The investigation of the interaction of floating structures with very high waves, also known as freak or rogue waves, is of crucial importance for the analysis of their ultimate design conditions. The representation of such waves is usually achieved through computationally intensive numerical simulations. In this paper, a deterministic approach is proposed, to represent extreme wave groups in the space-time domain. The free surface profile for a Gaussian sea is obtained by means of the Quasi-Determinism theory, and the corresponding dynamic response of a spar-type support for floating offshore wind turbines in parked rotor conditions is analyzed. The Quasi-Determinism theory and the nonlinear equation of motion of the structure are coupled through an in-house time-domain numerical code. Wave forces and structure motions in surge, heave and pitch are obtained. A parametric analysis is carried out to investigate the effects of the criteria used for the definition of the extreme wave, its position of occurrence and the initial conditions in terms of body motions. The results obtained give a clear insight into the physics of the wave-structure interaction phenomenon for extremely high waves in Gaussian seas and allow to identify a few load combinations, corresponding to the severest wave conditions for the floating structure.

A numerical study on the dynamic response of a floating spar platform in extreme waves

Felice Arena
2018

Abstract

The investigation of the interaction of floating structures with very high waves, also known as freak or rogue waves, is of crucial importance for the analysis of their ultimate design conditions. The representation of such waves is usually achieved through computationally intensive numerical simulations. In this paper, a deterministic approach is proposed, to represent extreme wave groups in the space-time domain. The free surface profile for a Gaussian sea is obtained by means of the Quasi-Determinism theory, and the corresponding dynamic response of a spar-type support for floating offshore wind turbines in parked rotor conditions is analyzed. The Quasi-Determinism theory and the nonlinear equation of motion of the structure are coupled through an in-house time-domain numerical code. Wave forces and structure motions in surge, heave and pitch are obtained. A parametric analysis is carried out to investigate the effects of the criteria used for the definition of the extreme wave, its position of occurrence and the initial conditions in terms of body motions. The results obtained give a clear insight into the physics of the wave-structure interaction phenomenon for extremely high waves in Gaussian seas and allow to identify a few load combinations, corresponding to the severest wave conditions for the floating structure.
Extreme waves in Gaussian seas
Quasi-determinism theory
Floating offshore wind turbines
Spar
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/130089
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact