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Abstract

Electroencephalografic (EEG) recordings generate an electrical map of the hu-
man brain that are useful for clinical inspection of patients and in biomed-
ical smart Internet-of-Things (IoT) and Brain-Computer Interface (BCI) ap-
plications. From a signal processing perspective, EEGs yield a nonlinear and
nonstationary, multivariate representation of the underlying neural circuitry in-
teractions. In this paper, a novel multi-modal Machine Learning (ML) based
approach is proposed to integrate EEG engineered features for automatic clas-
sification of brain states. EEGs are acquired from neurological patients with
Mild Cognitive Impairment (MCI) or Alzheimer’s disease (AD) and the aim is
to discriminate Healthy Control (HC) subjects from patients. Specifically, in
order to effectively cope with nonstationarities, 19-channels EEG signals are
projected into the time-frequency (TF) domain by means of the Continuous
Wavelet Transform (CWT) and a set of appropriate features (denoted as CWT
features) are extracted from δ, θ, α1, α2, β EEG sub-bands. Furthermore,
to exploit nonlinear phase-coupling information of EEG signals, higher order
statistics (HOS) are extracted from the bispectrum (BiS) representation. BiS
generates a second set of features (denoted as BiS features) which are also eval-
uated in the five EEG sub-bands. The CWT and BiS features are fed into a
number of ML classifiers to perform both 2-way (AD vs. HC, AD vs. MCI, MCI
vs. HC) and 3-way (AD vs. MCI vs. HC) classifications. As an experimental
benchmark, a balanced EEG dataset that includes 63 AD, 63 MCI and 63 HC
is analyzed. Comparative results show that when the concatenation of CWT
and BiS features (denoted as multi-modal (CWT+BiS) features) is used as in-
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put, the Multi-Layer Perceptron (MLP) classifier outperforms all other models,
specifically, the Autoencoder (AE), Logistic Regression (LR) and Support Vec-
tor Machine (SVM). Consequently, our proposed multi-modal ML scheme can
be considered a viable alternative to state-of-the-art computationally intensive
deep learning approaches.

Keywords: Machine Learning, Continuous Wavelet Transform, Bispectrum,
Alzheimer’s disease, Mild Cognitive Impairment, Data Fusion

1. Introduction

Dementia due to Alzheimer’s disease (AD) is a chronic degenerative neu-
ropathology that occurs mainly in elderly individuals. AD accounts for about
60% of overall dementia cases and causes a progressive impairment of cognitive
abilities, typically linked to behavioral problems such as restlessness, depres-
sion and language dysfunctions. The preclinical, intermediate stage between
healthy aging and AD is referred to as amnestic Mild Cognitive Impairment
(MCI), where deficits of cognitive abilities may start to be observable without
interfering with the everyday life of the individual [1]. When a MCI subject
is actually affected by AD, he/she will develop dementia in around 7 years [2].
This transition is known as “MCI to AD conversion”. It has been estimated
that MCI to AD conversion rate is 10%-15% per year [3]. The detection of
the disorder onset is a difficult multidimensional task for clinicians. Even to-
day, the definitive diagnosis of AD is possible only post-mortem, by autopsy.
Early diagnosis would enhance the quality of life of both patients and caregivers,
and motivate their active participation in the treatment program, potentially
reducing the death rate of AD. This would also help the researchers to re-
cruit more participants, especially people at the earliest stages of the disease.
The Electroencephalogram (EEG) is a widely used diagnostic tool as it is a
non-expensive, non-invasive method endowed with a high temporal resolution.
EEG reflects, at a macroscopic level, the superposition of electromagnetic fields
generated by the interaction between cortical neurons. The behaviour of the
underlying neuronal populations, can be studied indirectly through EEG [4].
Some abnormalities in MCI/AD patients are observed in EEG recordings in
the form of slowing of EEG rhythms, loss of synchronization between pairs of
electrodes and loss of complexity [5], [6], [7], [8], [9]. In this context, there is a
growing body of research focused on extracting relevant features from MCI/AD
EEG signals. Specifically, considering the evidence that AD causes slowing in
EEG waves, most studies focused on the analysis of EEG spectrum which is also
typically available in clinical practice to capture possible correlations between
the progression of the disease and alteration of the spectral profile. The use
of spectral representations can enable significant computational advantages in
neural networks learning. However, conventional power spectral analysis esti-
mates only the spectral content of the signals without taking into account the
EEG dynamics: some relevant additional information can be captured through
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a time-frequency (TF) approach. In addition, Fourier analysis does not capture
any nonlinear high order interaction among EEG signal components (which are
known to be inherently nonlinear) [4]. Synchronization can also occur locally
in frequency or between different frequencies, in a more complex, nonlinear way
[10]. Further, nonlinear changes in cortical generating processes induce alter-
ations in the electrical signals collected at the scalp. Bispectral analysis has been
recently shown to represent an alternative methodology to detect such changes
[11]. This is because nonlinear interactions that generate the multivariate time
series can be estimated by higher-order phase coupling [12].

In this work, a set of features estimated from both the Bispectrum (BiS)
and the time-frequency representation extracted via the Continuous Wavelet
Transform (CWT) are used to automatically classify EEGs from AD, MCI and
healthy elderly controls (HC). These are denoted as BiS and CWT features,
respectively. Considering the inherent non-stationary nature of EEGs, the pro-
posed approach involves partitioning EEG signals into segments (i.e. epochs)
and processing them segment by segment. Subsequently, for each epoch of the
EEG, CWT and BiS features are extracted.

Machine Learning (ML) techniques have been widely applied as success-
ful approaches to develop computer-aided systems in healthcare applications
(e.g.[13], [14], [15], [16], [17]). In this study, the extracted CWT and BiS features
are vectorized and used as multi-modal input to a ML system to discriminate
EEG epochs belonging to AD, MCI or HC subjects. To classify the signals’
epochs, four different standard ML classifiers are used, specifically the Autoen-
coder (AE), Multilayer Perceptron (MLP), Logistic Regression (LR), Support
Vector Machine (SVM). These are trained over three different sets: 1) using
only CWT features; 2) using only BiS features; 3) using a concatenation of
CWT and BiS features vector (denoted as multi-modal (CWT+BiS) features
vector). The classifiers were trained to perform both 2-way (AD vs. HC, AD
vs. MCI, HC vs. MCI) and 3-way (AD vs. MCI vs. HC) classification tasks.
Experimental results show that the 1-hidden layer MLP classifier outperforms
other approaches in both 2-way and 3-way classification, when the multi-modal
input features vector is employed. It is worth mentioning that the reason for
using standard neural network models reflects the potential for further clini-
cal acceptance and practical deployment of these models. Deep learning (DL)
schemes are powerful approaches utilised to extract relevant knowledge on their
own, but require a proportionally large dataset to learn good representations,
typically more difficult to interpret with respect to models based on engineered
features.

The main contributions of this paper can be summarized as follows:

• development of an original multi-modal features extraction methodology
based on CWT and BiS analysis of EEG recordings, that can effectively
account for nonstationarity and nonlinearity effects;

• development of a novel data-driven multi-modal (CWT+BiS) ML system
for classifying AD, MCI and HC EEG recordings;
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• formulation of a generic multi-modal ML-framework potentially applicable
in clinical applications.

The rest of this paper is organized as follows: Section 2 gives a short literature
review of correlated works. Section 3 describes materials including the available
EEG recordings and their pre-processing, the proposed multi-modal methodol-
ogy, and the CWT/BiS features extraction procedure. Specific implementation
details of the proposed ML classification models are also introduced. Section 4
reports comparative experimental results. These are then discussed in Section
5. Finally, Section 6 concludes the paper and outlines some future research
directions.

2. Related works

Several recent studies discuss classification of brain states from EEG signals.
Most of these rely on feature extraction procedures. Some works are focused
on discriminating AD and/or MCI recordings from healthy aging controls. In
some works the extraction of features is carried out in the spectral domain.

