Because eroded sediments are produced from different sources throughout a basin, it is often advantageous to model sediment delivery processes at basin scale using a spatially distributed approach. In this paper, a sediment delivery distributed (SEDD) model applicable at morphological unit scale, into which a basin is divided, is initially proposed. The model is based on the Universal Soil Loss Equation (USLE), in which different expressions of the erosivity and topographic factors are considered, coupled with a relationship for evaluating the sediment delivery ratio of each morphological unit. Then the SEDD model is calibrated by sediment yield and rainfall and runoff measurements carried out, at annual and event scales, in three small Calabrian experimental basis. At event scale, the analysis showed that a good agreement between measured and calculated basin sediment yields can be obtained using the simple rainfall erosivity factor; the agreement is independent of the selected equations for estimating the topographic factors. The analysis developed at annual scale showed that the model reliability increases from the event scale to the annual scale. Finally, a Monte Carlo technique was used for evaluating the effects of the uncertainty of the model parameters on calculated sediment yield.

Sediment Delivery Distributed (SEDD) Model

PORTO, Paolo
2000-01-01

Abstract

Because eroded sediments are produced from different sources throughout a basin, it is often advantageous to model sediment delivery processes at basin scale using a spatially distributed approach. In this paper, a sediment delivery distributed (SEDD) model applicable at morphological unit scale, into which a basin is divided, is initially proposed. The model is based on the Universal Soil Loss Equation (USLE), in which different expressions of the erosivity and topographic factors are considered, coupled with a relationship for evaluating the sediment delivery ratio of each morphological unit. Then the SEDD model is calibrated by sediment yield and rainfall and runoff measurements carried out, at annual and event scales, in three small Calabrian experimental basis. At event scale, the analysis showed that a good agreement between measured and calculated basin sediment yields can be obtained using the simple rainfall erosivity factor; the agreement is independent of the selected equations for estimating the topographic factors. The analysis developed at annual scale showed that the model reliability increases from the event scale to the annual scale. Finally, a Monte Carlo technique was used for evaluating the effects of the uncertainty of the model parameters on calculated sediment yield.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/2490
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 161
  • ???jsp.display-item.citation.isi??? 140
social impact