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Abstract. Thanks to recent advancements in edge computing, the tra-
ditional centralized cloud-based approach to deploy Artificial Intelligence
(AI) techniques will be soon replaced or complemented by the so-called
edge AI approach. By pushing AT at the network edge, close to the large
amount of raw input data, the traffic traversing the core network as well
as the inference latency can be reduced. Despite such neat benefits, the
actual deployment of edge Al across distributed nodes raises novel chal-
lenges to be addressed, such as the need to enforce proper addressing
and discovery procedures, to identify Al components, and to chain them
in an interoperable manner. Named Data Networking (NDN) has been
recently argued as one of the main enablers of network and computing
convergence, which edge Al should build upon. However, the peculiari-
ties of such a new paradigm entails to go a step further. In this paper
we disclose the potential of NDN to support the orchestration of edge AL
Several motivations are discussed, as well as the challenges which serve
as guidelines for progress beyond the state of the art in this topic.

Keywords: Edge computing - Information Centric Networking - Named
Data Networking - Internet of Things - Artificial Intelligence - Edge Al.

1 Introduction

The research interest in Artificial Intelligence (AI) was recently boosted by the
advancements in cloud computing and the massive deployment of Internet of
Things (IoT) devices. Indeed, several IoT applications, such as video surveil-
lance, autonomous driving, smart home appliance and industrial automation,
greatly benefit from the use of AI capabilities, including data, image, audio,
and video analysis. Among AT algorithms, Deep Learning (DL) methods con-
sist of two phases: training phase and inference phase. The first one has the
purpose to set, according to input data, the weights of the Artificial Neural Net-
work (ANN) by which, during the second phase, decisions (e.g., classification,
recognition) are taken. Such operationsare memory- and power-hungry. Hence,

typically, resource-constrained IoT devices just send the data streams they col-
lect/sense to the remote cloud. Mega-scale data-centers, with their virtually
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unlimited capabilities, are then responsible for processing raw data and deriving
knowledge to be sent back to requesting devices/users. The emergence of the
edge computing paradigm, by bringing computing resources closer to devices,
paves the way for re-engineering the way in which Al solutions are deployed. If
DL services are deployed at the edge, close to where input data are produced
and likely consumed, the latency and cost of sending data to the cloud for model
training/inference will be reduced, while also offloading the core network [1].

Following the groundbreaking paradigm pushing Al to the edge, referred to
as edge AI the AI model training and inference tasks can be performed across
several edge nodes, such as base stations, backhaul nodes, and [oT gateways. The
cloud data center capabilities are used whenever additional processing power is
needed and trained models are to be stored.

Despite the numerous literature works targeting the orchestration of edge
computing resources to tackle the placement of generic computing tasks, several
peculiar issues arise when dealing with the orchestration of AI workloads. First,
placement decisions should be taken not only to ensure that data collection la-
tencies, computation times and/or energy consumption are minimized, but also
to provide the needed inference accuracy of trained ANNs. Heterogeneous de-
vices may provide inference results with different accuracy levels, e.g., according
to their computing capabilities. Second, similarly to contents, Al inference re-
sults, once computed, could serve different requests. Finally, another issue for
distributed AT at the edge, unlike in centralized AI deployments, is the lack of
interoperability due to fragmented and mainly application-specific solutions [2].
Hence, it is crucial to identify and discover AI components to build intelligent
applications upon them, while efficiently using network and computing resources.

In this paper we promote the usage of the Named Data Networking (NDN)
paradigm (https://named-data.net/) to deal with the aforementioned issues.
Originally conceived as an innovative content delivery solution, NDN has been
more recently overhauled to deal with edge computing [3-6], as scanned in Sec-
tion 2. Its native in-network caching capability coupled with the semantic-rich
naming scheme would play a crucial role in facilitating the deployment of edge
AT solutions, as we discuss in Section 3. To the best of our knowledge, this is
the first work that discloses the potential of NDN for orchestrating edge Al

2 From named contents to named services

NDN [7] implements name-based consumer-driven communication based on the
exchange of two packets types, Interest and Data, originally used to request and
provide authenticated contents, respectively. One Data packet exactly consumes
one Interest packet. Both packets carry hierarchical Uniform Resource Identi-
fier (URI)-like names which uniquely identify the content. There are no specific
restrictions in the way name components can be defined. Data packets also pig-
gyback the publisher’s signature and other authentication information to enable
per-packet security. By design, NDN provides in-network caching and multicast
support. Each node maintains a Content Store (CS) to cache incoming Data



packets according to local storage policies. This allows intermediate nodes to
satisfy future requests and speed up data retrieval, while reducing the amount
of traffic crossing the network. A Pending Interest Table (PIT) and a Forward-
ing Information Base (FIB) are maintained to, respectively, record the pending
requests that wait to be consumed by Data packets and identify the outgoing
interfaces (and relevant attributes, e.g., latency) to forward the Interests.

Recently, the NDN logic has been extended to complement data retrieval by
data processing. According to the pioneering vision in [8], referred to as Named
Function Networking (NFN), an NDN name can be used to identify contents,
processing functions and/or a combination of them. A consumer can request
a named function to be applied over a content (e.g., video compression), and
the network uses advanced routing-by-name mechanisms to discover both the
content and the node in charge of executing that function and returning the
processed content. This output can be cached to satisfy future requests without
the need of performing the computation again. NFN was extended in [3] to
tackle wireless edge domains, where mobile consumers broadcast requests to
offload a computing service to a more powerful node in the neighbourhood. The
Interest packet is extended to carry the name of the processing function and a
set of attributes that describe the consumer’s demands, e.g., maximum tolerated
latency, to allow a potential provider to self-candidate for the task execution. A
smart deferral scheme is defined that lets the best provider (i.e., the one that
executes the service in the shortest time) answer first. Therefore, on receiving
the first response, the consumer immediately offloads the task to that node. The
work in [5] identifies two distinct mechanisms to enable computing services via
NDN in a wired edge domain. In the proactive approach, edge nodes periodically
advertise the functions they support and their resource utilization (e.g., CPU,
storage) by piggybacking this information in the routing protocol messages. Vice
versa, in the reactive approach, the information is transmitted at the reception of
the service request from the consumer. In both cases, the node with the lowest
resource utilization is selected as the executor in such a way as to guarantee
the fair distribution of computation efforts. Conversely, in [6], an orchestration
scheme is defined aiming at guaranteeing the lowest service execution time. It
accounts for two terms: (i) the time needed to collect the data to be processed,
which depends on the network status and the proximity to the data, and (i) the
processing time, which depends on the local available resources and the demands
of the service. The selection of the executor is performed in a reactive way: at
the Interest reception, each node computes its own service execution cost and
the one with the lowest cost is selected as the executor. Different policies may
be flexibly enforced by applying the same distributed orchestration logic.

3 Why NDN for edge AI?

In edge Al every edge node can contribute to the Al workflow by playing dif-
ferent roles. For instance, a node can provide the computing capabilities to run
a specific ANN, although initially not locally available. Another one can own



the trained ANN model itself and perform the inference whenever requested and
also cache it. Nodes can also contribute to partial local model training in the
case of Federated Learning (FL) [9]. In such a challenging and dynamic context,
NDN can play a crucial role to properly identify Al components, route requests
towards the discovered ones, by accounting for their requirements, and also chain
them. In the following, the motivations for the evolution of edge AI towards a
named Al networking paradigm will be discussed, by also treasuring previous
NDN literature and its consolidated extensions to support edge computing.

Naming and discovery. An addressing scheme is needed to identify all
available Al components, i.e., models, model parameters, inference results, in
the edge domain. This facilitates the discovery for subsequent composition of the
intelligent service (set of services) exploiting the AT components. The semantic-
rich NDN naming well suits the aforementioned need. Unique expressive NDN
names can adequately identify input data and inference results as piece of con-
tents. In addition, names can request the retrieval of a ANN model and/or its
execution as well as the ANN weights. Al components can be definitely treated as
first class citizens, similarly to contents in the vanilla NDN. They can be referred
directly by their name, regardless of the identity of the node where they are actu-
ally hosted. For instance, the name /recognition/AlexNet/w would allow a node
to download the weights of the specific Convolutional Neural Network (CNN)
model to be used for image recognition. The usage of well-known namespaces
can facilitate Al interoperability, overstepping the current difficulties in letting
fragmented Al applications and components interact.