For example, Lehmann et al. [18] measured the relative and absolute spec-
tral power, power spectral distribution and spatial synchronization from EEGs
of 45 HC, 116 mild-AD and 81 moderate AD. Different classification techniques
were used. Specifically, a sensitivity of 85% and specificity of 78% were achieved
in mild-AD vs. HC classification using a random forest based classifier; whereas,
a sensitivity of 89% and specificity of 88% were achieved in moderate-AD vs.
HC classification by using SVM and MLP based classifiers. McBride et al.
[19] evaluated regional spectral and complexity based features from EEGs of 15
HC, 16 early MCI and 17 early AD. The proposed 3-way SVM-based classifier
achieved classification accuracies of 83.3%, 85.4%, 79.2% for the eyes-opened
resting state, eyes-closed counting task and eyes-closed resting state, respec-
tively. In [20] the authors applied eight different feature selection methods to
discriminate 22 AD and 12 HC. Experimental results showed classification ac-
curacies of up to 91.18%, when a reduced subset of spectral features (extracted
from the EEG sub-bands) where used as input to a SVM classifier, previously
proposed in [21]. Ruiz-Gomez et al. [22] selected an optimal set of spectral and
nonlinear features, extracted from 111 EEG signals (37 AD, 37 MCI, 37 HC), to
train a linear discriminant analysis (LDA), a quadratic-DA and a MLP based
classifier. The MLP classifier achieved the best performance with an accuracy
of 78.43% (in HC vs. all) and 76.47% (in AD vs. all). Neto et al. [23] analyzed
spectral features (such as absolute δ power and amplitude, center and dispersion
of α power) of the EEGs of 114 HC, 114 AD and 114 vascular-AD patients. A
binary-based regularized-LDA classifier produced a best accuracy of 77% in clas-
sifying HC vs. dementia patients (AD or VAD), using a reduced set of features.
Kashefpoor et al [24] estimated 19 spectral features from each channel of 16 HC
and 11 MCI EEG signals. After selecting the best discriminative features by
means of a correlation-based approach, a neuro-fuzzy-k-nearest neighbor clas-
sifier (NF-kNN) was developed, achieving accuracy rates up to 88.89% in HC
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vs. MCI classification. In [25] Kulkarni used different complexity based features
(such as spectral entropy, spectral centroid, spectral roll-off, zero crossing rate)
extracted from 100 EEG signals (50 AD and 50 HC) as input to a 2-way KNN
classifier, reporting accuracy of 94% in AD vs. HC classification.
There are only a limited number of works that have exploited time-frequency
or bispectrum based features as discriminating coefficients. For example, with
regard to the time-frequency approach, Fiscon et al. [26] extracted spectral and
time-frequency (discrete wavelet) based features from 109 EEG signals (49 AD,
37 MCI, 23 HC) and then trained a decision tree classifier. Experimental re-
sults showed that wavelet coefficients evaluated by applying the discrete wavelet
transform achieved the highest accuracy rates: 83.3% for AD vs. HC; 91.7% for
MCI vs. HC; 79.1% for AD vs. MCI. Kulkarni and Bairagi in [27] decomposed
EEG signals into five EEG sub-bands (δ, θ, α, β, γ) using the wavelet decompo-
sition technique. The means and variances of wavelet coefficients were evaluated
and used as input to a SVM classifier, achieving accuracy value of 88% in AD
vs. HC classification. Vialatte et al. [28] transformed 60 EEG recordings (22
MCI and 38 HC) into time-frequency representations using the complex Morlet
wavelet function. Bump modeling for features generation was then applied, and
selected features used as input to a MLP classifier, achieving very good perfor-
mance (93% accuracy, 91% sensitivity, 94.7% specificity). Recently, Morabito
et al. [29] proposed a time-frequency based AD, MCI, HC classification sys-
tem. Specifically, time-frequency maps of 69 EEG recordings (23 AD, 23 MCI,
23 HC) were extcolorredestimated using the CWT (with Mexican hat wavelet
function) and statistical parameters (mean, standard deviation, skewness) were
extracted from three EEG roughly defined sub-bands. The features were fed
into a DL based Convolutional Neural Network (CNN) architecture, achieving
accuracy rates up of 85%, 85%, 78% in AD vs. HC, MCI vs. HC and AD vs.
MCI classification, respectively.

Wang et al. [12] explored the nonlinear high-order information of bispec-
trum, and estimated both spectral (i.e., median frequency, spectral entropy,
normalized spectral squared entropy) and bispectrum (i.e., the normalized bis-
pectral entropy, the normalized bispectral squared entropy) features. These
were input to a SVM classifier to differentiate the activity in the five brain ar-
eas (frontal, central-parietal, occipital, left and right temporal) of 14 AD and
14 HC, reporting accuracy rate up to 90.2%. Gomez et al. [11] studied the
bispectrum of 39 EEG recordings (17 AD, 19 HC) and extracted five bispectral
features (such as normalized bispectral entropy, normalized bispectral squared
entropy and sum of logarithmic amplitudes of the bispectrum). A LR classifier
was used to perform the 2-way AD vs. HC classification, achieving an accuracy
of 86.11%.

The drawbacks of the aforementioned studies lay mainly in the limited size of
the dataset or in the missing comparison between AD vs. MCI classification, the
most challenging task, that is also of practical interest in clinical frameworks.
In this paper, a novel multi-modal approach based on both time-frequency and
bispectrum features extraction is proposed. The selected features are used as
input to ML classifiers to perform the 2-way (AD vs. HC, AD vs. MCI, MCI vs.
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HC) and 3-way (AD vs. MCI vs. HC) classifications. In addition, a relatively
high number of subjects is recruited (63 AD, 63 MCI, 63 HC) to construct the
EEG dataset.

3. Materials and Methodology

3.1. EEG recording and preprocessing

Study population. A cohort of 189 subjects was recruited at IRCCS Centro Neu-
rolesi Bonino-Pulejo of Messina (Italy): 63 affected by AD, 63 affected by MCI,
and 63 healthy controls. A protocol for the EEG-based differential diagnosis of
AD/MCI was designed and approved by the local Ethics Committee of the IR-
CCS Centro Neurolesi Bonino-Pulejo. The diagnosis of AD or MCI was formu-
lated following the guidelines of the Diagnostic and Statistical Manual of Mental
Disorders (fifth edition, DSM-5) [30]. The inclusion criteria was the diagnosis
of AD or MCI, whereas the exclusion criteria were: presence of neurological or
psychiatric disorders that may induce cognitive impairment, complex systemic
disorders, presence of epileptiform patterns in the EEGs, hydrocephalus, stroke,
traumatic brain injuries or other neurological conditions. The possible exclusion
from the study was subjected to the evaluation of a neuroimaging examination,
which helped highlight the possible presence of any of the aforementioned patho-
logical conditions, that may cause symptoms similar to AD or MCI. The goal
of the present study was explained in detail to patients and their caregivers,
who signed an informed consent form. In relation to AD patients, the possi-
ble effects of medical treatment like cholinesterase inhibitors (ChEis), meman-
tine, anti-depressants, anti-psychotics and anti-epileptic drugs, were considered.
In particular, the target dose of memantine, such as cholinesterase inhibitors
(ChEis), was 20 mg/day. The dose of anti-depressants (citalopram) was set at
30 mg/day. No anti-psychotics or anti-epileptic drugs were used. MCI subjects
were not under any medical treatments.

EEG recording. Before starting the EEG recording session, patients and their
caregivers were asked about the quality of their last sleep and last meal. EEG
clinicians reassured subjects about the total non-invasiveness of the examina-
tion and helped them feel at ease to undertake the EEG recording session in a
relaxed way. The participants sat on a comfortable chair and kept their eyes
closed throughout the EEG acquisition. Thus, EEG was recorded in an eye-
closed relaxed resting state. Subjects remained awake, as confirmed by EEG
experts who monitored the EEG traces in real-time to detect any possible sleep
pattern. After acquisition, EEG traces were manually reviewed offline and any
segments corrupted by artifacts were marked by experts and discarded from the
analysis. The average EEG length, after artifact rejection, was 4.1 min. EEGs
were recorded using the standard 19-channels montage according to the 10-20
International System (channels Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7,
F8, T3, T4, T5, T6, Fz, Cz and Pz) with linked earlobe (A1-A2) referencing.
Sampling frequency was 1024 Hz and a notch filter was applied at 50 Hz.
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EEG preprocessing. The n-channel EEG recordings (with n=19) were band-
pass filtered between 0.5 Hz and 32 Hz using the open source Matlab toolbox
EEGLab ([31]). EEG signals were down-sampled to 256Hz and segmented into
M non-overlapping epochs of 5s duration. With fs=256 Hz, each epoch included
N= 5 x 256 = 1280 samples. Thus, for each subject under consideration, M
epochs EEGε (ε = 1, 2, ..,M), sized n x N, were stored to be further processed
one by one.

3.2. Methodology

Our methodology flowchart is illustrated in our proposed multi-modal ML-
based EEG classification framework in Figure 1. It includes the following pro-
cessing sub-modules:

• EEG pre-processing. The 19-channel EEG signal is recorded and stored
on a computer. Next, the artefactual patterns are removed through visual
inspection by an expert operator. Finally, the EEG recording is segmented
into E non-overlapping epochs of 5 seconds and then analyzed on an epoch
by epoch basis.

• Time-Frequency analysis. CWT is computed to project every EEG signal
into the time-frequency domain: given the Eth epoch under analysis, for
each EEG channel the corresponding time-frequency representation (TFR)
is estimated for a grand total of 19 TFR maps, i.e., one per channel (Figure
2 shows three sample maps extracted from AD, MCI and HC subjects).
Next, the 19 TFR are averaged, resulting in a single average TFR (ATFR).

• Bispectrum analysis. The HOS analysis is carried out using the Bispec-
trum (BiS) estimation: given the Eth epoch under analysis, for each EEG
channel the corresponding bispectrum representation (BiSR) is estimated,
for a grand total of 19 BiSR (one per channel). Next, the 19 BiSR are
averaged, producing a single average BiSR (ABiSR).

• Features extraction. Given the Eth epoch under analysis, two sets of fea-
tures are extracted, one from the ATFR map and one from the ABiSR:

1. CWT features extraction: the Eth ATFR is partitioned into five time-
frequency sub-maps corresponding to the five EEG rhythms: δ [0.5-4
Hz], θ [4-8 Hz], α1 [8-10 Hz], α2 [10-13 Hz], β [13-32 Hz] (Figure 2
shows how a TFR map is partitioned into 5 sub-bands). Next, the
following five CWT features are extracted in each EEG sub-band:
mean (CWT1), standard deviation (CWT2), skewness (CWT3), kur-
tosis (CWT4) and entropy (CWT5). As shown in Figure 2, the time-
frequency maps can reveal a different distribution of the EEG signal
energy in the analyzed sub-bands. Furthermore, the number of rel-
evant CWT coefficients is differently located in the representation.
To reduce the high redundancy of the CWT coefficients, we consider
average quantities extracted from the time-frequency sub-maps.
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2. BiS features extraction. Similar to the ATFR, the Eth ABiSR is par-
titioned into five bispectrum maps corresponding to the five afore-
mentioned EEG rhythms (δ, θ, α1, α2, β). The following BiS features
are then extracted in each EEG sub-band:

• normalized bispectral entropy (BiS1);

• normalized bispectral squared entropy (BiS2);

• sum of logarithmic amplitudes of the bispectrum (BiS3);

• sum of logarithmic amplitudes of diagonal elements of the bis-
pectrum (BiS4);

• first-order spectral moment of the amplitudes of diagonal ele-
ments of the bispectrum (BiS5);

• second-order spectral moment of the amplitudes of diagonal ele-
ments of the bispectrum (BiS6).

It is worth mentioning that BiS features are extracted within the
non-redundant triangular sub-region (Ω∗, see Section 3.3.3).

• Features preparation. Three feature vectors are generated and used as
input to the proposed multi-modal ML classifiers:

1. only-CWT features vector: only the features extracted from the
ATFR are selected; with the corresponding length of the vector is
given by:
5 (# features) x 5 (# EEG rhythms)= 25 CWT features;

2. only-BiS features vector: only the features extracted from ABiSR are
selected; with a corresponding length of the vector is given by:
6 ( # features) x 5 ( # EEG rhythms)= 30 BiS features;

3. multi-modal (CWT+BiS) features vector: this comprises a concate-
nation of CWT and BiS features vectors. The corresponding length
is thus given by:
25 (# CWT features) + 30 (# BiS features)= 55 CWT+BiS features.

• Classification: four standard ML techniques are applied to discriminate
EEG epochs of HC, MCI and AD subjects over the proposed feature set.
To this end, multio-modal ML classifiers based on AE, MLP, LR and SVM
architectures are developed to carry out 2-way and 3-way classifications
tasks.

3.3. Features Extraction

3.3.1. Time-Frequency analysis

Each EEG recording is analyzed in the time-frequency domain by means of using
the Continuous Wavelet Transform (CWT) [32]. If we let s(t) be the n-channel
EEG recording, the CWT is defined as follows:

CWT (a, b) =
1√
a

∫
s(t)ψ∗(

t− b
a

) (1)
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BiS features extraction: 
BiS1 in δ, θ, α1, α2, β
BiS2 in δ, θ, α1, α2, β
BiS3 in δ, θ, α1, α2, β
BiS4 in δ, θ, α1, α2, β
BiS5 in δ, θ, α1, α2, β
BiS6 in δ, θ, α1, α2, β

EEG recording

Time-Frequency Analysis
Bispectrum Analysis

CWT features extraction: 
CWT1 in δ, θ, α1, α2, β
CWT2 in δ, θ, α1, α2, β
CWT3 in δ, θ, α1, α2, β
CWT4 in δ, θ, α1, α2, β
CWT5 in δ, θ, α1, α2, β

Classification

AE,MLP,LR,SVM
Classifier

AD vs. HC AD vs. MCI MCI vs. HC
AD vs. MCI vs. HC

Multimodal (CWT+ BiS) features 
vector

only-CWT features
vector

only-BiS features
vector

EEG pre-processing

Features Extraction

𝑬𝒕𝒉epoch
𝑬𝒕𝒉epoch

Features Preparation

Figure 1: Flowchart of the proposed multi-modal ML-based EEG classification framework.
The 19-channel EEG signal is filtered from artifacts and partitioned into NE epochs. The
Eth 19-channel EEG epoch is processed through the time-frequency and bispectrum analysis,
resulting in the averaged TF and BiS representation, denoted here as ATFR and ABiSR,
respectively. Initially, the ATFR and ABiSR are decomposed in five sub-maps (corresponding
to the δ, θ, α1, α2, β EEG rhythms); next, five CWT features and six BiS features are
extracted from each sub-map of ATFR and ABiSR, respectively. Three features vectors are
generated: only-CWT features (sized 5 (# features) x 5 (# EEG rhythms)= 25), only-BiS
features (sized 6 (# features) x 5 (# EEG rhythms)= 30), multi-modal (CWT+BiS) features
(sized 25 (# CWT features) + 30 (# BiS features)= 55). Finally, the feature vectors are used
as input to four multi-modal ML classifiers based on AE, MLP, LR and SVM architectures to
perform the binary and multiple classifications.
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where a and b denote the dilation (or scale) and shifting (or translation) vari-
ables, respectively, ψ represents the mother wavelet function, CWT (a, b) repre-
sents the wavelet coefficients and * is the complex conjugate operator. There is
an approximate relationship between scale and frequency where low scale values
refer to high frequencies and vice versa (fa = fc

Tsa
, with fc central frequency of

the mother wavelet, Ts sampling period, fa pseudo-frequency corresponding to
the scale a). The mother wavelet function chosen here was the Mexican hat,
which has been proven to match well EEG signals dynamics [33].

3.3.2. CWT features extraction

Given the nth channel of the EEG epoch, the CWT is estimated, resulting
in a TFR sized f x S, where f represents the number of frequencies ranging
between [0 - fNyquist Hz] (with fNyquist = fs

2 = 128 Hz), and S is the number
of samples in each epoch of 5s (S=1280). Hence, for each EEG epoch, 19 TFR
maps are evaluated (one per channel). Next, the 19 TFR are averaged in order
to produce a single time-frequency representation (ATFR) for the associated
epoch. Assuming NE epochs are available for a given EEG recording, NE

ATFR maps are generated from it (one per epoch). From the Eth ATFR,
the following features (denoted as CWT features, [34]) are evaluated in each
band: mean (CWT1), standard deviation (CWT2), skewness (CWT3), kurtosis
(CWT4) and entropy (CWT5). Overall, 5 (# features) x 5 (# sub-maps) = 25
CWT features are extracted for each EEG epoch.

3.3.3. Bispectrum analysis

The third-order spectrum is known as bispectrum [35]. It quantifies nonlin-
ear interactions (i.e., quadratic phase coupling) and deviations from normality.
The bispectrum is defined as the Fourier transform of the third-order cumulant
sequence:

B(f1, f2) = E[S(f1)S(f2)S∗(f1 + f2)] (2)

where S(f) represents the Fourier transform of the n-channel EEG recording
s(t), ∗ is the complex conjugate, E [·] is the expectation operation and B(f1, f2)
is the bispectrum, a complex-value function characterized by symmetric prop-
erties. Specifically, as shown in Figure 3(a), the bispectrum has 12 symmetric
regions in the plane (f1,f2) and is uniquely defined in the non-redundant trian-
gular region (Ω, 0≤ f2 ≤ f1 ≤ (f1+f2)≤ 1) where frequencies are normalized
by the Nyquist frequency [35]. In this study, since we are interested in the
EEG frequencies range [0.5-32 Hz], a sub-region of the non-redundant triangu-
lar area (denoted as Ω∗) is considered (red triangle, Figure 3). Hence, further
observations and analyses of bispectrum are related to Ω∗.

3.3.4. BiS features extraction

Similar to CWT features extraction, given the nth channel of the EEG epoch, the
BiS is estimated, leading to a square BiSR matrix sized f̃ x f̃ , where f̃ represents
the number of frequencies ranging between [0-fNyquist]. Hence, for every EEG
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Time-Frequency Representation of AD
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Time-Frequency Representation of MCI
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Time-Frequency Representation of HC
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Figure 2: Average time-frequency representations of a 5s EEG epoch related to an AD (a),
MCI (b) and HC (c) subject, respectively. X-axis represents time, Y-axis represents frequency
and the energy of wavelet coefficients is encoded with coloration ranging from blue to red.
The boundaries of the sub-bands taken into account (δ [0.5-4 Hz], θ [4-8 Hz], α1 [8-10 Hz],
α2 [10-13 Hz], β [13-32 Hz]) are shown with horizontal dashed lines. The specific example
is chosen to highlight the different distribution of wavelet coefficients energy in the different
sub-bands in the three classes of subjects.

epoch, 19 BiSR are evaluated (one per channel). Subsequently, the 19 BiSR
are averaged in order to produce a single average bispectrum representation
(ABiSR). Finally, the non-redundant triangular sub-region (Ω∗) is selected from
the related bispectrum map under analysis. Hence, given an EEG recording
with NE epochs, NE average triangular bispectrum matrices, one per epoch
(triangular-ABiSR), are produced.

Figure 4 shows a typical 2-dimensional contour map (left) and 3-dimensional
surface (right) of the bispectrum. Dark blue and red colors indicate the relative
changes in amplitude of bispectrum, that is the highest decrease and increase,
respectively. Notably, an explanatory ABiSR related to a 5s epoch belonging to
the three different categories of subjects (AD Figure 4 (a), MCI Figure 4 (b),
HC Figure 4 (c)) is reported. As expected, due to slowing effect observable in
EEGs of AD and MCI, the phase-coupled harmonics shift from higher to lower
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Figure 3: (a) Symmetric regions of the bispectrum, including the triangular non-redundant
region (Ω). Frequencies are normalized by the Nyquist frequency (for this case: fNyquist=128
Hz). (b) Triangular non-redundant sub-region (Ω∗, red triangle) ranging between [fL,fH ]
where fL and fH correspond to 0.5 and 32 Hz, respectively.

frequencies [6]. The AD bispectrum shows sharp peaks in the δ sub-band ([0.5-4
Hz]), the MCI bispectrum shows dominant peaks in the δ and θ ([4-8 Hz]) sub-
bands, whereas the HC bispectrum shows sharp peaks in the α band ([10-13
Hz]). Such findings suggest that the reduction of bispectral peaks correspond
to a decrease in non-gaussianity and nonlinearity of EEG signals in AD.

From the Eth triangular-ABiS, five sub-regions related to the five main EEG
rhythms are taken into account: δ [0.5-4 Hz], θ [4-8 Hz], α1 [8-10 Hz], α2 [10-13
Hz], β [13-32 Hz]. Finally, the following most commonly used bispectral features
(denoted as BiS features), are evaluated in each band [11], [12], [36]:

• Normalized bispectral entropy:

BiS1 = −
∑
i

uilog(ui) (3)

where ui = |B(f1,f2)|∑
f1,f2∈Sb

|B(f1,f2)|
and i = 1, 2, ..I is the number of points

within the sub-band (Sb) under analysis.

• Normalized bispectral squared entropy:

BiS2 = −
∑
i

vilog(vi) (4)

where vi = |B(f1,f2)|2∑
f1,f2∈Sb

|B(f1,f2)|2
.
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• Sum of logarithmic amplitudes of the bispectrum:

BiS3 =
∑

f1,f2∈Sb

log(|B(f1, f2)|) (5)

where B(f1, f2) is the bispectral content at the point (f1, f2) in the Sb
under analysis.

• Sum of logarithmic amplitudes of diagonal elements of the bispectrum:

BiS4 =
∑

fd,fd∈Sb

log(|B(fd, fd)|) (6)

where B(fd, fd) is the bispectral value at the diagonal element (fd, fd) and
d = 1, ..., D is the number of diagonal elements in the Sb under analysis.

• First-order spectral moment of the amplitudes of diagonal elements of the
bispectrum:

BiS5 =
∑

fd,fd∈Sb

d ∗ log(|B(fd, fd)|) (7)

• Second-order spectral moment of the amplitudes of diagonal elements of
the bispectrum:

BiS6 =
∑

fd,fd∈Sb

(d−BiS5)2 ∗ log(|B(fd, fd)|) (8)

Overall, 6 (# features) x 5 (# sub-maps) = 30 BiS features are calculated for
each EEG epoch.

3.4. Machine Learning Systems

The vectors of the extracted features for the E th EEG epoch under analysis
(only-CWT, only-BiS, multi-modal (CWT+BiS) features) are used as input to
different ML based systems for binary and multi-classifications: AD vs. HC,
AD vs. MCI, MCI vs. HC and AD vs. MCI vs. HC. Specifically, AE, MLP, LR
and SVM based multi-modal ML classifiers are developed.

3.4.1. AE classifier

The autoencoder (AE) consists of an encoder (e : X → C) and a decoder
(d : C → X) module (Figure 5 (a)). Firstly, the input vector X = [x1, x2, ..., xN ]
is mapped into the compressed representation C = [c1, c2, ..., cN ] in the encoding
stage:

ci = e(xi) = ρ1(W1x+ b1) (9)
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Figure 4: Typical 2D contour map (left) and 3D surface (right) representation of the bispec-
trum of a 5s EEG epoch related to an AD (a), MCI (b) and HC (c) subject, respectively. Both
axes represent frequency, the bispectrum maps show phase coupled harmonics for frequencies
(f1,f2) in the range under consideration (0.5 − 32Hz). The phase coupling reflects bispectral
peaks in the 3D surfaces.

where, W1 is the weight matrix, b1 is the bias between the input and the hidden
layer, ρ1 represents the activation function (here, saturating linear activation
function). Next, ci is mapped back to xi in the decoding stage:

x̂i = d(e(xi)) = ρ2(W2ci + b2) (10)

where, W2 is the weight matrix, b2 is the bias between the hidden and the output
layer, ρ2 represents the activation function (here, linear transfer function). The
aim of the AE is to minimize the error between the original input data and
its reconstruction by minimizing a loss function, that is the mean square error
(MSE).
Four AE based architectures are developed (whose parameters are experimen-
tally optimized, using a trial and error approach), specifically: AE1 with a
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single hidden layer comprising 18 units; AE2 with two hidden layers of 18 and
10 units; AE3 with a single hidden layer of 30 units; AE4 with two hidden lay-
ers of 30 and 18 units. The AE1 and AE2 classifiers are employed when the
only-CWT and the only-BiS features are used as input; whereas, the AE3 and
AE4 classifiers exploit multi-modal (CWT+BiS) features vector as input. The
features extracted from each AE architecture are used as input to a fully con-
nected layer with softmax activation function trained with supervised learning
to perform the classification tasks. Next, the AEj (with j =1,2,3,4) followed by
the SF layer is fine-tuned (with supervised training) to improve the discrimi-
nation performance. As an example, Figure 5 (a-b) show the best performing
AE architectures when the multi-modal (CWT+BiS) features are used as in-
put. The compressed representations are then employed to develop the AE3

and AE4 classifiers (Figure 5 (d) and (e), respectively). Note that the size of
the hidden layers of AE1, AE2, AE3 and AE4 were chosen by evaluating the
minimum reconstruction errors.

3.4.2. MLP classifier

The Multi-Layer Perceptron (MLP) is the most popular feed-forward neural
network, typically composed of an input layer, one or more hidden layers, an
output layer. It is trained with supervising learning procedure through stan-
dard backpropagation technique [37]. In this study, similarly to the case of AE
classifiers, four MLP based architectures are developed: MLP1, MLP2, MLP3,
MLP4. For a fair comparison, the MLPj classifier has the same structure as
the AEj classifier (with j =1,2,3,4). For example, Figure 6 (a) and (b) reports
the best performing MLP3 and MLP4 classifiers, respectively, when the multi-
modal CWT+BiS features vector is used as input. Specifically, MLP3 consists
of 1-hidden layer with 10 units; whereas, MLP4 consists of 2-hidden layers with
30 and 18 units. All the MLPj outputs with a softmax layer. Each hidden
layer of the MLPs has a saturating ReLu activation function. The MLPs are
trained over 103 epochs until the convergence of the cross-entropy loss function
is observed.

3.4.3. LR classifier

The Logistic Regression (LR) is a statistical technique used to model the
probability of occurrence of a specific event (here, the presence of disease (MCI/AD)
or healthy condition) by using a linear combination of predictors (indipendent
variables, η) [38]. The sigmoid function (σ(η) = 1

1+eη ) represents the logistic
function. Hence, the LR classifier provides the probability score value of a given
input (i.e EEG epoch) as belonging to the G group (i.e. AD/MCI/HC).

3.4.4. SVM classifier

The Support Vector Machine (SVM) is a well-known statistical technique,
that finds the best hyperplane providing the maximum separation among classes
[39]. In this study, for comparative evaluation purposes, a linear kernel has been
used to perform the classification tasks. A detailed mathematical formulation
of the SVM technique can be found in [40].
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(a)

Figure 5: (a) Standard AE architecture, where c is the compressed representation of the N-
dimensional input vector x and x̂ is the vector reconstructed from c, so that x̂ ≈ x. (b) AE3

architecture [AE 55:30:55]. The 55-dimensional multi-modal features (x) are compressed into
a 30-dimensional features vector (c1), that is used to produce the same input representation x̂.
(c) AE4 architecture [AE 30:10:30]. The features vector c1 extracted through the AE3 forms
the input to a second AE that compresses the input space into a 10-dimensional features
representation (c2) (d) AE3 classifier. This includes the 30-dimensional features vector (c1)
and a softmax layer (o) to perform the 2-way and 3-way classifications. (e) AE4 classifier.
This includes the 30-dimensional features vector (c1), 10-dimensional features vector (c2) and
a softmax layer (o) for classification purposes. The AE3, AE4 classifiers are then fine-tuned
using the standard back propagation method to improve classification performance. The figure
illustrates examples classifiers for the binary configuration case: AD vs. MCI.

4. Experimental results

In this research, an EEG database of 63 AD, 63 MCI and 63 HC, has been used
as benchmark to perform the 2-way and 3-way classification tasks. Specifically,
each n-channel EEG recording (n=19), was divided into NE epochs. Next, for
all the epochs, the time-frequency transform and the bispectrum were estimated,
resulting in NE ATFR and ABiSR, in accordance with the procedure described
in Section 3.3. Given the Eth ATFR and ABiSR under analysis, 25 CWT fea-
tures and 30 BiS features were evaluated, respectively. Four ML based systems
were developed to discriminate EEG epochs as belonging to AD, MCI or HC
class: AEj , MLPj (with j=1,2,3,4), LR and SVM. Next, the performance of the
proposed classifiers was tested firstly with the only-CWT features vector, then
with the only-BiS features vector and finally with the concatenation of CWT
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Figure 6: (a) MLP3 classifier. It comprises 1-hidden layer with 30 hidden units followed by a
softmax output layer for performing 2-way and 3-way classifications. (b) MLP4 classifier. It
comprises of 2-hidden layers with 30 and 10 hidden units, respectively, and a softmax layer
for classification purposes. The figure illustrates examples classifiers for binary classification:
AD vs. MCI.

and BiS features vectors, the latter here denoted as multi-modal (CWT+BiS)
features.
The following measures were used to quantify the effectiveness of our developed
classification systems:

PRECISION(prc) =
TP

TP + FP
(11)

RECALL(rec) =
TP

TP + FN
(12)

F − SCORE(fsc) = 2 ∗ PC ∗RC
PC +RC

(13)

ACCURACY (acc) =
TP + TN

TP + TN + FP + FN
(14)

where TP, TN, FP, FN represent the true positive, true negative, false positive
and false negative, respectively [41]. Furthermore, the k -fold cross validation
procedure (with k=10) was used: in each fold, 70% of data was used as the
training set and the remaining 30% as testing set. Thus, since the overall
classification performances were evaluated by estimating the average (avg) and
standard deviation (std) over the 10 folds, all results are expressed in terms of
average value ± standard deviation (i.e. avg(acc) ± std (acc)).
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4.1. Only-CWT features based classification

Table 1 reports the AD vs. HC, AD vs. MCI, MCI vs. HC, AD vs. MCI vs.
HC classification performance when the only-CWT features vector was used as
input to the proposed classifiers.
1) AD vs. HC : in this scenario, the AE1 and AE2 classifiers reported very good
performance, achieving accuracy values of 91.84 ± 0.5% and 92.35 ± 0.5%, re-
spectively, and F-scores of 85.93 ± 0.9% and 86.90 ± 0.8%, respectively. The
LR and SVM based classifiers, on the other hand, reported lower values in
terms of F-score (81,19 ± 1.0% and 79.60 ± 0.8%, respectively) and accuracy
(89.25 ± 0.5% and 88.48 ± 0.5%, respectively). However, the MLP architec-
tures reported the highest performance. Specifically, MLP1 and MLP2 achieved
accuracy values up to 95.76 ± 0.5% and 95.4 ± 0.6%, respectively.
2) AD vs. MCI : in this scenario, the AE1 and AE2 classifiers achieved accuracy
values of 76.60 ± 0.8% and 77.45 ± 0.8%; whereas, the LR and SVM classifiers
achieved values of 71.87 ± 0.7% and 70.48 ± 0.7%, respectively. However, the
MLP1 and MLP2 classifiers outperformed all the other networks, reporting F-
score of 81.70 ± 1.3% and 78.73 ± 1.4%, respectively, and accuracy values of
86.84± 1.0% and 84.70 ± 1.1%, respectively.
3) MCI vs. HC : in this case, the AE1 and AE2 classifiers reported good accuracy
performances of 83.13 ± 1.8% and 83.93 ± 1.1%, respectively. The LR and SVM
classifiers achieved acceptable values in terms of the F-score (72.76 ± 0.6% and
73.03 ± 0.6%, respectively) and accuracy (78.07 ± 0.5% and 78.61 ± 0.5%,
respectively). However, the MLP1 and MLP2 based classifiers reported the
best performance: delivering accuracies of 91.80 ± 0.9% and 91.53 ± 0.5%,
respectively; F-score of 89.99 ± 0.6% and 72.76 ± 0.6%, respectively;
4) AD vs. MCI vs. HC : in this case, low accuracy values were achieved by
AE1, AE2, LR, SVM classifiers: 69.96 ± 1.5%, 70.61 ± 0.8%, 60.08 ± 0.6% and
66.95 ± 0.6%, respectively. The MLP1 and MLP2 classifiers, on the other hand,
reported acceptable accuracy (82.13 ± 0.5% and 80.93 ± 0.6%, respectively)
and F-scores (70.25 ± 1.3% and 68.19 ± 1.4%, respectively).

4.2. Only-BiS features based classification

Table 2 reports the AD vs. HC, AD vs. MCI, MCI vs. HC classification per-
formance when the only-BiS features vector was used as input to the proposed
classifiers.
1) AD vs. HC : the AE1 classifier achieved accuracy and F-score values of 82.82
± 0.9% and 70.56 ± 1.4%, respectively. The AE2 classifier reported similar
results (accuracy of 82.59 ± 1.0% and F-score of 70.46 ± 1.6%). Comparable
performances were observed with the LR classifier (accuracy of 83.03 ± 0.9%
and F-score of 70.67 ± 1.5% ); whereas, lower values were observed with the
SVM model. However, the MLP classifiers reported the highest classification
performance. Specifically, MLP1 achieved an accuracy of 87.59 ± 0.9% and
F-score of 79.15 ± 1.6%; whereas, MLP2 achieved an accuracy of 87.28 ± 0.8%
and F-score of 78.69 ± 1.3% .
2) AD vs. MCI : the AE1 classifier achieved accuracy and F-score values of 72.12
± 1.0% and 57.18 ± 2.0%, respectively. The AE2 classifier reported comparable
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values (accuracy of 71.76 ± 0.9% and F-score of 57.53 ± 1.4% ). Similarly, the
LR and SVM classifiers reported accuracies of 72.76 ± 1.0% and 71.03 ± 0.8%,
respectively. The MLP1 and MLP2 classifiers reported the highest classification
accuracies of 79.38 ± 0.8% 79.20 ± 1.2%, respectively.
3) MCI vs. HC : the AE1 and AE2 classifiers achieved similar accuracy values,
that is: 79.25 ± 0.6% and 79.56 ± 1.0%, respectively. The LR classifier reported
an accuracy and F-score values of 76.43 ± 0.6% and 71.88 ± 0.9%, respectively;
whereas, the SVM classifier reported accuracy of 76.20 ± 0.8% and F-score of
71.87 ± 1.0%, respectively. However, the MLP classifiers reported the highest
classification performance with an accuracy of 87.14 ± 0.7% .
4) AD vs. MCI vs. HC : low accuracy values were observed in the AE1, AE2,
LR, SVM classifiers, reporting accuracy rate up to 65.75 ± 1.2% (AE2). Slightly
better performance were achieved with the MLP based classifiers, with accuracy
rate up to 74.75 ± 0.9% (for MLP1)

4.3. multi-modal (CWT+BiS) features based classification

Table 3 reports the AD vs. HC, AD vs. MCI, MCI vs. HC classification
performance when the multi-modal (CWT+BiS) features vector was used as
input to the proposed classifiers.
1) AD vs. HC : in this case, high discrimination performances were observed
with all the classifiers. Specifically, the AE3 classifier reported accuracy and
F-score values of 93.85 ± 0.3% and 89.56 ± 0.5%, respectively; the AE4 clas-
sifier achieved an accuracy of 94.00 ± 0.5% and F-score of of 89.86 ± 0.8%,
respectively. The LR and SVM reported accuracies of 93.21 ± 0.6% and 91.88
± 0.5%; whereas the MLP architectures reported the highest performance with
accuracy values of 96.95 ± 0.5% (MLP3) and 96.71 ± 1.1% (MLP4).
2) AD vs. MCI : in this case, the AE3 and AE4 classifiers reported accept-
able accuracy values of 78.79 ± 1.0% and 79.26 ± 0.9%; whereas, the LR and
SVM classifiers achieved values of 76.64 ± 0.8% and 75.85 ± 0.5%, respectively.
However, the MLP3 and MLP4 outperformed all the other classifiers, achieving
accuracy rates up to 90.24 ± 0.7% and 89.81 ± 1.0%, respectively.
3) MCI vs. HC : in this scenario, higher classification performances were ob-
served with the AE3 (accuracy of 90.53 ± 0.8%, F-score of 88.83 ± 0.9%) and
AE4 (accuracy of 90.57 ± 0.9%, F-score of 88.83 ± 1.0%) compared to LR (ac-
curacy of 84.89 ± 0.5%, F-score of 82.03 ± 0.5%) and SVM (accuracy of 84.41 ±
0.7%, F-score of 81.48 ± 0.5%). On the other hand, the MLP models reported
the highest performances with accuracy values of 96.24 ± 0.5% (MLP3) and
95.91 ± 0.3% (MLP4).
4) AD vs. MCI vs. HC : acceptable accuracies were reported with the AE3 (76,91
± 2.0%), AE4 (77,30 ± 1.4%) and SVM (74,54 ± 0.5%) classifiers; whereas, low
accuracy performance were observed with the LR technique (65.35 ± 0.6%).
Finally, in this scenario, the MLP3 and MLP4 classifiers reported the highest
accuracy values: 89.22 ± 0.7% and 88.56 ± 0.7%, respectively.
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5. Discussion

This paper exploited the potential of both CWT and BiS features extracted
from time-frequency and bispectrum representations able to better discrimi-
nate among AD/MCI/HC EEG epochs. Specifically, three sets of features were
generated: only-CWT features, only-BiS features and multi-modal (CWT+BiS)
features. The extracted features were fed to the proposed ML classifiers (AEj ,
MLPj , LR, SVM with j =1,2,3,4) to perform binary and multiple EEG epoch
classifications: AD vs. HC, AD vs. MCI, MCI vs. HC and AD vs. MCI
vs. HC. Comparative results showed that our multi-modal (CWT+BiS) ap-
proach outperformed the only-CWT and only-BiS approaches, reporting the
best classification performance in all of the analysed scenarios. This endorses
the hypothesis that high order features extracted from the bispectrum and TF
maps, can provide enhanced AD/MCI/HC classification. We conjecture that
the improved classification performance is due to the ability of bispectrum to
capture nonlinear couplings between channels in the frequency domain (since
it takes into account the phase component of the Fourier Transform). Indeed,
EEGs are known to be inherently generated by non-linear interactions between
neuronal circuitry. However, the bispectrum is not sufficient for representing
all required information from the EEGs, particularly on account of their non-
stationary nature. Thus augmenting time-frequency domain representations
can help improve the performance of multi-modal classifiers. Time-frequency
approaches, such as the CWT, can provide information on how the frequency
content changes over time. Comparative performance evaluation demonstrated
the superior classification ability of MLP3 as compared to other proposed mod-
els. In particular, the MLP3 was found to achieve the highest accuracy of 96.95
± 0.5% in AD vs. HC, 90.24 ± 0.7% in AD vs. MCI; 96.24 ± 0.5% in MCI vs.
HC and 89.22 ± 0.67% in AD vs. MCI vs. HC classification. It is worth noting
that the developed MLP3 had a very simple architecture (1-hidden layer with
30 neurons), thus requiring significantly reduced number of learning parameters
and training time.

It is also interesting to note that the MLPs outperformed AE networks.
AEs are typically used to extract relevant features from high dimensional rep-
resentations. In this study, the maximum input size was only 55 features (for
the case of the multi-modal approach) thus it could be argued that the com-
pression ability of AE was not fully exploited in this case. The possible over
compression of features potentially caused loss of relevant information, and con-
sequently a misclassification of the EEG epoch under analysis. In particular,
Figure 7 shows outputs of a pair of nodes (i.e., 6 vs. 10) of the second hidden
layer of the AE[55:30:10:2], when the multi-modal (CWT+BiS) features were
used as input in the AD vs. HC classification scenario. As can be seen, the
compressed representation allows to approximately reconstruct the input vector
by also separating the two classes (i.e. AD, HC), notwithstanding the absence
of labels since the learning is unsupervised. In case of the MLP, in contrast, the
hidden nodes are forced to learn the dual classification problem. Availability of
labels improves discrimination performance with respect to the scheme based on
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AEs, as the compression procedure invariably causes some information loss. In
the future, a wider set of features will be introduced and extracted from EEGs
in order to capture more diagnostically relevant information as possible. In such
a case, a multi-modal AE model might improve classification performance by
reducing redundancy in the relatively large input space.

To the best of our knowledge, this is the first work that uses a multi-modal
approach based on a concatenation of time-frequency and bispectrum features
to classify EEGs segments of AD, MCI and HC.

In a previous work, Morabito et al. [29] proposed CNN based classification
of EEG recordings of AD/MCI/HC subjects by extracting statistical parame-
ters mean (µ), standard deviation (σ) and skewness (κ) from time-frequency
representations of the EEG time series. The proposed system achieved good
classification performance, specifically: 85% accuracy in AD vs. HC, 78% ac-
curacy in AD vs. MCI, 85% accuracy in MCI vs. HC and 82% accuracy in AD
vs. MCI vs. HC classification. However, the classifier was tested on a limited
dataset (69 individuals, 23 per class) and the CWT features were extracted
from empirically defined time-frequency sub-maps that did not correspond to
the standard EEG rhythms, that are known to be associated with different brain
states, and can thus provide relevant information when investigated separately.
In [42], instead, Ieracitano et al. used the same EEG database that was used in
this paper. The authors proposed and trained a CNN1 classifier with 2D-power
spectral density (PSD) images of AD, MCI and HC. Experimental results re-
ported classification accuracies of 92.95% in AD vs. HC, 84.62% AD vs. MCI
91.88% in MCI vs. HC and 83.33% in AD vs. MCI vs. HC. However, the
methodology proposed in [42] was heavily dependent on the position of power
peaks in the frequency domain. In particular, an unexpected shifting of the
dominant α peak (for example, due to artefactual components) can cause a
misclassification of the epoch under analysis.

In contrast, in this study, we extracted the CWT features and BiS features
from standard EEG sub-bands and differently from the aforementioned stud-
ies, the 10-fold cross validation method was also used. Moreover, it has been
proven in our current study, that the concatenation of CWT and BiS features
can provide a more effective AD/MCI/HC classification performance. Specifi-
cally, experimental results show that, the proposed MLP classifier based on the
multi-modal feature set outperformed other schemes. Nevertheless, it is worth
mentioning that, the idea to mix CWT and BiS features is not merely a combi-
nation of two different techniques (time-frequency and bispectrum), but, comes
from a more accurate analysis of their properties in each sub-band (within each
category). Indeed, in order to further emphasize the effectiveness of extracted
features in the discrimination of HC, MCI and AD subjects, the probability den-
sity functions (pdf) of the only-CWT, only-BiS and multi-modal (CWT+BiS)
features were also evaluated in each sub-band (i.e. δ, θ, α1, α2, β). Compara-
tive experimental results show that the pdf distributions highlight the different
features of AD, MCI and HC. For example, Figure 8 reports the δ band distri-
bution of three set of features vectors for each class category (AD/MCI/HC).
As can be seen, the distributions of multi-modal (CWT+BiS) features (Figure
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8 (g), (h), (i)) take into account multi-modal information gathered from both
TF (Figure 8 (a), (b), (c)) and bispectrum (Figure 8 (d), (e), (f)) analysis.
Notably, as regards the HC histogram of the CWT features (Figure 8 (c)), it
reports a bimodal distribution with local maxima around 0.1 and 0.4; similarly,
as regards the HC histogram of the BiS features (Figure 8 (f)) a bimodal distri-
bution is also observed but with local maxima around 0.4 and 0.9. Finally, the
HC histogram of the multi-modal (CWT+BiS) features, combine the CWT and
BiS properties by showing a trimodal distribution with local maxima around
0.1, 0.4 and 0.9. Similar behaviors can be observed in MCI and AD distribu-
tions. Furthermore, AD distributions report lower pdf values than HC, while
MCI shows values in between those in AD and HC. This is rather expected
as the MCI is a prodromal stage of AD. The discrimination performance was
also confirmed by the analysis of the Receiver Operating Characteristics (ROC)
curve and in particular by measuring the areas under ROC curve (AUC). As an
example, Figure 9 reports the ROC curves and the corresponding AUC values
related to the AD vs. MCI scenario when only-CWT, only-BiS and multi-modal
(CWT+BiS) features are used as input to the proposed classifiers. As seen from
the comparative experiment results, MLP architectures with multi-modal input
features vector achieved the best performance (AUC rate up to 96.5%).

Nevertheless, our proposed methodology suffers from some drawbacks. The
EEG database includes AD and MCI patients at different stages of the disorders.
AD is a neurodegenerative disease, which progressively damages the brain caus-
ing neuronal death, synapse loss and atrophy; it develops gradually and reflects
differently upon the EEG waves, depending on its stage. The group of MCI
subjects includes all those who show a mild cognitive impairment, however, not
all are inherently affected by AD, hence not all of them will develop dementia
due to AD. Some of them may remain stable whilst some others may improve.
This means that some MCI subjects, inherently affected by AD and at a stage
of the pathology close to degeneration into dementia, may show EEG patterns
closer to the AD category, than to MCI, which may cause a misclassification in
the EEG of that subject.

6. Conclusions

In this paper, a novel multi-modal ML system for classifying EEG record-
ings of AD, MCI and HC individuals is proposed. The originality of the present
research lies in combining higher order statistics extracted from the bispec-
trum and from the time-frequency representation of EEG signals in order to
enhance discrimination performance between the AD, MCI and HC categories.
EEG is generated by both linear and non-linear processes related to the inter-
action between neurons at the cortical level. The bispectrum is able to capture
such non-linear interactions in the frequency domain. Such kind of interactions
show differently in the three classes of subjects. For this purpose, a feature set
comprising higher order statistics extracted from the bispectrum (“only-BiS”
dataset) was defined. Bispectrum analysis is an attractive technique to monitor
brain states in AD subjects as it is capable of detecting EEG nonlinearities via
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Figure 7: Output of the pair of nodes (6 vs. 10) of the second hidden layer of the autoencoder
sized [55:30:10:2], when the multi-modal (CWT+BiS) features are used as input. It is here
evident that the compressed representation allows to approximately reconstructing the input
vector by also separating the two classes although the learning is unsupervised, thus the label
information is not available. In the case of MLP, in contrast, the hidden nodes are forced
to learn the binary nature of the input. This improves discrimination performance with
respect to the scheme based on the AEs as the compression procedure causes invariably some
information loss.

the information garthered from higher order phase coupling. Encouraged by pre-
vious findings from time-frequency representations of EEG, a set of features was
extracted from the time frequency maps of EEG signals (termed “only-CWT”
dataset). Four different architectures (MLP, SVM, AE, LR) were designed and
tested over three different feature sets: only-CWT, only-BiS and a combination
of CWT and BiS. Comparative results demonstrate the potential of our pro-
posed multi-modal (CWT+BiS) approach. The best performance was achieved
when the multi-modal features vector was used, thus endorsing our hypothesis
that the joint use of TF and bispectrum can more effectively empower EEG-
based differential diagnosis of AD, MCI and healthy elderly individuals. To the
best of our knowledge, this is the first study that exploits and uses both time-
frequency and bispectral coefficients as discriminating features to improve the
diagnosis of MCI/AD. Notably, we propose a computationally-efficient MLP
architecture with only one hidden layer and 30 hidden units, which is shown
to outperform other state-of-the-art learning models, delivering accuracy rates
of up to: 96.95 ± 0.5% in AD vs. HC; 90.24 ± 0.7% in AD vs. MCI; 96.24
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Figure 8: Probability density function (pdf) distribution of the three set of features vectors
(only-CWT, only-BiS and multi-modal (CWT+BiS) features) in the δ band of each class cat-
egory (AD, MCI and HC). As can be seen, the multi-modal (CWT+BiS) features distribution
takes into account both infomation of CWT and BiS features distributions. For example,
the HC distribution of the multi-modal (CWT+BiS) features (i) somehow collects the HC
properties of the CWT (c) and BiS (f) features vectors.

± 0.5% in MCI vs. HC and 89.22 ± 0.7% in AD vs. MCI vs. HC. It is
worth noting that this study focused on the AD/MCI/HC classification task
and did not address prediction of early onset of AD, which is an open diagnos-
tic and clinical issue. In order to enhance the predictive power, an analysis is
required on the evolution of predictive models using longitudinal data. Imaging
diagnostics are mostly used for longitudinal studies e.g. Alzheimer’s Disease
Neuroimaging Initiative (ADNI). Nevertheless, the use of EEG is rather useful
in early phases, on account of its low-cost, ease of multiple scanning and poten-
tial acceptance by prospective patients. In this context, we previously carried
out a longitudinal study on EEG-AD data [43] that showed the alterations of
brain connectivity during the course of the disease. Hence, motivated by the
excellent AD/MCI/HC classification performance achieved here, through our
proposed multi-modal ML system, we intend to carry out future longitudinal
(or multiple-time follow-up) studies on MCI patients and HC individuals in
order to extract potentially relevant biomarkers for monitoring disease progres-
sion. This could prove useful for designing an early protocol for patients eligible
for prescription of anti-dementia drugs. It is also worth mentioning that the
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classification power refers to discrimination of classes of subjects, whereas pre-
dictive power relates to early interpretation of disease progression in individuals.
Monitoring more subjects will generate the required database to enable possible
extraction of “general” rules for conversion from MCI to AD, and HC to MCI,
based on the discovered features. Further, the follow-up of healthy individuals
could yield relevant information for predicting discrimination in healthy and
pathological aging. The main goal of future research will be to extract efficient
features showing different longitudinal paths.

The identification of AD state can also be carried out using recently devel-
oped architectures such as the Spiking Neural Network (SNN) based NeuCube,
which was shown to deliver very promising results [44]. For future work, it
will be interesting to integrate our multi-modal ML techniques with the SNN
in order to better understand changes in brain activity [45] [46]. Additionally,
motivated by the promising results of our multi-modal approach, a larger cohort
of patients will be taken into account, and performance benchmarked against
a range of other state-of-the-art deep and reinforcement learning approaches
(including those recently reported in [47]). Further, we intend to apply our
multi-modal ML system to investigate epileptic seizure activity, and compare
with the recently reported approach in [48], which exploited high order spectral
features of bispectrum and the conventional MLP neural network to enhance
seizure prediction (in particular, classification of interictal and preictal sam-
ples). Finally, novel saliency based approaches [49] may also be explored, in an
attempt to further enrich the multi-modal representations.
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Figure 9: ROC curves and AUC values of the proposed AEs, MLPs, LR and SVM classifiers
for the AD vs. MCI when the only-CWT (a), only-BiS (b), multi-modal (CWT+BiS) features
vector (b) is used as input.
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Table 1: Classification performance of the proposed classifiers evaluated on the test sets,
when the only-CWT features vector is used. All the results are quantified as average value ±
standard deviation.

only-CWT based classsification
AD vs HC

Method Precision Recall F-score Accuracy
AE1 87.87 ± 1.5 % 84.07 ± 1.5 % 85.93 ± 0.9 % 91.84 ± 0.5 %
AE2 88.19 ± 0.9 % 85.64 ± 1.2 % 86.90 ± 0.8 % 92.35 ± 0.5 %

MLP1 92.96 ± 1.1 % 92.72 ± 1.7 % 92.84 ± 1.0 % 95.76 ± 0.6 %
MLP2 92.24 ± 1.1 % 92.40 ± 0.9 % 92.32 ± 0.7 % 95.45 ± 0.4 %

LR 88.19 ± 1.2 % 78.29 ± 1.5 % 81.19 ± 1.0 % 89.25 ± 0.5 %
SVM 83.75 ± 1.3 % 75.85 ± 1.1 % 79.60 ± 0.8 % 88.48 ± 0.5 %

AD vs. MCI
Method Precision Recall F-score Accuracy

AE1 71.28 ± 1.1 % 59.53 ± 2.0 % 64.88 ± 1.4 % 76.60 ± 0.8 %
AE2 72.47 ± 1.5 % 61.10 ± 2.0 % 66.30 ± 1.4 % 77.45 ± 0.8 %

MLP1 82.52 ± 1.9 % 80.89 ± 1.7 % 81.70 ± 1.3 % 86.84 ± 1.0 %
MLP2 79.51 ± 2.0 % 77.95 ± 1.6 % 78.73 ± 1.4 % 84.70 ± 1.1 %

LR 72.47 ± 1.2 % 50.30 ± 1.5 % 56.50 ± 1.2 % 71.87 ± 0.7 %
SVM 64.20 ± 1.6 % 42.25 ± 1.6 % 50.97 ± 1.3 % 70.48 ± 0.7 %

MCI vs. HC
Method Precision Recall F-score Accuracy

AE1 83.54 ± 2.0 % 75.07 ± 2.8 % 79.08 ± 2.4 % 83.13 ± 1.8 %
AE2 84.17 ± 1.6 % 76.56 ± 1.7 % 80.18 ± 1.4 % 83.93 ± 1.1 %

MLP1 90.62 ± 1.2 % 90.03 ± 1.2 % 90.32 ± 1.1 % 91.80 ± 0.9 %
MLP2 90.37 ± 1.0 % 89.62 ± 0.9 % 89.99 ± 0.6 % 91.53 ± 0.5 %

