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SEISMIC DAMAGE ACCUMULATION IN MULTIPLE MAINSHOCK-AFTERSHOCK SEQUENCES 
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SUMMARY 

Earthquakes are generally clustered, both in time and space. Conventionally, each cluster is made of: foreshocks, the 

mainshock, and aftershocks. Seismic damage can possibly accumulate because of the effects of multiple earthquakes 

in one cluster and/or because the structure is unrepaired between different clusters. Typically, the performance-based 

earthquake engineering (PBEE) framework neglects seismic damage accumulation. This is because: (a) probabilistic 

seismic hazard analysis (PSHA) only refers to mainshocks and (b) classical fragility curves represent the failure 

probability in one event, of given intensity, only. However, for life-cycle assessment, it can be necessary to account 

for the building-up of seismic losses because of damage in multiple events. It has been already demonstrated that a 

Markovian model (i.e., a Markov chain), accounting for damage accumulation in multiple mainshocks, can be 

calibrated maintaining PSHA from the classical PBEE framework, and replacing structural fragility with a set of state-

dependent fragility curves. In fact, the Markov chain also works when damage accumulates in multiple aftershocks 

from a single mainshock of known magnitude and location, if aftershock-PSHA replaces classical PSHA. Herein this 

model is extended further; in particular, it is developed a Markovian model that accounts, at the same time, for damage 

accumulation: (i) within any mainshock-aftershock seismic sequence and (ii) among multiple sequences. The model 

is illustrated through applications to a series of six-story reinforced-concrete moment-resisting-frame buildings 

designed for three sites with different seismic hazard levels in Italy. The time-variant reliability assessment results are 

compared to the classical PBEE approach and the accumulation model that only considers mainshocks, so as to address 

the relevance of aftershocks for life-cycle assessment. 

Keywords: state-dependent fragility, performance-based earthquake engineering, back-to-back incremental dynamic 

analysis, earthquake clusters, life-cycle. 

1. INTRODUCTION 

The performance-based earthquake engineering (PBEE) framework allows to assess the rate of earthquakes able to 

cause exceedance of a given seismic loss threshold to an engineering system of interest (e.g., a structure).1 A more 

modest goal of PBEE is the failure rate; i.e., the rate of earthquakes causing some undesired performance for the 

structure or
f , which can be computed as follows: 

 ,Pf im Ef IM im d 
+

−

=  =    . (1) 

In the equation, P f IM im =    is the probability that the structure fails given a ground motion intensity measure 

( )IM  value (im), to be obtained by structural response analysis, and 
,im Ed  is the differential of the hazard curve; i.e., 

the function providing the rate of exceedance of im at the site of the construction, that is 
,im E , from probabilistic 

seismic hazard analysis (PSHA).2 The E subscript indicates that, in classical PSHA, the rate only accounts for the 

mainshock occurrence.  

Given Eq. (1), the probability that at least one earthquake able to fail the structure occurs in ( ),t t t+  , can be 

computed as:  

 ( ), 1 f t

fP t t t e
− 

+  = − . (2) 

Equation (2) relies on two working assumptions that are also at the base of modern seismic design approach: (i) 

structural failure is due to a single earthquake, that is, no progressive attainment of limit state due to damage 

accumulations is considered; and (ii) although earthquakes typically occurs as clustered, only the mainshocks, that is 

the prominent event (to follow) of the cluster, are able to lead the structure to failure. Issue (i) follows from the fact 



 

 

that fragility curves provide the failure probability given the IM  of a single earthquake, while (ii) descends from the 

fact that PSHA, in computing 
,im E , only accounts for mainshocks. 

However, these hypotheses enable a mathematically convenient time-invariant approach to the problem according 

to which the occurrence of mainshocks follows a homogeneous Poisson process (HPP) characterized by a time-

invariant rate. Fragilities are typically developed for the undamaged structure, based on the assumption that structural 

damage below the failure threshold is negligible or instantaneously repaired after the occurrence of a mainshock not 

causing failure. Nevertheless, earthquakes typically appear as clustered in time and space. Within each cluster, 

earthquakes are conventionally categorized in: foreshocks, the mainshock, and aftershocks. The mainshock is, 

classically, defined as the prominent magnitude event, while the foreshocks and the aftershocks are those preceding 

and following it, respectively. Therefore, in the case of long-lasting clusters,3 the negligibility of damage accumulation 

within the cluster, as well as the negligibility of the foreshocks/aftershocks contribution to seismic hazard, are 

questioned.  

Mainly originated from the needs of life-cycle assessment, damage accumulation has been the subject of a 

significant deal of research by those interested in stochastic modelling of degrading structures. In general, two types 

of deterioration mechanism are accounted for: (i) gradual deterioration of material characteristics (i.e., aging) and (ii) 

instantaneous damage due to sudden shocks. Some studies adopt analytically convenient reliability models, assuming 

independent damage increments (i.e., damage increment does not depend on the damage history), to model one4,5 or 

both issues.6,7 However, state-of-the-art structural mechanics often requires to model structural degradation in a state-

dependent fashion; i.e., the future damage predictions depend on the state of the structure at the time of the evaluation. 

In fact, if accumulating damage can be quantified by a number of discrete states, Markov-chains can be an effective 

approach to solve the issue, as literature shows.8–10 In particular, when earthquakes are of concern, Markovian 

modelling of damage accumulation replaces the failure rate from Equation (1) with a unit-time transition matrix, which 

collects the rates of seismic events causing transition from any damage state to any other.11 To calibrate the stochastic 

model, the fragility curve must be replaced by a set of vulnerability models, that is state-dependent fragilities, which 

provide the probability of exceeding a certain damage state, conditional on the ground motion intensity of the 

earthquake and the current damage state at the time of earthquake occurrence. If state dependent fragility curves are 

combined with classical PSHA, the resulting transition matrix refers to damage accumulation in multiple mainshocks, 

as sketched in Figure 1a. 

Regarding the fact that PSHA only considers mainshocks, it is argued in a number of studies that the occurrence 

of seismic clusters can be treated in a similar fashion as the conventional PSHA, since the occurrence rate of the whole 

cluster is necessarily equal to that of the mainshocks. Then the clusters follow the same Poisson occurrence process 

of the mainshocks.12–14  

It should be noted, finally, that if state-dependent fragility curves are combined with aftershock-PSHA (i.e., 

APSHA)15 instead, the Markov-chain models damage accumulation within a single aftershock sequence, following a 

mainshock of given magnitude and location, as shown already in literature.11 

Based on these grounds, the objective of the work presented hereafter, is to formulate a Markovian model for 

seismic structural damage accumulation for both mainshocks and aftershocks. It is assumed that the structure, in a 

time-interval of interest, can face multiple mainshock-aftershock sequences, that are random in number and occur 

according to an HPP. It is also assumed that the path from as-new conditions to failure is represented by a series of 

damage states (DS). In fact, the obtained Markov-chain models both: (1) damage accumulation within any mainshock-

aftershock seismic sequence, and (2) damage accumulation in multiple sequences, as sketched in Figure 1b, which 

can be useful for life-cycle assessment studies. 

To illustrate the work, the remainder of the paper is structured in such a way that the Markov-chain-based model 

for damage accumulation due to mainshocks only is given first, also recalling the basis of the classical PSHA. 

Subsequently, the damage accumulation within the aftershock sequence from a single mainshock, of given magnitude 

and location, is addressed. Then, the damage-state transition matrix for mainshock-aftershock sequences, is derived. 

The seismic reliability model is discussed through applications to a series of six-story reinforced-concrete (RC) 

moment-resisting-frame code-conforming buildings,16,17 to compare with the classical PBEE approach, and to the case 

when damage accumulation neglects aftershocks. Moreover, because the considered sites are exposed to different 

seismic hazard, the applications also allow to assess the importance of the damage accumulation issue with respect to 

the seismicity of the construction location. 

 

 Even the identification of clusters is a challenging problem in seismology requiring conventional definitions.44 



 

 

 

Figure 1. Damage accumulation, for a structure subjected to mainshocks only (left) and mainshock-aftershock sequences, 

following the concept of this study (right). 

2. DAMAGE ACCUMULATION ONLY IN MAINSHOCKS OR ONLY IN AFTERSHOCKS  

This section recalls the Markovian modelling of damage accumulation as formulated by Iervolino et al.11 In this 

reliability formulation, the hazard model refers to the classical PSHA (i.e., for mainshocks only) or to APSHA (i.e., 

for aftershocks only). According to the model, failure can be attained not only in a single earthquake of sufficient 

intensity, but also in multiple seismic shocks producing progressive damage (i.e., deterioration) on the structure. The 

hypotheses are that: (i) structural damage is represented by means of DSs, (ii) time is discretized in intervals of a fixed 

width; and (iii) it is assumed that the probability of moving from a damage state to another, given the occurrence of 

an earthquake, only depends on the IM of the earthquake and on the damage state of the structure at the time of the 

seismic shock. The following first briefly recalls the basis of PSHA and then the reliability formulation for the Markov-

chain-based damage accumulation process. Finally, the application in conjunction with APSHA, that is damage 

accumulation during the aftershock sequence of a specific mainshock, is recapped. 

2.1. Shock occurrence according to PSHA 

According to PSHA, the occurrence of mainshocks at a site with magnitude larger than a minimum threshold ( )minm  

is described by an HPP, characterized by the Ev  rate. As already mentioned, in the earthquake engineering context, 

of particular interest is the exceedance of a certain EIM  threshold. The occurrence rate of mainshocks producing such 

exceedance, 
,im E , can be computed according to Equation (3): 

   ( )
,max ,max

,min ,min

, ,P | , ,

E E

E E

E E

r m

im E E M RE

r m

v f dx dyIM im x y x y =      . (3) 

In the equation,  P | ,EIM im x y  is the probability that the intensity threshold is exceeded given a mainshock of 

magnitude EM x=  which is separated from the site by a distance ER y= , and can be obtained from a ground motion 

prediction equation (GMPE). The term ,E EM Rf  is the joint probability density function (PDF) of EM and ER  random 

variables (RVs) ranging in the  ,min ,max,E Em m  and  ,min ,max,E Er r  intervals, respectively.*  

It is useful to note that ,E EM Rf  is a joint PDF of magnitude and source-to-site distance RVs, conditional to the 

occurrence of a generic earthquake; i.e., a mainshock of unspecified characteristics. Moreover, it is fairly easy to show 

that the absolute value of the derivative of the hazard curve divided by the Ev  rate, represents the PDF of the EIM  

 

* Herein, the subscripts E and A are used referring to mainshocks and aftershocks, respectively. When no subscript appears for IM , 

it means that there’s no need to make a distinction.  
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(which is obviously a RV), given the occurrence of a generic mainshock. Such a PDF can be indicated as 
EIM E

f , and 

will be useful in the following derivations of the Markovian stochastic model: 

 ( )
( )

,1
E

im E

IM E

E

d
f im

d im




=  . (4) 

In PSHA, Equation (3) is usually computed for a wide range of im values, so as to obtain the hazard curve for the site, 

that provides the exceedance rate as a function of the threshold. Finally, it is worth to recall that the rate 
,im E  is also 

the rate of an HPP, that is, the process of occurrence of mainshocks causing exceedance of im at the site.  

2.2. Transition matrix in the case of mainshocks 

The model developed in Iervolino et al.11 for mainshocks refers to a discrete-time and discrete-state homogeneous 

Markov-chain. Given that time is discretized in intervals of a fixed width, the time-unit (e.g., one year), and that the 

domain of the considered structural damage measure is partitioned to have a finite number ( )n  of damage states, iDS ,

 1,2,...i n= , from an as-built conditions to failure, the Markov chain is completely characterized by the  EP  matrix, 

which has size n n  and contains the rate of earthquakes causing transition from any iDS ,  1,2,...i n = , to any 

jDS ,  1,2,...j n = . The rates in the  EP  approximate the unit-time transition probabilities. Therefore, the 

probability that the structure in k time-units is in any of the damage states can be computed as: 

 ( ) ( ) ( ) ( )  ( ) ( ) ( ) ( )   1 2 1 20 0 0 0
k

i n i n EP k P k P k P k P P P P P=  . (5) 

In the equation, ( ) ( ) ( ) ( ) 1 2 i nP k P k P k P k  is the state vector after k time-units; i.e., ( )iP k   1,2,...i n =  is the 

probability that the structure is in iDS  at time k. Analogously, ( ) ( ) ( ) ( ) 1 20 0 0 0i nP P P P , is the initial state 

(arbitrary) vector, collecting the probabilities that the structure is in each of the damage states, at the beginning of the 

interval (i.e., 0k = ). Factually, Equation (5) replaces Equation (2), when damage accumulation is accounted for. 

The  EP  transition matrix can be computed as per Equation (6) where  P  is the transition matrix given the 

occurrence of a generic event, and is  I  is the n n  identity matrix. Indeed, the  E P   term provides the unit-time 

probabilities that the structure moves from any damage state to any damage state and a mainshock of unspecified 

magnitude and location occurs, while the ( )  1 E I−   term collects the probabilities that the structure remains in the 

same state and no earthquakes occur in the unit-time interval.  

     ( )  1E EE P IP  =  + −   (6) 

To be completely specified, the Markov chain needs the E  rate and the  P  matrix to be calibrated for the case under 

examination. The latter collects the 
,i jP  probabilities that the structures is found in 

jDS ,  1,2,...j n = , after the 

earthquake, given that it was in iDS ,  1,2,...i n =  before the earthquake:  

  

1, 1,2 1, 1 1,

2
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1 ...

0 1 ...

... ... ... ... ...

0 0 ... 1

0 0 ... 0 1

n

j n n

j

n

j n n

j

n n n n
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P
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−
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−
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. (7) 



 

 

The diagonal elements in the  P  matrix are the probabilities that the earthquake does not cause a state change and 

can be computed as the complement to 1 of the transition probabilities on the same row: i.e., , ,1 ,i j i jj i
P P i


= −  . 

The elements in the lower triangle of the matrix are set to zero because of the irreversible nature of damage progression. 

Therefore, the n th−  state, representing failure, is an absorbing state;18 i.e., the structure cannot escape from it, that 

is 
, 1n nP = .  

The computation of 
, ,i jP i j , can be performed via Equation (8) which is an application of the total probability 

theorem. It requires the 
EIM E

f  (the PDF of EIM  in a mainshock of unspecified magnitude and location) from 

Equation (4), and P ,j iDS DS IM im =  , that is the probability that the structure in iDS  moves to a 
jDS , with 

j i , given the im value of the mainshock intensity:  

 ( ) ( ), P ,
E

i j j i IM E
P DS DS IM im f im d im

+

−

 = =    , (8) 

The term P ,j iDS DS IM im =   can be derived via Equation (9), in which P ,j iDS DS DS IM im  =   and 

1P ,j iDS DS DS IM im+
  =   are the conditional probabilities that the structure in iDS  exceeds 

jDS  and 
1jDS +
, 

given earthquake intensity respectively, that is state-dependent fragility functions:  

 1P , P , P ,j i j i j iDS DS IM im DS DS DS IM im DS DS DS IM im+
     = =  = −  =      . (9) 

According to PSHA, the RVs representing ground motion intensities in different mainshocks are independently and 

identically distributed (i.i.d.), that is their PDF is always 
EIM E

f . Thus, the 
,i jP  probabilities do not change in time, 

leading to a homogeneous Markov chain, if aging is neglected; i.e., Equation (5). 

2.3. Transition matrix in the case of aftershocks 

Yeo and Cornell15 developed APSHA for short-term risk assessment; i.e., to manage the engineering risk after a 

significant earthquake on the daily time-scale. APSHA starts from the modified-Omori-law,19 in which, given that a 

mainshock of magnitude E EM m=  occurred at 0t = , the daily rate of aftershocks ( )
EA m

t  is given by Equation (10): 

 ( )
( )

( )

,min10 10E A

E

a b m m a

A m p
t

t c


+ −
−

=
+

. (10) 

In the equation 
,minAm  is the minimum considered aftershock magnitude, which cannot be larger than 

Em  and 

 , , ,a b c p  are parameters. According to Yeo and Cornell, considering the interval ( )0, AT , where AT  is the 

(assumed) duration of the sequence, the random variable counting the aftershocks, ( )0,
E

AA m
N T , is Poisson-

distributed, with mean ( ) ( ) ( ) ( ),min1 110, 1 10 10E A

E

pa b m m a p

A AA m
E N T p c T c

− −+ − −     = −  −  −  +
     

. Therefore, 

( )0,
E

AA m
N T  is characterized by the following probability mass function:  

 ( )

( )

( ) ( )
( )

,min

,min
11

11

10 10

1

10 10

1
P 0,

!

E A

a b m mE A a
pp

A

E

n
a b m m a

pp

A
c T c

p

AA m

c T c
p

N T n e
n

+ −
−−

+ −
−−

−  −  −  +  −

 −   −  +  −    = = 
 

. (11) 

From ( )
EA m

t  it follows that the daily rate of aftershocks causing exceedance of the im threshold at the site can be 

computed as: 



 

 

 ( ) ( )   ( )
,max

,min ,min

, , ,
P | , , ,

A E

E A A E E

A A

r m

im A A A A A A E E A AA m M R M R

r m

t t IM im m r f m r m r dm dr =       , (12) 

where  P | ,A A AIM im m r  is still from a GMPE ( AIM  is the aftershock IM), and 
, ,A A E EM R M R

f  is the magnitude-

distance distribution of the generic aftershock.• The distance limits  ,min ,max,A Ar r  are the minimum and maximum 

source-to-site distance of aftershocks. It results that the rate in Equation (12) also characterizes a (non-homogeneous) 

Poisson process. 

It can be recognized that the IM in any generic aftershock to the same mainshock is an i.i.d. random variable and 

its PDF, 
,A E EIM M R

f , can be obtained as:  

 ( ) ( ) ( )
,max

,min ,min

| ,, , ,
, ,

A E

A A AA E E A A E E

A A

r m

IM M R A A E E A AIM M R M R M R

r m

f im f im f m r m r dm dr=     ,  (13) 

where | ,A A AIM M Rf is the derivative of the IM distribution from a GMPE. Then, the transition matrix given the occurrence 

of one generic aftershock from a sequence of a mainshock characterized by  ,E E E EM m R r= = , is given by: 
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. (14) 

The terms of the 
,E EA M R

P 
 

 matrix are calculated as in Equation (15); i.e., using the same state-dependent fragility 

curves discussed in the previous section, yet integrated with the distribution of the aftershock intensity,
,A E EIM M R

f , 

rather than 
EIM E

f :† 

 ( ) ( ),

, ,
P ,E E

A E E

A M R

i j j i IM M R
P DS DS IM im f im d im

+

−

 = =    . (15) 

Clearly, the transition matrix 
,E EA M R

P 
 

, because of APSHA, depends on the features of the mainshock. Therefore, 

damage accumulation process is now a non-homogeneous Markov chain characterized by a time-variant daily 

transition matrix. In particular, after k time-units since the mainshock characterized by  ,E Em r , the unit-time 

transition probabilities are given by ( ) ( ) ( )( )  ,
1

E E E E
A E A m A M R A m

P k k P k I    =  + −    
.‡ Consequently, the state 

probabilities after k time-units are calculated as: 

 

• It is indicated that this distribution is conditional on the mainshock distance; in fact, it should be, more precisely, mainshock 

location. 
† For the sake of illustration, it is assumed herein that the fragilities are the same in the case of mainshocks and aftershocks 

occurrence. This is why there is no subscript to the intensity measure. However, some considerations about sufficiency45 of the 

intensity measure should be verified before making such an assumption. 
‡ The time-scale, in the case of aftershocks, is typically the day rather than the year used for mainshocks.  