Caching. Al inference results, once computed, can be reused and serve re-
quests from different applications. For instance, a co-located group of tourists in
a museum may need the same output from an object recognition module of an
Augmented Reality (AR) application. Caching inference results can be highly
helpful (i) to save valuable computing resources, (ii) to avoid the redundant
input data exchange, and (7i) to reduce the inference latency [1]. The caching
decision also applies to ANN models which a node can decide to keep locally.
Implementing caching at the network layer, as foreseen by NDN, can be fast
and flexible. Moreover, thanks to the Interest aggregation in the PIT, if multiple
nodes need the same computation/model, only one request is forwarded towards
the potential cacher, and the replies are sent in multicast saving network re-
sources. Caching and replacement decisions can be taken by accounting for the
popularity of the model/parameter/inference, but also for their temporal valid-
ity, not to waste the limited storage resources at the edge. Applications must
have the capability to specify the freshness with which they want to receive a
given inference result, similarly to what suggested in [10] for IoT contents.

In-network processing. Building upon the NDN/NFN philosophy, deci-
sions about where to place Al components and how and which components to
reach and chain (e.g., computational resources, cached inference results, ANN
models, input data, weights) can be taken in-network. Specifically, an edge node
can either reply to a request for a named inference result if it is eligible to satisfy
it, or it can route the request towards a node which already stores the output,



to save processing resources. The latter case is depicted in Fig. 1. Instead, it
may autonomously decide to execute it, if the latency to reach the cached in-
ference (as tracked in the FIB) is higher than the one needed to retrieve the
input data through Interest/Data packets exchange and locally perform the
inference. Context-rich attributes can be used to specify the demands for Al
components, e.g., the desired inference accuracy and latency, and help the de-
cision about which components to reach and activate. An Interest with name
/recognition/cars/Rome/intersection32/4June/11:12 coupled with an attribute
specifying acc >80 can be sent to request the recognition of cars passing by in-
tersection 32 in the city of Rome on June 4th, between 11:00 and 12:00, with an
accuracy higher than 80%. Only those nodes providing such feature could reply
with Data packets. Attributes can also facilitate the discovery of clients (e.g.,
mobile devices) in charge of locally training a model in FL procedures. Such
devices are typically randomly selected [9]. An NDN Interest-driven discovery
solution like the one devised in [3] could make the selection smarter. An Interest
can be sent which specifies the requested type of learning task and also related
parameters through attributes. Then, candidate task executors reply according
to their capabilities. Instead of receiving the first reply only, multiple replies
can be collected with a single request, e.g., if the Long Lived Interest option is
leveraged [11], to discover the best contributors.

Interest
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Fig. 1. Named AI networking workflow. C requests an inference result; F; hosts the
ANN model but it routes the request towards a cached inference result provided by
FEs, which replies with a Data packet.

Security. Authentication for input contents as well as for models/inference
to be transferred into Data packets is natively ensured in NDN. Indeed, such
packets are digitally signed with a signature which is part of the Data Packet
itself. Additional security countermeasures are needed; some of them have been
investigated in the literature extending NDN for edge computing [6], [12], e.g.,
signed Interest packets, mutual consumer-provider authentication to verify the
requester for an Al task is legitimate and the node providing the AT component is



Table 1. Matching between the main edge Al needs and NDN features.

Edge AI needs NDN features

Discovery and addressing of distributed|Well-known semantic-rich namespace
and application-specific Al components
Reuse of inference results In-network caching, request aggregation and
multicast delivery

Placement, reachability and chaining of|In-network processing, context-rich at-
AT components tributes, Long Lived Interests

Security Data packet authentication, signed Interests

authorized. On top of them, traditional solutions, like encryption and differential
privacy mechanisms may be required for privacy preservation whenever sensitive
data are exchanged for training/inference purposes [1].

4 Conclusions

In this paper we have proposed NDN, and its extensions, as an enabler of the
transition from centralized Al to distributed edge AI, which well addresses its
peculiarities (as summarized in Table 1). As a future work we plan to provide
the algorithmic design of the NDN components and to quantitatively assess their
benefits in orchestrating edge Al.
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