Prescribed fire removes or reduces the plant material that is prone to forest fires by creating fuel discontinuity and minimising fire intensity. This forest management tool potentially impacts Mediterranean ecosystems hydrological response by influencing water infiltration into soil. As direct measurements (e.g. by infiltrometers) of unsaturated infiltration in soil subjected to prescribed fires are scarce, this study has evaluated changes in soil hydraulic conductivity (SHC) using Minidisk infiltrometer after prescribed fires in representative plots of forests in the Iberian Peninsula under Mediterranean semi-arid conditions: (i) pure forest of Black pine Arnold ssp salzmannii; (ii) mixed forest of Maritime and Black pine; (iii) mixed forest of Aleppo and Maritime pine. The results have shown that fire reduced the organic layer thickness and its organic matter content. Consequently, after the prescribed fire the water content of burned plots was always lower than in untreated soils; conversely, the reverse soil behaviour was noticed before applying fire. Compared to the untreated soils, and with very few exceptions, prescribed fire did not cause significant changes in SHC. No general patterns in the comparisons between treatments (burned/unburned soils), in time evolution after fires and in the interactions between these effects were detected. This means that the SHC of burned soils followed the temporal variations of untreated soils. The lack of significance of these differences between treatments could be due to the low-fire severity and the limited effect of temperature in the mineral layer on soil hydraulic properties. This effect was expected and agrees with other studies. Overall prescribed fires did not alter SHC in Mediterranean forest ecosystems under unsaturated conditions since fire was of low-severity.

Changes in soil hydraulic conductivity after prescribed fires in Mediterranean pine forests

ZEMA, Demetrio Antonio;
2019-01-01

Abstract

Prescribed fire removes or reduces the plant material that is prone to forest fires by creating fuel discontinuity and minimising fire intensity. This forest management tool potentially impacts Mediterranean ecosystems hydrological response by influencing water infiltration into soil. As direct measurements (e.g. by infiltrometers) of unsaturated infiltration in soil subjected to prescribed fires are scarce, this study has evaluated changes in soil hydraulic conductivity (SHC) using Minidisk infiltrometer after prescribed fires in representative plots of forests in the Iberian Peninsula under Mediterranean semi-arid conditions: (i) pure forest of Black pine Arnold ssp salzmannii; (ii) mixed forest of Maritime and Black pine; (iii) mixed forest of Aleppo and Maritime pine. The results have shown that fire reduced the organic layer thickness and its organic matter content. Consequently, after the prescribed fire the water content of burned plots was always lower than in untreated soils; conversely, the reverse soil behaviour was noticed before applying fire. Compared to the untreated soils, and with very few exceptions, prescribed fire did not cause significant changes in SHC. No general patterns in the comparisons between treatments (burned/unburned soils), in time evolution after fires and in the interactions between these effects were detected. This means that the SHC of burned soils followed the temporal variations of untreated soils. The lack of significance of these differences between treatments could be due to the low-fire severity and the limited effect of temperature in the mineral layer on soil hydraulic properties. This effect was expected and agrees with other studies. Overall prescribed fires did not alter SHC in Mediterranean forest ecosystems under unsaturated conditions since fire was of low-severity.
2019
Prescribed burning Soil infiltration Low-intensity fires Hydrologic properties Mini-disk infiltrometer
File in questo prodotto:
File Dimensione Formato  
Plaza-Alvarez_2019_JEMA_Changes.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 818.36 kB
Formato Adobe PDF
818.36 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Plaza-Alvarez_2019_JEMA_Changes_post.pdf

Open Access dal 01/01/2022

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 564.82 kB
Formato Adobe PDF
564.82 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/951
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 35
social impact