LR 84.17 ± 1.0 % 68.98 ± 0.7 % 72.76 ± 0.6 % 78.07 ± 0.5 %
SVM 78.61 ± 0.9 % 68.19 ± 0.7 % 73.03 ± 0.6 % 78.61 ± 0.5 %

AD vs. MCI vs. HC
Method Precision Recall F-score Accuracy

AE1 58.88 ± 3.6 % 42.72 ± 4.4 % 49.52 ± 3.9 % 69.96 ± 1.5 %
AE2 58.11 ± 1.9 % 43.04 ± 4.5 % 49.45 ± 3.3 % 70.61 ± 0.8 %

MLP1 72.54 ± 1.7 % 68.10 ± 1.2 % 70.25 ± 1.3 % 82.13 ± 0.5 %
MLP2 70.32 ± 1.7 % 66.19 ± 2.1 % 68.19 ± 1.4 % 80.93 ± 0.6 %

LR 58.11 ± 1.1 % 36.34 ± 0.9 % 42.99 ± 0.8 % 60.08 ± 0.6 %
SVM 57.06 ± 2.7 % 38.61 ± 0.9 % 46.06 ± 1.1 % 66.95 ± 0.6 %
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Table 2: Classification performance of the proposed classifiers evaluated on the test sets, when
the only-BiS features vector is used. All the results are quantified as average value ± standard
deviation.

only-BiS based classsification
AD vs. HC

Method Precision Recall F-score Accuracy
AE1 71.66 ± 2.1 % 69.48 ± 2.0 % 70.56 ± 1.4 % 82.82 ± 0.9 %
AE2 70.86 ± 2.1 % 70.06 ± 1.5 % 70.46 ± 1.5 % 82.59 ± 1.0 %

MLP1 78.81 ± 1.7 % 79.41 ± 1.9 % 79.15 ± 1.6 % 87.59 ± 0.9 %
MLP2 78.14 ± 1.7 % 79.24 ± 1.3 % 78.69 ± 1.3 % 87.28 ± 0.8 %

LR 70.86 ± 1.8 % 69.03 ± 1.9 % 70.67 ± 1.5 % 83.03 ± 0.9 %
SVM 69.00 ± 1.7 % 69.64 ± 1.9 % 69.32 ± 1.4 % 81.74 ± 0.9 %

AD vs. MCI
Method Precision Recall F-score Accuracy

AE1 64.64 ± 1.6 % 51.26 ± 2.5 % 57.18 ± 2.0 % 72.12 ± 1.0 %
AE2 63.38 ± 1.6 % 52.67 ± 1.6 % 57.53 ± 1.4 % 71.76 ± 0.9 %

MLP1 73.26 ± 1.5 % 68.04 ± 1.7 % 70.55 ± 1.2 % 79.38 ± 0.8 %
MLP2 72.31 ± 1.9 % 69.24 ± 1.8 % 70.74 ± 1.7 % 79.20 ± 1.2 %

LR 63.38 ± 1.8 % 53.91 ± 1.0 % 58.97 ± 1.3 % 72.76 ± 1.0 %
SVM 63.84 ± 1.8 % 46.63 ± 1.3 % 53.89 ± 1.2 % 71.03 ± 0.8 %

MCI vs. HC
Method Precision Recall F-score Accuracy

AE1 75.58 ± 1.0 % 75.56 ± 1.5 % 75.57 ± 0.8 % 79.25 ± 0.6 %
AE2 75.53 ± 1.3 % 76.74 ± 1.2 % 76.13 ± 1.1 % 79.56 ± 1.0 %

MLP1 83.88 ± 0.8 % 86.32 ± 1.2 % 85.08 ± 0.8 % 87.14 ± 0.7 %
MLP2 83.42 ± 0.9 % 86.24 ± 0.9 % 84.81 ± 0.8 % 86.88 ± 0.7 %

LR 75.53 ± 0.9 % 70.90 ± 1.7 % 71.88 ± 0.9 % 76.43 ± 0.6 %
SVM 72.15 ± 1.3 % 71.60 ± 1.6 % 71.87 ± 1.0 % 76.20 ± 0.8 %

AD vs. MCI vs. HC
Method Precision Recall F-score Accuracy

AE1 48.58 ± 1.9 % 35.77 ± 2.8 % 41.20 ± 1.9 % 65.54 ± 0.6 %
AE2 48.58 ± 2.0 % 33.77 ± 4.4 % 39.85 ± 3.5 % 65.75 ± 1.2 %

MLP1 58.75 ± 2.3 % 51.99 ± 2.3 % 55.17 ± 2.2 % 74.75 ± 0.9 %
MLP2 56.33 ± 2.6 % 49.18 ± 2.7 % 52.51 ± 2.4 % 73.59 ± 1.2 %

LR 48.58 ± 1.9 % 10.07 ± 0.6 % 16.77 ± 0.8 % 56.49 ± 0.8 %
SVM 48.85 ± 1.3 % 38.03 ± 1.5 % 42.76 ± 1.4 % 64.20 ± 0.7 %
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Table 3: Classification performance of the proposed classifiers evaluated on the test sets, when
the multi-modal (CWT+BiS) features vector is used. All the results are quantified as average
value ± standard deviation.

multi-modal (CWT+BiS) based classsification
AD vs. HC

Method Precision Recall F-score Accuracy
AE3 90.02 ± 0.9 % 89.10 ± 1.1 % 89.56 ± 0.5 % 93.85 ± 0.3 %
AE4 89.97 ± 1.1 % 89.74 ± 1.2 % 89.86 ± 0.8 % 94.00 ± 0.5 %

MLP3 94.72 ± 1.0 % 94.91 ± 1.1 % 94.85 ± 0.9 % 96.95 ± 0.5 %
MLP4 94.38 ± 2.1 % 94.56 ± 1.8 % 94.46 ± 1.8 % 96.71 ± 1.1 %

LR 89.97 ± 1.3 % 87.51 ± 1.4 % 88.43 ± 1.0 % 93.21 ± 0.6 %
SVM 86.82 ± 1.0 % 85.60 ± 0.7 % 86.21 ± 0.8 % 91.88 ± 0.5 %

AD vs. MCI
Method Precision Recall F-score Accuracy

AE3 73.22 ± 1.2 % 65.56 ± 2.7 % 69.18 ± 1.8 % 78.79 ± 1.0 %
AE4 73.05 ± 1.7 % 67.97 ± 2.1 % 70.42 ± 1.4 % 79.26 ± 0.9 %

MLP3 87.14 ± 1.0 % 85.71 ± 1.9 % 86.46 ± 1.1 % 90.24 ± 0.7 %
MLP4 86.08 ± 1.6 % 85.83 ± 1.5 % 85.95 ± 1.3 % 89.81 ± 1.0 %

LR 73.05 ± 1.2 % 64.23 ± 1.5 % 66.63 ± 1.2 % 76.64 ± 0.8 %
SVM 68.97 ± 0.9 % 60.89 ± 1.3 % 64.68 ± 0.9 % 75.85 ± 0.5 %

MCI vs. HC
Method Precision Recall F-score Accuracy

AE3 89.00 ± 1.3 % 88.65 ± 1.2 % 88.83 ± 0.9 % 90.53 ± 0.8 %
AE4 89.45 ± 1.6 % 88.21 ± 1.4 % 88.83 ± 1.0 % 90.57 ± 0.9 %

MLP3 95.31 ± 0.8 % 95.86 ± 0.6 % 95.58 ± 0.6 % 96.24 ± 0.5 %
MLP4 94.95 ± 0.8 % 95.44 ± 0.5 % 95.19 ± 0.3 % 95.91 ± 0.3 %

LR 89.45 ± 0.9 % 81.22 ± 0.6 % 82.03 ± 0.5 % 84.89 ± 0.5 %
SVM 82.24 ± 0.8 % 80.75 ± 1.0 % 81.48 ± 0.8 % 84.41 ± 0.7 %

AD vs. MCI vs. HC
Method Precision Recall F-score Accuracy

AE3 64.87 ± 2.0 % 55.85 ± 1.4 % 62.00 ± 0.7 % 76.91 ± 2.1 %
AE4 63.66 ± 1.8 % 55.89 ± 2.7 % 59.52 ± 2.1 % 77.30 ± 1.4 %

MLP3 80.74 ± 1.5 % 80.99 ± 2.0 % 80.87 ± 1.4 % 89.22 ± 0.7 %
MLP4 79.92 ± 1.4 % 78.21 ± 2.0 % 79.10 ± 1.5 % 88.56 ± 0.7 %

LR 63.66 ± 1.2 % 47.52 ± 1.4 % 49.96 ± 1.0 % 65.35 ± 0.6 %
SVM 63.86 ± 1.4 % 56.74 ± 1.3 % 60.09 ± 1.0 % 74.54 ± 0.5 %
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