Hematite/reduced graphene oxide (Fe2O3/rGO) nanocomposite was successfully fabricated via a facile solvothermal reaction of iron precursor solution and GO leading to simultaneous deposition of iron oxide nanoparticles and in situ reduction of GO without any reducing agent. Texture and morphology, microstructure, chemical and surface composition of the nanocomposite were investigated by scanning electron microscopy, Xray diffraction, Raman spectroscopy, thermo-gravimetric analysis and X-ray photoelectron spectroscopy, respectively. Its electrochemical performance as anode material for sodium ion batteries was preliminarily evaluated via galvanostatic cycling. The results prove that the Fe2O3 nanoparticles are uniformly anchored onto the surface of graphene nanosheets and that the Fe2O3/rGO nanocomposite shows interestingly higher specific capacities compared to the bare Fe2O3.

Synthesis and characterization of Fe2O3/reduced graphene oxide nanocomposite as a high-performance anode material for sodium-ion batteries

Claudia Triolo;Saveria Santangelo;Maria Grazia Musolino
2018-01-01

Abstract

Hematite/reduced graphene oxide (Fe2O3/rGO) nanocomposite was successfully fabricated via a facile solvothermal reaction of iron precursor solution and GO leading to simultaneous deposition of iron oxide nanoparticles and in situ reduction of GO without any reducing agent. Texture and morphology, microstructure, chemical and surface composition of the nanocomposite were investigated by scanning electron microscopy, Xray diffraction, Raman spectroscopy, thermo-gravimetric analysis and X-ray photoelectron spectroscopy, respectively. Its electrochemical performance as anode material for sodium ion batteries was preliminarily evaluated via galvanostatic cycling. The results prove that the Fe2O3 nanoparticles are uniformly anchored onto the surface of graphene nanosheets and that the Fe2O3/rGO nanocomposite shows interestingly higher specific capacities compared to the bare Fe2O3.
2018
ALPHA FE2O3, REDUCED GRAPHENE OXIDE, SOLVOTHERMAL METHOD, ANODE, SODIUM ION BATTERIES
File in questo prodotto:
File Dimensione Formato  
Modafferi_2018_ModelMeasControlB_Synthesis_editor.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/574
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact