
DOCTORAL SCHOOL
MEDITERRANEA UNIVERSITY OF REGGIO CALABRIA

DEPARTMENT OF INFORMATION ENGINEERING, INFRASTRUCTURES
AND SUSTAINABLE ENERGY

(DIIES)

PHD IN
INFORMATION ENGINEERING

S.S.D. ING-INF/05
XXXV CYCLE

ANONYMOUS PROTOCOLS
FOR COMMUNICATION AND

SERVICE DELIVERY

CANDIDATE
VINCENZO DE ANGELIS

ADVISOR
Prof. FRANCESCO BUCCAFURRI

COORDINATOR
Prof. ANTONIO IERA

REGGIO CALABRIA, JANUARY 2023

Finito di stampare nel mese di Gennaio 2023

Edizione

Quaderno N.

Collana Quaderni del Dottorato di Ricerca in Ingegneria dell’Informazione
Curatore Prof. Antonio Iera

ISBN

Università degli Studi Mediterranea di Reggio Calabria
Via dell’Università 25. Reggio Calabria

VINCENZO DE ANGELIS

ANONYMOUS PROTOCOLS
FOR COMMUNICATION AND

SERVICE DELIVERY

The Teaching Staff of the PhD course in

INFORMATION ENGINEERING
consists of:

Antonio IERA (coordinator)

Pier Luigi ANTONUCCI

Giuseppe ARANITI

Francesco BUCCAFURRI

Claudia CAMPOLO

Giuseppe COPPOLA

Marintonia COTRONEI

Lorenzo CROCCO

Dominique DALLET

Claudio DE CAPUA

Francesco DELLA CORTE

Giuliana FAGGIO

Gioia FAILLA

Fabio FILIANOTI

Patrizia FRONTERA

Sofia GIUFFRÈ

Giorgio GRADITI

Voicu GROZA

Tommaso ISERNIA

Gianluca LAX

Aimè LAY EKUAKILLE

Gaetano LICITRA

Antonella MOLINARO

Francesco Carlo MORABITO

Andrea Francesco MORABITO

Giacomo MORABITO

Rosario MORELLO

Fortunato PEZZIMENTI

Filippo Gianmaria PRATICÒ

Domenico ROSACI

Giuseppe RUGGERI

Mariateresa RUSSO

Antonino VITETTA

Contents

1 Introduction . 1

1.1 Motivation . 1

1.2 Anonymous Communication . 2

1.3 Anonymous Service Delivery . 6

1.4 Threat Models . 8

1.5 Outline of the thesis . 11

Part I Anonymous communication over the transport layer

2 A preliminary approach leveraging onion routing to achieve anonymity

against a global adversary . 17

2.1 Introduction . 17

2.2 Overview of the Protocol . 18

2.3 The onion-based routing protocol . 19

2.4 Security Analysis . 22

2.5 Discussion and Limitations . 24

3 Providing Tor with sender anonymity against a global adversary 25

3.1 Introduction . 25

3.2 Overview of the Tor Network and Notation . 26

3.3 The Proposed Protocol . 27

3.3.1 Ring Manager and Token-Based Mechanism 28

3.3.2 Set-Up Phase . 28

3.3.3 Communication Phase . 32

3.4 Fault Tolerance . 40

3.5 Computational Complexity . 42

3.6 Security Analysis . 43

3.7 Related Work . 46

II Contents

4 Providing Tor with recipient anonymity against a global adversary 49

4.1 Introduction . 49

4.2 Background and Notations . 50

4.2.1 Notations . 50

4.2.2 The Tor Network . 50

4.2.3 Hidden services . 54

4.3 Threat Model . 56

4.4 Motivations and Introduction to our Approach . 58

4.5 L-Tor: A first extension of the Tor Protocol . 60

4.5.1 Overview of L-Tor . 60

4.5.2 Set-up phase . 60

4.5.3 Forward phase . 62

4.5.4 Response phase . 63

4.6 The Branched-Tor Protocol (B-Tor) . 64

4.6.1 Overview of B-Tor . 64

4.6.2 Set-up phase . 65

4.6.3 Forward Phase . 67

4.6.4 Response Phase . 68

4.7 Security Analysis . 70

4.8 Analytical Evaluation . 81

4.9 Experimental Validation . 83

4.9.1 Experimental Setup . 83

4.9.2 Results . 85

4.10 Related Work . 89

5 An anonymity protocol for uplink-intensive applications 91

5.1 Introduction . 91

5.2 Background: The Tarzan Protocol . 92

5.3 Problem Formulation and Basic Approach . 94

5.4 C-Tarzan . 98

5.5 Latency in Tarzan and C-Tarzan . 101

5.6 Experiments . 102

5.6.1 Metrics and Experiment Setting . 102

5.6.2 Results . 104

5.7 Related Work . 108

Part II Anonymous communication over an existing application layer

Contents III

6 Anonymous communication in Social networks . 115

6.1 Introduction . 115

6.2 Background: Identity-based Encryption . 117

6.3 The anonymity communication protocol . 118

6.3.1 Identity management . 118

6.3.2 Application domains . 121

6.3.3 The ring schema . 122

6.3.4 Redundancy . 125

6.3.5 System update . 126

6.3.6 Cover-message mechanism . 128

6.3.7 Communication primitives . 130

6.4 Comparison with other approaches . 131

6.5 Application to the proximity-based services: Prototype and

Experiments . 134

6.5.1 KN-Service . 134

6.5.2 Prototype . 134

6.5.3 Experiments . 135

6.6 Security analysis . 138

7 A Crowd-based approach to achieve anonymity in MQTT 143

7.1 Introduction . 143

7.2 Background. 145

7.3 Scenario and motivations . 147

7.4 The discovery protocol . 150

7.5 The anonymity protocol MQTT-A . 151

7.6 Path intersection and QoS management . 154

7.6.1 Subscribe-Subscribe Path intersection . 155

7.6.2 Publish-Subscribe Path intersection . 157

7.6.3 Strategies Comparison . 159

7.7 Experiments . 160

7.7.1 Experimental Setting . 160

7.7.2 Goodput . 161

7.7.3 Latency . 162

7.8 Threat Model and Security Analysis . 165

7.9 Related Work . 169

Part III Anonymous Service delivery

IV Contents

8 A hierarchical LTS system offering protection against a global adversary. 175

8.1 Introduction . 175

8.2 Background. 177

8.3 Approximate Cloaking Areas . 179

8.4 The Distributed LTS . 182

8.4.1 Registration . 183

8.4.2 Position Notification . 183

8.4.3 LBS Request Processing . 184

8.5 Service Management, LTS overlapping, and Implementation Aspects . 185

8.5.1 Impact on the Registration Phase . 187

8.5.2 Impact on the Position Notification . 187

8.5.3 Implementation Aspects . 191

8.6 Security Analysis . 192

8.7 Experiments . 194

8.7.1 Experimental set-up . 194

8.7.2 Metrics . 195

8.8 Related Work . 205

9 Anonymous service delivery with accountability guarantees 209

9.1 Introduction . 209

9.2 Background. 211

9.3 Actors and notation . 212

9.4 Challenge-Response mechanism . 213

9.5 The proposed approach . 216

9.5.1 Interaction between U and IP . 216

9.5.2 Interaction between U and LA . 217

9.5.3 Interaction between U and SP . 218

9.5.4 Account information recovery . 219

9.5.5 Law-enforced re-identification of U . 220

9.6 Implementation and Time-Cost Analysis . 220

9.6.1 Adopted technologies . 221

9.6.2 Implementation detail and prototype functionalities 222

9.6.3 Time-Cost analysis . 225

9.7 Security analysis . 226

9.8 Related work . 229

10 Anonymous linkage of open data . 231

10.1 Introduction . 231

10.2 Background. 233

Contents V

10.2.1 Open data . 233

10.2.2 eIDAS and SAML 2.0 . 233

10.3 Problem formulation and notation . 235

10.4 The proposed protocol . 236

10.5 Case study and implementation . 239

10.6 Security analysis . 244

10.7 Related work . 246

Part IV Conclusions

11 Ringraziamenti . 253

References . 255

List of Figures

2.1 Graphical representation of the onion-based protocol. 20

3.1 Sequence diagram of the Set-up phase. 32

3.2 Structure of the token. 33

3.3 Process of generation of the tokens. 34

3.4 Transmission of the message M. 37

3.5 Transmission of the response M ′ . 38

3.6 Process of emptying the tokens and destroying the Tor circuit. 39

3.7 Communication phase (overview). 39

3.8 Ratio j
k as k and p vary. 42

4.1 Sequence diagram of the three phases of Tor. 54

4.2 Connection of the client towards a hidden server . 55

4.3 Circuit of L-Tor . 59

4.4 Paths followed by the messages in the L-Tor circuit. 64

4.5 Circuit of B-Tor . 65

4.6 Paths followed by the messages in the B-Tor circuit. 70

4.7 Time to download a file (s) in Tor, B-Tor, and L-Tor when 100% of

the total circuits are B-Tor (or L-Tor) circuits. 86

4.8 Time to download a file (s) in Tor, B-Tor, and L-Tor when 75% of the

total circuits are B-Tor (or L-Tor) circuits. 86

4.9 Time to download a file (s) in Tor, B-Tor, and L-Tor when 50% of the

total circuits are B-Tor (or L-Tor) circuits. 87

4.10 Time to complete the set-up phase (s) in B-Tor and L-Tor varying k. . . 88

4.11 Time to download a file (s) in B-Tor when k = 56. 88

4.12 End-to-End Latency comparison among Tor, L-Tor, and B-Tor. For

the last two, we consider 100% of circuits in the network. 89

5.1 Forward path (red arrow) and return path (green arrow) 95

VIII List of Figures

5.2 Uncertainty at two hops . 96

5.3 Extension of figure 5.2a . 96

5.4 Extension of figure 5.2b . 96

5.5 Extension of figure 5.2c . 97

5.6 Second relay selection . 100

5.7 Anonymity set ratio vs cover traffic d with h′=3 . 104

5.8 Anonymity set ratio vs cover traffic d with h′=4 . 105

5.9 Anonymity set ratio vs cover traffic d with h′=5 . 105

5.10 Anonymity set vs h′ with d=4 . 107

5.11 Anonymity set ratio vs tunnel length h′ with d=3 . 107

5.12 Anonymity set ratio vs tunnel length h′ with d=4 . 108

5.13 Anonymity set ratio vs tunnel length h′ with d=5 . 108

6.1 eIDAS-based authentication procedure with PKG to obtain the IBE

private key . 120

6.2 Ring schema for α = 2 and kA = 5 . 122

6.3 Example of user mapping. 123

6.4 Example of hash table referred to the user mapping in Figure 6.3 124

6.5 Ring schema τ-safe. 126

6.6 Ring schema after the join of the user with SI 84. 126

6.7 New ring schema after the user with SI 29 leaves the ring 1 of Figure 6.5127

6.8 Example of a fragment of the route of a token in a ring. 129

6.9 Mixnet with n = 4 and m = 2. 133

6.10 Total proximity-testing time vs privacy level with σ = 0. 136

6.11 Total proximity-testing time vs privacy level with σ = 0.25. 137

6.12 Total proximity-testing time vs privacy level with σ = 0.50. 137

6.13 Total proximity-testing time with kA = 80. 138

7.1 MQTT architecture. 147

7.2 MQTT bridging mechanism. 147

7.3 MQTT-A(nonymous). 153

7.4 Blind strategy. 156

7.5 Topic-aware strategy. 157

7.6 Topic-and-QoS-aware strategy. 158

7.7 Goodput with sending rate 1 KBytes/s and QoS level 0. 162

7.8 Goodput with sending rate 10 KBytes/s and QoS level 0. 163

7.9 Goodput with sending rate 100 KBytes/s and QoS level 0. 163

7.10 Goodput with sending rate 1 KBytes/s and QoS level 2. 164

7.11 Goodput with sending rate 10 KBytes/s and QoS level 2. 164

List of Figures IX

7.12 Goodput with sending rate 100 KBytes/s and QoS level 2. 165

7.13 Goodput with pf = 0.67 and sending rate 10 KBytes/s. 165

7.14 Latency with packet size of 100 Bytes. 166

7.15 Latency with packet size of 1000 Bytes. 166

7.16 Latency with packet size of 10000 Bytes. 167

7.17 Latency with pf = 0.67 and packet size of 100 Bytes. 167

8.1 An example of construction of a cloaking area. 178

8.2 An example of construction of an approximate cloaking area. 182

8.3 Example of LTS hierarchy and approximate cloaking area for the LTS

of level 1. 185

8.4 Distribution of the users in the selected area of Reggio Calabria. 196

8.5 Performance as k varies. 196

8.6 Performance as N varies. 197

8.7 Average User. 201

8.8 Median User. 202

8.9 Average relative standard deviation. 203

8.10 Median User. 204

9.1 Sequence diagram of the interaction between U and IP 217

9.2 Sequence diagram of the interaction between U and LA. 219

9.3 Sequence diagram of the interaction between U and SP 220

9.4 User interface of IP . 221

9.5 Selection of a IP -validated Ethereum Account. 221

9.6 Completion of Step 1. 221

9.7 Signature of the LA challenge. 222

9.8 Selection of the Ethereum address AddU2 . 222

9.9 Transaction to solve the LA challenge. 223

9.10 Completion of the interaction with LA. 223

9.11 Subscription to SP . 223

9.12 Timeline of the interactions between user, IP , and blockchain. 225

9.13 Timeline of the interactions between user, LA, SP , and blockchain. 225

10.1 SSO SAML authentication procedure. 234

10.2 SSO SAML proposed solution . 237

List of Listings

1 Smart Contract implementing a challenge-response mechanism. 214

2 Fragment of code to integrate in the library saml-core.jar included

in Keycloak. 240

3 Fragment of code to compute the P RNGN (T) in the analyst module. . . 241

4 Open data published by S1 . 242

5 Open data published by S2 . 243

List of Tables

3.1 Comparison between Tor (T) Our proposal). Shown are the

probabilities of the adversaries breaking the properties SA and RA. . . . 45

4.1 Notation. 51

4.2 Comparison between Tor, L-Tor, and B-Tor. The table reports the

probability for the adversary (W, S, and A) to break RPA and RLA. . . . 71

4.3 Latency in L-Tor and B-Tor for the three phases. 81

7.1 Notations. 148

1

Introduction

This first chapter of this thesis is devoted to introducing the topic of anonymity and of how

it will be treated throughout the rest of the thesis. We start by discussing the motivation

leading to this work, by highlighting the benefits (and the drawbacks) of anonymity fea-

tures in real-life situations. Due to the vastness of the topic, we focus our attention on two

macro-areas of anonymity: anonymous communication and anonymous service delivery.

1.1 Motivation

Despite the relevant effort devoted in the literature [219, 275, 199, 168] in the last

30 years, a universally accepted definition of ”Anonymity" does not exist. It depends

on the context we refer to. For example, if we want to hide the sender of a given

message, we need an anonymous communication network [245]. On the other hand,

if we want to make records stored on a database unlinkable to the real identity of a

user, we have to apply data anonymization techniques [195, 105].

To answer the increasing demand for anonymity services, a lot of tools, frame-

works, and techniques have been designed. One of the most relevant and currently

adopted is the Tor protocol [258] allowing a user to connect anonymously to a web

server. Furthermore, through the hidden services [207] mechanism, the web servers

can hide their IP addresses from a curious provider or the client itself. We dedicated

two entire chapters (3 and 4) of this thesis to how to extend Tor to achieve stronger

anonymity features.

We have to point out that this opens several ethical issues [114]. On the one hand,

the Tor network and, in general, the provision of anonymous services offers an oppor-

tunity for the proliferation of the black market and cyberterrorism [5, 183]. On the

other hand, anonymity services may have a positive impact in terms of censorship

resistance. Furthermore, a lot of privacy-preserving applications require anonymity

features such as electronic auctions [119, 173], anonymous surveys [128], or e-voting

2 1 Introduction

[52, 118]. Another example is provided by anonymous proximity-based services

(PBS) [181] which we mention in Chapter 6.

We strongly believe in this second vision of anonymity and propose new solu-

tions enabling stronger anonymity features than traditional solutions. In addition,

we think that investigating new proposals represents an effective way to understand

how to fight the malicious use of anonymity services.

In this last direction, in this thesis, we investigate the trade-off between account-

ability and anonymity [92]. Indeed, accountability refers to the possibility of iden-

tifying and attributing responsibility to an entity for a given action. Specifically, we

propose a solution in which the linkage between the real identity of a user leveraging

an anonymous service and their pseudonymous remains hidden even though two of

the three parties involved in the protocol collaborate. However, in the case of need,

e.g., if required an agent authorized by the law, the above linkage can be disclosed

if all three parties collaborate. This can be useful, for example, in an anonymous

social network [276] to fight cyberbullying. The solution we propose relies on the

blockchain technology [78] that is a reference technology in the provision of anony-

mous services.

Particular attention is devoted in this thesis to the protection of the users against

a global adversary able to monitor the entire traffic exchanged in the network. This is

an ambitious goal since it represents a very strict threat model (see Section 1.4). We

want to highlight that this type of adversary is not an abstraction and it is present in

real-life systems. The most emblematic example is represented by a social network

providing anonymity services (see Chapter 6). In this case, if all the communications

are delivered within the social network, the social network provider itself, if mali-

cious, represents a concrete case of a global adversary. Another example of a global

adversary is represented by the collaboration of some internet service providers that

can track the messages from the originator to the destination. In this thesis, the so-

lutions presented in Chapters 2, 3, 4, 5, 6, and 8 deal with this adversary.

Due to the vastness of the topic, in this thesis, we focus on two particular as-

pects of anonymity i.e., anonymous communication and anonymous service delivery

which will be discussed in the next two sections.

1.2 Anonymous Communication

The aim of an anonymous communication network is to protect the identity of the

users sending and/or receiving data over the Internet [245, 109, 88]. Since these

data often contain personal information linkable to the user’s identity, they have to

be encrypted before sending, thus guaranteeing data confidentiality. However, data

1.2 Anonymous Communication 3

confidentiality is a necessary but not sufficient condition to achieve anonymity. In-

deed, even though an attacker cannot access the content of data, the knowledge of

the IP address of the sender and/or the recipient reveals information about the ge-

ographic location or even the real identity of a user [210]. Then, offering anonymity

to a user means hiding their IP address.

To do this, several anonymous communication protocols have been proposed in

the literature. They differ in terms of security goals and the efficiency they achieve.

Regarding security, we mean both security properties (i.e., sender anonymity, re-

cipient anonymity, or relationship anonymity) and adversary capabilities that form

a threat model (see Section 1.4 for a more complete description). On the other

hand, for efficiency, three main metrics can be considered: latency, cover traffic, and

anonymity (which is also a security feature). Latency represents the delay needed to

transfer a message from the sender to the recipient. Cover Traffic is dummy traffic

introduced to hide real traffic and protect the sender and/or the recipient from traf-

fic analysis attack [17, 193, 190]. Since cover traffic requires a waste of bandwidth

(and then energy consumption) to transfer dummy packets, it should be reduced as

possible. Observe that, to offer protection against a global observer able to monitor

the entire traffic exchanged in the network, the inclusion of cover traffic is neces-

sary [71]. Otherwise, the adversary can simply observe the traffic originating from

a node and identify it as the sender. Similarly, by following the flow of traffic until

the destination, a global adversary can identify the recipient. As highlighted in Sec-

tion 1.1, in this thesis, we reserve a lot of attention against this type of adversary,

therefore almost all the solutions we propose include cover traffic. An interesting

question is how the three above metrics (latency, cover traffic, and anonymity) are

related between them. We investigate in detail this aspect in Chapter 5. In particular,

our study is based on the well-known trilemma, called the anonymity trilemma [74],

which states the existence of a trade-off between the three metrics.

In the first two parts of this thesis, we propose new protocols for anonymous

communication that improve or outperform the state-of-the-art approaches by pro-

viding stronger anonymity features. In Part I, we propose new anonymous commu-

nication protocols built over the transport layer. In this class of approaches, in prin-

ciple, it is possible to select any application layer leveraging the anonymous commu-

nication features implemented by the protocols. However, as with traditional solu-

tions, our approaches perform well when some conditions are met at the application

level. For example, the solutions presented in Chapters 3 and 4 represent extensions

of the Tor protocol to achieve sender and recipient anonymity, respectively. In this

case, as the standard Tor protocol, the solutions are applied for web-browsing ap-

4 1 Introduction

plications. Instead, the solution discussed in Chapter 5 performs well with uplink-

intensive applications.

In Part II, we propose two new protocols built over an existing application layer.

Clearly, the disadvantage is that they work only for the specific application layer

in which they are implemented. On the other hand, they do not require the set-up

of an external ad-hoc anonymous communication network to work. This allows us

to leverage the communication primitives offered by the specific application layer

without requiring heavy infrastructural network changes. In this thesis, we present

two protocols belonging to this class. The first is discussed in Chapter 6, in which the

application layer is represented by a social network. Therein, we implement a proto-

col for anonymous short communication and show its application to the proximity

services domain [181]. As observed in Section 1.1, the social network provider rep-

resents a real case of a global adversary. The second protocol we propose in Part II is

based on MQTT as an application layer. We leverage the bridging mechanism offered

by MQTT to deliver anonymous publish/subscribe messages. All the messages are

exchanged through the MQTT protocol and no infrastructural change is required.

In this solution, we do not offer protection against a global adversary. However, we

allow anonymous publishing/subscribing of topics against colluding MQTT bridge

brokers and against the public broker hosting the topics.

The rest of this section is devoted to providing a brief overview of the main

anonymous communication approaches and protocols present in the literature. We

refer the reader, for a more complete discussion, to the excellent survey presented in

[245].

The first class of approaches to achieve anonymous communication is repre-

sented by mixnet. This concept was first introduced by Chaum [59]. The idea is to

use mix nodes that collect messages coming from different sources, shuffle them, and

send them to another mix node or to the destination. The messages are encrypted

in several layers by using the public keys of the mix nodes. The innermost message

is encrypted with the public key of the recipient. Each mix node removes a layer

of encryption and discovers the next node to forward the message. The correlation

between a message entering a mix node and a message exiting from the same node

is made harder for an adversary since the mix node does not forward immediately

the message to the next node. Instead, it waits for a batch of messages and after

shuffling them sends the entire batch of messages each to the proper mix node (or

destination). This delay introduces a price in terms of latency.

Starting from this original proposal, a lot of approaches [158, 273, 223, 269], also

recent, were developed to improve the efficiency (especially in terms of latency) of

the mixnets.

1.2 Anonymous Communication 5

Compared to other approaches discussed in the following, mixnets offer a good

(low) latency with a relevant price in terms of cover traffic. From the security point

of view, they offer the best characteristics by resisting a global active adversary and

traffic analysis attacks even though they are vulnerable to the collusion of mix-nodes

[243].

The second class of approaches we consider is based on Onion-Routing. The most

representative protocol of this class is certainly Tor [258]. The Tor network is open

source and includes a large set of collaborating routers (about 7000 in September

2022) [226]. This makes Tor the most used solution in real life for anonymous com-

munication (about 3000000 users in September 2022) [226].

In Tor, each client runs locally an Onion proxy (OP) which establishes a virtual

circuit of three Onion routers (OR) to communicate anonymously with the destina-

tion. Each Onion router only knows the previous and the successive node of the

path. During a set-up phase, some symmetric keys are exchanged between the OP

and each OR. These keys are used to encrypt the messages in a layered fashion as

explained for the mixnets. However, since once the path is established, it remains

the same for the entire duration of the connection, then the next node of the path

does not need to be included in the encryption. This makes this layered encryption

more efficient. All the messages are exchanged in fixed cells of 512 bytes, to make

harder traffic analysis attacks. A more detailed description of how the Tor protocol

works is provided in Section 4.2 of Chapter 4.

Compared with other solutions, Tor offers the best features in terms of la-

tency. Also cover traffic is limited. However, from the point of view of security, it

does not offer good guarantees [261, 150, 239]. Indeed, it suffers from timing at-

tacks [167, 107], traffic confirmation attacks [231],watermarking attacks [136], and

self-promotion attacks [247]. Moreover, no protection against a global adversary is

provided in Tor. This latter point motivates the two solutions provided in Chapters

3 and 4.

Other solutions belonging to the Onion Routing-based protocols are, basically,

extensions or improvements of Tor [4, 248, 212].

Another class of anonymous communication protocols we investigate in this the-

sis is composed of P2P approaches. Several protocols we propose are P2P since they

require the collaboration of other users that act as relay nodes and deliver a message

to the destination. Besides new proposals designed from scratch (see Chapters 2, 3,

6), we provide, in Chapter 5, an improvement of the Tarzan protocol [98] and in

Chapter 7, we apply the Crowds [230] to the MQTT domain.

Often, P2P approaches are DHT-based since they require a Distributed Hash Ta-

ble (DHT) to discover other peers in the network.

6 1 Introduction

The main advantage of P2P solutions is scalability since each user adhering to

the network provides additional capability to the network itself. The question of

why the nodes should collaborate remains an open problem. However, as matter of

fact, concrete implementations of anonymous P2P solutions exist [127]. A discussion

about this point is provided in Chapter 6.

Regarding latency, cover traffic, and security, we can say nothing a priori but they

depend on the specific considered P2P protocol.

The fourth class is represented by DC-Nets [58]. They offer anonymous commu-

nication through multi-party computation. From the point of view of security, they

offer information-theoretically secure anonymity. However, they suffer from scala-

bility problems. Moreover, they may require both a huge overhead in terms of cover

traffic and high latency. DCnet protocols are used for group communication/mes-

saging.

Finally, the last approach we present is based on buses [124, 21, 296]. In this

solution, a predetermined route is used by the sender to anonymously communicate

with the destination. This approach introduces lower cover traffic. However, it does

not scale since the messages flow through all the nodes of the network. This leads to

a prohibitive cost in terms of latency.

1.3 Anonymous Service Delivery

In Part III of this thesis, the concept of anonymity is investigated from a different

point of view with respect to the first two parts. We consider a scenario in which a

service provider offers a given service to a user. In order to provide this service, data,

potentially linkable to the real identity of the user, have to be sent to the service

provider. In this case, the objective of our study is not to protect the communica-

tion between the user and the service provider. Instead, we aim to provide solutions

in which the user discloses the minimum possible information about themselves so

that a given degree of anonymity is achieved against the service provider itself. In

other words, in our adversary model, the service provider represents the attacker.

Clearly, if the service provider, or in general an attacker, has particular capabili-

ties (e.g., background information about the users) also the communication has to

be protected. This is the case of the solution proposed in Chapter 8, in which we

include a mechanism to offer anonymity also against a global adversary. However,

this mechanism is partially orthogonal to the way in which the anonymous service

is delivered.

1.3 Anonymous Service Delivery 7

An interesting point is that, in the protocols we propose, multiple parties are

involved to deliver a service. Then, it is relevant to investigate the level of trust we

have to give to each party and the degree of anonymity the user can obtain.

A very important class of services in which privacy (and in particular anonymity)

features are required is represented by location-based services (LBS) [255, 174]. They

are characterized by the fact that the user has to provide their position to obtain

the service. Clearly, the position is a very sensitive piece of information acting as a

quasi-identifier [240] allowing an easy de-anonymization of the user. In this case, a

common approach followed in the literature (and also in Chapter 8 of this thesis)

is the construction of a cloaking area including k users that potentially may require

the same service. This way, the provider is unable to distinguish the identity of the

user requiring a service from the identities of other k − 1 users. Unfortunately, the

construction of the cloaking area relies on the presence of a trusted party, called

LTS, that knows the position of the users. A benefit of the solution introduced in

Chapter 8 is that it is hierarchical and the view of each LTS is reduced with respect

to a centralized solution.

Until now, in this thesis, we presented anonymity as the main and only objective

to reach. However, it is interesting to observe that if we relax the anonymity require-

ments, we can enable other useful features. This is exactly the goal we pursue in

Chapters 10 and 9. Specifically, in Chapter 10, we considered a smart-city scenario

in which a user interacts with multiple subsystems (service providers) and produces

data. In this case, each subsystem knows the identity of the user and the data they

produce. Then, the objective is not to provide anonymity for the user against the sub-

system. However, each subsystem should know only the data it generates and should

not be able to link its data with those generated by other subsystems. In addition,

it may be useful that this linkage can be performed by other authorized parties to

extract useful statistical information. Still, the linkage of these data should be per-

formed in an anonymous form, i.e., the authorized parties link the data of the users

but do not know their identity. The solution we propose enables all the above fea-

tures.

Another benefit we obtain by relaxing the degree of anonymity is presented in

Chapter 9. Therein, we have a service provider that knows the user only through

a pseudonymous username. This is the typical case of an anonymous social net-

work. A common problem with these types of services is that the users, protected

by anonymity, may behave illegally, fueling phenomena such as cyberbullying. In

this case, accountability properties, allowing the disclosure of the real identity of the

user in case of need, are desirable. Some solutions [47, 44, 236] reach this goal by in-

cluding a third party that by collaborating with the service provider can re-identify

8 1 Introduction

the anonymous user. Our solution improves the trade-off between anonymity and

accountability by requiring that the linkage of the pseudonymous username with

the real identity can be performed if three (instead of two) parties collaborate.

1.4 Threat Models

Since this thesis deals with anonymity issues, all the proposed solutions include a

security analysis aiming to show how the claimed security goals are achieved. An

exception is represented by the solution described in Chapter 5, in which we do

not include a security analysis since it inherits all the security benefits from [98].

However, the experimental validation investigates the size of the anonymity set as a

metric to measure the degree of anonymity.

The security analyses are performed in terms of the capabilities of the adversary

and security properties we want to achieve, that define the threat model for a specific

solution.

Among the different solutions, we pursue different goals (security properties). In

addition, some types of adversaries, which differ in terms of ability, are only appli-

cable to some solutions but not to others. Then, this results in threat models that

vary according to the considered solution. In particular, we observe that the secu-

rity properties considered in the threat models presented in Parts I and II are the

same. Indeed, the solutions therein proposed are about anonymous communication

in which a standard terminology for the concept of anonymity is present in the lit-

erature [219].

On the other hand, the above notion of anonymity cannot be applied (directly)

to the solutions presented in Part III. Then, therein, we consider different security

properties.

In this section, we present an overview of the security properties considered in

this thesis and of the possible adversaries against which these properties should be

guaranteed. Clearly, not all the solutions guarantee all the security properties (but

possibly a subset of them). Moreover, as already mentioned, not all types of adver-

saries can be considered for all the solutions. The specific threat model for each

solution is then discussed within each chapter of this thesis.

We start by considering three security properties that apply to the domain of

anonymous communication (Parts I and II).

An Anonymous Communication Network may offer [219]:

1. sender anonymity if the adversary cannot sufficiently identify the sender in a set

of potential senders, called sender anonymity set.

1.4 Threat Models 9

2. recipient anonymity if the adversary cannot sufficiently identify the recipient in a

set of potential recipients, called recipient anonymity set.

3. relationship anonymity if the adversary cannot sufficiently identify that a sender

(in a set of potential senders) and a recipient (in a set of potential recipients) are

communicating.

Observe that the definitions given in [219], with the use of the term sufficiently,

means “both that there is a possibility to quantify anonymity and that for some ap-

plications, there might be a need to define a threshold where anonymity begins”.

In the solutions presented in Parts I and II, we quantify anonymity in terms of

the size of the anonymity set. Then, given an anonymity set of k possible senders/re-

cipients, the adversary cannot identify the actual sender/recipient among these k.

This corresponds to the notion of communication k-anonymity [274].

It is easy to realize that: sender anonymity implies relationship anonymity and

recipient anonymity implies relationship anonymity.

For the solutions presented in Part III, we consider different security properties.

In Chapter 8, we refer to a slightly different notion of anonymity, i.e., location

k-anonymity [102, 145, 113]. According to this notion, a request coming from a user

in a given position (known to the provider) cannot be distinguished from the re-

quests coming from other k − 1 users whose positions are known to the provider. As

explained in Chapter 8, to obtain location k-anonymity, the reciprocity [149, 106, 63]

property has to be guaranteed.

In Chapter 9, we express the security properties in the ”opposite" form by means

of compromises, in the sense that we show as a given compromise does not occur in

our solution. Therein, we consider two properties. The first regards the impossibility

for some parties to link a username with the real identity of a user (pseudonymity).

The second property is the accountability. Specifically, the possibility for other par-

ties (different from the previous ones) to discover the above linkage username-real

identity in case of need.

Finally, in Chapter 10, we refer to the property of unlinkability of data in the sense

that it is not possible to link data coming from the same user except some authorized

parties called analysts. However, the analysts link the data without knowing the real

identity of the user.

This concludes the discussion about the security properties considered in this

thesis.

Now, we introduce the possible adversaries with their capabilities.

Similar to the security properties, the adversaries considered in the field of

anonymous communication have different capabilities with respect to the adver-

saries considered for anonymous service delivery.

10 1 Introduction

Indeed, the solutions presented in Parts I and II include the deployment of an

overlay network for anonymous communication. Therefore, the different considered

adversaries reflect their capabilities to compromise the network. On the other hand,

for the protocols in Part III, we do not focus on the anonymous communication of the

actors but on the possibility to provide a service without disclosing users’ identities.

Regarding anonymous communication, the first distinction we consider is be-

tween:

1. A local adversary: that is able to monitor the traffic originating from /incoming

to some nodes of the network.

2. A global adversary: that is able to monitor all the messages exchanged in the net-

work.

Another possible distinction is between:

1. A passive adversary: that monitors the exchanged messages but is not able to block

them or forge new messages (even dummy).

2. An active adversary: that monitors the exchanged messages and is able to block

them and/or forge new messages.

Clearly, the adversaries we consider in our threat models are a combination of

these two classes. Mainly, the solutions we propose aim to offer protection against a

global passive adversary (this is an ambitious goal). However, in some solutions such

as that of Chapter 4, we also analyze a global passive adversary with the power of

compromising some nodes by accessing the content of the received messages. Fur-

thermore, in the solution proposed in Chapter 7, we are vulnerable to the global

adversary but active attacks performed by malicious nodes are ineffective (under

some conditions).

Another interesting point is to understand what happens when the adversary is

the recipient of the communication. In this case, providing sender anonymity against

the recipient of the communication is not a trivial task, especially when the recipient

has to reply to the sender. However, almost all the solutions provided in this thesis

achieve this feature.

The last consideration about the adversaries in anonymous communication pro-

tocols regards the case in which the protocol needs a third party, such as a directory

server providing ”yellow pages” service. In this case, this party can be considered:

• Fully trusted: it performs the steps of the protocol legally and does not attempt

to break the security properties.

• Honest but curious: it performs the steps of the protocol legally but attempts to

break the security properties.

1.5 Outline of the thesis 11

• Malicious: it attempts to break the security properties possibly by deviating from

the steps of the protocols.

Concerning anonymous service delivery, we have different parties (including a

service provider) that communicate among themselves to provide an (anonymous)

service. To define our threat model, we consider each involved party as an adversary

belonging to one of the three above-mentioned categories: Fully trusted, Honest but

curious, or Malicious. Furthermore, we also consider the possible collusion among

different parties and investigate if this collusion compromises the security proper-

ties.

We recall that, in anonymous service delivery, the main aim is not to protect the

communication among the parties, that is the objective of anonymous communica-

tion. However, in the solution presented in Chapter 8, we address also the problem

of anonymous communication against a passive global adversary coinciding with the

service provider in collusion with a telephone service provider.

1.5 Outline of the thesis

This thesis is organized into four parts.

Part I describes four solutions implemented over the transport layer supporting

anonymous communication. In particular, in Chapter 2 we describe a preliminary

approach to offer anonymity guarantees against a global passive adversary able to

observe the entire traffic exchanged in the network. The results of this approach are

published in a research paper [36]. Even though the approach is not complete and

presents some limitations, it is at the basis of the solutions discussed in Chapters 3

and 6.

Chapter 3 presents a proposal to extend the Tor protocol to achieve sender

anonymity against a global adversary. Basically, the solution exploits the approach

presented in Chapter 2 to build a P2P anonymous network of senders before the en-

try point of the Tor circuit. The results of this approach are published in a research

paper [43].

The dual problem is faced in Chapter 4. Therein, we present a solution to achieve

recipient anonymity in Tor against the global adversary. In this case, we do not set

a P2P network but leverage the hidden services mechanism present in Tor. Some

preliminary results of this approach are published in a research paper [40].

Finally, Chapter 5 concludes the first part of this thesis by proposing an exten-

sion of the well-known Tarzan protocol [98] to obtain better performance in uplink-

intensive applications. The idea of the approach is to remove the bidirectional links

(needed also to obtain a response) present in Tarzan by rearranging the topology of

12 1 Introduction

the mimics in order to form cycles that enable the response. This allows an important

reduction of the cover traffic.

In Part II, two anonymous communication protocols are presented. They are im-

plemented over an existing application layer. In Chapter 6, the application layer is

represented by a social network. The solution we propose resists a global passive

adversary (i.e., the social network provider) and offers both sender and recipient

anonymity. It is suitable for short communication and can be adopted to implement

privacy-preserving proximity-based services. The results of this approach are in-

cluded in two research papers [37, 42].

Instead, the application layer considered in the solution of Chapter 7 is MQTT.

We leverage the bridging mechanism natively offered by MQTT to deploy a network

enabling anonymous publishing/subscribing to topics. The approach we follow is

based on the Crowds protocol [230]. An important point to observe is that all the

messages are exchanged through the standard MQTT primitives This allows us not

to require changes in the standard MQTT infrastructure.

Part III includes three solutions for anonymous service delivery. The first solution

is presented in Chapter 8, in which we propose a hierarchical LTS system offering

protection against a global adversary. The services we consider in this solution are

location-based services and the aim is to provide the users with guarantees about

the fact that the provider is not able to identify their positions. Some preliminary

results of this approach are published in a research paper [39].

In Chapter 9, we present a solution to the trade-off between accountability and

anonymity. In particular, we consider a scenario in which a user is known to the ser-

vice provider just by means of a pseudonymous username. To enable the possibility

to re-identify the user in case of malicious or illegal behavior, we require the collab-

oration of three parties. This is the main advantage with respect to other solutions

in which just the collaboration of two parties is enough. The results of this solution

are published in a research paper [45].

The solution presented in Chapter 10 enables the anonymous linkage of open

data only by some authorized parties. Specifically, we are in a smart city scenario in

which a user interacts with several subsystems by producing data published in the

form of open data. Even though these data are anonymized for privacy reasons, our

solution enables their linkage only to authorized parties which, however, are unable

to discover the real identity of the user to whose data refers. This concludes the third

part of this thesis.

Finally, in Part IV, we draw the conclusions of the thesis.

Part I

Anonymous communication over the transport layer

15

The design of anonymous communication protocols resisting a global adversary

able to observe the entire traffic exchanged in the network is not a trivial task. On

one hand, as stated in [71], any solution pursuing this goal has to include cover

traffic, i.e., dummy traffic among which the real traffic is hidden. On the other hand,

cover traffic represents energy consumption and bandwidth waste, so it should be

reduced as much as possible. For example, a trivial solution to achieving protection

against the global adversary consists in sending periodically dummy messages to all

the users of the network and replacing one of them with the actual message when

needed. Obviously, this solution is not applicable.

Reducing the cover traffic can also have an impact on the latency, since, in gen-

eral, reduces the opportunity for a user to send a message. This leads to the so-

called anonymity trilemma [74], which states the existence of a trade-off between

anonymity, cover traffic, and latency.

In this part of the Thesis, we propose solutions to this trade-off that are imple-

mented over the transport layer. This makes them, in principle, independent of the

application layer to which the messages are generated. However, even if they work

with any application layer, they perform better when some applications are consid-

ered.

This part includes four proposals.

In Chapter 2, we describe a preliminary approach to offer anonymity guarantees

against a global passive adversary. Even though the approach is not complete and

presents some limitations, it introduces the concept of ring that is at the basis of the

solutions discussed in Chapters 3 and 6.

Chapter 3 presents a proposal to extend the Tor protocol to achieve sender

anonymity against the global adversary. Basically, the solution exploits the approach

presented in Chapter 2 to build a P2P anonymous network of senders before the

entry point of the Tor circuit.

The dual problem is faced in Chapter 4. Therein, we present a solution to achieve

recipient anonymity in Tor against the global adversary. In this case, we do not set

16

a P2P network but leverage the hidden services mechanism present in Tor. A rele-

vant contribution of this solution is represented by the formal security analysis we

conducted.

Finally, Chapter 5 concludes the first part of this thesis by proposing an extension

of the famous Tarzan protocol [98] to obtain better performance in uplink-intensive

applications. The idea of the approach is to remove the bidirectional links (needed

also to obtain a response) present in Tarzan by rearranging the topology of the mim-

ics in order to form cycles that enable the response. This allows an important reduc-

tion of the cover traffic. In this Chapter, the anonymity trilemma is also investigated

through experimental validation.

2

A preliminary approach leveraging onion routing to

achieve anonymity against a global adversary

Through this chapter, we provide the first protocol of this thesis achieving anonymity

against a global adversary. The proposed approach is preliminary and some aspects are

missing or deserve a better investigation, in particular regarding implementation and ex-

perimentation. However, we present this solution, since it introduces, in a simple form,

the idea of ring. This concept is deepened and exploited in the next chapters to build more

robust and performing protocols also on top of existing application layers. Furthermore, in

this chapter, also the concept of Onion routing, well-known in the literature, is presented.

It is the basis of Tor, which is the most popular anonymous communication protocol used

for low-latency network applications. However, Tor does not protect in the strict threat

model of a global adversary. Therefore, in the next two chapters, we will see how to extend

the standard Tor Protocol to achieve sender and recipient anonymity, respectively. In this

chapter, the concept of Onion routing is used in its original definition that introduces a

communication overhead as observed in Section 2.5. The results of the proposed approach

are published in a research paper [36].

2.1 Introduction

Onion routing, originally proposed in [108], aims to reach anonymity by forward-

ing the message over multiple proxies (relay nodes) which, thanks to a public-key

encryption wrapping, are only aware of the next hop of the route.

A lot of practical implementations (Tor [193] is the most famous) and extensions

of the original idea have followed mainly through overlay protocols, but also imple-

mented at the network layer [60, 61]. Despite its age, Onion is still a state-of-the-art

approach, currently subject of attention in the research community [162]. However,

Onion suffers from a serious drawback regarding anonymity. Indeed, in the global

passive adversary model, in which all the traffic can be observed by the adversary,

both sender and recipient anonymity are not achieved. Indeed, it suffices for the

adversary to place itself at the first relay node of the Onion circuit to identify the

18 2 A preliminary approach leveraging onion routing to achieve anonymity against a global adversary

sender, and to place itself at the last relay node, to identify the recipient. This fact

may have a relevant impact because a combined timing attack can allow the attacker

to pair the sender and recipient, thus breaking also relationship anonymity [93].

To solve the above drawback, we propose a routing protocol that extends Onion

by introducing the concept of ring to strengthen sender anonymity and an inertia

route to strengthen recipient anonymity. Specifically, in the global passive adversary

model, sender and recipient anonymity are achieved in an anonymity set of con-

figurable size K . As a consequence, the weaknesses of Onion mentioned above are

solved in our protocol and the global passive adversary cannot break relationship

anonymity.

2.2 Overview of the Protocol

In this section, we present an overview of the proposed routing protocol.

Our protocol is cooperative, as all nodes play also routing functions, but we as-

sume the presence of a (hierarchical and distributed) directory system DS provid-

ing the resolution of symbolic identities of nodes into network addresses. With SID

we refer to a symbolic identity and with NID to a network address. Obviously, we

assume that the nodes of this directory system are reliable in the sense that they

collaborate with the protocol, but they can under the observation of the adversary.

Our protocol combines the classical protocol Onion with the concepts of ring and

inertia route to fulfill the anonymity requirements.

A ring is a circular route of nodes of a given configurable size K . It represents the

anonymity set for the sender. Therefore, any potential sender Alice is included in a

number of rings. It is always possible for Alice to know, for each ring, the nodes (and

the public keys) belonging to it. Each ring has an owner responsible for generating

containers that injects in the ring. Such containers turn continuously in the ring and

represent cover traffic, since they form dummy traffic that can or not contain data.

Indeed, every message transmission is done by filling one of the empty containers,

in such a way that, thanks to probabilistic encryption, empty and filled containers

are indistinguishable from an external observer.

The inertia route is the mechanism at the basis of recipient anonymity in a proper

anonymity set of nodes (of configurable size K too). In words, the inertia route is a

random walk (selected by the sender) external to the ring and includes the recipient

in a sufficiently undetectable position. As for the ring, the inertia route includes

cover traffic. Indeed, once a message included in a container reaches the intended

recipient, it continues empty (i.e., as a dummy message) in the inertia route until the

2.3 The onion-based routing protocol 19

terminal node is reached. Moreover, a backward burst of cover traffic is activated in

the inertia route to hide the sender of the response.

Suppose that Alice wants to send a message to Bob (which represents a SID

known to Alice). Her first task is to send a request to DS in an anonymous way

by using one of the rings she belongs to. The DS response provides Alice with the

NID of Bob plus the information needed for Alice to build the route external to the

ring playing the role of recipient anonymity set. Obviously, Bob is in this set. Ob-

serve that the ring-based mechanism allows us to have recipient anonymity for the

DS response. At this point, Alice selects an exit node of the ring and establish a

transmission path composed of the portion of the ring from Alice to the exit node

concatenated with the external route including Bob. The message is sent by Alice

through this path by using Onion-based public-key encryption wrapping [72, 59]

2.3 The onion-based routing protocol

Through this section, we describe, in detail, the protocol introduced in the previous

section.

We assume the presence of a Directory System DS, for which the following holds.

DS has a public key utilized by network users to obtain the information needed to

arrange anonymous communication with other users. DS manages the Public Key In-

frastructure (PKI) of the whole network so that it generates and distributes the pub-

lic keys to all the nodes of the network. Public keys are utilized by the nodes to set

Onion-wrapping encryption. DS, as already mentioned, provides the resolution of

symbolic identifiers of nodes (SIDs) into network address identifiers (NIDs) needed

to build the route to any destination. Specifically, DS stores a table called Resolu-

tion Table (RT). Every entry of the RT consists of a tuple of the form: ⟨SID,NID,P ⟩,

where P is the public key of the node NID.

DS is also responsible for the set-up of rings and for the storage of information

about them. As clearly stated in Section 2.4, DS is assumed trusted in the sense that

it executes correctly the protocol, but the adversary may know the content of all the

DS incoming and outcoming messages.

A ring is a circular sequence of NIDs of size K . Each ring has an owner whose

NID identifies it. Each node belongs to at least l rings. Observe that the smaller l, the

higher network latency and the less cover traffic is. DS stores also a Membership Ring

Table (MRT), which, for each NID, associates the rings it belongs to. A tuple of MRT is

of the form: ⟨NID,NID1, . . . ,NIDl̄⟩, where NID1, . . . ,NIDl̄ (l̄ ≥ l) are the rings which

NID belongs to. DS stores another table called composition ring table (CRT), which,

for each ring, includes the K nodes that compose it and their associated public keys.

20 2 A preliminary approach leveraging onion routing to achieve anonymity against a global adversary

Fig. 2.1: Graphical representation of the onion-based protocol.

.

A tuple of CRT is of the form: ⟨NID, (NID1, P1), . . ., (NIDK , PK)⟩, where NID=NID1,

and the sequence (NID2, P2), . . . , (NIDK , PK) represents the successive nodes in the

ring (in order). All the information regarding rings is periodically cached by nodes,

in such a way that any node stores locally the rings to which it belongs. The owner

of a ring is responsible for generating the containers it injects into the ring. They are

random messages of fixed length.

Now, we describe how anonymous communication works. Suppose that Alice

wants to send a message to Bob. Recall that, the anonymization of the communi-

cation leverages the ring structure. In it, a number of containers turn continuously,

each reporting the NID identifying the ring. In general, each message is sent by any

user by filling an empty container without changing its size. Empty and filled con-

tainers are indistinguishable. This is obtained by probabilistically encrypting the

container hop-by-hop with the public key of the next node in the ring. Thus, each

node that receives a container (empty or filled), decrypts it, possibly fills it (provided

that it is empty), encrypts with the public key of the next node in the ring, and then

sends it to this node, and so on. We denote the encryption of a message M with a

key X by EX(M). We use a probabilistic encryption function so that when the same

message is encrypted several times, we obtain different ciphertexts.

First Alice performs a DS request to obtain the information needed to build the

communication route. The DS request proceeds as follows. Alice, in order to send

the request to DS, takes the DS public key, denoted by KDS , needed to protect the

sensitive request information, in this way: EKDS
(KA,SIDs) where KA is a key gener-

ated on the fly by Alice to allow the encryption of the DS Response, and SIDs is a list

of length K of SIDs in which K − 1 are dummy SIDs and one is the SID of Bob.

Moreover, Alice, for each ring she belongs to, thanks to tables MRT and CRT,

periodically chooses (randomly) an exit node, which we denote as at distance j from

2.3 The onion-based routing protocol 21

her in the ring. Observe that, within the request, a random R is included, which is

an identifier of the request, useful for the exit node in the DS response, as we will

see later. Thus, it is important that R is not encrypted with the public key of DS

(obviously, it is hop-by-hop probabilistically encrypted as all messages to prevent

distinguishability). Alice, to send the request, has to wait for an empty container.

She takes the first container that arrives by a whatever ring which she belongs to,

and fills it with the message (NIDj ,R,EKDS
(KA,SIDs)), where NIDj is the NID of the

node j.

At this point, the DS request turns in the ring until it arrives at the exit node j,

which recognizes to be the exit node by checking the NID specified in the request.

Before j sends the request directly to DS, it stores the request identifier R and the

NID of the ring from which the request came (the latter information is available in

the container). This is done to allow that when DS will reply to the exit-node j at

this request, thanks to R, the exit node will identify the request and will inject the

response into the suitable ring. Subsequently, it generates a new empty container,

re-injects it in the ring in order to keep constant the arriving frequency of containers

in the ring.

After DS has received Alice’s request, DS generates the DS response as follows.

The DS processes the request by decrypting it and recovering the list of K SIDs

requested by Alice, the on-the-fly key of the Alice KA, and the random R. So, DS

searches in the Resolution Table the list of the K SIDs and recovers the matching

NIDs. Hence, DS builds the DS response as follows: (R,EKA
(NIDs−P Ks)) by includ-

ing R and the encrypted list of the K NIDs (with the associated public keys), with KA.

DS sends the DS response to the exit node j. The latter thanks to R and the recorded

information, identifies the ring in which to inject the response. To do this, j waits for

the arrival of the first empty container of the appropriate ring and fills it with the

DS response. When the filled container arrives at Alice, she takes R and decrypts it,

to recover the K NIDs with which she builds the communication route.

Alice, similarly to the DS request phase, chooses j ≤ K , by identifying the num-

ber of hops until the exit node. This way, Alice builds the first portion of the path

including ring nodes (denoted as rxs) and the remaining K nodes (denoted as wys)

outside the ring. Bob is placed somewhere in the outside portion of the path. In sum,

the overall path is: π = ⟨r1, r2, . . . rj ,wj+1,w2, . . .wj+K⟩. Observe that r1 is the NID of Al-

ice, rj is the exit node and there exists 1 ≤ i ≤ K such that wi+j is the NID of Bob. The

portion of the route going from Bob until the endpoint is called inertia route.

The communication towards Bob is Onion-based, so the public keys of the

nodes of the path chosen by Alice are utilized to set Onion-wrapping encryp-

tion. Alice, according to the Onion protocol, builds the message to Bob, waits

22 2 A preliminary approach leveraging onion routing to achieve anonymity against a global adversary

for the first container empty, and fills it with the message. This way, the mes-

sage encrypted by Alice is the following: M̄ = Ej (· · ·Ei+j (· · ·Ej+K−1(Ej+K (D,0),wj+K)

· · · ,M,rj ,dest,wi+j+1) · · · , exit,wj+1). Observe that M̄ is sent in the ring through hop-

by-hop probabilistic encryption. To simplify the notation, the symbol Ei denotes the

encryption with the public key of the i-th node of the path from r1 to wj+K . The

message that Alice intends to send to Bob will be included within the Onion wrap-

ping encryption, in the specific position in which only Bob can decrypt. A parameter

dest is attached to the message to identify the destination step of decryption as well

as the NID of the exit node rj . Similarly, the message received by the exit node con-

tains a parameter exit in such a way that that node re-injects in the ring a new empty

container. Finally, the last node (that we call terminal) of the path decrypts the mes-

sage (D,0), that is a dummy message D plus the information 0 that terminates the

proxying process. For the response, the terminal node generates constant-rate con-

tainers (similarly to rings) that cross the entire route external to the ring (allowing

Bob to encapsulate the response messages) until the exit node. Then, such contain-

ers are injected into the ring reaching the source (Alice). The cover-traffic burst ends

when a stop message is sent by Bob in a container, it reaches the exit node, and this

node directly contacts the terminal node to turn off the cover-traffic generation. This

strategy prevents classic intersection attacks identifying the recipient as the traffic

pattern for requests and corresponding responses are the same.

A graphical representation of the protocol running is reported in Figure 2.1.

Therein, the sender (Alice) belongs to a ring of 8 nodes (thus, K = 8). The arrow

marked with (1) represents the DS request sent by Alice to DS through a container

reaching the exit node and then going directly to DS. DS responds with the message

(2), which reaches the exit node and, then, is injected into the circle through a con-

tainer that reaches Alice. Thanks to the DS response, Alice can construct the Onion

path including Bob (i.e., the inertia route). Then, she sends the message (arrow (3))

through a container until the exit node and, then through the inertia route. Observe

that, after reaching Bob, the communication continues in a dummy fashion. This is

represented by the dashed trait of the arrow. Finally, thanks to the cover-traffic burst

generated by the terminal node, the response reaches the exit node and, then, Alice

(arrow (4)). Note that, the communication is dummy until Bob (the dashed trait of

the arrow (4)), inserts in the cover traffic the actual response.

2.4 Security Analysis

In this section, we sketch a security analysis of our solution. We start by defining the

threat model.

2.4 Security Analysis 23

Assumptions A1.

Rings are built in a way that the background knowledge does not allow the ad-

versary to have more information than the sender’s uniform distribution. A1 refers

to the realistic case of nodes associated with end users. A similar assumption cannot

be done for recipients in the case of web traffic [246], whereas it is valid for P2P

applications.

Adversary Model.

We consider a global passive adversary able to monitor all the traffic of the net-

work and to passively control the DS system. This means that each of the nodes

can be compromised to the extent that the adversary can observe all the incoming

and outcoming traffic from the node as well as the content of DS requests and DS

responses.

Security Properties.

We study the security properties sender anonymity and recipient anonymity. Ob-

serve that if one of them is satisfied, then also relationship anonymity holds. Accord-

ing to [219], the anonymity of a given item of interest (sender, recipient, relation-

ship, etc.) is guaranteed if the adversary cannot sufficiently identify the item in the

anonymity set. We observe that we reach this objective when the success probability

for the adversary is 1
K , where K is the size of the rings because K can be realistically

set to a sufficiently large value such that the above probability refers to an unlikely

event.

Regarding Onion, it is well-known [93] that neither sender anonymity nor re-

cipient anonymity is guaranteed in the global passive adversary model. Indeed, the

attacker can observe the traffic from the sender (identifying it) by compromising

the first relay node of the Onion circuit. Similarly, the recipient can be identified by

compromising the last node of the circuit. Moreover, due to the timing attacks, also

the relationship anonymity is not satisfied in Onion.

Now, we analyze sender anonymity for our protocol. We recall that each node can

send a message only after receiving a container from the previous node in the ring.

When a container is forwarded between two nodes, it is encrypted with probabilistic

encryption both if it is filled (i) and if it is empty (ii). The only way for the attacker

to distinguish (i) from (ii) is to observe the size of the container. However, this is

prevented by padding properly the empty container in such a way that it has the

same size as the filled container. Observe that, the probabilistic encryption scheme

ensures that, when a sender encrypts more times the same empty container, each

encryption results in a different ciphertext. This way, even if the adversary stores

any of these ciphertexts, it is unable to understand if a new ciphertext, sent from

such a sender, is a filled container or just another empty container. Therefore, the

24 2 A preliminary approach leveraging onion routing to achieve anonymity against a global adversary

sender cannot be detected when it fills the container. Consider now the DS request,

which is preliminary to the communication. The way in which such a request is

performed ensures that it is not possible to link the initiator of the request even

if the adversary controls the DS system. Indeed, the request does not contain any

information about the initiator and it is sent through the ring until the exit node

and from the exit node to DS. This latter replies to the exit node, and the initiator

receives the reply through the ring. By Assumption A1, since the senders follow

a uniform distribution, we obtain that the adversary can break sender anonymity

with probability 1
K , where K is the number of nodes in a ring. Thus, the adversary

can break relationship anonymity with probability bounded by 1
K .

Finally, consider recipient anonymity. The adversary knows that the recipient

is one of the nodes in the path from the exit node to the last node, but it does

not know where the node is. If we assume uniform destination distribution (oc-

curring when P2P applications are considered), the adversary can break recipient

anonymity with probability 1
K . In the case of skewed destination distribution (occur-

ring for example in Web-browsing), the probability that the adversary identifies the

recipient is higher than 1
K , since some recipients are more likely to be chosen than

other recipients. Therefore, the more skewed the destination distribution, the less re-

cipient anonymity is. However, independently of recipient anonymity, relationship

anonymity is guaranteed with uncertainty at least 1
K thanks to sender anonymity.

2.5 Discussion and Limitations

The protocol presented in this chapter has the objective to introduce the reader to

the concepts of ring and Onion routing, which will be exploited in the next chap-

ters. Indeed, even though the idea presented at a high level solves the problem of

anonymity against a global adversary, several aspects should be better investigated.

First, the security analysis is just sketched and a more formal analysis should be

conducted. No implementation is provided and no experimental validation is per-

formed. For example, it is not clear how to set the size of the containers. Indeed,

the basic Onion routing approach used requires a size that increases linearly with

the length of the path. This may result in an intolerable size. Furthermore, when DS

replies to the sender with the public keys of other K users, the size of this message

may be very high. Another aspect not addressed in this protocol is fault tolerance

taking into account what happens when some nodes fall. The next proposals over-

come all the above drawbacks.

3

Providing Tor with sender anonymity against a global

adversary

Tor is the de facto standard used for anonymous communication over the Internet. De-

spite its wide usage, Tor does not guarantee sender anonymity, even in a threat model in

which the attacker passively observes the traffic at the first Tor router. In a more severe

threat model, in which the adversary can perform traffic analysis on the first and last Tor

routers, relationship anonymity is also broken. In this chapter, we propose a new protocol

extending Tor to achieve sender anonymity (and then relationship anonymity) in the most

severe threat model, allowing a global passive adversary to monitor all of the traffic in the

network. We compare our proposal with Tor through the lens of security in an incremental

threat model. The results of this approach are published in a research paper [43].

3.1 Introduction

The Tor overlay network [258] is the most popular anonymous communication pro-

tocol used for low-latency network applications. It is the state-of-the-art implemen-

tation of the Onion protocol [108]. Tor is based on two concepts: relay nodes (also

called Tor routers) and layered encryption. Relay nodes act as proxies in an Onion

route. Each relay node receives its message from the preceding one and forwards it

to the next, until the destination is reached. Differently from random walk [230], the

route is deterministic and chosen by the sender. Moreover, the message is wrapped

through layered encryption, which the sender can apply by knowing the crypto-

graphic keys of all the relay nodes of the route. This way, each node is able to drop

an encryption layer, and can see the address of the next relay node to which the

still encrypted message should be forwarded. Eventually, the message with only one

layer of encryption reaches the destination. According to this scheme, each node in

the route only knows the address of the preceding node and the address of the next

node. Therefore, by design, the first relay node knows the address of the sender.

Sender anonymity is then not supported if we allow the adversary to control the first

relay node. The practical impact of this weakness is that sole collaboration with an

26 3 Providing Tor with sender anonymity against a global adversary

Internet service provider allows the adversary to detect that a user is utilizing the

Tor system. Sender anonymity is obviously broken in a severe threat model with

a global passive adversary, able to monitor all the traffic in the network. Anyway,

breaking sender anonymity is not enough to nullify the final goal of the protocol,

which is relationship anonymity. Indeed, the aim of Tor, as in general happens for

an anonymous communication network, is to prevent the adversary from detecting

that a given sender is communicating with a given recipient. Consider that, despite

the fact that anonymity services are often used for criminal purposes, there are a

lot of ethical applications of anonymous routing, including censorship resistance.

However, relationship anonymity can be broken in Tor in a global passive adversary

model. As a matter of fact, Tor is vulnerable to many passive attacks [209, 150], al-

lowing traffic de-anonymization. It can be easily recognized that if the adversary can

monitor the traffic at the bounds of the Tor circuit (i.e., the first and the last router),

traffic analysis attacks break relationship anonymity [219, 211], thereby fully de-

anonymizing the communication.

The solution proposed in this chapter aims to overcome the above drawbacks of

Tor, by achieving sender anonymity (in the sense of communication k-anonymity [274])

in the most severe threat model, in which a global passive adversary is allowed,

which monitors all the traffic in the network. Recall that sender anonymity is enough

to guarantee relationship anonymity, as stated in [219]. Therefore, we obtain effec-

tive protection for users’ privacy.

The approach we use to obtain sender anonymity in Tor exploits the concept of

ring, introduced in Chapter 2, to hide the sender within an anonymity set of poten-

tial senders arranged circularly. To prevent the adversary from detecting the initiator

of the communication, we equip the ring with cover traffic that the senders can op-

portunistically use to send their messages, by filling one or more circulating tokens.

Thanks to probabilistic encryption, empty and filled tokens are indistinguishable

from the adversary. The route Tor is then built from a proxy node of the ring to

the destination. The adversary can see that a node of the ring is working as a proxy

node, but it is not able to understand which node the sender is among the nodes of

the ring. Traffic analysis attacks are not possible due to the cover-traffic mechanism.

3.2 Overview of the Tor Network and Notation

In this section, we introduce the notation used to describe our proposal. Moreover,

we provide an overview of the Tor protocol by introducing only the aspects relevant

to the solution proposed in this chapter. Further details can be found in Section 4.2

of Chapter 4.

3.3 The Proposed Protocol 27

We start with the notation. For both symmetric and public-key encryption, we

denote by Ek(M) the encryption of a message M with key k. Similarly, we denote

by Dk(C) the decryption of the ciphertext C with (symmetric or public) key k. Even

though we do not explicitly highlight this aspect, the encryption we consider is only

probabilistic, in such a way that, for an eavesdropper, two different encryptions of

the same message are unlinkable.

The Tor network is an overlay network, based on TCP/TLS connections, consist-

ing of multiple relay routers called Onion routers (OR). Each client runs locally an

Onion proxy (OP) which establishes a virtual circuit of ORs to communicate anony-

mously with the destination. To build a circuit, the OP periodically contacts a trusted

server called Directory Server (DS) that keeps the information about the state of the

network and provides the OP with router descriptors of the ORs. These router de-

scriptors contain the IP addresses and the public keys of the ORs, along with their

network information, such as the bandwidth. Then, the OP selects, according to

some strategies, a number n of OR relays that form the virtual circuit. By default,

n = 3. The first OR is called the entry router, the second the middle router, and the

last the exit router. Once the three ORs have been selected, the OP starts a set-up

phase to build the virtual circuit. This phase is performed in such a way that each

OR only knows the previous and the next node of the path. Moreover, in this phase,

the OP exchanges some messages with the ORs, which include some Diffie–Hellman

(DH) parameters, to share a secret key. These messages are encapsulated into control

cells of a fixed size of 512 bytes. Since the OP has to be sure about the authenticity of

the ORs, the DH parameters are encrypted by using the public keys of the ORs. At

the end of this set-up phase, the OP shares a secret key with each OR. These keys are

used by the OP to encrypt (symmetrically) in Onion fashion the messages intended

for the destination. Once the circuit is established, the OP sends the messages to the

destination encapsulated into relay cells of size 512 bytes. These relay cells include a

header of 3 bytes in plaintext plus 11 bytes encrypted for the exit router. Therefore,

the effective payload is 498 bytes.

3.3 The Proposed Protocol

In this section, we describe our protocol, which achieves sender anonymity even in

the most severe threat model including a global passive adversary. We denote by

(client) nodes the nodes that collaborate in the protocol without playing the role of

Tor routers. Senders are among the client nodes. Moreover, we have in the network

nd destination hosts, which are distinct from client nodes and Tor routers.

28 3 Providing Tor with sender anonymity against a global adversary

The description of the protocol is given in three main steps. The first step is de-

scribing the ring manager and the token-based mechanism. Some management func-

tions are illustrated, along with the basic mechanism for implementing anonymity

for the sender. The second step is describing the set-up phase. This is the phase in

which keys are exchanged, the setting of further parameters is executed and cover

traffic is established. This is a preliminary step to make possible anonymous com-

munication, which is explained in the last step of the description, denoted as com-

munication phase.

3.3.1 Ring Manager and Token-Based Mechanism

In this section, we describe the basic mechanism of our approach that allows us to

provide the sender with anonymity against a global passive adversary.

We assume the presence of a ring manager (RM) that partitions the nodes of the

network in several rings.

The ring manager selects the nodes forming a ring in such a way that the back-

ground knowledge does not allow a possible adversary to have more information

than the uniform distribution of senders. In other words, given a ring, any node of

the ring is potentially a sender (with no probability bias). This is achieved by select-

ing, for a given ring, hosts belonging to the same, even large, geographical region.

A ring is a sequence of k nodes such that each node has exactly a preceding (prec,

for short) and a next node. In our setting, each node only knows its prec and its

next node. Several messages, called tokens, move through the ring. There are two

kinds of tokens. The first type is used in the set-up phase. The second type is used in

the succeeding communication phase. The detail will be discussed next. Tokens are

filled by senders to deliver their messages to a proxy node, which, once a Tor circuit

is established, sends them to the destination host. To obtain that any eavesdropper

is unable to distinguish an empty token from a filled token, each node encrypts the

token with a symmetric key shared with its next node.

RM maintains, along with the next node, the public keys and the network ad-

dresses of each node of the network. For each ring, each belonging node receives

from RM the set of the public keys of the other nodes of the ring, and among these

keys, the information about which is the public key associated with the next node in

the ring. We assume that RM is a centralized entity.

3.3.2 Set-Up Phase

The first purpose of this phase is to exchange a set of symmetric keys between the

nodes of a ring. These keys will be used to encrypt the messages without requiring

the complexity of public-key encryption.

3.3 The Proposed Protocol 29

We first introduce some notation. Given a ring, we denote by r1, . . . rk the k nodes

forming the ring, in order. Given a node ri , we denote by next(ri) the next element in

the ring, that is, r(i%k+1), where % is the operator mod. We denote by P Kri the public

key associated with the node ri and by addr(ri) its network address.

Now, we can describe how key exchange is executed. This is done in detail next.

We have two kinds of key exchange. The first is aimed at providing each node with a

symmetric key shared with the next node. These keys are used to implement hop-by-

hop encryption when messages turn in the ring. This key exchange is called forward

key exchange, and it is described in detail next, in Section 3.3.2.

The second kind of key exchange is aimed at obtaining key sharing between the

sender and the proxy node. However, since both roles of sender and proxy can be

played by all the nodes in the ring, the key exchange mechanism involves every pair

of nodes. Synthetically, each node of the ring exchanges a symmetric key with the

other k − 1 nodes. Observe that, even though a key is exchanged between two nodes

A and B, a different key will be exchanged between B and A. Indeed, the two keys

will be used for different purposes depending on whether the node plays the role

of sender or proxy. Therefore, the two keys are called the sender key and proxy key,

respectively. A requirement of this phase is that, if A exchanges a key with B, B learns

nothing about the network address of A. The detail of this mechanism, called sender

and proxy key generation, is provided next, in Section 3.3.2. Since the above keys will

be included in special tokens, before describing the key generation mechanism, we

describe, in Section 3.3.2, how such tokens are arranged.

Forward Key Exchange

Each node ri receives from RM the set Q of the public keys of the nodes of the ring it

belongs to, addr(next(ri)), and among Q, the information about which public key is

associated with next(ri) (the associations of the other keys with the proper network

address remain unknown to ri). The address of the next node will be used to forward

tokens.

Initially, each node ri exchanges a symmetric key called forward key with its next

node. This key is used only to encrypt the token hop-by-hop. In detail, each node

ri generates a public DH parameter yi and encrypts it with the public key P Knext(ri),

obtaining C = EP Knext(ri)
(yi). C is sent to next(ri) (we recall that ri knows add(next(ri)).

The latter decrypts yi , generates the forward key kri and replies to ri with its public

DH parameter ȳnext(ri) along with the hashed value H(kri) (in plaintext). In summary,

each node ri shares a forward key kri with its next node, and the tokens can be prop-

erly encrypted hop-by-hop.

30 3 Providing Tor with sender anonymity against a global adversary

Token Generation

After exchanging the forward keys, at a given time t0, each node ri generates k − 1

empty tokens and sends them to its next. In turn, next(ri) forwards the tokens to its

next, and so on. Each token is encrypted by ri with kri ; then it is sent to next(ri), which

decrypts it with kri , processes the token, re-encrypts it with knext(ri) and forwards it

to next(next(ri)).

The structure of these tokens is the following: ⟨F,PDH,R,H⟩ where F is a flag

denoting whether the token is empty (F = 0) or filled (F = 1), PDH is a field contain-

ing a public Diffie–Hellman parameter (possibly encrypted), R is a random playing

the role of identifier and H is a hashed value (the exact meaning of these fields will

be clear in the following). Observe that PDH , R and H are meaningful only if F = 1.

The tokens are born with F = 0. Therefore, at the beginning, there are k(k −1) empty

tokens turning in the ring.

Starting from a time t1 > t0, each node ri waits a random time δi , and then fills

the first available empty token, as explained in the following.

Sender and Proxy Key Generation

First, F is set to 1. Then, ri selects a random public key P Krj from Q\{P Kri }. ri selects

its public DH parameter yij and encrypts it with P Krj , thus obtaining Cij = EP Krj
(yij).

Then, PDH is set to Cij . R is set to a random value used by rj to reply with its public

DH parameter, which is needed by ri . This DH parameter is used in the construction

of the key that ri will use to send a message by using rj as a proxy. This key kij is

called the sender key for ri (with respect to rj), and the proxy key for rj (with respect

to ri). Finally, H is filled with random bits.

The token T is encrypted by ri with ki , by obtaining CT = Eki (T). Then, CT is sent

to next(ri).

When CT reaches next(ri), it decrypts CT , by obtaining T , and since F = 1, it

tries to read the field PDH = Cij of T . If next(ri) , rj , next(ri) is not able to decrypt

such a field, and then it re-encrypts the token with the forward key knext(ri) shared

with next(next(ri)) and forwards the token. The token moves through the ring until

it reaches rj . At this point, rj decrypts Cij and obtains yij , with which it generates

the key kij which is shared with ri . The token is filled as follows. F remains set to 1.

PDH is set to ȳji . ȳji represents the public DH parameter of rj that will be used by ri

to generates the key kij . R remains unaltered, and finally, H is set to the hashed value

H(kij). This new token moves through the ring until ri . Observe that all the nodes

between rj and ri , after decrypting the token with their forward keys, understand

3.3 The Proposed Protocol 31

that the token is used to reply to a node, but are unaware of the sender and the

recipient of this token.

When ri receives the token, it identifies the token as a reply of rj thanks to the

random R. Then, ri can generate the key kij as rj . This token is then dropped by ri .

Finally, ri drops from the set Q the node rj . Note that any external observer only

knows that a key was exchanged by a given node ri , but does not know with which

node.

The entire process (which started at time t1) is repeated k − 2 times, until all kiy

are exchanged.

When all the k(k−1) tokens are disposed of, each node ri owns (in addition to the

forward key) two symmetric keys kij and kji shared with each other node rj of the

ring. The key kij represents a sender key for ri , since it is used by ri when has to send

a message by selecting rj as a proxy node (see next section). On the other hand, kij

represents a proxy key for rj , since it is used by rj when playing the role of a proxy

node.

In Figure 3.1, the sequence diagram of the set-up phase is depicted.

32 3 Providing Tor with sender anonymity against a global adversary

Fig. 3.1: Sequence diagram of the Set-up phase.

3.3.3 Communication Phase

In this section, we describe the core of our protocol, which is the communication be-

tween a sender and recipient. We remark that the communication is bi-directional, in

the sense that we address both the request and the response. We split the description

of the communication phase into three parts. The first part is the structure of tokens

in which messages are encapsulated. Observe that these tokens are different from

those used in the set-up phase, which we described in Section 3.3.3. After describing

the structure of the tokens, we show how tokens are generated (see Section 3.3.3.

Finally, in Sections 3.3.3 and 3.3.3, we describe how anonymous communication is

established between a sender and a recipient.

3.3 The Proposed Protocol 33

Structure of the Token

As in the set-up phase, in the communication phase, a token-based mechanism is

enabled. We assume that a given number of tokens move through the ring encrypted,

hop-by-hop, from one node to the next, with the forward key exchanged in the set-up

phase.

The structure of a communication-phase token is the following: ⟨F,HID,CI,DA,P ⟩.

In Figure 3.2, an expanded description of this structure is reported.

+-----------------------------------+

| FLAG F (1) | ////////////// |

+-----------------------------------+

| HASHED IDENTIFIER (HID) (32) |

+-----------------------------------+

| COMMUNICATION IDENTIFIER (CI) (4) |

+-----------------------------------+

| DESTINATION ADDRESS (DA) (4) |

+-----------------------------------+

| PAYLOAD (P) (498) |

+-----------------------------------+

Fig. 3.2: Structure of the token.

As the communication phase is the core of our protocol, we describe in detail

how the token is organized. Its size is 539 bytes, of which 41 are reserved for the

header, and 498 for the payload. The size of the payload is set to the same value as

the size of the payload of the relay Tor cells.

First, we describe the meaning of the field F. It is composed of two bits (even

though we reserve 1 byte for this field), with the following possible meanings: 00

means empty token; 01 means token reserved for a given communication identifier;

and 10 means that it is used for a message. A token in the state 01 (reserved) or 10

(used) is said to be filled.

During the description of the protocol, which we provide next, the meanings of

the remaining fields are clarified.

Token Generation

Consider now the process of token generation. When a token is generated by a node

rg , the fields are set as follows. F is set to used (i.e., 10). rg picks randomly from

the set Q (where Q is the set of all the public keys of the ring) a public key, say

P Krp , associated with the node rp. The field HID is set to H(P Krp). It is used as

34 3 Providing Tor with sender anonymity against a global adversary

an identifier to allow rp to recognize that this token is intended for it. Finally, the

field DA includes the encryption S̄ with the sender key (of rg) kgp of a fixed string

S different from any other network address. This string allows rp to identify the

fact that this token, even if used, does not contain any message to forward outside

the ring (see below), but it has to be emptied by rp. The reason why the token is

not directly generated empty derives from security aspects. The security analysis is

provided in Section 3.6. The other fields (CI ,P) are filled with random bits.

The entire token is then encrypted with the forward key krg and sent to next(rg).

This node decrypts the token, and with the state of the token being filled, through

the field HID, it checks whether this token is intended for it. In this case (i.e.,

rp = next(rg)), it processes the token. Otherwise, the token is encrypted, as usual,

by next(rg) with the forward key knext(rg) and sent to next(next(rg)). The token moves

through the ring until it reaches rp.

At this point, rp verifies that it has been selected as the recipient of the token,

even though it does not know that the token was generated by rg . Therefore, rp tries

to decrypt the fields CI,DA,P with all its k − 1 proxy keys until it finds the correct

key kgp. Since Dkgp (DA) = S, rp knows that it has to empty the token. Thus, rp sets

F to 00 and HID = H(P Knext(rp)). In this case, we say that next(rp) will play the role

of proxy node (with respect to a potential sender for a communication identifier not

established yet). The other fields are set to random bits.

rp encrypts the token with the forward key krp (shared with its next) and forwards

it to next(rp). The empty token crosses the ring encrypted hop-by-hop, as usual.

The process of generation of the tokens is represented in the sequence diagram

in Figure 3.3.

Fig. 3.3: Process of generation of the tokens.

3.3 The Proposed Protocol 35

Transmission of a Message

Consider a node ri that wants to send a message M to a destination D (outside the

ring). Suppose M is already encrypted for D. First, ri splits M into blocks M1, . . . ,Mq

(q ≥ 1) with size 498 bytes (i.e., the size of the payload P of a token). ri waits for

the first empty token (with F = 00). Let be HID = H(P Krj) (this means that rj will

play the role of proxy node for a communication session started by ri , as we will see

next). Through HID, ri identifies the public key P Krj and the corresponding sender

key kij .

The token is filled as follows. F is set to 10 (used). HID = H(P Krj) is unaltered.

CI is set to Ekij (R) where R is a random value identifying the current communica-

tion session associated with the sender key kij (note that for a given communication

session, a Tor circuit will be established outside the ring). The field DA includes the

encryption with key kij of the network address of the destination D. Observe that

the size of this field is 4 bytes, and thus is compliant only with IPv4. Obviously, for

IPv6, the size should be increased. Moreover, the TCP port is not included in this

field for privacy reasons. It will be included in the payload encrypted at the appli-

cation layer. Finally, P is set to Ekij (M1) (possibly padded, if q = 1). The token moves

through the ring (encrypted hop-by-hop) until it reaches rj .

Regarding the other messages Mt (with 2 ≤ t ≤ q), ri waits for either (1) an empty

token with HID = H(P Krj) or (2) a reserved token (F = 01) with HID = H(R), mean-

ing that the token is reserved for the communication session started by ri identified

by R.

In both cases, the token is filled as follows. F is set to 10, HID is set to H(R) in case

(2) (indeed, in case (1) it is already set with this value), CI = Ekij (R), DA includes the

encryption with key kij of the network address of the destination D and P = Ekij (Mt).

Additionally, these tokens move through the ring until they reach rj . Eventually, all

the blocks of the message M reach the same proxy node rj , which will use the same

Tor circuit.

We now see how such a Tor circuit is established by rj . When rj receives the (used)

token containing M1, rj identifies this token through HID = H(P Krj). Anyway, it

does not know the sender ri . Therefore, rj tries to decrypt the fields CI,DA,P with

all its k − 1 proxy keys until it finds the correct key kij . Since Dkij (DA) , S (we recall

that S is a fixed string denoting that the token does not contain a message), rj has to

send the message outside the ring to the destination D through the Tor system.

Before doing this, rj sets the flag F = 01 (reserved) and the field HID = H(R)

where R = Dkij (CI). This means that this token is associated with the communication

session identified by R. R is also stored by rj and associated with kij in such a way

that further tokens can be associated with this communication session. The random

36 3 Providing Tor with sender anonymity against a global adversary

R is also used by ri to detect further reserved tokens for this communication session.

The other fields are filled with random bits and the token is then forwarded into the

ring.

At this point, rj can send the message M1 = Dkij (P) to the destination D. To do

this, it builds a Tor circuit with destination Dkij (DA) and sends the message M1 to D

through this circuit. The construction of the Tor circuit is performed in the standard

way, by contacting the Directory Server (DS) and by selecting the entry, middle, and

exit nodes as illustrated in Section 3.2.

When rj receives a (used) token containing a message Mt with 2 ≤ t ≤ q, rj iden-

tifies such token through HID and forwards Mt to D through the Tor circuit. The

token is set to reserved (F = 01) and HID remains unaltered to the value H(R). The

other fields are set to random bits, and the token is then forwarded into the ring.

The transmission of the message M is represented in the sequence diagram in

Figure 3.4.

3.3 The Proposed Protocol 37

Fig. 3.4: Transmission of the message M.

Transmission of the Response

When rj receives the response M ′ (already encrypted by D) through the Tor circuit,

rj injects the response into the ring. Specifically, let P ′1, . . . P
′
l be the Tor cells including

the response M ′ , and let denote by Pk the payload of the cell P ′k (1 ≤ k ≤ l). For each

Pk , rj waits for either (1) an empty token or (2) a reserved token with HID = H(R).

The token is filled as follows. F is set to 10. In the case of an empty token the field

HID is set to H(R). The communication identifier CI is derivable by the random R

associated with the current communication session; and then, with this Tor circuit

stored by rj when the Tor circuit has been established. Specifically, CI = Ekij (R). The

field DA is filled with random bits. Finally, P is set to Ekij (Pk).

At this point, the token moves through the ring and is identified by ri through

HID. When ri receives all the tokens containing the block Pk , it retrieves the entire

38 3 Providing Tor with sender anonymity against a global adversary

response M ′ . For each of these tokens, ri changes the state from used to reserved

and forwards the token. Specifically, F is set to 01, HID = H(R) is unaltered and the

other fields are filled with random bits. These reserved tokens (along with other pos-

sible empty tokens) are used by ri and rj to exchange the other requests/responses

associated with the communication session identified by R.

The transmission of the response M ′ is represented in the sequence diagram in

Figure 3.5.

Fig. 3.5: Transmission of the response M ′ .

When the communication session ends, ri and rj perform some actions aimed at

emptying the tokens reserved for this session and destroying the Tor circuit. Specif-

ically, for each reserved token with HID = H(R), ri fills the token in such a way that

rj recognizes that they have to be emptied. To do this, F is set to 10, HID = H(R)

remains unaltered, CI is set to Ekij (R), DA is set to the encryption with key kij of S

and P is filled with random bits.

When rj receives such a token, it retrieves the string S and recognizes that the

session deactivation actions have to be performed. If this token is the first including

S, rj destroys the Tor circuit. For this token and the successive ones, including S,

rj empties them and forwards them into the ring. Specifically, F is set to 00 and

HID = H(P Knext(rj)). The other fields are filled with random bits.

This process of emptying the tokens and destroying the Tor circuit is represented

in the sequence diagram in Figure 3.6.

3.3 The Proposed Protocol 39

Fig. 3.6: Process of emptying the tokens and destroying the Tor circuit.

To conclude this section, we provide a brief summary, by omitting the technical

details of the communication phase. In Figure 3.7, we sketched a high-level graphi-

cal representation of this phase.

Fig. 3.7: Communication phase (overview).

The sender waits for an empty token, selects a proxy node, and fills the token

with a message. This token will be injected into the ring, in which it will move until

the proxy node is reached. The path of the ring from the sender to the proxy node

is represented with a red arrow. Once the proxy node receives the message (possi-

bly, encrypted), it contacts the Directory Server (dashed arrow) to select the entry,

middle, and exit routers and builds a Tor circuit through them. At this point, the

proxy node forwards the message through this Tor circuit until the destination. The

latter will provide the response (possibly encrypted) through the same Tor circuit

until the proxy node. Both the ongoing path and the return path are represented by

40 3 Providing Tor with sender anonymity against a global adversary

the green arrow in the figure. Finally, when the proxy node receives the response,

it waits for a number of empty or reserved tokens and fills them with the response.

These tokens are injected into the ring until they reach the originator of the request.

The path of the ring from the proxy node to the originator, traversed by the response,

is represented with a blue arrow.

3.4 Fault Tolerance

Even though fault tolerance is one of the aspects that is typically missed in anony-

mous communication networks, we sketch in this section how a certain degree of

fault tolerance can be easily introduced in a system based on our protocol. To con-

firm the above claim, consider the current Tor itself has no fault tolerance at all.

Indeed, if a Tor router stops working during a communication, the communication

is lost, and there is no protocol to recover the communication on the fly (indeed,

setting a backup Tor circuit is not enough to obtain this goal). As we focus on the

part of the proposal that plays the role of add-on, with respect to the existing Tor

system, we do not consider in this section the Tor communication occurring outside

the system, between the proxy node and the destination. Apart from the fact that the

fault tolerance of Tor can be considered an orthogonal problem, it is also true that

Tor routers can be considered more stable than standard client nodes involved in the

rings.

The basic change we have to introduce to obtain fault tolerance is the notion of a

ring layer. The ring manager, instead of building simply rings of k nodes, builds rings

of k layers, each composed of j nodes. We can figure out that the value of j, for good

fault tolerance, should be very low (for example, 2 or 3) if we are in a network with

a high level of activity. Anyway, higher values of j do not result in infeasible com-

putation, as we will see next. The nodes of each layer know each other in the sense

that they are aware of the reciprocal addresses. With the notation r1, . . . rk , used ear-

lier for the rings, now we indicate a sequence of layers, such that ri = {xi1, . . .x
i
j } is a

set of j nodes. Besides the individual public keys of the nodes, there is also a public

key per layer, called the public layer key. This impacts both the set-up phase and the

communication phase. Concerning the set-up phase, some changes occur for the key

exchange task. Forward keys are exchanged for each pair xip,x
i%k+1
q , (1 ≤ p,q ≤ j).

Thus, we have j2 forward key exchanges per pair of consecutive layers. Instead, by

leveraging public layer keys, the pair of keys used as sender key and proxy key kst

and kts will be established between layers instead of individual nodes. To do this,

the ring manager selects one representative node alive per layer and informs each se-

lected node about the other selected nodes (and then about their public keys). Then,

3.4 Fault Tolerance 41

the Diffie–Hellman process described in Section 3.3 happens among these represen-

tative nodes. At the end of this process, any representative node has a pair composed

of a sender key and a proxy key between its layer and any other layer. These keys are

exchanged with all the other nodes in the layer. Indeed, in the pre-set-up phase, the

nodes of the same layer exchange a symmetric key per pair, by enacting the j(j − 1)

Diffie–Hellman processes.

Concerning both the circulation of tokens and the communication task, the only

change is that the function next, associating to each node of the ring the next node

to forward a message, becomes non-deterministic. Specifically, a node in layer s that

has to forward a message just has to choose one alive node in the layer next(s) and

forward the message to it. For the proxy node, essentially no change is required

because the encryption is done for the layer so that any node in the layer is able to

decrypt the message and then initiate the Tor circuit. Similar considerations can be

made for the response.

To conclude this section, we evaluate our fault-tolerance mechanism from a prob-

abilistic perspective, to allow the correct setting of the parameter j, once a given re-

liability probability is fixed. We denote by p the probability that, at a given instant, a

node is alive. We assume p is the same for each node. Therefore, the probability that,

given a layer of j nodes, at least one node of the layer is alive is p′ = 1 − (1 − p)j . To

guarantee reliability (i.e., the communication is not lost), at least one node per level

(for the k levels) has to be alive. Therefore, the probability that the communication

succeeds is p′′ = (1 − (1 − p)j)k . Clearly, it decreases as k increases and increases as

j increases. Suppose now we set the reliability threshold to a given value τ . Then, j

must set in such a way that j > log(1−e
log(τ)

k)
log(1−p) .

In Figure 3.8, we set τ = 0.999 and show how the ratio j
k varies for different values

of p and k.

Observe that the exemplified value chosen for τ refers to a very reliable system.

Indeed, according to the standard IEC 61508, this value falls into the range of prob-

ability of failure on demand (PFD), classifying the system as reliability class SIL 3,

which is the second most-reliable class.

As expected, for high values of p, the number of nodes j (and then the ratio j
k)

required to obtain τ = 0.999 decreases. Regarding k, as k increases the absolute value

of j increases but slower than k. Therefore, the ratio j
k increases with k.

To give a practical example, with k = 100 and p = 0.9, we obtain a ratio j
k = 0.05,

which means that each layer of the ring has to contain only five nodes.

42 3 Providing Tor with sender anonymity against a global adversary

Fig. 3.8: Ratio j
k as k and p vary.

3.5 Computational Complexity

In this section, we discuss the computational complexity of our protocol. We focus

on the part of the protocol regarding the ring. Indeed, for the rest of the protocol,

involving just a Tor circuit, the reader may refer to the results available in the liter-

ature [258].

The communication phase requires, besides the hop-by-hop encryption of the

messages (which is standard in any protocol supporting secure communication), the

attempted decryptions that the intended proxy node has to perform before sending

the message outside the ring. On average, there are k−1
2 decryptions applied only

to the first token of a given communication (recall that the size of a token is about

500 bytes). In the worst case, there are k − 1 decryptions. This overhead does not

appear relevant, as it regards only the proxy node, and for good privacy levels (e.g.,

k = 100), the extra time required is small. Observe that the magnitude of an AES

encryption/decryption is 102 Mbytes per second on standard personal computers.

Now, we consider the set-up phase.

First, consider the protocol without fault tolerance (see Section 3.3). Similarly to

the Tor set-up phase, we require k key exchanges for the forward keys and k(k − 1)

key exchanges for sender/proxy keys. For values of k guaranteeing a good anonymity

level, the cost of this phase is not prohibitive. When fault tolerance is included,

we pay a price in terms of the complexity of the set-up phase. Indeed, we require

j(j −1) key exchanges per layer in the pre-set-up phase, and then j2 forward key ex-

changes per pair of adjacent layers (executed in parallel) plus k(k − 1) exchanges

for sender/proxy key exchanges. In summary, we increase the previous cost by

j(j − 1) + j2. Due to the fact that we expect that j is very small, this computational

overhead does not appear as an actual issue for the protocol. Recall that the set-up

3.6 Security Analysis 43

phase, differently from Tor, is not done for each communication, but it is done to set

up the network, so it can be considered an operation with a long-term lifetime.

3.6 Security Analysis

In this section, we analyze the security of our solution. We start by defining the

threat model we consider. We introduce the following assumption:

Assumption 1 (A1). Rings are formed in such a way that the background knowledge does

not allow the adversary to have more information than the sender’s uniform distribution.

Observe that Assumption A1 is easily satisfied if rings are built among hosts

belonging to the same, even large, geographical region.

Adversary Model (AM). We consider four types of adversaries.

• External (E). In this case, the adversary monitors the incoming and outgoing

traffic of the DS. In addition, in our proposal, the adversary monitors traffic com-

ing in and going out from the RM.

• Weak (W). In this case, the adversary monitors the traffic between a client node

and the entry Tor router. In Tor, the client node corresponds to the OP. To be fair,

in our proposal, we allow the weak adversary to monitor all the traffic between

the client nodes and the traffic between the client node playing as a proxy and

the entry Tor router.

• Strong (S). In this case, the adversary monitors the traffic between a client node

and the entry Tor router and the traffic between the exit Tor router and the desti-

nation host. In our proposal, in addition, the adversary can monitor all the traffic

between the client nodes.

• Global (G). In this case, the adversary monitors all the traffic of the network.

Furthermore, for all four adversaries, regarding our proposal, we enable another

capability: the adversary knows the entire composition of the rings.

Observe that the capabilities of Global, Strong, and Weak adversaries are in order

(i.e., Global is stronger than Strong and Strong is stronger than Weak). Furthermore,

Global is stronger than External.

Both the External adversary and the Weak adversary model refer to a very fea-

sible case in which an entity is able to control just an autonomous system. The fea-

sibility of the External adversary can be contrasted by distributing the DS and the

RM. The Strong adversary is a weak form of the Global adversary, because the au-

tonomous systems of the entry router and exit router can be very far from each other

and even be in different continents [17]. The Global adversary is the standard global

passive adversary.

44 3 Providing Tor with sender anonymity against a global adversary

Security properties. We analyze two security properties (see Section 3.2): (1) Sender

anonymity (SA); (2) Relationship anonymity (RA).

In the following analysis, we discuss how Tor and our proposal behave with re-

spect to the security properties in the four adversary models. The results of the anal-

ysis are summarized in Table 3.1. First, we give a preliminary basic result in the

following lemma.

Lemma 3.1. In our proposal, a ring of size k is a sender anonymity set of size k against

the Global adversary.

Proof. Due to the hop-by-hop probabilistic encryption mechanism that is used to

move tokens inside the ring, the only point of the ring from which the adversary

can draw some information more than a random guess to identify a sender is the

proxy node. Indeed, this is the only point of the ring in which the possible state

transitions of a token could be in principle related to the observable incoming or

outgoing traffic in/out of the proxy. Transitions occurring in other points are not

identifiable with probability higher than 1
k . Since reserved and used tokens cannot

be filled by other client nodes different from the sender (associated with the reserved

tokens), the only possibility for the adversary to identify a sender anonymity set of

size less than k is to detect an empty token outgoing from a node and track it until it

reaches a proxy node, which sends a message outside the ring before doing less than

k steps. The only event in which the adversary can guess that a token is emptied is

when a proxy node, say rx, dismisses a Tor circuit. Indeed, according to the protocol,

there is no other case in which tokens are emptied. However, rx sets the field HID

to H(P Knext(rx)), and this means that such a token moves around the entire ring (in

which it is, possibly, filled) before reaching next(rx), which possibly builds a Tor

circuit outside the ring. Therefore, we can argue that the sender anonymity set has

at least size k, even for the Global passive adversary. The proof is then concluded.

The above lemma is the basis for the fulfillment of the security properties offered by

our proposal.

This is proven through the following theorems. The first theorem states that Tor

does not guarantee SA against any adversary. This corresponds to the first four fields

of the first row of Table 3.1.

Theorem 3.2. In Tor, any adversary breaks SA with probability 1.

Proof. Consider the External adversary. Since it observes the traffic intended for the

DS, it receives the request of the sender and then the sender is identified. Since

the Global adversary has the same capabilities as the External adversary, SA does

not hold against it. Now, we consider the Weak adversary able to observe the traffic

3.6 Security Analysis 45

Table 3.1: Comparison between Tor (T) Our proposal). Shown are the probabilities

of the adversaries breaking the properties SA and RA.

SA RA

AM E W S G E W S G

T 1 1 1 1 1
nd

1
nd

1 1

Our proposal 1
k

1
k

1
k

1
k

1
nd ·k

1
nd ·k

1
k

1
k

between the sender and the entry Tor router. Clearly, W identifies the sender. The

Strong adversary has the same capabilities as the Weak adversary. The proof is then

concluded.

Now, we prove that our proposal guarantees that a sender can be identified (by

any adversary) with probability 1
k . This corresponds to the first four fields of the

second row of Table 3.1.

Theorem 3.3. In our proposal, any adversary breaks SA with probability 1
k .

Proof. Consider the Global adversary G. By Lemma 3.1, it can identify the sender

with a probability not higher than 1
k . Since G is stronger than all the other adver-

saries (i.e., S, W, and E), we conclude that for those three adversaries also, SA is

broken with a probability not higher than 1
k .

Now, we have to consider the remaining fields of Table 3.1 regarding relationship

anonymity. These are covered by the following two theorems.

