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Abstract—With more than 75 billions of objects connected
by 2025, Internet of Things (IoT) is the catalyst for the digital
revolution, contributing to the generation of big amounts of (tran-
sient) data, which calls into question the storage and processing
performance of the conventional cloud. Moving storage resources
at the edge can reduce the data retrieval latency and save core
network resources, albeit the actual performance depends on the
selected caching policy. Existing edge caching strategies mainly
account for the content popularity as crucial decision metric
and do not consider the transient feature of IoT data. In this
paper, we design a caching orchestration mechanism, deployed
as a network application on top of a software-defined networking
Controller in charge of the edge infrastructure, which accounts
for the nodes’ storage capabilities, the network links’ available
bandwidth, and the IoT data lifetime and popularity. The policy
decides which IoT contents have to be cached and in which node
of a distributed edge deployment with limited storage resources,
with the ultimate aim of minimizing the data retrieval latency.
We formulate the optimal content placement through an Integer
Linear Programming (ILP) problem and propose a heuristic
algorithm to solve it. Results show that the proposal outperforms
the considered benchmark solutions in terms of latency and cache
hit probability, under all the considered simulation settings.

Index Terms—Internet of Things, Edge Computing, Caching,
Transient Contents, Software Defined Networking

I. INTRODUCTION

Internet of Things (IoT) envisions billions of massively con-
nected devices able to sense the surrounding physical world.
Data generated by IoT sources (producers) can be cached,
processed and used by a plethora of applications (consumers)
for different vertical markets, such as automotive, e-health,
smart energy, industry 4.0. The conventional approach is to
send such a big amount of IoT data to the remote cloud
where they are stored and processed [1]. The cloud is the
perfect candidate for managing long-term data storage and for
executing complex analytics algorithms, thanks to its virtually
unlimited storage and processing capabilities. This solution
also relieves the IoT producers from the burden to answer
the requests from multiple consumers, but it charges the core
network with the task of allocating network resources for
carrying data requests and replies from/to multiple consumers.
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France. Antonio Iera is with the DIMES Department, Università della
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Edge computing solutions can tackle such issue [2] by bringing
computing and storage services close to the end-users, where
data are typically consumed.

According to this groundbreaking paradigm, in-network
processing and storage capabilities can be allocated not only in
purpose-built servers, but also across heterogeneous network
edge nodes [3]. They range from network equipment, such
as base stations, backhaul nodes and points of presence, to
resource-constrained equipment, such as IoT gateways and
end-user devices like smartphones and tablets. As a result,
edge solutions can easily support interactive and time-critical
applications, while reducing the amount of traffic crossing
the core network segment. Notably, such technologies are
not intended as a replacement of the remote cloud, but as
a complement. They seek to enable storage and computing
services anywhere, from the cloud to the things, and to realize
the cloud-to-things continuum.

Caching IoT contents at the network edge has been rec-
ognized as an effective solution to reduce both the content
retrieval delay [4], [5] and the data redundancy in the core
network, caused by multiple deliveries of the same content
(such as the smart meter’s measured values or the location
of a tracked vehicle) to multiple interested consumers [6].
Nonetheless, deciding which IoT content is to be cached and
in which edge node entails peculiar challenges, not yet fully
addressed in the related literature.

First, most of the existing caching policies are designed
for traditional Internet contents like multimedia files [7].
These solutions cannot be straightforwardly applied to IoT
contents that are typically transient, i.e., they expire after
a short time period since they have been generated at the
source. This is the case of samples of a sensed phenomenon,
such as a patient’s blood pressure/heart rate values, smart
meter readings, instantaneous road traffic conditions, which
are regularly collected by IoT monitoring applications. Each
generated sample has a limited validity (lifetime) until a new
(fresher) sample is generated by the producer. Intuitively, it
may not be convenient to cache popular contents which are
ready to expire, since they could serve a few consumers only.

Second, resources heterogeneity in the distributed edge
domain further challenges the caching decision. The few works
considering edge caching of transient contents focus on a
single edge node [5]. However, misplacing cached data in an
edge domain with multiple nodes may increase the retrieval
latency, especially when the same data is requested by multiple
consumers and leveraged in different contexts [4].

Centralized orchestration can deal with the aforementioned
challenges [8], [9]. In particular, a Software-defined Network-
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ing (SDN) Controller can enforce effective caching policies in
a given edge domain, and hide the complexity of the heteroge-
neous edge environment to end-users. In general, a Controller
can count on its knowledge of the edge network’s topology
and available resources, i.e., nodes’ storage capabilities and
links’ capacity, to make judicious caching decisions.

Our study intends to advance the state of the art, by
designing a novel caching policy to be implemented at the
SDN Controller in charge of a given edge domain. Such
a policy identifies the IoT contents to be cached and the
cachers, by jointly accounting for the IoT content popularity
and lifetime, and targets the following main objectives: (i) to
prioritize the cache hit ratio for those most popular contents
which have a longer lifetime expectancy; (ii) to reduce the IoT
content retrieval latency; (iii) to maximize the content diversity
available at the edge domain. More specifically, in this paper
the following main contributions are provided:

• We define the reference architecture supporting the pro-
posed caching policy, implemented as a network application
running on top of the SDN Controller.

• We formulate the optimal content placement through an
Integer Linear Programming (ILP) problem, which encloses
the aforementioned objectives, in order to identify the set of
candidate cachers in the edge infrastructure. To the best of
our knowledge, this is the first contribution towards caching
optimization in a distributed edge domain taking into account
both the popularity and the lifetime of IoT contents.

• We design and implement a heuristic algorithm aimed
to approximate the optimal solution by solving the problem
considerably faster, also under large-scale problem instances.

• We evaluate the proposal under different IoT content
lifetime settings, differently sized edge domains with different
caching capabilities, content popularity and request patterns.
The solution is also compared with a baseline cloud storage
solution and with a state-of-the-art policy not considering
lifetime in the caching decision.

The remainder of the paper is organized as follows. Section
II provides background material about caching in IoT as well
as about SDN-aided caching strategies. The system design is
reported in Section III, where the main entities are described as
well as their functionalities. The formulated optimization prob-
lem is presented in Section IV, whereas the proposed heuristic
algorithm is reported in Section V. Practical considerations
concerning the retrieval of information feeding the proposed
solution are reported in Section VI. Section VII reports the
conducted evaluation study, before concluding in Section VIII
with hints on future works.

II. BACKGROUND AND MOTIVATIONS

The large-scale deployment of IoT systems in crucial appli-
cation domains, such as smart cities and logistics, has led to
high demands on data storage and processing resources, which
are traditionally hosted in cloud-based data centers.

The cloud offers long-term storage of all historical IoT data
samples, e.g., environmental data periodically captured from
sensors embedded in everyday objects. Starting from such big
amount of data samples, cloud services can aggregate them

and/or apply data analytics algorithms to feed intelligent ap-
plications and facilitate information access and sharing to end-
users [10]. To limit the network traffic and the retrieval delay
for consumers interested in IoT contents, storage resources can
be moved at the edge, closer to the end-users.

Caching and replica placement have been largely investi-
gated in past literature in the context of content delivery net-
works (CDN) [11], [12], distributed clouds [13], Information
Centric Networking (ICN) [14] and web caching systems [15].
More recently, edge caching has been also considered, with
decision strategies typically based on the content popularity
[16]: the higher the popularity of a content the higher the
number of requests that can be locally satisfied if the content
is cached. For instance, the work in [17] has proposed an op-
timized replica placement algorithm that selects what contents
to store at the edge by trading off between the storage cost, the
retrieval latency and the content popularity. However, the focus
of such studies has been mainly devoted to Internet contents
like multimedia files which are non-transient [18]. A Youtube
video or a movie on a streaming platform, once available on-
line, does not change over time: they can be accessed by
users even after years, unless the content provider does not
explicitly delete them. Conversely, the majority of IoT contents
are transient, with a varying lifetime that can range from a
few seconds to hours or days. For instance, data collected
by smart grid applications can have a longer lifetime than
data needed for e-health monitoring applications. Therefore,
ad-hoc designed caching strategies are required that are able
to recognize the transiency of IoT data and take decisions
accordingly.

A. Caching transient IoT contents
Although the considered IoT contents may expire after a

certain amount of time, tens of works have indicated that
caching IoT data of public interest is still extremely useful
to improve the network performance [5], [6], [19]–[21]. A
few distributed caching strategies for transient contents have
been proposed in wireless sensor networks [22], [23], with
the main target of reducing the data retrieval latency and the
energy consumption in the network. There, the content lifetime
becomes a crucial input in the caching decision of each sensor
node: the higher the lifetime the higher the caching probability.

With focus on an edge infrastructure, the proposal in [6]
defines a caching model that takes decision according to the
interplay between data lifetime and multihop communications.
Specifically, a cost function is defined and implemented at
each potential cacher that trades off between two conflicting
factors: the freshness cost, which is minimum when the data is
fetched from its producer, and the communication cost, which
is instead maximum in the same condition. A communication
coefficient is defined to capture the relative importance that
a consumer application can give to the communication cost,
i.e., a high communication coefficient value indicates that
the application prefers retrieving data from a close router
and can tolerate less fresh results. Specific values of the
aforementioned coefficient are not provided; they must be
determined based on a service level agreement between IoT
application providers and network operators.
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Unlike our proposal, the aforementioned solutions rely on a
distributed approach where decisions are taken autonomously
according to locally estimated content and network parameters.

The decision metrics in [6] have been considered also in [5],
but the authors focus on a single edge node only, e.g., a base
station or a gateway. The conceived strategy trades off between
freshness and communications costs, with the communication
cost referring to the retrieval of the content from the single
edge node or from the original producer. Deep reinforcement
learning is used to predict the environment conditions and
select the contents to cache, without the knowledge of future
IoT data popularity. In [21], the authors propose a caching
policy for a single edge node acting as gateway for a set of
IoT producers. The strategy decides if caching a content based
on its popularity and residual lifetime.

Unlike previous works [5], [21], our proposal focuses on
a distributed edge infrastructure, where the potential cachers
are network elements without stringent energy constraints, but
with limited storage capabilities compared to the cloud.

The transient nature of IoT contents has also been cap-
tured by literature works focusing on the Age of Informa-
tion (AoI) metric, which identifies the time elapsed since
a cached content was created [24], [25]. AoI reflects how
much outdated the responses from the caches can be: ideally,
each consumer should not receive stale information but only
the current version of the content. Most of the AoI related
literature has provided decision strategies for optimal cache
updates in scenarios characterized by strict network bandwidth
limitations or intermittent connectivity, e.g., [24], [26]. Other
works like [25] have investigated optimal packet scheduling
algorithms that minimize AoI for resource-constrained IoT
devices. Unlike these works, our paper is focused on edge
caching of IoT contents that are periodically generated by IoT
sources, e.g., for monitoring purposes. The considered contents
are characterized by pre-defined application-specific lifetimes
and are removed from the cache when their validity expires.
Therefore, each cache can only deliver the current version of
a content and does not store stale information.

B. SDN-aided caching
SDN is considered as a notable future Internet technology

enabling a flexible network management [27]. The network
control logic is implemented via a (logically) centralized
Controller. Decoupling the control plane from the data plane
allows to reduce the complexity of network nodes, which
become simple forwarding elements. OpenFlow (OF) [28] is
the most deployed southbound interface, i.e., the interface
between the control and the data planes. It provides the ability
of programming the flow tables of SDN switches by letting the
Controller inject the forwarding rules. OF is responsible for
feeding the Controller with data about the network topology,
interface and traffic status. Such information is maintained
in the Network Information Base (NIB) and accessed by the
Controller to run the network applications, e.g., routing, load
balancing, etc. Thanks to the knowledge of network-wide
related parameters and the native capability to inject action
rules in network nodes, the Controller can also play a crucial
role to optimize caching (re-)placement decisions.

Related literature on the topic is still at its infancy, but
the main trend is to deploy Controller-driven popularity-based
caching schemes for non-transient data. In [7], the SDN
switches maintain a hash table and a content store to provide,
respectively, name-based content query and storage services.
They also maintain a counter of the received content requests
and report it to the Controller, which can infer the most
popular contents of the domain. Based on such information,
the Controller periodically makes content placement decisions
and updates the switches’ flow tables accordingly. An optimal
content placement problem is formulated that aims to jointly
limit the retrieval latency and the traffic between Internet
service providers. In [29], the SDN switches support name-
based data delivery and in-network caching via ICN. Con-
tent placement is managed by the Controller, which makes
decisions for the most popular contents, according to an
objective function that minimizes the retrieval latency, under
the assumption that each popular content is cached at exactly
one node in the domain. Our proposal builds upon the works
in [7], [29], but we make a step forward by introducing a novel
policy that aims at optimally caching transient IoT data at the
edge by jointly considering content popularity and lifetime.

III. SYSTEM DESIGN

A. Scenario and components
As a reference scenario for our study, we consider a single

edge domain (e.g., a metropolitan area network, a campus
network) managed by a single operator and supervised by an
SDN Controller. The domain is composed of a set of edge
nodes connected to each other through wired links. An egress
node connects the domain to the remote cloud through a core
network segment, as graphically sketched in Fig. 1.

The cloud hosts IoT contents of public interest identified
by an application-level unique name, similarly to [7], [30].
Targeted contents, generated by IoT producers such as sensors,
cameras, smartphones, are not asynchronously generated, but
periodically refreshed by the IoT producer, i.e., the result is a
time series of content samples [31]. This is the case of samples
of a monitored phenomenon like patient’s blood pressure/heart
rate values, pollution level indicators, road traffic conditions.
Each content is transient, hence it is characterized by a lifetime,
set by the IoT producer, which represents the duration for
which a specific content item remains valid after its generation
instant. At the expiration of the lifetime, the producer uploads
the most recent (freshest) content item to the cloud.

Consumer applications are interested in the above men-
tioned transient IoT contents. Our design does not target a
single IoT application but the class of monitoring applications
(e.g., air/water monitoring, smart mobility, smart grid, etc.)
that leverage the generation of IoT data with lifetimes ranging
from (hence, cacheable for) a few seconds to some minutes or
hours. For instance, many air quality monitoring applications
or weather forecasting applications [32], [33] retrieve every
minute information about air quality, temperature, humidity,
wind direction and speed, through sensors installed in certain
areas, and deliver it to environmental control agencies and to
a variety of interested users. Sometimes, webcams or drones
are also used to provide videos of the sensed areas.
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Each application runs over a device connected to a sin-
gle ingress node of the edge domain. In particular, generic
monitoring applications that regularly collect the last updated
sample of a given IoT content are considered.

The softwarized edge infrastructure is characterized by two
main components:

• Edge SDN nodes. Augmented with storage capabilities,
they can locally cache the transient IoT data, in order to serve
multiple requests within the domain, with no need to contact
the remote cloud1.

• SDN Controller. A logically centralized Controller is
assumed to oversee the edge SDN nodes and inject forwarding
rules in their flow tables, as in legacy SDN deployments. It
may belong to a hierarchical control plane architecture, as in
[34], for scalability purposes and to avoid the single point of
failure issue.

In our design, the Controller instructs SDN nodes to perform
caching actions according to the decisions taken, at regular in-
tervals, by a caching policy deployed as a network application,
which identifies the cachers and the contents to cache (see
Section IV). Given the transient nature of targeted contents, it
is worth remarking that content placement decisions apply to
a certain set of contents that (potentially multiple) consumer
applications are interested to, and not to a single generated
sample of a given content. If an SDN node has been elected
as cacher for a certain content c1, it can cache the current (not
expired) sample of c1 until a new content placement decision
is taken. When the lifetime of a sample expires, the SDN node
removes it from the cache and, when a new content request
is received, it autonomously retrieves the freshest copy from
the cloud, where it is regularly uploaded by the producer, and
it will cache it again. By doing so, the implementation of the
SDN node is kept simple, since it just adheres to the periodic
Controller’s instructions.

SDN, which is not proposed specifically for edge comput-
ing, can serve as a key enabler to lower the complexity barriers
involved and disclose the full potential of this paradigm [8].
By deploying the edge caching orchestration within the SDN
Controller, when taking caching decisions, the proposal can
benefit from the built-in SDN routines for network status
monitoring and from the native SDN programmability to more
effectively build routing paths.

In particular, the SDN Controller has to monitor the caching
capabilities of the SDN nodes in its domain and the status of
the links interconnecting them. It has also to collect statistics
about the IoT content request dynamics in the domain. To
these purposes, the Controller leverages the OF southbound
interface, properly overhauled as explained in Section VI.
When a content request arrives which cannot be locally
satisfied by the ingress node of the edge domain, the Controller
is contacted which injects the proper forwarding rules in the
SDN nodes’ flow tables to enable the content retrieval from the
cacher, if available. Otherwise, the request is forwarded out-
side the edge domain. However, it is worth remarking that the
conceived caching strategy can be also deployed regardless the

1Describing the detailed implementation of SDN nodes is out of the scope
of this paper. Either information-centric designs, like the one in [30], or proxy-
based designs, like the one in [7], can be considered.

SDN implementation, and is applicable in general centrally-
managed architectures.

B. Targets

Our study aims at complementing the storage capability of
the remote cloud by hosting IoT contents at the network edge,
closer to the consumers. To this purpose, we define a caching
policy implemented at the SDN Controller, which exploits
the storage facilities provided on top of the softwarized edge
infrastructure and identifies which contents need to be cached
and in which edge node, by targeting three main objectives.

The first one is to prioritize the cache hit ratio for those most
popular contents which have a longer lifetime expectancy and,
therefore, can be requested a higher number of times during
their validity period. Caching at the edge the most popular
content that expires too soon may be less useful than caching a
less popular content with a longer lifetime. Indeed, the former
one could serve a few requests only before expiring and, then,
the new freshest content sample must be retrieved from the
cloud anyway. Conversely, caching resources could be more
judiciously exploited to host a less popular content that satis-
fies more requests during its lifetime. To intuitively understand
this concept, please refer to the following toy example. Let
us assume that contents c1 and c2 have, respectively, average
request rates λ(c1) = 1request/s and λ(c2) = 0.7request/s,
while their lifetimes are T (c1) = 2s and T (c2) = 10s. Let us
assume that, due to storage constraints, only one of the two
contents can be cached at the edge. Since c1 is more requested
than c2, intuitively, caching c1 might seem more convenient
than caching c2; however the fact that T (c1) < T (c2) changes
things. Let us consider an observation window, TW , e.g.,
equal to 20s, it results that if c1 is cached then c2 has
to be retrieved with rate λ(c2) = 0.7request/s from the
cloud, and also a new fresh copy of c1 must be retrieved
if it is expired during the considered observation window.
Therefore, the average number of cache miss events at the
edge, corresponding to the number of requests sent to the
cloud, can be calculated as: λ(c2)∗TW +(TW/T (c1)) = 24.
Vice versa, if c2 is cached then the average number of cache
miss events is λ(c1) ∗ TW + (TW/T (c2)) = 22. Therefore,
by caching the less requested content, c2, the number of
times requests are sent to the cloud is actually reduced. When
considering larger TW , caching c2 is even more convenient.

The second objective is to reduce the IoT contents retrieval
latency by placing the selected content copies in the most ap-
propriate edge nodes, while matching their storage capability
that is typically smaller compared to the one of the cloud.
Although the targeted IoT applications have no strict delay
constraints, speeding up the overall content retrieval process
is crucial for both consumers and network operators. The
latency reduction is measured in terms of gain achieved when
retrieving the contents from the potential cachers compared to
the case in which they are retrieved from the cloud.

The third objective is to maximize the content diversity,
by storing only one content copy at the edge managed by
a single provider. This avoids intra-domain cache redundancy
and frees edge storage resources for caching a larger number
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Fig. 1. Reference scenario and main components.

of distinct contents close to the consumers. Such an approach
also leads to a reduction of the traffic exiting the domain
for retrieving contents from the cloud, with great advantages
for the networks operators. Indeed, as reported in [35], [36],
links among different Internet Service Providers (ISPs) tend
to be the bottlenecks of the Internet and they are also much
more costly than ISP-internal links. Therefore, this objective
translates into an operator-centric policy that aims at limiting
the traffic transit costs.

To cope against possible intra-domain congestion issues
deriving from the choice of caching a single content copy, we
recall that thanks to built-in monitoring routines, leveraging the
OF southbound interface, SDN nodes report to the Controller
their status and make it aware of network links conditions
of the overseen domain. This information is exploited by
the conceived caching policy, which can identify the best
content placement that limits the retrieval delay and, there-
fore, the intra-domain traffic congestion. Content placement
is performed periodically and hence, if the traffic demand or
the network conditions change, the Controller can perform a
different allocation scheme in the next step. Additionally, the
Controller can realize if a delivery path becomes congested
and properly modify the routing tables of the SDN nodes to
balance the load.

IV. OPTIMIZATION PROBLEM

The caching decision policy is modeled through an opti-
mization problem, whose main settings and assumptions are
reported below before formulating it. A list of symbols used
in this paper is summarized in Table I.

A. Preliminaries

1) Edge nodes settings: We assume that the edge domain
is characterized by N SDN nodes, which are linked in an
arbitrary topology and are logically divided in the following
subsets: (i) I ⊂ N includes all the ingress nodes, receiving
content requests from the consumers; (ii) F = {N − I} ⊂ N
includes all the intermediate nodes and the egress node linking

TABLE I
SUMMARY OF THE MAIN NOTATIONS.

