scenario, where multiple Grid resource agents sell resources and multiple task agents ask to

buy the resources. Two optimization problem are addressed by a price-directed market-based algorithm to

solve the grid task agent allocation problem. In particular, the second class of addressed problems take into

account a QoS constraint over the time needed to complete a sequence of tasks, and the experiments show

that the performance are better of the classical round-robin allocation. In the proposal in [22] the authors

try to take into account the nature the decisional process of federated Cloud providers which have to look

for the trade off between in-sourcing and out-sourcing of virtual computing infrastructures. By defining

a number of equations which take into account revenues and costs, they define the way on which local

schedulers can take their decision considered as optimal.

In [58] the authors present an algorithm of fully decentralized resource discovery in Grid computing at

large scale. Their algorithm is based on a simply unicast request (provided with a TTL) with the addition

of a reservation algorithm which allows users to bring forward the resource discovery mechanism to find

more resources. They evaluated the performance of the algorithms by comparing with the first-found-first-

served algorithm, showing comparable performances. First of all, they do not deal with trust related issues;

moreover, their algorithm is based on a unicast message, while Hypertrust is based on the construction of

an overlay network showing the characteristics of a small world network.

In [71] the problem of resource allocation in cloud federations is addressed, with focus on the typical

scenario on which providers have the need of dynamically allocate resources across multiple cloud en-

vironments by means of an inter-trust relationship architectural model. Nevertheless, there are two main

issues in their work that differ with Hypertrust. First of all, they deal only with the problem of verifying

the identity of providers, by envisioning the role of a number of IdP (Identity Provider) [11, 12] to sup-

port inter cloud collaborations. IdP trust indexes exploited from their past behavior, in terms of reliability.

Conversely, Hypertrust focuses on the mapping of resources in order to obtain an overlay network which

is exploited to perform an efficient, fully decentralized resource finding process. Furthermore, Hypertrust

contains a complete reliability
/

reputation model to support the providers when suitable collaborators have

to be selected.
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7. Conclusions and future work

In this paper we discussed a decentralized solution to support trusted resource finding and allocation

into competitive, large scale, federations of utility computing infrastructure. Our approach, like other

similar techniques developed in the past for competitive distributed multi agent systems, allows a node to

choose the most promising collaborators, based on both a direct trust measure (reliability) and a reputation

measure derived from the recommendations of the other nodes. However, unlike most of the past proposals,

which generally need to explore the whole agent space for selecting collaborators, our technique exploits

a decentralized technique which organizes the servers
/

computing nodes in an overlay network featuring

given characteristics.

More specifically, Hypertrust allows any user to exploit an efficient finding process of the available

resources, giving to each node the opportunity to use its trust model for limiting the search of collaborators

to an admissible region previously discovered by the decentralized resource finding technique. The basic

model provides a decentralised procedure to construct an overlay network including all the nodes of the

federation, by exploiting the resource status similarity. In other words, peers featuring a similar amount of

resource availability tend to be interconnected by means of the links of the overlay thus forming clusters

which, in turn, are connected together by means of few long links. An algorithm has been designed to

exploit the main characteristics of the Hypertrust overlay network, on which nearest nodes are preferred

for link organizations, such that communities or clusters of similar nodes will feature a short intra-cluster

distance. Moreover, long links between clusters are kept, allowing the system to preserve its connectivity.

An extensive set of experiments has clearly shown how the nodes which use our trust-based approach

significantly outperform the nodes that do not use any trust model to select their collaborators. This vali-

dates the approach, although the trust-based selection of collaborators is not performed in the whole space

of nodes. Moreover, we also introduced a special node, the Task Allocator and, although the maintaining

of a TA is not mandatory for the organizations, this special node allows the user to delegate the selection

process for the task, in such a way improving the QoS. Some experiments have shown that the adoption

of the TAs does not prevent the distributed nature of the approach but the overall QoS is, in the average,

improved.

For the future, we are planning to extend the trust model in order to exploit meaning and correlation

of specific, critical trust concerns, e.g. security, privacy, accountability, auditability [36]. Indeed, Hyper-

trust model relies on reliability and recommendation measures relating to actors (i.e. providers) and kind

of services. Mapping also specific concerns into the trust system, along with a framework for evaluating

these concerns, would provide a finer support for customers and providers looking for business partners.
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