Theorem 3.4. Let nd be the size of the recipient anonymity set. In Tor, the External and

Weak adversary break RA with probability 1
nd

. Furthermore, the Strong and Global adver-

sary break RA with probability 1.

Proof. Consider the External adversary. By Theorem 3.2, it identifies the sender SN

of a communication with probability 1. Anyway, E has no information about the re-

cipient R of such a communication. Therefore, E (without further knowledge) iden-

tifies that SN communicates with R only with the smallest probability, i.e., 1
nd

.

Similarly, the Weak adversary identifies the sender with probability 1, but has no

information about the recipient. Therefore, RA is broken with probability 1
nd

.

Consider the Strong adversary S. Since it monitors the outgoing traffic from the

exit Tor router, it can identify the recipient R of a communication with probability 1.

Since S also monitors the traffic between the sender SN and the entry Tor router, it

can perform traffic analysis attacks [17] and identifies that SN communicates with R

with probability 1. The Global adversary has the same power as the Strong adversary.

The proof is then concluded.

46 3 Providing Tor with sender anonymity against a global adversary

Theorem 3.5. Let nd be the size of the recipient anonymity set. In our proposal, the Ex-

ternal and Weak adversary break RA with probability 1
nd ·k

. Furthermore, the Strong and

Global adversary break RA with probability 1
k .

Proof. Since SA implies RA [219], by Theorem 3.3, it follows that RA can be broken

with a probability not higher than 1
k by any adversary. Consider now the adversaries

E and W . Even though they can identify the sender with a probability not higher

than 1
k , they do not have any information about the recipient. Therefore, they can

only guess the recipient among all the possible recipients of the network nd . There-

fore, for E and W , RA is broken with a probability not higher than 1
nd ·k

. For the other

adversaries (i.e., S and G), the above upper bound of the success probability can-

not be decreased, because both S and G are able to identify the recipient so that the

probability of breaking RA is the same as the probability of breaking SA. The proof

is then concluded.

This ends the security analysis. As is evident by Table 3.1, the benefit in terms of

security of our proposal can be measured as a multiplicative factor k, increasing the

degree of anonymity provided by Tor both for SA and RA.

3.7 Related Work

The issues most relevant to our proposal are the vulnerabilities Tor suffers from.

As stated by the creators themselves [258], the Tor overlay network, based on

Onion routing [108], does not provide anonymous guarantees in the severe threat

model of a global passive adversary [209], which is able to observe the entire traffic

of the network.

Anyway, even if we relax the powers of the adversary, many attacks are still effec-

tive [150, 239, 91]. The most famous class of attacks is represented by the traffic anal-

ysis attacks [17, 88, 193] in which the adversary analyzes the traffic to find correla-

tions. Among the traffic analysis attacks there are the timing attacks [167, 259, 107],

in which the adversary observes the timing of the messages arriving at and leaving

from the nodes to find correlations. Other interesting subclasses of traffic analysis

attacks are traffic confirmation attacks [231], in which the adversary controls and

observes two possible end-relays of a Tor circuit to conclude that they really be-

long to the same circuit, and watermarking attacks [136], in which the adversary

manipulates the traffic stream by introducing an identifiable pattern. Another cat-

egory of attacks targets the router selection used to build the Tor circuit. Indeed,

the standard selection is based on network and CPU performance reported by the

nodes themselves. This enables self-promotion attacks [247]. A countermeasure can

be found in [146].

3.7 Related Work 47

The performance of Tor was investigated in [19, 213, 157]. Performance analysis

in relation to de-anonymization attacks was performed in [51].

In our approach, we extend Tor achieving sender anonymity (and then relation-

ship anonymity) [219] in the sense of communication k-anonymity [274], against a

global passive adversary. This goal can be reached only with the introduction of

cover traffic [71] (as required by our approach).

A solution including cover traffic achieving the dual goal (i.e., recipient anonymity)

of our proposal can be found in [40].

Among the approaches supporting cover traffic, the most significant are mixnets,

originally proposed in [59], and buses [124, 21, 296].

In the literature, several proposals include cover traffic in mixnets [279, 98, 165,

158]. The introduction of cover traffic makes traffic analysis more difficult. For exam-

ple, a possible approach is to introduce cover traffic to maintain a constant transmis-

sion rate. A very recent mixnet-based approach designed for the network layer was

presented in [61]. However, it does not provide sender anonymity against a global

adversary. Another relevant approach in this category, even if dated (but still very

solid), is Tarzan [98]. As discussed in [37] and [42], mixnets, in general, require a

suitable amount of cover traffic.

More related to our work are buses, as we also consider a pre-determined route

that is used by the sender. However, buses are unrealistic in a large network (such as

the Internet), since the fixed route is an Eulerian path passing through all the nodes,

including thus all the possible pairs of senders–receivers.

Similar considerations can be made for DC-Nets [245], based on a secure multi-

party cryptographic protocol, in which it is required that all participants are in-

volved in every run of the protocol and initially share a pairwise key.

4

Providing Tor with recipient anonymity against a

global adversary

Tor is a well-known routing protocol implementing the Onion multi-layered encryption

to achieve communication anonymity. Among other possible attacks, Tor is vulnerable

to passive attacks based on the compromise of multiple nodes, allowing the adversary to

observe the traffic flow and then identify the relationship between sender and recipient

(even if the latter is a hidden server). Relationship anonymity, in every threat model,

can be reached by achieving at least one between sender and recipient anonymity. In this

chapter, we pursue the dual goal faced in Chapter 3. Specifically, the idea here proposed is

to work on the recipient-side, by considering that, due to the hidden-service mechanism,

the recipient of the communication is actually a router playing as a rendezvous point

with the hidden server. This allows us to obtain recipient anonymity also against traffic

eavesdropping by enabling cover traffic and router collaboration. Some preliminary results

of this approach are published in a research paper [40].

4.1 Introduction

As observed in Chapter 3, Tor offers neither sender anonymity nor recipient anonymity

in a threat model in which the adversary can at least observe the traffic flow in the

network. Indeed, the adversary can always detect the sender, by monitoring the traf-

fic at the first relay node, and always observe the recipient, by monitoring the traffic

outgoing from the last relay node. Relationship anonymity can be broken if traffic-

analysis attacks are performed, allowing the adversary to relate sender and recipi-

ent communication activities. The introduction in Tor of the rendezvous points [114],

where the communication between sender and hidden server (i.e., recipient) meets,

just avoids the publicity of the identity of the services (that are then called hidden)

but does not solve the above problem.

It is worth noting that real-life adversaries like those described above exist, be-

cause it just suffices to control a few Autonomous Systems.

50 4 Providing Tor with recipient anonymity against a global adversary

The purpose of this chapter is to study how to extend Tor to achieve relation-

ship anonymity also against global eavesdroppers. Dual to Chapter 3, in which we

operated server-side, the idea we follow here is to operate recipient-side. This ap-

proach is based on the consideration that, due to the hidden-service mechanism, the

recipient of the communication is actually a router playing as a rendezvous point

with the hidden server. Therefore, we could enable both the inclusion of cover traffic

and the collaboration among k Tor relays (natively prone to collaboration) with the

purpose of hiding (also against global eavesdroppers) the actual recipient within an

anonymity set of relays (thus obtaining k-anonymity [274]).

The chapter explores the above approach by proposing two protocols, called L-

Tor and B-Tor. The former extends Tor by preserving the linear topology of the

communication circuit. The latter enables a tree-like circuit.

The two protocols reflect the inherent trade-off underlying the approach between

achieved anonymity degree and communication latency. We carefully study this

trade-off both analytically and experimentally, reaching the conclusion that B-Tor

actually solves the drawbacks of Tor while preserving low-latency applications.

4.2 Background and Notations

In this section, we recall some background notions and define some notations used

throughout the chapter.

We report in the table of Figure 4.1 the list of symbols (and their description)

used throughout the rest of the chapter.

4.2.1 Notations

We denote by ⟨SK,M⟩ the symmetric encryption with the key SK of the message M.

We assume to use any secure probabilistic encryption scheme in such a way that,

for an eavesdropper, two different encryptions of the same message are unlinkable

to each other. We denote by E(P K,M), the public-key encryption with key P K of a

message M. H(M) represents the application of a cryptographic hash function (e.g.,

SHA256) to a message M.

4.2.2 The Tor Network

A high-level discussion of the Tor protocol is provided in Section 3.2 of Chapter

3. However, to implement L-Tor and B-Tor, we require some changes in the steps

applied in the standard Tor protocol. Moreover, we exploit the different types of

cells present in Tor to implement some functionalities in our proposals. Finally, also

4.2 Background and Notations 51

Symbol Description

⟨SK,M⟩ Symmetric encryption of M with the key SK

E(P K,M) Public-key encryption of M with the key P K

H(M) Application of a cryptographic hash function to a message M.

OR Onion Router

OP Onion Proxy

DS Directory Server

DH Diffie-Hellman

HS Hidden Server/Hidden Service

RP Rendezvous point

n Total number of ORs for building circuits

LT Average lifetime of a circuit

pb Probability to break an OR

Adv Generic adversary. It can be W, S, or A

W Weak global Adversary

S Static global Adversary

A Adaptive global Adversary

δAdv Time Adv spends to launch an attack to a node

∆Adv Overall time available to Adv to compromise the network

nAdv number of attempts performed by Adv to compromise nodes

SnAdv random variable counting the number of successes on nAdv attempts.

AHS Actual HS

ARP Actual RP (It is the RP associated with HS)

k Number of potential recipients selected in L-Tor and B-Tor to hide the AHS

x1, . . . ,xk k RPs selected in L-Tor

xi ARP in L-Tor

BRP Branch rendezvous points

CRP Chain rendezvous points

r Number of BRPs selected to build a circuit in B-Tor

l Number of CRPs for each BRP selected to build a circuit in B-Tor

TCRP Terminal CRP

b1, . . . ,br r BRPs selected in B-Tor

xt,1, . . . ,xt,l l CRPs associted with the BRP bt in B-Tor

Table 4.1: Notation.

the concept of hidden services is required. Therefore, in this section, we need a more

detailed discussion of Tor with respect to that provided in Section 3.2 of Chapter 3.

The Tor network is an overlay network, based on TCP/TLS connections, consist-

ing of multiple relay routers called Onion routers (OR). Each client runs locally an

52 4 Providing Tor with recipient anonymity against a global adversary

Onion proxy (OP) which establishes a virtual circuit (or path) of ORs to communicate

anonymously with the destination. To build a circuit, the OP periodically contacts a

trusted server called Directory Server (DS) that keeps the information about the state

of the network and provides the OP with router descriptors of the ORs. These router

descriptors contain the IP addresses and the public keys of the ORs along with their

network information, such as the bandwidth. Then, the OP selects, according to a

path selection algorithm[248], a number t of OR relays forming the virtual circuit. By

default, t = 3 and the first OR is called entry router, the second middle router, and the

last exit router.

From now on, we interchangeably use the terms ORs, relays, and nodes. Further-

more, we use the terms sender, OP, and client to denote the same entity.

In Tor, the messages are exchanged in fixed-length cells of 512 bytes to make

harder traffic analysis attacks [258]. There are two types of cells: control cells and

relay cells that, in turn, are divided into further subtypes. We describe just those

useful for our purpose.

We distinguish three phases in which the communication in the Tor network

happens.

Set-up phase

Suppose the OP has selected three ORs. Then, it starts a set-up phase to build the

virtual circuit. This phase is performed in such a way that each OR of the path only

knows the previous and the next node of the path. Moreover, in this phase, the OP

exchanges some messages with the ORs which include some Diffie-Hellman (DH)

parameters to share a secret key. Since the OP has to be sure about the authenticity

of the ORs, the DH parameters are encrypted by using the public keys of the ORs.

The messages exchanged during this phase are encapsulated into the control cells

CREATE and CREATED, and in the relay cells RELAY EXTEND and RELAY EXTENDED.

Initially, the OP sends E(P Ke,A1) to the entry router, where P Ke is the public key

of the latter and A1 is the public DH parameter of the OP. This message is encap-

sulated into a cell CREATE. The entry router, through A1, computes the DH shared

key K1 and replies to the OP by sending (B1,H(K1)), where B1 is the public DH pa-

rameter of the entry router. This message is encapsulated into a cell CREATED. The

OP computes K1 and checks that the digest H(K1) corresponds to the value received

from the entry router.

At this point, a secret key K2 has to be exchanged between the OP and the mid-

dle router without the latter knowing the IP address of the former. To do this, the

OP generates a new DH parameter A2 and sends ⟨K1,E(P Km,A2)⟩ to the entry router

where P Km is the public key of the middle router. This message is encapsulated

4.2 Background and Notations 53

into a RELAY EXTEND cell so that the entry router understands to extend the cir-

cuit of one hop. Then, the entry router decrypts the message by using K1 and for-

wards E(P Km,A2) to the middle router encapsulated into a cell CREATE. The middle

router, through A2, computes the shared key K2 and replies to the entry router with

B2,H(K2), where B2 is the public DH parameter of the middle router. This message

is encapsulated into a cell CREATED. Finally, the entry router forwards to the OP the

message ⟨K1, (B2,H(K2))⟩ encapsulated into a RELAY EXTENDED cell. The OP is now

able to compute K2 and check its integrity.

A similar procedure is performed to extend the path of one another hop until the

exit router which, eventually, will share a key K3 with the OP.

The details of the entire set-up phase are reported in the sequence diagram of

Figure 4.1.

Forward phase

At the end of the set-up phase, the OP shares a secret key with each OR. These keys

are used by the OP to encrypt (symmetrically) in onion fashion the messages intended

for the destination. All these messages are encapsulated into the RELAY DATA cells.

Specifically, to send a message M to the destination, the OP builds ⟨K1,⟨K2,⟨K3,M⟩⟩⟩

and sends it to the entry router. The entry router removes a layer of encryption

through K1, obtaining ⟨K2,⟨K3,M⟩⟩ that forwards to the middle router. The mid-

dle router removes the upper-most layer of encryption with K2 obtaining ⟨K3,M⟩,

which forwards to the exit router. Finally, the exit router retrieves M through K3

and forwards it to the destination.

Response phase

The response phase is performed in the reverse way of the forward phase so that

each OR that receives a message adds a layer of encryption by using the symmet-

ric key exchanged with the OP. Again, all the messages are encapsulated into the

RELAY DATA cells. In detail, the destination sends the response R to the exit router.

The exit router encrypts it with K3 obtaining ⟨K3,R⟩, which forwards to the mid-

dle router. The middle router adds a new layer of encryption, through K2, obtaining

⟨K2,⟨K3,R⟩⟩, which forwards to the entry router. Finally, the entry router forwards

⟨K1,⟨K2,⟨K3,R⟩⟩⟩ to the OP, which removes all the layers of encryption and obtains

R.

The above three described phases are reported in the sequence diagram of Figure

4.1.

54 4 Providing Tor with recipient anonymity against a global adversary

OP Entry Middle Exit Destination

CREATE
E(P Ke ,A1)

CREATED
(B1 ,H(K1))

RELAY EXTEND
⟨K1 ,E(P Km ,A2)⟩

CREATE
E(P Km ,A2)

CREATED
(B2 ,H(K2))

RELAY EXTENDED
⟨K1 , (B2 ,H(K2))⟩

RELAY EXTEND
⟨K1 ,⟨K2 ,E(P Kex ,A3)⟩⟩

RELAY EXTEND
⟨K2 ,E(P Kex ,A3)⟩

CREATE
E(P Kex ,A3)

CREATED
(B3 ,H(K3)

RELAY EXTENDED
⟨K2 , (B3 ,H(K3))⟩

RELAY EXTENDED
⟨K1 ,⟨K2 , (B3 ,H(K3))⟩)⟩

Set-up phaseSet-up phase

RELAY DATA
⟨K1 ,⟨K2 ,⟨K3 ,M⟩⟩⟩

RELAY DATA
⟨K2 ,⟨K3 ,M⟩⟩

RELAY DATA
⟨K3 ,M⟩

M

R

RELAY DATA
⟨K3 ,R⟩

RELAY DATA
⟨K2 ,⟨K3 ,R⟩⟩

RELAY DATA
⟨K1 ,⟨K2 ,⟨K3 ,R⟩⟩⟩

Forward and Response phaseForward and Response phase

Fig. 4.1: Sequence diagram of the three phases of Tor.

4.2.3 Hidden services

The protocol so far discussed offers a certain level of anonymity to the sender. How-

ever, the IP address of the recipient is known to both the OP and the exit router.

There are several scenarios in which the destination offers a particular service and

does not want to be disclosed. Moreover, if the mapping between these services and

the IP addresses of the servers hosting them is disclosed, they might be obscured by

4.2 Background and Notations 55

Fig. 4.2: Connection of the client towards a hidden server

an authority. Tor provides a mechanism to contrast the above problem based on the

so-called hidden servers (and the corresponding hidden services).

We denote by HS the hidden server, and, for simplicity, we use the same symbol

to denote the intended hidden service. We need a mechanism so that a client can

reach the HS without knowing its IP address. In the description of this mechanism,

we refer to the architecture and steps of Figure 4.2.

First, the HS builds three Tor circuits with three ORs called introduction points

(Step 1). Each Tor circuit includes two ORs and the introduction point (three nodes

in total). Once choosing the introduction points, the HS sends (through a standard

Tor circuit composed of three ORs) a service descriptor including the addresses of the

three introduction points and its public key to the directory server DS (Step 2). This

descriptor is signed with the private key corresponding to the included public key.

The onion address identifying HS is the encoding of a hash derived from its public

key so that whoever receives the latter can verify its correctness.

At this point, a client that wants to connect with the HS on the basis of the knowl-

edge of its onion address, contacts the DS (through a standard Tor circuit composed

of three ORs) to obtain the service descriptor (Step 3). Then, the client selects an

introduction point to connect with the HS. Before doing it, the client selects a Tor

node called rendezvous point (RP) and builds a Tor circuit of two nodes (the RP is in

56 4 Providing Tor with recipient anonymity against a global adversary

the third position). Then, the client provides the RP with a one-time secret string of

20 bytes, called rendezvous cookie (Step 4).

Moreover, the client builds a standard Tor circuit (including three ORs) with the

selected introduction point and provides the address of the RP and the rendezvous

cookie (Step 5). This information is forwarded from this introduction point to the

HS (Step 6).

Finally, the HS builds a standard Tor circuit with the RP and provides it with

the rendezvous cookie (Step 7). The RP matches the two rendezvous cookies pro-

vided by the client and the HS and establishes a circuit between them consisting of

6 ORs (including the RP). From now on, all the messages are exchanged through this

circuit.

4.3 Threat Model

The goal of our proposals is to enhance the Tor protocol by providing recipient

anonymity (and then relationship anonymity) against an external observer able to

monitor the entire traffic exchanged in the network. We refer to this adversary as the

global adversary.

Even though the hidden service mechanism included in Tor allows us to achieve

a certain degree of recipient anonymity against some malicious nodes, Tor does not

offer any protection for the recipient against the global adversary [209]. Indeed, it

can simply identify the recipient of the communication by following the flow of

messages originating from the sender and traveling through the six-hop circuit es-

tablished through the rendezvous point. The final point of this circuit is the destina-

tion.

However, besides a passive eavesdropper, we are also interested in the security

guarantees in terms of anonymity that our solution offers when some nodes (includ-

ing the RPs) are compromised. We say that a node is compromised when the adversary

obtains all the secret keys owned by the node and can access the content of the pack-

ets it receives.

We now introduce some notations. Our protocols extend Tor by proposing a dif-

ferent way to build circuits. We denote by n the total number of candidate ORs (cur-

rently, they are around 7,000). We denote by LT the average lifetime of a circuit.

Finally, we denote by pb the probability that a node is broken when an attack is

launched against it. For simplicity, we assume that pb is the same for all the n nodes

of the network.

Given an adversary Adv, we denote by δAdv the time the adversary Adv spends

to launch an attack on a node (both in case of success and failure). Moreover, we

4.3 Threat Model 57

denote by ∆Adv the overall time the adversary Adv has available to compromise the

network.

Then, nAdv = ∆Adv
δAdv

represents the number of overall attempts done by the ad-

versary. Clearly, among the nAdv attempts, each attempt succeeds with probability

pb and fails with probability 1 − pb. Therefore, the probability to have exactly xAdv

successful attempts (i.e., the probability to compromise exactly xAdv nodes) can be

expressed according to the binomial distribution: P (SnAdv = xAdv) =
(nAdv
xAdv

)
p
xAdv
b (1 −

pb)nAdv−xAdv , with xAdv ≤ nAdv where SnAdv is the random variable counting the num-

ber of successes on nAdv attempts.

Our threat model is based on the threat model presented in [98]. It includes three

types of adversaries with different capabilities.

W (weak global adversary): It monitors passively the entire traffic exchanged in the

network and does not compromise any node. It is able to identify the nodes form-

ing the circuit.

S (static global adversary): It is a weak global adversary which, in addition, is able

to compromise nodes with the following features: ∆S ≫ LT and δS ≥ LT .

A (adaptive global adversary): It is a weak global adversary which, in addition, is

able to compromise nodes with the following features: ∆A ≃ LT and a δA ≤ LT

Observe that, according to the previous notations, nS and nA represent the overall

attacks performed by S and A, respectively. Similar observations can be applied to

SnS , xS , SnA , and xA.

W represents the standard global passive adversary. In real life, W may refer to the

collaboration of several honest-but-curious ISPs (Internet Service Providers) that do

not compromise the nodes but observe the traffic exchanged between them.

S refers to an adversary that compromises a priori a given number of nodes (that

may be successively randomly selected by the sender to build a circuit) since it can

freely operate (i.e., it is not constrained by anything but the overall time ∆S). How-

ever, it is not very reactive with respect to the construction of the communication

circuit, in the sense that each attack requires a time greater than the lifetime of the

circuit itself (i.e., δS ≥ LT). Therefore, the nodes to attack are randomly selected

before the construction of the circuit. Concerning ∆S , as stated in [98], it is rea-

sonable to assume that it is bounded by the time period between two subsequent

security assessments executed on each node. Indeed, the adversary can only control

a compromised node for some period of time, until the compromise is detected and

subsequently stopped.

A refers to an adversary with technical capabilities much higher than S, allow-

ing it to perform on-the-fly attacks (i.e., δA ≤ LT). However, it can operate only on

58 4 Providing Tor with recipient anonymity against a global adversary

intended targets because of external constraints. This adversary represents the real-

life case of a government agency with strong computational power (not available to

any other attacker) authorized by the law or by the court to break the anonymity of a

given communication. Therefore, A only attacks the nodes of the circuit. This means

that ∆A is basically the lifetime of the circuit.

4.4 Motivations and Introduction to our Approach

As discussed in the previous section, the standard Tor protocol does not offer recip-

ient anonymity against the global adversary. Anyway, in several application scenar-

ios (e.g, censorship resistance), this property should be guaranteed. Therefore, we

search for an extension of Tor to achieve this goal.

Since, in the considered threat model, all the adversaries are at least global eaves-

droppers, in Tor, following the flow of traffic is enough to identify the sender and the

recipient of a communication.

It is well known in the literature [71] that any solution achieving such a goal re-

quires the introduction of cover traffic, i.e., dummy traffic exchanged in the network

with the aim to hide the real traffic.

However, for the Tor protocol, the introduction of cover traffic (like in the obfs4

protocol [291]) is not sufficient, since the topology itself (i.e., the way in which the

nodes are organized) reveals some information to the global adversary. Specifically,

the sender is always the first node and the recipient is always the last node, even

when the hidden services mechanism is enabled.

Therefore, a solution protecting the recipient should include cover traffic, but

should also introduce a degree of uncertainty provided by the topology itself, in

such a way that the recipient should be hidden among other possible recipients. A

similar concept is present in mixnets [98], from the side of sender anonymity, in

which the actual sender is hidden within a given anonymity set of senders.

The approach we plan to follow in this chapter is then to obtain recipient

anonymity by arranging a Tor circuit identifying not just a single recipient but a

set of potential HSs (we assume that a recipient is always an HS) among which only

one is the actual recipient.

There are several ways to do this. Suppose that a given client wants to anony-

mously communicate with a certain HS, which we call actual HS (AHS). A trivial

approach is that the sender chooses k HSs including the AHS and builds a standard

(i.e., six-hop) circuit with each HS. If dummy traffic is enabled in each circuit (rep-

resented by fake requests/responses forwarded to/from the HSs different from the

AHS), we obtain anonymity of the recipient with uncertainty 1
k . Anyway, this option

4.4 Motivations and Introduction to our Approach 59

Fig. 4.3: Circuit of L-Tor

is not realistic because it requires huge bandwidth waste client-side, by consider-

ing that the client has to generate, for each actual request, k requests and receives k

responses.

A more sophisticated idea is to keep just one Tor circuit but longer than the stan-

dard one, in such a way that the rendezvous point associated with the AHS (called

ARP) is hidden within the route, as sketched in Figure 4.3.

Therein, we have a long Tor circuit of RPs and each HS is connected to an RP. We

design this solution in this chapter (in Section 4.5), by calling it L-Tor. As intuitive,

L-Tor introduces a price. Indeed, as analyzed in Section 4.8, the set-up latency in-

creases quadratically with the number k of HSs, while communication latency grows

linearly with k (both in the forward and response phases). Then, to achieve a good

level of anonymity, we require excessive latency times. This aspect is also analyzed

experimentally in Section 4.9. Therefore, L-Tor can be acceptable only for applica-

tions that do not require low latency. On the other hand, as we will see in Section

4.7, L-Tor achieves a high level of security.

After this, the problem addressed in the chapter is how to arrange a Tor-like cir-

cuit to achieve recipient anonymity without paying the high price in terms of latency

required by L-Tor. To do this, we can also tolerate reducing the achieved security

goal, still maintaining a good advantage with respect to standard Tor. This leads to

the definition of B-Tor (see Section 4.6), in which the anonymity set of recipients

is obtained by adopting a tree-like topology of the circuit. Sections 4.7 and 4.9 will

show that B-Tor offers a good solution to the above trade-off.

60 4 Providing Tor with recipient anonymity against a global adversary

4.5 L-Tor: A first extension of the Tor Protocol

Through this section, we describe the L-Tor protocol introduced in the previous

section.

4.5.1 Overview of L-Tor

To illustrate L-Tor, we refer to the steps of Section 4.2.3 and highlight the changes

introduced by L-Tor.

Steps 1 and 2 are essentially the same, i.e., all the HSs of the network select three

introduction points and advertise their service descriptor to the DS.

In Step 3, the client (through a Tor circuit) asks for k HSs (in place of a single

HS). The actual HS is one of them.

Step 4 is the core of L-Tor, in which the client selects k RPs (one for each HS)

and builds a circuit with them to exchange the rendezvous cookies. As explained

above, to avoid bandwidth overhead, we want to avoid the client sets k independent

circuits with each RP. We will return later on this step, anyway, eventually, each RP

is connected with the client and obtains a rendezvous cookie to match with that

provided by the corresponding HS.

Steps 5–7 proceed as in Section 4.2.3, i.e., the client (through an introduction

point) provides each HS with the address of the corresponding RP. Each HS connects

with an RP and the circuit with the client is established.

Regarding Step 4, the idea is to build a Tor circuit of k RPs in which the client

sends a single request. Each RP forwards this request to the corresponding HS, which

replies with a response. Among these responses, only one is the actual response.

However, the circuit of RPs is crossed just by the actual response hidden within the

minimal required cover traffic, so that the client does not have to handle the traffic

multiplication of the trivial solution (simply requiring that the client establishes k

standard Tor circuits).

In the next sections, we describe the above protocol in detail.

4.5.2 Set-up phase

In the set-up phase, a circuit between the client and k collaborating HSs (including

the AHS) is built.

As in Steps 1 and 2 of Section 4.2.3, each HS (including the AHS) of the system

selects the introduction points and advertises its service descriptor to the DS. This is

done, as usual, through standard Tor circuits.

At this point, the client selects k HSs among which the AHS is included and

(through a Tor circuit) asks the DS for the service descriptors of the k HSs. This

4.5 L-Tor: A first extension of the Tor Protocol 61

corresponds to Step 3 of Section 4.2.3. Clearly, these k HSs have to be selected in

such a way that they appear equally likely to be selected from the client. To avoid

intersection attacks [73], the construction of the anonymity set of recipients happens

as follows. When the client wants to contact a given HS (i.e., the AHS) for the first

time, it selects randomly other k−1 HSs and performs the protocol as described in the

following. From now on, a one-to-one mapping between this anonymity set and each

HS occurring in it is established. This means that, for successive communications, if

the client wants to contact any HS belonging to this set, it uses the same anonymity

set. Obviously, for each fresh HS, a new anonymity set is built.

In Step 4, the client selects k RPs (one for each HS) and will exchange the ren-

dezvous cookies with them. Furthermore, these k RPs will be arranged in a Tor cir-

cuit. Therefore, they can be selected according to the path selection algorithm of

Tor (possibly with some modifications taking into account the fact that k could be

greater than the standard 3 relays selected in Tor).

We denote by x1,x2, . . . ,xk the RPs in the order they appear in the Tor circuit.

The client randomly associates each HS with each RP. We denote by xi (1 ≤ i ≤ k)

the RP associated with the AHS and say that xi is the actual RP (ARP).

At this point, the client builds a standard Tor circuit including the RPs from x1

to xi . The only difference with a standard construction is that, after extending the

circuit of one hop by including a new RP, the client provides the latter with the

rendezvous cookie. Moreover, along with the cookie, the client communicates to xi

a flag denoting that it is associated with the AHS (i.e., that it is the ARP). Clearly, xi

does not know the address of the AHS as in the standard approach. Thus, unless xi

is compromised by a global adversary, the recipient anonymity is preserved. In the

end, the client shares a secret key with all the RPs from x1 to xi and provides them

with the proper rendezvous cookies.

Now, if i = k, then Step 4 ends, otherwise the circuit has to be further extended

until xk . This operation is performed by xi playing the role of client. However, it

should be done in such a way that neither xi+1 (and the successive RPs) nor the

global adversary can identify xi as the ARP. To achieve this, the pattern followed

(also in terms of inter-step times) is the same as before. Specifically, the client sends

a RELAY EXTEND cell to xi , including the address of xi+1. However, the encrypted DH

parameter of the sender for xi+1 is replaced with dummy bytes. Indeed, to extend

the circuit, xi sends the standard CREATE cell to xi+1, in which the encrypted public

DH parameter is set by xi itself in place of the client. When xi receives the CREATED

cell from xi+1, xi can generate a secret key shared with xi+1. Moreover, xi forwards

the RELAY EXTENDED cell to the client as the standard Tor set-up phase. This way, this

extension is, from the point of view of both xi+1 and the global adversary, the same

62 4 Providing Tor with recipient anonymity against a global adversary

as the previous extensions until xi . Now, the client sends the rendezvous cookie to xi

that forwards it to xi+1. This procedure is iterated until the RP xk .

In the end, we have that the client shares a symmetric key with each RP xj where

1 ≤ j ≤ i and xi shares a symmetric key with each RP xt where i+1 ≤ t ≤ k. Moreover,

each RP from x1 to xk knows the proper rendezvous cookie.

For completeness, to protect the client against a malicious RP, the connection

between the client and x1 can be done through a Tor circuit of two hops, as in the

standard Step 4 of Section 4.2.3.

To conclude the set-up phase, Steps 5–7 of Section 4.2.3 are replicated in L-Tor.

Then, for each HS, the client contacts (in parallel) an introduction point and provides

the proper address of the RP and the corresponding rendezvous cookie (Step 5). The

introduction point forwards this information to the HS (Step 6). Finally, each HS

connects with the proper RP by providing the rendezvous cookie so that the circuit

with the client can be established (Step 7).

A representation of the final circuit is depicted in Figure 4.3.

4.5.3 Forward phase

After setting the circuit, the client can send a request to the AHS through the RELAY

DATA cells. This request is encrypted in Onion fashion as described in Section 4.2.2

until xi .

Each RP xj with 1 ≤ j ≤ i − 1, when receiving a RELAY DATA cell, removes its

layer of encryption with the secret key shared with the client and forwards the ob-

tained message to xj+1. Moreover, xj also forwards the message to the associated HS

(through the Tor circuit). Observe that the HS is not able to decrypt the received

message and detects that this message represents a request not really intended for

it.

Similarly, xi removes its layer of encryption and obtains the actual request to

forward to the AHS (clearly, it is encrypted with the public key of the AHS so that

xi cannot access its content). After forwarding it to the AHS, xi builds a dummy

message of the same size as the request and forwards it, layered encrypted until xk .

Observe that, xi can encrypt this message since it has exchanged a secret key with

each RP xt , where i + 1 ≤ t ≤ k.

Each xt , when receiving a RELAY DATA cell, performs as the RPs between x1 and

xi , i.e., removes its layer of encryption, forwards the message to the associated HS,

and forwards the message to the next RP of the path (xk just forwards the message

to the associated HS since it is the last RP).

4.5 L-Tor: A first extension of the Tor Protocol 63

As a final observation, during this phase, each HS receives the same quantity

of data and each RP behaves in the same way so that the global adversary cannot

identify the position of the ARP in the path, and then the recipient of the request.

4.5.4 Response phase

When an HS receives a request, even a dummy, it replies to the associated RP by

generating a burst of cells including cover traffic. Among these dummy cells, the

AHS will inject the actual response. This way, the global adversary, monitoring the

activity of all the HSs, cannot identify the AHS.

To avoid all the responses reaching the client, resulting in bandwidth waste, each

RP does not forward to the client all the cells received. Indeed, each RP knows if it is

in charge to forward the request/response to/from the AHS, i.e., each RP knows if it

is the ARP. Then, all the RPs, except for the ARP, can discard the traffic received from

the associated HS. However, a certain degree of cover traffic has to be exchanged

to hide the ARP from the global adversary. Then, we enable a cover-traffic burst

mechanism.

Specifically, xk (i.e., the last RP) generates a burst of RELAY DATA cells contain-

ing cover traffic. These dummy cells, encrypted in Onion fashion as in the response

phase of Section 4.2.2, travel the path of RPs until the client and are exploited by xi

to inject the actual response. In particular, each RP in the backward path from xk−1

to xi+1 receives a RELAY DATA cell and adds the proper layer of encryption (since it

does not know if ARP is back or ahead). When xi receives a dummy cell, since it

knows to be the ARP, it replaces such a cell with a cell containing (part of) the ac-

tual response. Once all the cells containing the response are sent, the other cells are

forwarded with dummy traffic.

Similarly, each RP from xi−1 to x1 receives a RELAY DATA cell and adds a layer

of encryption. Finally, the client can retrieve the response by removing the layers of

encryption with the secret keys shared with the RPs x1, . . . ,xi .

This concludes the description of L-Tor.

In Figure 4.4, we represent the paths followed by the messages in the L-Tor cir-

cuit. Specifically, the red arrows represent the path of the actual messages generated

by the client during the forward phase. The blue arrows represent the path of the

actual response generated by AHS during the response phase. The black and grey

arrows represent dummy traffic originated during the forward and response phases,

respectively.

64 4 Providing Tor with recipient anonymity against a global adversary

Fig. 4.4: Paths followed by the messages in the L-Tor circuit.

.

4.6 The Branched-Tor Protocol (B-Tor)

Even though L-Tor can achieve the security goal we pursue (as well shown in Section

4.7, it is not scalable and its performance could not be acceptable in several real-life

applications (like web browsing). Indeed, to obtain a good anonymity level (e.g., k =

50), the latency required to set a circuit of k relays and to exchange messages through

them could result prohibitive (see Sections 4.8 and 4.9). Therefore, we provide a

new solution, called B-Tor, which, at a minimum price in terms of anonymity with

respect to L-Tor, offers much better performance, making our approach applicable

to low-latency applications.

4.6.1 Overview of B-Tor

As in L-Tor, also in B-Tor we consider a network where the AHS is hidden among a

set of k possible HSs, each connected to an RP.

The main difference between L-Tor and B-Tor is the way in which the RPs are

arranged. Indeed, we move from the linear topology of Figure 4.3 to a tree-like topol-

ogy as depicted in Figure 4.5.

Specifically, in Step 4, the client builds a Tor path of RPs with just r branch ren-

dezvous points (BRPs) among the k RPs.

Each of these r BRPs establishes (in parallel) a Tor circuit with l chain rendezvous

points (CRPs) (chosen by the sender), where l = k−r
r , with the assumption that (k − r)

mod r = 0. The last CRP of each chain is called terminal CRP (TCRP).

Thus, we obtain a tree-like topology as represented in Figure 4.5, which involves

all the k RPs. The ARP (i.e., the RP connected with the AHS) is any of them (i.e., it is

either a BRP or a CRP).

4.6 The Branched-Tor Protocol (B-Tor) 65

Fig. 4.5: Circuit of B-Tor

Anonymity is obtained by applying a broadcast-based technique for the forward

phase, and cover traffic (generated by the TCRPs) for the response phase.

In the next section, we describe in detail B-Tor.

4.6.2 Set-up phase

As for L-Tor, we refer to the steps of Section 4.2.3.

Steps 1–3 are exactly the same as L-Tor, i.e., each HS selects the three introduc-

tion points and advertises its service descriptor to the DS. The client asks for k HSs

including the AHS.

In Step 4, the client selects k RPs to associate with the HSs and arrange them in a

circuit. However, this time, the circuit is different from that of L-Tor. Indeed, among

the k RPs, the client selects r BRPs and builds a Tor circuit with them. We denote by

b1, . . . , br the BRPs in the order they appear in the circuit. Moreover, for each BRP bt ,

the client selects a list xt,1, . . . ,xt,l of CRPs with which bt will establish a Tor circuit

(in the order they appear in the list). We recall that l = k−r
r . The CRPs xt,l , for each

1 ≤ t ≤ r, are called TCRPs.

B-Tor performs differently according to the position in the circuit of the ARP.

We have to consider two cases. The first case is that the ARP is a BRP (Case 1). The

second case is that the ARP is a CRP (Case 2).