Symbol Description
C catalog of IoT contents
ck generic content in the catalog
T (ck) lifetime of content ck
TS(ck) generation timestamp of content ck
E[T res(ck)] average residual lifetime of content ck
B(ck) size of content ck , in terms of number of packets
d remote cloud platform hosting the IoT contents
N set of candidate cachers in the edge topology
j candidate cacher node
Sj number of packets that can be stored at edge node j
I set of ingress nodes in the topology (I ⊂ N )
S overall storage capacity in the domain
Xj(ck) binary variable taking the value 1 if ck is available at node

j ∈ N ∪ d and 0, otherwise
GL

i,j(ck) latency gain for node i in retrieving content ck from node
j

λreqi (ck) request rate for content ck at node i ∈ N
T̂ req
i (ck) average request interval for content ck at node i ∈ N
T req
i,m (ck) request interval at interval m ∈M for content ck at node

i ∈ N
Ri,j packet data rate between node i and j (in pkt/s)
Li,j(ck) delay for retrieving content ck at node i from node j
RTTi,j round trip time between node i and node j
pli,j packet loss probability over the link between node i and

node j
pf (ck) probability that the copy of content ck cached at the edge

is not outdated
λrefj (ck) caching refreshing rate of content ck at node j

T ref
j (ck) time period between successive caching refreshing events

for content ck at node j
W AIMD transmission window
β AIMD multiplicative decrease factor
η window increment per RTT

the edge domain to the cloud. Each node j ∈ N is equipped
with a cache that can store up to Sj packets, and the overall
storage capability of the edge domain is S =

∑
j∈N Sj .

2) Content settings: We define the catalog of IoT contents
as C = {c1, ..., cK}, where each content ck is made of B(ck)
packets. For the sake of simplicity, we assume that all content
packets have the same size. We denote the lifetime and the
generation timestamp of a content ck as T (ck) and TS(ck),
respectively. The same values are set in each of the B(ck)
packets composing the content ck. Every T (ck), a fresh sample
of content ck is stored in the remote cloud, in the following
simply referred to as node d.

3) Content arrival rate: We define λreqi (ck) as the average
arrival request rate for content ck at ingress node i ∈ I .
This rate can be practically derived by each ingress node
by observing the inter-arrival times of the requests for that
content. This will be described in Section VI-C.

4) Content retrieval latency: Several works in the literature,
e.g., [6], [7], modelled the content retrieval latency in terms of
the hop count between two end-points. However, this metric
does not reflect the real latency over the considered path.
Indeed, due to traffic congestion, two paths with the same
number of hops can experience different latencies. This is why
in our model we take into account the latency experienced by
the requested content ck over the path interconnecting data
consumer and provider (i.e., an edge cacher or the remote
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cloud). We assume that the Controller is able to estimate the
latency, Li,j(ck), experienced at ingress node i for retrieving
content ck from provider j ∈ N ∪ d. The practical way this
delay can be estimated is reported in Section VI-D.

5) Latency Gain: We define the latency gain GLi,j(ck)
achieved if caching content ck at node j as the saved retrieval
delay by ingress node i to get ck from node j rather than from
the cloud d:

GLi,j(ck) = λreqi (ck) · [Li,d(ck)− Li,j(ck)], (1)

with i ∈ I , j ∈ {N ∪ d}, and Li,d(ck) the latency measured
from ingress node i to retrieve content ck from cloud d.
When j = d, the latency gain is obviously zero, while if
j = i, i.e., the cacher is the ingress node the consumer is
connected to, then the gain is maximized. Intuitively, to be
rapidly accessed by the consumers, all the contents should be
cached at the ingress nodes. However, being the edge storage
capacity limited and distributed among N nodes, the caching
strategy has to select the most popular contents and the cacher
that maximize the related latency gain.

6) Freshness probability: Let us define the probability,
pf (ck), that a content ck cached at the edge is fresh, i.e.,
its lifetime T (ck) has not expired yet. In other words, the
following condition holds for the residual lifetime of ck,
denoted as T res(ck), measured at the current time instant t:

T res(ck) = TS(ck) + T (ck)− t > 0. (2)

We assume that every time an edge node is selected as the
cacher for content ck, it stores a fresh copy of ck until its
lifetime expires. Then, if the node is still the current cacher
(i.e., the Controller has not decided a new content placement)
but the cached content has expired, whenever the cacher is
reached by a new request for content ck and a cache miss
occurs, it retrieves the new freshest copy from the remote
cloud. This happens with probability (1 − pf (ck)). Hence,
pf (ck) represents the probability that, when a new request
for content ck arrives, there is a fresh copy of it on the cacher.
Therefore, similarly to [6], the expected caching refreshing
rate λref (ck) of content ck can be derived as:

λref (ck) = (1− pf (ck)) · λreq(ck), (3)

where λreq(ck) is the arrival rate of requests for content ck
in the domain, and is obtained as the sum of the arrival rate
for that content at all ingress nodes:

λreq(ck) =
∑
i∈I

λreqi (ck). (4)

Indeed, since there is always only one cacher in the edge
domain, all the incoming requests of ck in the domain will
be re-directed towards it.

Given the caching refreshing rate λref (ck), we define
T ref (ck) = 1

λref (ck)
as the average time interval between

two successive caching events for content ck at the edge, as
graphically sketched in Fig. 2. When a copy of ck is updated
on the cacher, i.e., a new content copy is retrieved from the
cloud upon a request which cannot be locally satisfied with
a fresh copy, it has an average residual lifetime denoted as
E[T res(ck)] (where E [ · ] represents the average operator).

Fig. 2. Time period, T ref (ck), between successive caching events for content
ck with lifetime T (ck).

In our model a cacher refreshes its copy of ck only after
the current copy is expired and a new request for ck arrives.
Hence, under the hypothesis at hand, T ref (ck) is larger than
E[T res(ck)]. In other words, the cached copy of ck remains
valid on average for E[T res(ck)] seconds every T ref (ck)
seconds. Therefore, pf (ck) represents the fraction of time that
a fresh (not expired) content copy exists in the node’s cache,
and can be expressed as the ratio between the average residual
lifetime of ck over the refreshing period of ck:

pf (ck) =
E[T res(ck)]

T ref (ck)
= E[T res(ck)]λref (ck). (5)

E[T res(ck)] is updated every time the cacher has a cache
miss and retrieves the content from the cloud. In absence of
historical values, E[T res(ck)] is estimated as T (ck)/2 under
the assumption that the time between the refresh of content ck
at the remote cloud d and the request of a fresh content from
the cacher j is uniformly distributed in [0, T (ck)].

By combining Eq. (3) and Eq. (5), the freshness probability
can be derived as follows:

pf (ck) =
E[T res(ck)]λreq(ck)

1 + E[T res(ck)]λreq(ck)
. (6)

B. Problem formulation

Given the system model, the caching strategy aims to
maximize the latency gain defined in Eq. (1), by preferably
caching at the edge those contents with a larger expected
number of requests in their lifetime. The problem can be
formulated as an Integer (binary, 0 or 1) LP problem, as
follows:

max
∑
ck∈C

pf (ck)
∑
i∈I

∑
j∈N∪d

GLi,j(ck)Xj(ck) (7)

s.t. ∑
ck∈C

B(ck)Xj(ck) ≤ Sj , ∀j ∈ N (8)

∑
j∈N∪d

Xj(ck) = 1, ∀i ∈ I, ∀ck ∈ C (9)

Xj(ck) = {0, 1},∀j ∈ N ∪ d,∀ck ∈ C (10)

Constraint in Eq. (8) limits the placement of contents on edge
nodes according to their available storage resources. Constraint
in Eq. (9) states that content requests are satisfied by a single
node: either a cacher in the local domain or the remote cloud;
the position Xd(ck) = 1 means that the content ck is only



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

stored at the cloud d and not in the edge domain. Finally, the
constraint in Eq. (10) restricts the decision variables, Xj(ck),
to binary values. As a result, the strategy selects the contents
that are expected to be more popular during their lifetime
and places a copy of them at the cachers that guarantee the
maximum latency gain. This also implies that the selected
placement tries to reduce the overall content retrieval delay
and copes against possible adverse effects of traffic congestion.

V. PROPOSED HEURISTIC ALGORITHM

The formulated ILP problem is equivalent to the maximiza-
tion of a submodular function under a knapsack constraint. It
can be proven that the objective function is sum of monotone
nondecreasing submodular functions: (i) monotonicity is triv-
ial: any new placement of a content cannot decrease the value
of the objective function; (ii) submodularity applies since as
the set of contents becomes larger, new contents are more
likely cached to further edge nodes and ultimately, to the
cloud, for which the gain will not increase at all. The problem
is well known to be NP-hard, but can be approximated within
the factor of (close to) (1 − 1

e ) through greedy algorithms
[37]. Hence, we propose a heuristic algorithm that leverages
a greedy approach to obtain sub-optimal solutions which are
faster compared to the ILP, especially as the problem instances
increase. Reasonably, given a set of requested contents Cr,
the target of the heuristic is caching the requested contents
ck ∈ Cr in the cachers j ∈ N ∪ d that provide the highest
caching gain, with this latter depending on the freshness
probability, the latency gain, and the content size, as follows:

G(ck, j) =
∑
i∈I

pf (ck) ·
GLi,j(ck)

B(ck)
. (11)

The proposed heuristic algorithm proceeds iteratively. It
starts by considering the sets of requested contents and of
potential cachers, and calculates the caching gain of placing
each ck ∈ Cr in each j ∈ N ∪ d according to Eq. (11). For
each ck ∈ Cr, the “gain and cacher” pairs are included in
ascending order into the list of best cachers for ck, BCck , i.e.,
the first element of the list identifies the best cacher and the
corresponding gain, the second element identifies the second
best cacher and the corresponding gain, etc. At each iteration,
the algorithm selects an edge node j and tries to allocate there
the contents that have identified j as the best cacher and have
the higher gains. Due to storage constraints, not all the contents
could be accommodated in j and other allocation options must
be considered according to the information in BCck .

As summarized in Algorithm 1, the caching allocation
problem is solved with successive iterations by using as input,
at each step, the set of contents that are still to be allocated
Ĉ, with Ĉ ⊆ Cr, and the set of nodes that still have free
storage space, N̂ ⊆ N ∪ d. At the first iteration, Ĉ = Cr and
N̂ = N ∪ d. As shown from line 14 of Algorithm 1, given a
node j ∈ N̂ , the algorithm creates the list CLj , which includes
the contents that have selected j as their first best cacher and
it is sorted in terms of decreasing gain. The contents in CLj
are allocated in j and removed from the list until the available
storage capacity of the node is filled, i.e., sj = 0, or CLj is

empty. In the first case, j is removed from N̂ and from the
lists of best cachers. Also, if some of the contents have not
been allocated on j due to the storage space constraint, then
the algorithm repeats the process to find the subsequent best
cacher for them, if available. The loop continues either until
all the contents are allocated or there is no more edge cacher
available. Possibly remaining contents are left in the cloud.

If we consider an efficient sorting algorithm like QuickSort,
Algorithm 1 complexity is bounded by O(|N | · |Cr| · log |Cr|).

VI. PRACTICAL CONSIDERATIONS

In the following we describe how the involved parameters
can be practically estimated as well as the devised SDN
workflows and monitoring routines.

A. Content placement and workflows

We assume that the Controller stores information about the
transient IoT contents, requested and cached in its domain, in
a new data structure that we call Content Information Base
(CIB) (Fig. 3). For each requested content ck, the CIB tracks
the relevant parameters, e.g., its lifetime T (ck), its request
arrival rate λreq(ck), the number of packets B(ck) composing
it, the timestamp TS(ck) and the cacher, if available.

The content placement decision is not taken upon each
content request. Instead, in order to make the deployment more
viable, it is periodically taken by the Controller implementing
the heuristic described in the previous Section. Such a choice
is meant to track possible changes in the content popularity
profiles, i.e., in the pattern of content request arrivals at the
ingress nodes of the edge domain. When this pattern varies,
the set of contents to be cached at the edge may vary as
well. Therefore, the caching decision period is an important
parameter to set. After analyzing an IoT dataset and queries
from search engines, the authors in [20] have found that the
IoT popularity follows the Zipf’s law [38] with a skewness
parameter that can change on a regular basis. Such variations
are due to the fact that the requests for IoT data are related to
the people’s daily life and needs. The authors demonstrate that
a period of 60 minutes well captures the popularity variation
of IoT contents and select this value in their deployment. A
similar design choice has been also applied to vehicular traffic
information in [39]. In agreement with the aforecited works, in
our design, we select a caching decision period of 60 minutes.

Whenever the content placement algorithm is executed, an
OF PACKET OUT message is used by the Controller to
trigger caching actions in SDN nodes. In particular, a newly
defined action type, named caching, is injected through the
Experimenter instruction field [28] into the selected cachers.
When an SDN ingress node receives a content request from
a consumer, it extracts the application-level name carried in
the packet’s header, and checks whether a content with that
name is locally stored in its cache. If it is the case, then it
replies with the cached content. Otherwise, it checks whether a
route exists in its flow table towards a cacher for that content.
Matching on the content name can be performed thanks to
the use of OF eXtensible Match (OXM) [28], included in
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Algorithm 1: Heuristic algorithm
input : Set of candidate cachers N ∪ d;

set of requested contents Cr;
storage capability Sj ∀j ∈ N ∪ d;
currently available storage sj ∀j ∈ N ∪ d

output: Xj(ck) ∀j ∈ N ∪ d , ∀ck ∈ Cr
1 for all j ∈ N ∪ d do
2 for all ck ∈ Cr do
3 insert [j,G(ck, j)] in BCck ;
4 Xj(ck)←− 0;
5 end
6 sj ←− Sj ;
7 end
8 for all ck ∈ Cr do
9 sort(BCck , according to G(ck, j), non increasing);

10 end
11 Ĉ ←− Cr;
12 N̂ ←− N ∪ d;
13 repeat
14 for all j ∈ N̂ do
15 for all ck ∈ Ĉ do
16 if the 1st item of BCck contains j then
17 insert [ck, G(ck, j)] in CLj
18 end
19 end
20 sort(CLj , according to G(ck, j), non

increasing);
21 while sj > 0 and CLj 6= ∅ do
22 [ck, G(ck, j)] ←− read(CLj ,first element);
23 if B(ck) ≤ sj then
24 Xj(ck)←− 1;
25 sj ←− sj −B(ck);
26 purge ck from CLj ;
27 purge ck from Ĉ;
28 end
29 end
30 if sj == 0 then
31 N̂ ←− N̂ \ j;
32 for all ck ∈ Ĉ do
33 purge item containing j from BCck ;
34 end
35 end
36 if CLj 6= ∅ then
37 for all ck ∈ CLj do
38 purge item containing j from BCck ;
39 end
40 break
41 end
42 end
43 until N̂ == ∅ or Ĉ == ∅;
44 return Xj(ck) ∀j ∈ N ∪ d , ∀ck ∈ Cr

OpenFlow implementations starting from version 1.2. OXM
enables the matching over any message header’s fields not
defined in the OF specifications.

TABLE II
IMPACT OF CACHING DECISION PERIODICITY ON CONTROLLER-TO-NODE

SIGNALING.

Periodicity γ = 0.01 γ = 0.1
N=30 N=90 N=30 N=90

5 minutes 125.86 bps 164.26 bps 1.085 kbps 1.124 kbps
10 minutes 62.93 bps 82.13 bps 542.5 bps 561.96 bps
30 minutes 20.97 bps 27.38 bps 180.83 bbs 187.32 bps
60 minutes 10.48 bps 13.69 bps 90.416 bps 93.66 bps

In case no entry exists in the flow table that matches the
incoming packet, the ingress node contacts the Controller by
sending an OF PACKET IN message that encapsulates the
request packet’s header conveying the content name. Upon
receiving it, the Controller looks into the CIB to identify the
cacher for that content in its edge domain. If the requested
content was selected to be stored by the periodically run
heuristic, then a cacher is found. In such a case, after accessing
the NIB, it sets up the path from the ingress node to the cacher,
i.e., a forwarding action is injected at the on-path nodes,
through legacy OF FLOW MOD messages. Conversely, if the
cacher is not available, a fresh copy of the requested content
must be retrieved from the cloud. In this case, the Controller
uses OF FLOW MOD messages to set up the path from the
ingress node to the cloud, unless this path is already available
as a default route in the flow tables of edge nodes. Fig. 4
depicts the aforementioned workflow.

For the sake of completeness, in Table II, we report the
signalling overhead in an edge domain of N cachers (N = 30
and 90) for an average content name length, denoted as L̄, of
40 bytes [40] and a catalog size |C| equal to 104, when varying
the ratio of the edge caching capacity over the content catalog
size, denoted as γ (0.01 and 0.1). We consider the worst case
condition by assuming that caching instructions are sent, in
an OF PACKET OUT message, to all SDN nodes for all
the contents (identified through a L̄ bytes-long name) that can
be stored in the edge domain, which is equal to γ · |C|. As
expected, the overhead increases with the edge domain size
and as the periodicity of the caching decision decreases. Such
a result confirms that the chosen periodicity of 60 minutes
incurs a low signaling overhead, as a further beneficial effect.

B. OF monitoring routines and data structures

Topology and interfaces status. The Controller maintains
a centralized view of the network by tracking the graph of
the edge topology in the NIB, as in legacy SDN deployments.
Per-port statistics of each SDN node are periodically reported
to the Controller by leveraging legacy OF messages. Starting
from this information, the Controller measures the packet loss
probability and the link delay on each node interface [41],
which allow to estimate the content retrieval latency.

Caching capabilities and content statistics. We assume
that each SDN node j, when bootstrapping, notifies the
Controller of its nominal caching capability Sj through the
storage field that we propose to add to the legacy OF
FEATURES reply message. This OF message typically carries,
upon request by the SDN Controller, the basic capabilities of a
switch, such as the number of flow tables’ entries, the switch’s
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buffer size, etc. [28]. We assume that the Controller fills in its
CIB by getting information about the IoT content requests
entering its domain through the OF FLOW message, which
normally retrieves flow entry metrics from an SDN node [28].
In particular, we propose that an ingress node measures the
request arrival rate for each content, and periodically reports
it to the Controller via the cited OF FLOW message. This is
possible thanks to the OF Experimenter extension fields [28].
Then, the Controller derives the arrival rate of content ck in
its edge domain by summing up the request arrival rates for
that content tracked at all ingress nodes (see Eq. (4)).

C. Content request arrival at ingress node

The request arrival rate for content ck at the ingress node i
can be computed by considering the average interarrival time
of the M + 1 most recent content requests2 at node i, as
explained in the following.

Let us consider a set of request arrival events for content
ck at node i, ri,1(ck), ri,2(ck), ..., ri,M+1(ck), respectively at
times t1, t2, ..., tM+1, where ri,1(ck) is the most recent arrival,
and ri,M+1(ck) is the oldest one. As shown in Fig. 5, we refer
to T reqi,1 (ck) as the time interval between the two most recent
request arrival times for ck at node i, t2 and t1, to T reqi,2 (ck)
as the time interval between t3 and t2, etc. We also consider
T reqi,0 (ck) as the time interval between the instant in which the
most recent request for ck arrives at node i and the current
instant, t, in which the estimation of the average arrival request
rate for ck is performed, T reqi,0 (ck) = t − t1. Value T reqi,0 (ck)
has to be ignored in the calculation unless it is large enough
that including it would increase the average, as in [42].

We define T̂ reqi (ck) as the average time between successive
requests for ck, weighted over the last M time intervals,
T reqi,m (ck), at node i:

T̂ reqi (ck) = max

{∑M
m=1 T

req
i,m (ck)

M
,

∑M−1
m=0 T

req
i,m (ck)

M

}
.

(12)
The average arrival request rate for ck at node i is finally

computed as:

λreqi (ck) =
1

T̂ reqi (ck)
. (13)

D. Content retrieval latency

For the sake of simplicity, we do not distinguish the con-
sumer from the ingress node it is attached to, and we denote
the round-trip-time (RTT) between an ingress node i ∈ I and a
provider j ∈ N ∪d as RTTi,j . The time needed by the ingress
node i to fetch content ck from a provider j, Li,j(ck), can
be computed by the Controller assuming stationary network
conditions, i.e., stationary RTTi,j and packet loss probability
pli,j , whose values are tracked by the Controller, as mentioned
before. More specifically, the packet data rate for a generic
content retrieval over the path between nodes i and j, Ri,j(t),

2After a tuning study not reported because of the limited relevance, we set
M = 20, which guarantees a good accuracy of the estimation.

Fig. 3. Newly monitored parameters and added data structures (in grey).

Fig. 4. Workflow for a content request issued by consumer C attached to
ingress node i and satisfied by edge node j2, after that forwarding actions
are injected by the Controller.

is estimated by considering a Transmission Control Proto-
col (TCP)-like Additive Increasing Multiplicative Decreasing
(AIMD) algorithm. Although IoT traffic is generally carried
over User Datagram Protocol (UDP), here we are considering
the transfer of IoT data packets from an edge cacher (or the
cloud) to an ingress node, so TCP is a more suited solution in
order to guarantee transfer reliability. During the TCP steady
state, the provider sends W consecutive data packets, where W
is the size (in packets) of the TCP transmission window under
stationary conditions. If all the packets are received without
any loss and successfully acknowledged, then W is increased

Fig. 5. Interarrival times, T req
i,m (ck), of requests for a given content ck ,

contributing to the estimation of T̂ req
i (ck).
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TABLE III
MAIN SIMULATION SETTINGS.

Parameter Value
Number of SDN edge nodes • 29 (Scenario A)

• 91 (Scenarios B, C)
Number of consumers • 300 (Scenario A)

• 4000 (Scenarios B, C)
Content request distribution Poisson (Scenarios A, B, C)
Content request arrival rate • 0.5 req/s (Scenarios A, B)

• [0.2 0.4 0.6 0.8 1] req/s (Scenario C)
Content catalog size 106

Content size (in packets) [5-1000]
Packet size (in bytes) 1000
Short-lived content lifetime exponentially distributed with mean 1s
Long-lived content lifetime exponentially distributed with mean 100s
Content popularity • Zipf, α=0.8 (Scenarios A; B; C)

• uniform distribution (Scenario B)
Edge caching capacity 3%-15% of the content catalog size

of η ≥ 1 packets, otherwise for a packet loss probability
pli,j > 0, then the window size is decreased of a factor β,
with 0 ≤ β < 1. The factors β and η are related to the packet
data rate Ri,j(t) according to the following expression, derived
from previous works on TCP in [43]:

dRi,j(t)

dt
=

η

RTT 2
i,j

− β ·Ri,j(t) · pli,j . (14)

Typical values for the AIMD increasing and decreasing factors
are, respectively, η = 1pkt/RTT and β = 0.5. Eq. (14)
holds under the assumption that Ri,j(t) represents a marginal
contribution (i.e., it is the rate of a single TPC-like data flow)
to the overall traffic exchanged over the path connecting i
and j. As a consequence, RTTi,j and pli,j are not influenced
by Ri,j(t). Hence, the latency experienced at ingress node i
for retrieving content ck from a provider j ∈ N ∪ d can be
estimated as:

Li,j(ck) =

{
0 if j = i
B(ck)

E[Ri,j(t)]
if j 6= i

(15)

When j coincides with the remote cloud, d, the latency
Li,d(ck) can be estimated in a similar way, with the difference
that eastbound/westbound interfaces may be leveraged by the
Controller to get information about the latency contributions
over the path to the cloud, likely crossing other network
domains.

VII. PERFORMANCE EVALUATION

A. Parameter settings

The performances of the proposed policy, when compared
with two benchmark solutions, have been derived under the
settings detailed below and summarized in Table III.

1) Content settings: To cover a variety of monitoring
application scenarios, we consider a catalog of 106 transient
contents which can be classified into two distinct sets depend-
ing on their lifetime values, whose average is exponentially
distributed, similarly to [44]–[46]. The first set, denoted as
CS , includes IoT contents we refer to as short-lived, with
a mean lifetime equal to 1s, which resemble, for instance,
body parameters, like heart rate and blood pressure [47]. The

second set, denoted as CL, includes IoT contents we refer
to as long-lived, with a mean lifetime equal to 100s, which
resemble, for instance, parameters (e.g., temperature, moisture,
load) requested by less critical applications like environmental
monitoring [33] and smart grid systems [48]. The fraction
of contents belonging to CL is a varying parameter in our
simulations, denoted as CL/C.

Content request arrivals follow a Poisson process, with
exponentially distributed inter-arrival times. Popularity follows
a Zipf distribution with skewness parameter α set to 0.8. This
setting is coherent with the study in [20], which analyzes
IoT dataset and queries from search engines proving that the
content popularity follows a Zipf distribution. A uniform dis-
tribution is also considered to model the case where requests
are not concentrated on a few contents, which may resemble
some IoT contexts, where all sensors have close probabilities
of being solicited, according to [49].

2) Network topologies and content request rates.: We refer
to three different scenarios:

• Scenario A: it consists of a medium size topology with
29 SDN edge nodes organized as illustrated in Fig. 1, where 4
upper-layer nodes, interconnected in a full meshed topology,
are the root of a three-layered fat tree. Leaf nodes at the
bottom act as ingress nodes which consumers are connected
to. The node in the middle of the mesh topology acts as the
egress node, connecting the edge domain to the cloud. Such
nodes handle 300 consumers with each consumer requesting
a content, according to a Zipf distribution and with an arrival
rate which is Poisson-distributed with average 0.5 requests/s.

• Scenario B: it foresees a large topology with 91 nodes,
organized as a central ring with 6 backbone routers connected
through a four-layered fat tree topology to leaf nodes, which
are the access routers which 4000 consumers are connected to.
Each consumer requests a content with an arrival rate which is
Poisson-distributed with average 0.5 requests/s. We consider
both a Zipf and a uniform content request distribution.

• Scenario C: the same topology as in Scenario B is
considered. Each consumer requests a content according to a
Zipf distribution and with an arrival rate which is Poisson-
distributed and varied in the range [0.2, 0.4, 0.6, 0.8, 1]
requests/s [6].

3) Storage settings: For both scenarios, we assume the total
caching capacity of the edge domain to be a varying fraction
of the content catalog size, according to the study in [50].
This capacity is assumed to be uniformly distributed among
all SDN nodes in the domain.

B. Benchmark schemes and metrics

We compare the proposed model against two benchmark
solutions. The first one, named here as Most Popular Contents
(MPC), is representative of the SDN-based proposals that use
the content popularity as the decision criterion for caching
at the edge, such as the one in [7]. It jointly optimizes the
content retrieval delay and the amount of traffic crossing
the domain to reach the cloud/cacher, while satisfying the
storage capacity constraints of each edge node. Similarly to
our proposal, this objective is achieved by maximizing the
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Fig. 6. Scenario A: the proposed solution MPFC against a baseline MPC, both
when solving the optimization problem (opt.) and the heuristic (alg.): when
varying the caching capacity of the domain and the fraction of long-lived
contents (Zipf distribution, α=0.8).

latency gain, multiplied by the content request arrival rate.
For the sake of a fair comparison, unlike the work in [7], the
considered implementation of this benchmark solution models
the latency between a consumer and the cacher/cloud not in
terms of number of hops, but by considering the actual retrieval
latency over each link along the consumer-cacher/cloud path.
Unlike our model, the caching decision is completely oblivious
of the transient nature of IoT contents.

The second benchmark is a baseline approach according to
which IoT contents are only stored into the remote cloud.

The following metrics are derived with results averaged over
100 runs and reported with 99% confidence intervals.

• Average content retrieval latency: it is the average time
experienced by the consumers to retrieve the requested con-
tents from the providers (either a cacher in the edge domain
or the remote cloud).

• Edge cache hit ratio: it is the fraction of requests which
are satisfied with a fresh cached content provided by edge
nodes, rather than from the remote cloud.

• Average content freshness probability: it measures the
average freshness probability at the edge.

• Edge-to-cloud traffic: it is derived as the rate of packets
that are retrieved from the cloud to satisfy the content requests,
either because a content is not stored in the edge or because
a previously cached content has expired.

C. Heuristic algorithm Vs. Optimization model: Scenario A

The conducted study is aimed to understand to which extent
the proposed caching policy to be deployed by the SDN
Controller is able to capture the targeted objectives. Moreover,
we evaluate the performance of our proposed heuristic (dashed
curves in the plots), by comparing it with the optimal solution
of the ILP model formulated in Eq. (7). The latter one is
solved with intlinprog, the Mixed-integer linear programming
(MILP) solver available in the Matlab® optimization toolbox
(solid curves in the plots). The heuristic algorithm and the
optimal solution have been compared when considering both
the proposed policy (labeled as Most Popular Fresh Contents,
MPFC, in the plots, black curves) and the MPC benchmark
scheme (in the plots, blue curves), when varying the caching
capacity of the edge domain, for different fractions of long-
lived contents, CL/C, when considering a Zipf content popu-
larity distribution.

First of all, we observe that the heuristic well approximates
the optimal solution for all metrics and under all the considered
settings. Fig. 6(a) shows that the content retrieval latency
reasonably decreases as the caching capacity of the domain
increases, for both MPFC and MPC. This is because there
is a higher chance for a consumer to retrieve the requested
content from a close edge node caching it, instead that from
the remote cloud. For instance, the latency values of MPFC,
for a CL percentage of 70%, pass from 0.19s to 0.09s, when
increasing the storage capacity from 3% to 15% of the catalog
size. Increasing further the edge caching capacity does not
achieve further latency reduction. This holds for both MPFC
and MPC. Indeed, with a Zipf parameter of 0.8, many requests
are concentrated to a few popular contents, which can be
accommodated in the edge nodes’ caches.

Differences in the retrieval latency between the two com-
pared schemes, MPC and MPFC, are more remarkable when
the caching capacity is below 10% of the catalog size. This
is a significant finding since the edge caching capacity is
expected to be significantly lower than the content catalog
size [50]. With less caching capacity available, the competition
among contents is exacerbated, and the correct choice of
the contents to cache at the edge becomes more critical.
Moreover, the larger the fraction of long-lived contents in
the domain the shorter the retrieval latency. Such a trend
reflects the fact that edge nodes more likely cache contents
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with a longer residual lifetime that would expire less quickly,
hence causing more cache hit events, as shown in Fig. 6(b).
Similar observations regarding the comparison between MPFC
and MPC hold for the edge cache hit ratio metric. Fig. 6(c)
reports the average content freshness probability. As expected,
the MPFC proposal exhibits higher freshness probability than
the benchmark MPC solution. This means that it is more
effective in caching contents with a longer lifetime at the
edge domain. The benchmark scheme is agnostic about the
content freshness, hence it cannot ensure that those contents
with a longer lifetime are preferably cached. For both schemes,
not surprisingly, the freshness probability gets higher as the
fraction of long-lived contents increases.
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Fig. 7. Computation time of the optimization model (opt.) and of the proposed
heuristic (alg.) when varying the number of requested contents (Scenario A).

D. Computation time

We measure the computation time for solving our formu-
lated ILP problem, in Eq. (7), on a single Intel® Xeon® CPU
core with 1.8 GHz as reported in the scatterplot in Fig. 7. We
consider the same settings as in Scenario A.

Being a combinatorial problem, the numbers of variables
and constraints affect the computation time. Hence, we gener-
ate different problem instances of varying sizes in terms of (i)
ratio between the edge storage capacity and the content catalog
size and (ii) number of contents requested by the consumers.
The former parameter resembles the capacity of the knapsacks
in the considered ILP problem. The latter parameter represents
the number of contents belonging to the catalog that are
candidates to be cached at the edge, i.e., the items to be packed
in the knapsacks of the considered ILP problem.

The computation time for the standard optimization problem
solver is larger as the number of requested contents increases:
in the order of tens of seconds, with higher values when the
edge caching capacity over the content catalog size is 0.03.
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Fig. 8. Scenario B - the proposed heuristic MPFC against the benchmark
schemes: MPC and the legacy cloud solution, when varying the caching
capacity of the edge domain and the fraction of long-lived contents (Zipf
distribution, α=0.8).
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Fig. 9. Scenario B - the proposed heuristic MPFC against the benchmark
schemes: MPC and the legacy cloud solution, when varying the caching
capacity of the edge domain and the fraction of long-lived contents (uniform
distribution).

Values are highly spread in the latter case since it is more
challenging to find an optimal solution, and some problem

instances may entail the exploration of several solutions. On
the other hand, the proposed heuristic scales well with the
number of requested contents. Measured values are in the
order of a few seconds in the worst case. For the sake of
completeness, values up to hundreds of seconds are achieved
instead in Scenario B, although results are not reported due to
length constraints. Such results confirm the practicality of our
proposal: the SDN Controller, expected to be equipped with
more powerful processing capabilities than those considered
for the experiments, can periodically execute the content
placement heuristic in acceptable times.

E. Scenario B

Achieved trends in Scenario B are similar to those measured
for Scenario A. Fig. 8(a) shows that the content retrieval
latency decreases as the caching capacity of the domain
increases, for both MPFC and MPC. The cache hit ratio,
instead, increases as the capacity increases (Fig. 8(b)). Such
trends have to be ascribed to the fact that a consumer has
a higher chance to retrieve the requested content from a
close edge node caching it, instead that from the remote
cloud. Both caching schemes exhibit a significantly lower
latency compared to the legacy cloud solution. Similarly to the
medium size topology, the differences in the content retrieval
latency between the two compared caching schemes are more
remarkable when the caching capacity is below 10% of the
catalog size. Furthermore, the larger the fraction of long-lived
contents in the domain the better the performance. Being more
effective in caching contents with a longer lifetime at the
edge domain, the MPFC proposal achieves higher freshness
probability than the MPC benchmark solution (Fig. 8(c)). Fig.
8(d) shows that MPFC incurs a significantly lower amount of
traffic exchange with the cloud compared to the legacy cloud
solution. Moreover, it is lighter than the MPC benchmark.

Fig. 9 reports the same metrics discussed above, when
considering the content popularity to be uniformly distributed.
Compared to previous results, it can be observed that the
content retrieval latency is slightly higher (Fig. 9(a)) and the
edge cache hit ratio slightly lower (Fig. 9(b)). With uniform
content requests distribution, in fact, more requests can be
issued for distinct contents, and there is less chance to serve
multiple requests by caching only a few contents at the edge.
Such a trend also translates in a higher amount of traffic
exiting the edge domain, as shown in Fig. 9(d), compared
to the Zipf-distributed content requests pattern. It is worth
observing that for MPFC the content freshness probability is
higher in the uniform case than in the Zipf case (Fig. 9(c)).
Indeed, being the popularity of requests uniformly distributed,
the only factor deeply influencing the decision in MPFC is
the content lifetime. Improvements of the MPFC compared
to the MPC benchmark scheme are also more remarkable.
Such a trend is ascribed to the fact that contents with a higher
freshness probability are preferably stored in MPFC, while
MPC is oblivious of the IoT contents’ lifetime. As a result,
MPFC proves to be effective even when the request pattern
does not follow a skewed popularity distribution, a case that
could happen in IoT environments.
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Fig. 10. Scenario C - the proposed heuristic MPFC against the benchmark
schemes: MPC and the legacy cloud solution, when varying the request
arrival rate per consumer and the caching capacity of the edge domain (Zipf
distribution with α=0.8, CL/C=0.3).

F. Scenario C

The last simulation campaign analyzes the impact of the
request rate, for a fixed fraction of long-lived contents,
CL/C=0.3. Results in Fig. 10 show that MPFC outperforms
the considered benchmark schemes under all the considered
settings, with more remarkable improvements under the most
challenging condition of edge caching capacity over catalog
size (γ) equal to 0.06. In particular, results show that, as
the request arrival rate increases, the content retrieval latency
decreases (Fig. 10(a)) and the edge cache hit ratio increases
(Fig. 10(b)). This is because, due to the Zipf distribution,
a higher number of requests concentrate on the same few
contents, the most popular ones, which are the most likely
to be cached in the edge domain and, hence, are retrieved
with a shorter latency.

VIII. CONCLUSION AND FUTURE WORK

In this paper we have proposed a novel caching policy that
identifies which transient IoT contents need to be cached and
in which edge node of an SDN-based edge deployment. A
heuristic is designed which well and efficiently approximates
the solution of the formulated ILP problem. Furthermore, the
conducted evaluation proves the superiority of the proposal
against a baseline approach, oblivious of the freshness of
contents. For the sake of completeness, the improvements
w.r.t. a cloud solution are also quantified. Differences in

the performance get more remarkable under smaller caching
capacity values of the edge domain, mimicking realistic and
more challenging settings, under which competition among
contents to be cached becomes more significant.

As future work, we plan to further optimize the conceived
caching strategy by trading-off between two contradictory tar-
gets, i.e., content diversity and caching efficiency, for instance
by optimally replicating some highly requested content copies
in multiple edge nodes and possibly closer to the consumers.

Moreover, since edge infrastructures are evolving towards
distributed in-network computing systems, it would be inter-
esting to extend the functionalities at the Controller to support
the joint orchestration of caching and processing services in
presence of IoT transient contents.
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