 

 

 ( ) ( ) ( ) ( )  ( ) ( ) ( ) ( )  ( )
1 2 1 2

1

0 0 0 0
k

A Ei n i n

j

P jP k P k P k P k P P P P
=

 =    . (16) 

The initial state vector ( ) ( ) ( ) ( ) 1 20 0 0 0i nP P P P  represents the probability that the mainshock triggering the 

aftershock sequence puts the structure in any damage state. In the context of this model, this vector is arbitrary (i.e., it 

must be assigned evaluating the structural conditions after the mainshock). However, in the next section, it will be 

shown how to account for the uncertainty in the damage due to the mainshock, that is combining the models of sections 

2.2 and 2.3. 

3. DAMAGE ACCUMULATION PROCESS IN MAINSHOCK-AFTERSHOCK SEQUENCES 

Herein the final Markov model is derived, it accounts for damage in a single mainshock-aftershock sequence and in 

multiple sequences. In the following, the damage in a single sequence is discussed first, then multiple sequences are 

addressed. 

3.1. Transition matrix in one sequence from a mainshock of given characteristics 

It is worthwhile to first recall that during a sequence there can be a random number of aftershocks, identified by the 

( )0,
E

AA m
N T  random variable in section 2.3. Given a mainshock characterized by  ,E Em r , the transition matrix for 

the whole aftershock sequence is 
( )0,

,

AA mE

E E

N T

A M R
P



 
 

. Therefore, to account for the randomness in the number of 

aftershocks in each sequence the following equation can be used to get the expected value,  E , of this latter matrix: 

 
( )  ( )0, 0,

, ,

A AA m A mE E

E E E E

N T E N T

A M R A M R
E P P

  
    

   
,§ (17) 

which means that it is assumed that the sequence is made by a number of aftershocks equal to the mean provided by 

the modified-Omori-law for the mainshock characterized by  ,E Em r . 

However, the structure can make a transition also because of the mainshock, then a transition matrix is also needed. 

It must account specifically for the fact that the earthquake has  ,E Em r  characteristics. Therefore, such a matrix can 

be built exactly as per Equation (7) and Equation (8) however the state-dependent fragility function have to be 

integrated with the distribution of IM given  ,E Em r , which can be indicated as 
,E E EIM M R

f , instead of 
EIM E

f ; in other 

words:  

 ( ) ( ),

, ,
P ,E E

E E E

E M R

i j j i IM M R
P DS DS IM im f im d im

+

−

 = =    , (18) 

where it is obvious that 
,E E EIM M R

f  is available from a GMPE. Collecting these probabilities in a matrix provides: 
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n
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,  (19) 

 

§ This is an approximation of 
( )

  ( )
0,

, ,0
0,

A m AE

E E E E E

N T

A M R A M R A m Ai

i

E P P P N T i
 +

=
=   =           . 



 

 

which is the transition matrix due to the occurrence of the  ,E Em r  earthquake. At this point, multiplying Equation 

(19) by Equation (17) provides the transition matrix for a whole sequence given the occurrence a mainshock 

characterized by  ,E Em r , that is: 

 
( )0,

, , ,

AA mE

E E E E E E

E N T

S M R E M R A M R
P P P

 
      = 

     
. (20) 

3.2. Transition matrix for a generic mainshock-aftershock sequence and unit-time transition matrix 

The total probability theorem allows to compute the transition probability given the occurrence of any sequences, 

S E
P 

 
, by integrating over the range of mainshock features: 

 ( )
,max ,max

,min ,min

,,
,

E E

E EE E

E E

r m

M RS E S M R

r m

P P f x y dx dy   =   
     , (21) 

where the integral of the matrix is intended as the integral of each of its terms.  

In the context of damage accumulation due to mainshock-aftershock sequences, one can apply Equation (21) to 

calibrate a homogeneous Markov-chain similar to Equation (7). Because, as noted, the mainshock-aftershock 

sequences occur at the same rate of the mainshocks, unit-time damage transition probability matrix for seismic 

sequences  SP  is given, in analogy with Equation (6), by Equation (22): 

   ( ) 1S E ES E
P P I  =  + −

 
. (22) 

At this point the Markov-chain model of damage accumulation between seismic sequences is fully characterized and 

the structural reliability can be computed in any time interval via Equation (5), replacing the unit-time transition matrix 

for mainshocks,  EP , with the unit-time transition matrix for mainshock-aftershock sequences,  SP .** 

4. APPLICATION: DAMAGE ACCUMULATION FOR CODE-CONFORMING STRUCTURES 

In this section, the Markovian model of degrading structures due to mainshock-aftershock sequences is illustrated 

through the application to a set of Italian code-conforming RC buildings. In particular, the structural design refers to 

three Italian sites with different seismic hazard according to PSHA. In order to investigate the effects of sequential 

shocks, the results of the long-term seismic risk assessment are compared to: (i) the approach that neglects both the 

effects of aftershocks and of accumulating damage, that is Equation (2); (ii) the case of accumulating damage only for 

mainshocks, as described in section 2.2. 

4.1. Structural models and site of interest 

The buildings under consideration were taken from those of the RINTC (Rischio Implicito Norme Tecniche per le 

Costruzioni) project,20 which assessed the seismic risk of new buildings in Italy. Among all the buildings analyzed in 

the project, herein the residential six-story RC infilled frame buildings, designed for three Italian sites (Milan, Naples, 

and L’Aquila), are considered. The sites are representative of low, intermediate and high seismic levels, respectively. 

Local soil condition C21 is assumed for all the sites. Each building considered herein has a 5 3  bays moment-resisting 

frame characterized by regularity in plan and elevation (Figure 2a), a floor area of 221.4 11.7m , and a story heights 

of 3.05m (except the ground floor which has 3.4m in height). According to the Italian code, the buildings are designed, 

with respect to damage and the life-safety limit states, considering exceedance return period of the seismic action 

equal to 50 and 475 years, respectively.22 

For the purposes of this study, nonlinear dynamic analyses of the structures were performed on the equivalent 

single degree-of-freedom (ESDoF) systems calibrated on the static pushover curve (SPO) of the original three-

dimensional (3D) structural models, both constructed with OpenSees.23 For each building, two ESDoF systems were 

 

** Evidently, this model neglects the effect of foreshocks, which are, however, generally considered of minor importance with 

respect to mainshocks and aftershocks. 



 

 

calibrated according to Fajfar24 in conjunction with the criteria in Baltzopoulos et al.25 approximating the original 

frame model with a lumped mass multiple-degree-of-freedom system and assuming the first-mode load distribution 

for each horizontal direction (X, Y corresponding to Figure 2a). Figure 2b shows an example of the resulting backbone 

curve (L’Aquila, X direction) in terms of base shear ( )F  and displacement ( )  of the ESDoF.  

 

Figure 2. Examples of case study RC buildings; (a) 3D model; (b) corresponding SPO backbone and quadri-linear fitting; 

(c) hysteresis loop under cyclic loading. 

Each backbone was rendered quadri-linear via a Monte-Carlo-based optimization approach25 and the dynamic 

structural properties, as well as the backbone parameters illustrated in Figure 2b, were derived: equivalent vibration 

period ( )T 
and equivalent mass ( )m

, modal participation factor ( ) , yield strength and displacement ( ),y yF  
, 

post-yielding hardening and softening ratio ( ),h ca a , capping ductility ( )c c y   = , residual strength ( )pF , and 

global collapse ductility ( )GC GC y   = . For the given SPO parameters, a moderately pinching, peak-oriented 

hysteretic behavior without any cyclic stiffness/strength deterioration26 was applied; an example under cyclic loading 

is reported in Figure 2c. All parameters, including the yielding spectral acceleration at the equivalent vibration period 

( ) * *

y ySa T F m = , are summarized in Table 1. An equivalent viscous damping ratio ( )*  equal to 5% was applied 

to all models.27 

Table 1. Dynamic and static pushover parameters of the ESDoF systems. 

 Dir. 
T 

[s] 

m

[ton] 
  

( )ySa T 

[g] 

 

[%] 

yF 

[kN] 

y 

[m] 
ha  

c  
ca  

*

p

p

y

F
r

F
=  

GC  

Milan 
X 0.53 1161 1.32 0.16 5 1865 0.01 0.08 4.2 -0.03 0.80 41.1 

Y 0.58 1165 1.33 0.19 5 2164 0.02 0.29 3.3 -0.16 0.87 16.5 

Naples 
X 0.53 1265 1.31 0.23 5 2842 0.02 0.02 7.2 -0.04 0.90 50.5 

Y 0.57 1262 1.31 0.28 5 3419 0.02 0.09 3.4 -0.08 0.85 28.0 

L’Aquila 
X 0.57 1230 1.30 0.29 5 3485 0.02 0.03 4.7 -0.03 0.90 33.6 

Y 0.54 1247 1.30 0.43 5 5269 0.03 0.09 3.1 -0.07 0.86 17.6 

4.2. Definitions of damage states 

The damage index considered herein is a displacement-related engineering demand parameter. This illustrative 

application considered five sDS  based on the backbone characteristics of the considered building: (i) as-new (AN); 

(ii) usability preventing damage (UPD) as defined in the RINTC project; (iii) life-safety (LS); (iv) near-collapse (NC); 

and (v) global collapse (GC) as also defined in the RINTC project.  

The threshold displacement identifying the UPD, indicated as 1 , was identified through a multi-criteria approach 

on the original 3D structural models; it corresponds to the minimum displacement under multiple damage conditions 

that can jeopardize the building occupancy after a seismic event. In particular, these conditions refer to the damage in 

main non-structural elements; i.e., masonry infills.20 As regards the displacement for global collapse, 4 , it 
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corresponds to 50% of strength deterioration with respect to the maximum base-shear on the SPO curve of the original 

structural model in each horizontal direction. The attainment of the LS performance level ( )2  corresponds to the 

excursion to the residual plateau of the ESDoF system backbone, possibly indicating the masonry infilled walls have 

no contribution to the lateral load-bearing capacity of the structure. The threshold of NC performance level ( )3  

conventionally corresponds to the two-third of 4 . The AN state is consequently specified from no damage (zero 

displacement) up to the attainment of UPD.  

In Figure 3, these displacement thresholds are illustrated for the three buildings of L’Aquila (AQ), Naples (NA), 

and Milan (MI) in both X and Y directions. The corresponding numerical values of displacement thresholds are 

reported in Table 2. 

 

Figure 3. Damage states and limit state thresholds defined for the ESDoF systems. 

Table 2. Definitions of five discretized damage states for the three RC buildings. 

Building site 

(soil C) 
Dir. 

1  

[m] 

2  

[m] 

3  

[m] 

4  

[m] 

Milan 
X 0.0349 0.2040 0.3115 0.4673 

Y 0.0412 0.1310 0.1745 0.2617 

Naples 
X 0.0451 0.2016 0.5276 0.7914 

Y 0.0419 0.1748 0.4126 0.6189 

L’Aquila 
X 0.0626 0.2537 0.5164 0.7746 

Y 0.0610 0.2328 0.3623 0.5434 

4.3. State-dependent fragility curves 

To obtain the transition probabilities P ,j iDS DS IM im =   in Equation (8), Equation (15) and Equation (18), state-

dependent fragility curves need to be computed. Using the numerical models of the structure and a suite of ground 

motion (GM) records, the classical fragilities, that is, transition probabilities of the as-new structure ( )1i =  were 

computed via incremental dynamic analysis (IDA) from the response of the intact structure under a single shock.28–30  

Fragility curves for the structure in a damage state ( )1i   were computed via back-to-back incremental dynamic 

analysis (B2BIDA).31,†† This method involves two-step nonlinear dynamic analysis: (1) the intact structure is first 

damaged to iDS  by scaling each GM record, then 
jDS  is attained further scaling each GM record applied to the 

structural model which represents the structure in iDS .  

 

†† It should be noted that there is also an alternative to render the transition probabilities given the occurrence of an event, which is 

based Monte Carlo simulation of structural response subjected to earthquake sequences. See Iervolino et al.11 for details. 
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All the analyses were performed via a set of twenty GMs selected from the record set in Vamvatsikos and Cornell 
26. ‡‡  Each GM includes two horizontal components. For each GM, the chosen IM  is the maximum spectral 

acceleration ( )Sa  between the two horizontal components, at vibration period equal to 0.5s: 

( ) ( ) ( )( )0.5 , 0.50.5 max x ySa s Sa sSa s = . In fact, IDAs and B2BIDAs were performed utilizing an open-source 

graphical user interface for dynamic analysis of SDoF systems in OpenSees, DYANAS.32 

The analyses have been performed with the aim of approximately accounting for the tri-dimensionality of the 

original structures, even if the used ESDoF systems are in fact representative of the unidirectional SPO curves. In the 

first step of the analyses, the structural responses in the two horizontal directions were examined independently by 

considering the two uncoupled ESDoF systems of each structure subjected to the two components of selected GMs. 

For each GM, the first and second horizontal component were associated to the X and Y direction of the structure.20,33 

The considered GM was incrementally scaled and the value of ( )0.5Sa s  causing the first exceedance of the 

considered DS  threshold in either direction was determined (i.e., the lowest causing damage in any of the two 

directions). This allowed to derive a single fragility function for each damage state combining the results of the 

dynamic analyses in the two directions. As an example, one IDA curve for the building designed in L’Aquila is 

rendered in Figure 4a) showing the results from a two-component GM. The incrementally scaled intensity measure 

value is reported on the y axis of the plot, while the x axis is the maximum transient displacement,  . The threshold 

values identifying the limit states in both direction of the structure, are also represented. For the considered record, 

the first exceedance of 1  occurs in Y direction and the corresponding value of ( )0.5Sa s  is represented by the star in 

the picture. On the other hand, the exceedance of 2  occurs in X direction and the marker identifying the 

corresponding ( )0.5Sa s  is the circle. The same identification is done for the other DSs .  

To obtain the fragility curves of the structure in any DS , always the same GM record set is used. The structure 

put in one iDS  by a record was subjected to each other record to get to the target 
jDS . Indeed, all possible 

combinations of the first and second shock were considered from the twenty GM records, thus leading to four-hundred 

( 20 20 ) sequential excitations in total, for each pair of sDS .  

For the sake of simplicity, it was assumed that when the structure reaches a given DS  in one direction, the same 

DS  is associated to the other direction. An example of B2BIDA is reported in Figure 4b, in which the same structure 

of L’Aquila, after being damaged to 2DS  is subjected to the same GM considered for Figure 4a. As shown, the 

response in the two directions begins from residual displacements larger than zero. Indeed, in this particular case, 

2DS  was reached in Y direction first. However, B2BIDA showed that 3DS  is reached in X direction while both 4DS  

and 5DS  are reached in Y direction. Similarly, in Figure 4c the structure from 3DS , subjected to the same GM 

incrementally scaled, reaches both 4DS  and 5DS  in Y direction. 

 

 

‡‡ Twenty two-horizontal-component accelerometric waveforms were selected from the record set used in the cited paper, which 

contains the thirty single-component GM records. 
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Figure 4. Example of (a) IDA and (b-c) B2BIDA referring to a single GM and to the structure designed in L’Aquila. 

Denoting as ,i jSa  (with 5i j  ) the random variable representing the intensity measure causing the structure 

transition from i-th to j-th DS  or worse, state-dependent fragility functions were derived assuming the hypothesis of 

lognormal distribution of ,i jSa . The median and the logarithmic standard deviation of ,i jSa , denoted as 
,i jSa  and 

,ln i jSa
 , respectively, were estimated via the IM-based approach34,35 and the state-dependent fragility curves were 

computed using Equation (23):  

 
,

,

ln

ln ln
P ,

i j

i j

j i

Sa

im Sa
DS DS DS IM im



 −
  = =      

 
. (23) 

Lognormal fragility parameters for all cases are shown in Table 3. When 1i = , the initial DS  is AN, then it is the 

case of the classical fragility functions. As expected, the worse the initial state is, the smaller spectral acceleration 

level causing the transition to a worse DS  can be observed.  

Comparing fragility parameters of different structures, it can be seen that, in most of the cases, the median increases 

with the seismic hazard of the site. This general trend is not respected in the case of the structure in L’Aquila in LS 

conditions for which medians for NC and GC are lower than the corresponding values computed for the structure in 

Naples. The reason can be find in Figure 3 that shows the limit state thresholds for the ESDoF systems: for both 

direction, the structure in Naples has a residual plateau longer than the structure in L’Aquila. 

From the computed state-dependent fragility curves, the transition probabilities between any two DSs  can be retrieved 

via Equation (9). 

Table 3. State-dependent fragility parameters. 

Building site 
To UPD LS NC GC 

From ,i jSa  ,ln i jSa
  ,i jSa  ,ln i jSa

  ,i jSa  ,ln i jSa
  ,i jSa  ,ln i jSa

  

Milan 

AN 0.45 0.21 1.10 0.27 1.25 0.30 1.49 0.37 

UPD - - 1.07 0.28 1.23 0.30 1.47 0.36 

LS - - - - 0.13 0.25 0.85 0.51 

NC - - - - - - 0.14 0.26 

Naples 

AN 0.53 0.20 1.44 0.32 2.39 0.43 3.20 0.47 

UPD - - 1.38 0.32 2.32 0.41 3.19 0.47 

LS - - - - 1.79 0.41 2.73 0.47 

NC - - - - - - 0.34 1.01 

L’Aquila 

AN 0.75 0.23 1.96 0.33 2.61 0.38 3.34 0.43 

UPD - - 1.83 0.32 2.53 0.35 3.28 0.41 

LS - - - - 0.86 0.66 2.61 0.39 

NC - - - - - - 0.45 0.87 

4.4. Seismic hazard assessment 

As discussed in section 2.1 and section 2.3, the Markovian modelling of degrading structures due to mainshock-

aftershock sequences requires, from the hazard side, the following terms: (i) the occurrence rate of sequences ( )Ev , 

(ii) the conditional PDF of EIM , 
,E E EIM M R

f  and (ii) the conditional PDF of AIM , 
,A E EIM M R

f  for each possible 

mainshock features  ,E EM R . While (i) and (ii) are involved in mainshock hazard, (iii) is needed for aftershocks. 

Thus, all the required analyses were performed on the soil condition C for each of the considered three sites, L’Aquila, 

Naples, and Milan, via the REASESS software.36 Details about the model adopted for PSHA and APSHA are 

described in the following subsections. 

4.4.1. Mainshocks 

The seismic source model considered herein was the one by Meletti et al.37 which features 36 seismic source zones 

(numbered from 901 to 936), as represented in Figure 5a. As discussed in Stucchi et al.,38 the model of Meletti et al. 

lies at the base of the official hazard assessment for Italy, which is however, implemented via a sixteen-branches logic 



 

 

tree. The branch named 921, is the only one considered for this illustrative application. It features the GMPE of 

Ambraseys et al.39 that is adopted also herein. According to the branch 921, the magnitude-frequency distribution for 

each seismic zone was modelled based on the annual activity rates for discrete magnitude bins spanning from 4.15 to 

7.45 (reported in Iervolino et al.).14 

For each site, only the seismogenic zones dominantly contributing the hazard were considered (see Figure 5a): in 

the case of L’Aquila, which is within the zone numbered as 923, this single zone was considered. For Naples, the 

considered zones were 924, 925, 927 and 928. Finally, for Milan, it was necessary to account for eight seismic zones 

that are 902, 903, 906, 907, 909, 911, 913 and 915. (This selection of zones for each site allows to reproduce the 

hazard of the comprehensive source model with negligible approximation; see also Iervolino et al.)40,41. Figure 5b 

provides the hazard curves derived by PSHA, Equation (3), for the three considered sites: L’Aquila, Naples and Milan. 

These will be used to compute failure probabilities according Equation (2). 

 

Figure 5. (a) Seismic sources mostly contributing to the considered sites; (b) annual exceedance rates of ( )0.5Sa s  

computed via PSHA for the three sites. 

4.4.2. Aftershocks 

Aftershock parameters used in the modified Omori law of Equation (10) are from Lolli and Gasperini42: 1.66a = − ,

0.96b = , 0.03c = , and 0.93p = . The minimum magnitude of aftershocks corresponds to that for the mainshock 

events ( ),min ,minA Em m= . The locations of aftershocks were assumed to be uniformly distributed within a circular area 

centered on the mainshock location, while the size was also determined by that of the mainshock.43  

Equation (20) involves ( )0,
E

AA m
E N T 

 
 which depends on the duration of the aftershock sequence AT . The 

latter was defined arbitrarily equal to 90 days from the occurrence of the mainshock although, in principle, this 

duration could be mainshock magnitude dependent. However, in Iervolino et al.14 it was verified that increasing the 

duration of the aftershock sequence up to, for example, one year yields minor differences in hazard results.  

4.5. Transition probability matrices and time-variant seismic risk 

This section provides the resulting transition probability matrices and the time-variant seismic risk for the considered 

three sites. The results of the sequence-based seismic risk for the highest seismicity site, L’Aquila, are presented first, 

in comparison with those only accounting for mainshock events. Subsequently, the trends across the three sites with 

different seismic hazard levels are discussed. 

4.5.1. L’Aquila (high-hazard) 
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The annual transition probability matrix for sequences,  SP , is computed via Equation (22) and is shown in Table 4. 

For the sake of comparison, Table 4 also provides the transition matrix,  EP , obtained through Equation (6) 

considering the effects of mainshocks, only. 

The transition probabilities of the two matrices generally show the same order of magnitude for a given pair of 

DSs . However, as expected, the sequence-based GC probabilities are larger than the corresponding mainshocks-only. 

Similarly, the probabilities that the structure remains in the same damage state (first diagonal of each matrix) are larger 

in the mainshock-only case. Regarding to the probabilities of reaching intermediate damage states, results are less 

intuitive: the probability that a new structure moves to the UPD is larger in the sequences-based case, while the 

probabilities of reaching LS and NC are larger in the mainshocks-only case.  

It is also interesting to compare the transition rate from the AN to GC accounting for cumulative damage with the 

annual collapse rate of the AN building according to Equation (1). The latter is equal to 1.45E-04, that is 0.7% 

exceedance in 50 years. The same value, 1.45E-04, is the annual failure rate computed accounting for damage 

accumulation and mainshock-only. This is expected because, in the hypotheses of this framework, damage can hardly 

accumulate in a single year (which is the assumed time-unit), because there is a low occurrence probability of 

mainshocks. On the other hand, when the mainshock-aftershocks combined effect is considered, the unit time collapse 

rate of the AN structure increases to 3.63E-04; this is due to the possible damage accumulation during a single seismic 

sequence which is accounted for by Equation (20). 

Figure 6 provides the time-variant probabilities of the structure reaching a certain DS , which were computed 

through Equation (5) according to the mainshock-only and sequence-based approaches. In each panel, the horizontal 

axis is the number of time-units k since the initial time, 0k = . In each of the four panels of the figure, a different 

initial state of the structure is assumed: ( ) ( ) ( ) ( ) ( )   1 20 0 0 0 0 0 1 0 0 , 1,2,i i nDS P P P P i n = = = = = . More 

specifically, from Figure 6a to Figure 6d, the DSs  at time zero are AN, UPD, LS and NC, respectively. Figure 6a 

also reports the failure probability from Equation (2).  

Table 4. Annual damage transition matrices for the building in L’Aquila on the soil condition C. 

  AN UPD LS NC GC 

 SP  

 

AN 1-2.68E-03 2.15E-03 1.29E-04 4.20E-05 3.63E-04 

UPD 0 1-5.87E-04 1.59E-04 4.67E-05 3.81E-04 

LS 0 0 1-3.96E-03 2.08E-03 1.88E-03 

NC 0 0 0 1-1.57E-02 1.57E-02 

GC 0 0 0 0 1.00E+00 

 EP  

 

AN 1-2.06E-03 1.68E-03 1.56E-04 8.09E-05 1.45E-04 

UPD 0 1-4.29E04 1.97E-04 8.64E-05 1.46E-04 

LS 0 0 1-2.78E-03 2.55E-03 2.31E-04 

NC 0 0 0 1-1.15E-02 1.15E-02 

GC 0 0 0 0 1.00E+00 



 

 

    

Figure 6. Time variant probabilities of damage states for the building designed for L’Aquila. 

All the curves monotonically increase up to 100 years. As shown in Figure 6a, in the mainshock-only case, the GC 

probability of the AS structure ranges between 1.45E-04 at 1k =  and 1.81E-02 at 100k = ; the corresponding 

probability according to the sequence-based procedures ranges between 3.62E-04 and 3.90E-02. Failure probabilities 

derived by Equation (2) are equal to 1.45E-04 and 1.44E-02 after one and one-hundred years, respectively. The same 

figure shows that discrepancies between the mainshock-only and sequence-based cases are lower when damage to a 

milder damage state is considered. To give an example, if UPD is of interest, the probabilities after 100 years are equal 

to 1.49E-01 and 1.83E-01 in the case of mainshock-only and seismic sequence, respectively.  

As expected, increasing the initial DS , the failure (GC) probability increases. In the mainshock-only case, the 

failure probabilities in 100 years are equal to 1.86E-02, 1.14E-01 and 6.86E-01, for the initial damage state 

corresponding to UPD (Figure 6b), LS (Figure 6c), NC (Figure 6d), respectively. The corresponding probabilities 

computed in 100 years under the sequence-based damaging process are equal to 4.11E-02, 2.45E-01 and 7.94E-01, 

respectively.  

Figure 7 shows the ratio between the probabilities of reaching a given damage state accounting for the seismic 

sequence and the corresponding mainshock-only probabilities, identified by “S” and “E” subscripts, respectively. First, 

it should be noted that in most of the cases, the ratios do not significantly depend on time. Ratios of GC probabilities 

starting from AN or UPD state are comparable and range between 2.6 and 2.1. For the same initial DS , the ratios of 

probabilities of reaching and remaining in LS and NC are lower than one and almost constant with time indicating 

that considering seismic sequence makes the attainment of such DSs  less probable, because the structure tends to 

proceed to worse DSs . The ratio between the probabilities that, from LS, the structure moves to GC (Figure 7c) is 

the one in which the influence of the considered time window is the most evident. Such a ratio varies from 8.15 at 

1k =  to 2.15 at 100k = . Finally, the ratio of GC probabilities, for a structure which is already in NC, is moderately 

larger than one (ranges from 1.4 to 1.2) indicating that the sequence effect may be minor, for an already heavily 

damaged structure.  
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Figure 7. Ratios of probabilities of damage states for the building designed for L’Aquila. 

4.5.2. Naples and Milan (mid- and low-hazard) 

This section discusses the results for the buildings designed in the low- and intermediate-hazard sites, Milan and 

Naples. The unit time transition matrices, computed via the mainshock-only and the sequence-based approaches, are 

reported in Table 5 for both the sites. Consistent with the findings from the RINTC project,20 although the three 

structures were all designed for GM with the same return periods at all sites, the transition matrices for the buildings 

in Milan and Naples show smaller transition probabilities than those for L’Aquila. 

Figure 8 and Figure 9 show the time-variant probabilities of damage states for the Naples and Milan buildings, 

respectively, which were computed through Equation (5) in the mainshock-only and sequence-based cases. As 

indicated by the unit-time transition matrices, it can be generally seen that structural damage is expected to proceed at 

a lower pace. Moreover, smaller discrepancies between mainshock-only and sequence-based reliability models were 

observed compared to the L’Aquila site. For Naples, the GC probabilities of the AN structure after 100 years computed 

according to Equation (2), Equation (5) in the mainshock-only case, and Equation (5) in the sequence-based case, are 

equal to 9.82E-04, 1.5E-03 and 2.3E-03, respectively. The corresponding probabilities computed for the Milan case 

are 4.91E-05, 5.12E-05, and 6.12E-05, respectively. 

The ratios between the probabilities of reaching a given damage state accounting for the seismic sequence and the 

corresponding probabilities for mainshock-only are shown in Figure 10. The ratio of GC probabilities for a structure 

in AN or UPD in Naples varies between about 2 at 1k =  to 1.6 at 100k = . In the case of Milan, the corresponding 

ratio is about equal to 1.2. In the case of the structure assumed in LS state at 0k =  (Figure 10c), the probability ratios 

for Milan are larger than the corresponding ratios in Naples. The reason is in the definition of the DS  threshold 

(Figure 3) from which it is apparent that the distance between maximum displacement associated to LS and GC for 

Milan is significantly shorter than Naples. All the other transition probability ratios suggest that in the low-hazard site, 

the damage contribution of the aftershock sequences is minor, while in the case of medium seismicity, the transition 

probabilities accounting for the mainshock-aftershock sequences may be double with respect to the mainshock-only 

case. This is because, roughly speaking, the larger the classical (i.e., mainshock) hazard the larger the number of 

aftershocks expected in the same time-interval, then the larger the probability of accumulating damage. 

Table 5. Unit-time damage transition matrices for the building in Naples and Milan soil C. 
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Figure 8. Time variant probabilities of damage states for the building designed for Naples. 
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Figure 9. Time variant probabilities of damage states for the building designed for Milan. 

 

Figure 10. Ratios of probabilities of damage states for the buildings designed for Naples and Milan. 

5. CONCLUSIONS  

A Markov-chain-based reliability model, for damage accumulation in structures subjected to mainshock-aftershock 

sequences, was presented. It is a discrete-time and discrete-state Markovian process, which accounts, at the same time, 

for both damage accumulation: (i) within a single seismic sequence, and (ii) among seismic sequences.  
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In the Markov chain, structural deterioration because of subsequent earthquakes is represented by a finite number 

of damage states from the as-new state to collapse. Back-to-back incremental dynamic analysis is employed to 

compute the state-dependent fragility functions, which are needed to calibrate the model. Fragility functions are 

coupled with mainshock and aftershock hazard terms to formulate the required unit-time transition matrix. 

The model was illustrated through application studies using the equivalent-single-degree-of-freedom systems of 

Italian code-conforming RC frame buildings located at three Italian sites representing different seismic hazard levels 

in Italy. The probabilistic seismic hazard assessments were carried out adopting the same models at the base of the 

current Italian seismic code. For each building, five damage states were defined. All fragility functions are assumed 

to be lognormal and are obtained in terms of spectral acceleration (maximum between the two horizontal components 

of ground motion) at a period close to the fundamental vibration periods of the structure. As expected, the computed 

state-dependent fragility curves under the same ground motion inputs for the three different sites generally show the 

median IM level causing the transition between any two DSs increasing with the seismic hazard at the site. This is in 

accordance with the structural design reflecting the local seismicity.  

The sequence-based time-variant structural reliability was compared, at each site, to that obtained: (1) neglecting 

damage accumulation, and (2) considering accumulation due to mainshocks only. Notable remarks are summarized in 

the following. 

• In the site of L’Aquila, the probability that the structure in AN condition at time zero collapses in 100 years 

considering damage accumulation only from mainshocks is 26% larger than the same probability computed 

neglecting damage accumulation. Such an increment becomes 171% when mainshock-aftershock sequences 

are considered.  

• In Naples, the increment of the collapse probability in 100 years introducing damage accumulation is about 

48% for mainshocks only, and becomes 135% when mainshock-aftershock sequences are considered.  

• The structure designed in Milan, shows the lowest differences when aftershocks damaging contribution is 

considered. The GC probability in 100 years of the AN structure has an increment of approximately 5% when 

damage accumulation due to mainshocks is considered, and an increment of approximately 25% when 

mainshock-aftershock sequences are considered. This is because the lower the hazard the lower the number 

of damaging aftershocks is expected. 

The model presented herein can be of help for life-cycle assessment of structures in earthquake prone areas, in a 

consistent manner with respect to the performance-based earthquake engineering framework. It allows to account for 

damage accumulation considering mainshocks, aftershocks and related sources of uncertainty. 
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