Case 1. Suppose the ARP is the BRP bi with 1 ≤ i ≤ r. In this case, as in L-Tor, the

client builds a Tor circuit of BRPs from b1 to bi . Moreover, again as in L-Tor, each

time the circuit is extended by one hop, the client provides the new BRP with the

rendezvous cookie to match with that provided by the HS associated with the new

BRP. However, in B-Tor, along with the rendezvous cookie, the client sends each bj

(with 1 ≤ j ≤ i) the list of the addresses of the CRPs xj,1, . . . ,xj,l and the associated list

of rendezvous cookies for each of them. This information will be used by bj to build

a circuit including the CRPs xj,1, . . . ,xj,l . A flag for bi denoting that it is the ARP is

also provided. Observe that, since the rendezvous cookies have a size of 20 bytes and

66 4 Providing Tor with recipient anonymity against a global adversary

the addresses of 4/16 bytes (IPv4/IPv6) until l = 20, cookies and addresses can be

carried out in a single Tor cell.

At this point, the circuit of BRPs has to be extended as in L-Tor by bi (playing the

role of client) until br . Specifically, the client simulates the extension of the circuit

by sending the RELAY EXTEND cell to bi , which includes the address of bi+1. How-

ever, the CREATE cell generated by bi for bi+1 includes the DH parameter of bi itself.

After receiving the CREATED cell from bi+1, bi forwards the RELAY EXTENDED cell to

the client, so that neither bi+1 nor the global adversary can identify bi as the ARP. At

this point, the client provides bi with the rendezvous cookie for bi+1, the list of the

addresses of the CRPs associated with bi+1, and the list of the associated rendezvous

cookies. This process is repeated until br is included in the Tor circuit. Each bj (with

1 ≤ j ≤ r), after receiving the list xj,1, . . . ,xj,l , builds a Tor circuit until xj,l by pro-

viding each xj,t (with 1 ≤ t ≤ l) with the proper rendezvous cookie. This is the main

advantage of the set-up phase of B-Tor with respect to L-Tor. Indeed, the circuits

started by the BRPs can be done in parallel between them. This reduces the latency

required to set the circuit.

To summarize, in the end, the client shares a secret key with each BRPs b1, . . . , bi

and bi shares a secret key with each BRPs bi+1, . . . , br . Moreover, each BRP bj (with

1 ≤ j ≤ r) shares a secret key with each CRPs xj,1, . . . ,xj,l . Finally, each RP (both the

BRPs and the CRPs) owns the proper rendezvous cookie generated by the client.

Case 2. Suppose the ARP is the CRP xi,j with 1 ≤ i ≤ r and 1 ≤ j ≤ l. As in Case 1, the

client builds a circuit of BRPs until bi and provides each BRP bt (1 ≤ t ≤ i) with the

proper rendezvous cookie, the list of CRPs xt,1, . . . ,xt,l , and the list of the rendezvous

cookies (one for each CRP). However, differently from Case 1, additional information

is provided to bi that is the fact that xi,j is the ARP.

At this point, the circuit is extended by bi until br exactly as in Case 1. Moreover,

again as in Case 1, each bz (1 ≤ z ≤ r and z , i) builds a Tor circuit and exchanges the

symmetric keys and the rendezvous cookies provided by the client with the CRPs

xz,1, . . . ,xz,l .

Regarding bi , it builds a circuit only until xi,j (instead of xil) and the circuit is

extended by xi,j (playing the role of bi) until xi,l .

To summarize, in the end, the client shares a secret key with each BRPs b1, . . . , bi ,

bi shares a secret key with each BRPs bi+1, . . . , br , each BRP bt (where 1 ≤ t ≤ r and

t , i) shares a secret key with each CRPs xt,1, . . . ,xt,l , bi shares a secret key with each

CRPs xi,1, . . . ,xi,j , and xi,j shares a secret key with each CRP xi,j+1, . . . ,xi,l . Finally,

each RP (both the BRPs and the CRPs) owns the rendezvous cookie.

To conclude the set-up phase, Steps 5–7 are performed in the same way as L-Tor

(see Section 4.5.2).

4.6 The Branched-Tor Protocol (B-Tor) 67

As in L-Tor, the client connects to the first BRP b1 through a two-hops circuit.

4.6.3 Forward Phase

As in the setup phase, also in the forward phase, we have to distinguish two cases

according to the position of the AHS.

Case 1. Suppose the ARP is the BRP bi with 1 ≤ i ≤ r. The client sends the request in

the RELAY DATA cells through the Tor circuit of BRPs from b1 until bi . This request

is encrypted, as usual, in Onion fashion by the client through the keys shared with

b1, . . . , bi .

Each bj (with 1 ≤ j ≤ i − 1) that receives a RELAY DATA cell, removes its layer of

encryption and forwards the obtained message to bj+1 and to the associated HS (as

in the forward phase of L-Tor). Moreover, bj encrypts, in Onion fashion, a dummy

message and forwards it through the Tor circuit of CRPs associated with it. This is

done through the keys that bj shares with xj,1, . . . ,xj,l .

When bi receives the request, bi forwards it to the AHS and a dummy message

in the Tor circuit composed of xj,1, . . . ,xj,l . Moreover, through the keys shared with

bi+1, . . .br , forwards a dummy message of the same size as the request (as in L-Tor)

encrypted in Onion fashion until br .

Each bt (with i + 1 ≤ t ≤ r) performs as the other BRPs between b1 and bi , i.e.,

removes its layer of encryption, forwards the received messages: (1) to the associated

HS, (2) in the associated Tor circuit of CRPs xt,1 . . .xt,l , and (3) to the next BRP of the

path (br , being the last RP, just forwards the messages to the associated HS and in

the associated Tor circuit of CRPs).

Finally, each xp,q (where 1 ≤ p ≤ r and 1 ≤ q ≤ l) performs in a similar way. Specif-

ically, it removes its layer of encryption, forwards the messages to both the associated

HS and the next CRP xp,q+1 of the path (xp,l , being the last CRP, just forwards the

message to the associated HS).

Case 2. Suppose the ARP is the CRP xi,j (1 ≤ i ≤ r and 1 ≤ j ≤ l).

The client performs as in Case (1), i.e., it builds an Onion encrypted request that

crosses the path from b1 until bi . Each bt (with 1 ≤ t ≤ i − 1) performs exactly as in

Case (1).

Regarding bi , as in Case (1), it forwards the request to the associated HS and a

dummy message until br . Moreover, it forwards the request into the associated Tor

circuit of CRPs until xi,j (that is the ARP). Specifically, bi encrypts in Onion fashion

the request by using the keys shared with xi,1, . . . ,xi,j . This is different from Case 1,

in which a dummy message (in place of the actual request) is sent through the Tor

circuit until the CRP xi,l (in place of xi,j).

68 4 Providing Tor with recipient anonymity against a global adversary

The BRPs from bi+1 until br perform exactly as Case 1. Similarly, each xp,q with

(p,q) , (i, j) performs as Case 1.

Finally, xi,j after receiving the request, forwards it to the AHS and builds a

dummy message encrypted in Onion fashion to forward until the CRP xi,l . This mes-

sage is encrypted through the keys shared by xi,j with xi,j+1 . . .xi,l .

4.6.4 Response Phase

To avoid the global adversary can see the node which originates the response, a cover

traffic mechanism is enabled.

Exactly as in L-Tor, when an HS receives a request, even a dummy, it replies to

the associated RP by generating a burst of cells including cover traffic, and all the

RPs except for the ARP can discard the traffic received.

The ARP will inject the response in a cover traffic burst managed as follows.

Each TCRP xi,l (with 1 ≤ i ≤ r), after receiving the response from the associated

HS, generates a burst of RELAY DATA cells containing cover traffic. This burst will

travel in the Tor circuit of CRPs from xi,l until bi . Then, another burst of RELAY

DATA cells flows in the Tor circuit of BRPs from br until the client in the backward

direction. Observe that, each BRP bj (1 ≤ i ≤ r − 1) receives two flows: one from xj,1

and one from bj+1 (while br receives just a flow from xr,1).

We recall that bj knows if the flow coming from xj,1 contains or not the actual

response, since it knows if the ARP is one between xj,1, . . . ,xj,l (or it is bj itself).

Therefore, bj can ignore one of the two flows. Specifically, if the ARP is one between

xj,1, . . . ,xj,l , bj can discard the flow coming from bj+1. Otherwise, it discards the flow

coming from xj,1. Observe that in the latter case, bj does not know whether the flow

coming from bj+1 contains the actual response, since it could come from a BRP bt

with t < j or from a CRP xp,q with q < j. Then, bj simply forwards the traffic received

from bj+1. In the case in which bj is the ARP, it can ignore both flows.

Since the two traffic flow coming from xj,1 and bj+1 may have different data rates,

say R1 and R2 respectively, to avoid the global adversary understand which of the

two flows contains the response, bi chooses as data rate for the traffic intended for

bi−1, the maximum between R1 and R2. This way, not all the cover traffic received by

bi has to be forwarded toward the client, thus saving bandwidth.

At this point, we see in detail as the RPs perform in the response phase and as

the ARP injects the response.

We distinguish, as usual, two cases.

Case 1. Suppose the ARP is the BRP bi with 1 ≤ i ≤ r.

Each CRP xp,l (1 ≤ p ≤ r) generates a cover traffic burst of RELAY DATA cells in-

cluding dummy data and adds its layer of encryption. Each CRP xp,q (1 ≤ p ≤ r and

4.6 The Branched-Tor Protocol (B-Tor) 69

2 ≤ q ≤ l − 1), receives a RELAY DATA cell and adds its layer of encryption as in the

response phase of Tor (see Section 4.2.2). xp,1 adds its layer and forwards the cells to

bp.

Each bp (1 ≤ p ≤ r), since it knows that the ARP is not in its chain, simply ignores

the cells received from xp,1.

br forwards a flow of cells towards br−1 by adding its layer of encryption. This

flow is forwarded at the same data rate as the flow received from xr,1. If r = i, the flow

forwarded by br to br−1 contains the actual response, otherwise it contains dummy

traffic.

Each bj (with i+1 ≤ j ≤ r−1), receives two flows, one from bi+1 and one from xj,1,

and forwards to bj−1 the cell coming from bi+1 at the maximum data rate between

the two flows (possibly, by adding cover traffic cells). The cells from xj,1 are ignored

since bj is aware of the fact that they do not contain the actual response. Moreover,

before forwarding, it adds a layer of encryption as the standard Tor response.

bi (if i , r) ignores both the flows received from bi+1 and xi,1. Then, it forwards

(after adding its layer of encryption) the actual response to bi−1 (or to the client if

i = 1), at the maximum rate between the two flows. When the response is completely

forwarded, dummy cells are generated to maintain the same data rate.

Finally, each BRP bt (1 ≤ t ≤ i − 1) performs as each BRP bj (i + 1 ≤ j ≤ r − 1).

Specifically, bt receives two flows, ignores that provided by xt,1, and forwards the

flow coming from bi+1 to bt−1 (or to the client if t = 1) after adding its layer of en-

cryption. This flow is sent at the maximum data rate between the two flows.

Case 2. Suppose the ARP is the CRP xi,j (1 ≤ i ≤ r and 1 ≤ j ≤ r).

All the RPs except for xi,j and bi perform exactly as Case 1.

Regarding xi,j , it simply replaces the RELAY cells (containing cover traffic) com-

ing from xi,j+1, with the actual response (or injects directly the actual response in

the case j = l, i.e., the ARP is a TCRP).

Regarding bi , it does not ignore the flow coming from xi,1, but removes the layer

of encryption added by the CRPs from xi,1 until xi,j (through the secret key shared

with them) and forwards this flow to bi−1 (or to the client if i = 1).

In Figure 4.6, we represent the paths followed by the messages in the B-Tor cir-

cuit. Specifically, the red arrows represent the path of the actual messages generated

by the client during the forward phase. The blue arrows represent the path of the

actual response generated by AHS during the response phase. The black and grey

arrows represent dummy traffic originated during the forward and response phases,

respectively.

70 4 Providing Tor with recipient anonymity against a global adversary

Fig. 4.6: Paths followed by the messages in the B-Tor circuit.

.

4.7 Security Analysis

In this section, we provide the security analysis of the proposed solution according

to the threat model described in Section 4.3.

In particular, we compare, from the point of view of the offered security guar-

antees, the standard Tor protocol (which does not provide any level of anonymity

in our threat model), L-Tor (which offers the maximum level of anonymity but low

performance), and B-Tor (offering better performance than L-Tor with a price in

terms of anonymity).

Notations. We adopt the notation of Section 4.3. Moreover, we assume k is the num-

ber of potential recipients (and then of RPs) selected by the client in L-Tor and

B-Tor. Finally, we denote by P (E) the probability function of an event E.

Adversaries. We consider three types of global adversaries: Weak (W), Static (S), and

Adaptive (A) as defined in Section 4.3.

We refer to the following assumption.

Assumption.

A1: The k HSs selected in L-Tor and B-Tor are all potential recipients and they are

chosen by the client in such a way that the background knowledge does not allow

the adversary to have more information than recipient uniform distribution.

The satisfaction of A1 is an aspect that is strongly application-dependent, so

we cannot treat it in depth. However, this is a classical problem in communication

anonymity [94, 246].

Finally, we analyze two security properties.

Security properties.

• RPA: Recipient anonymity.

• RLA: Relationship anonymity.

4.7 Security Analysis 71

RPA/RLA

Protocol W S A

Tor 1 1 1

L-Tor
1
k ≤

nSpb
n + 1

k
nApb+1

k

B-Tor
1
k ≤ α ≤ 1

k + nApb
r

Table 4.2: Comparison between Tor, L-Tor, and B-Tor. The table reports the proba-

bility for the adversary (W, S, and A) to break RPA and RLA.

Since we deal with an adversary able to observe the entire traffic exchanged in

the network, our analysis is conducted in terms of anonymity set size.

Specifically, we calculate the probability that each considered adversary (among

W, S, A) breaks the two considered security properties (RPA, RLA) in the three pro-

tocols (Tor, L-Tor, B-Tor).

The formal framework proving this result is provided through the following the-

orems and summarized in Table 4.2.

We start by considering RPA in Tor, L-Tor, and B-Tor against W, S, and A.

Given an adversary Adv, we introduce two events: RAdv ={Adv breaks RPA} and

XAdv,xAdv = {Adv compromises xAdv nodes}.

Then, since nAdv is the maximum number of nodes that Adv can compromise we

obtain:

P (RAdv) =
nAdv∑

xAdv=0

P (RAdv |XAdv,xAdv)P (XAdv,xAdv).

Observe that P (XAdv,xAdv) = P (SnAdv = xAdv) as defined in Section 4.3. Therefore,

to find P (RAdv), we need to compute P (RAdv |XAdv,xAdv) for each xAdv .

Moreover, for W, we have a simplification. Indeed, since W does not compro-

mise any node (nW = 0), then P (RW) = P (RW |XW,0)P (XW,0) = P (RW |XW,0)P (S0 = 0) =

P (RW |XW,0).

Theorem 4.1. In Tor, W, S, and A break RPA with probability 1.

Proof.

Adversary W

In Tor, W simply follows the flow of messages generated by the client through

the six-hop circuit until the recipient (hidden server). Therefore, the recipient is

immediately detected with a probability

P (RW) = P (RW |XW,0) = 1

.

Adversaries S and A

72 4 Providing Tor with recipient anonymity against a global adversary

Since S and A have at least the same power of W, regardless of the number of

nodes compromised, P (RS |XS,xS) = P (RA|XA,xA) = 1. Then,

P (RS) = P (RA) =
nS∑

xS=0

P (XS,xS) =
nA∑

xA=0

P (XA,xA) = 1

.

Theorem 4.2. In L-Tor:

1. W breaks RPA with probability P (RW) = 1
k

2. S breaks RPA with probability P (RS) ≤ nSpb
n + 1

k

3. A breaks RPA with probability P (RA) = nApb+1
k

Proof.

AdversaryW

We consider W and analyze the three phases of L-Tor. During the set-up phase, in

Steps 1 and 2, all the HSs perform the same preliminary operations (i.e., the selection

of the introduction points and the advertisement of the service descriptors). Then,

no identifying information about the AHS is carried out during these steps.

In Step 3, the client asks the DS for k HSs addresses. Also in the case of collab-

oration with the DS, by A1, W can identify the AHS among the k HSs only with

probability 1
k .

We focus now on Step 4. For W it is sufficient to identify the ARP to detect the

AHS since W can immediately discover the mapping between the RPs and the HSs

by following the flow of messages exchanged between them.

However, each of the k RPs performs in the same (indistinguishable) way from

the point of W. Indeed, each RP from x1 until the ARP xi extends the circuit of one-

hop according to the standard algorithm of Tor. Even though xi builds a new circuit

until xk , this operation is performed in the same way in which the previous circuit

has been extended (according to the standard algorithm of Tor), so that W cannot

identify the ARP during this extension. Moreover, the only information transmitted

that identifies the ARP is the flag provided by the client to xi , but it is inside a RELAY

cell encrypted in Onion fashion so that it changes hop-by-hop and W always sees a

different cell. Then, by A1, in Step 4, W can identify the ARP only with probability
1
k .

Finally, in Steps 5-6 the client contacts k HSs (through the introduction points),

and in Step 7, each HS connects to an RP so that no identifying (of the AHS) infor-

mation or operation occurs during these steps. We conclude that during the set-up

phase of L-Tor, W breaks RPA only with probability 1
k .

Regarding the forward phase, W observes a flow of RELAY cells that are en-

crypted in Onion fashion and change hop-by-hop. Each cell travels along the entire

4.7 Security Analysis 73

circuit from x1 to xk by reaching all the k RPs. Moreover, the RELAY cells are for-

warded by each of the k RPs to the associated HS. Then, again by A1, W can identify

the ARP (or the AHS) only with probability 1
k .

Finally, in the response phase, since all the HSs reply to the associated RPs, by

A1, W cannot identify directly the AHS with probability greater than 1
k . Then, it can

try to identify the ARP.

However, similar to the forward phase, a flow of dummy RELAY cells is origi-

nated by the last RP xk and changes hop-by-hop. When it reaches the ARP xi , there

is no way for W to understand whether it injects the actual response (in place of

dummy cells) or simply forwards the received cells (after adding a layer of encryp-

tion).

This concludes the first part of the theorem, i.e., W breaks RPA with probability

P (RW) = P (RW |XW,0) =
1
k

.

Preliminary considerations on S and A

We now consider S and A that have the capability to compromise some nodes.

As a preliminary consideration, it is easy to realize that the adversary (both S and

A) does not obtain any advantage by compromising a node different from an RP.

Indeed, all the nodes except for the RPs always receive encrypted data, and then no

information about the AHS can be drawn from them.

Instead, if an RP is compromised, two cases may occur: either the RP is the ARP

or the RP is different from the ARP. In the first case, the adversary immediately

identifies the AHS. In the second case, the adversary does not immediately identify

the AHS but reduces the size of the anonymity set by one unity, since it can exclude

the HS associated with such an RP from the set of possible recipients.

Formally, we introduce the following events: BAdv={The adversary Adv compro-

mises the ARP}, CAdv
i ={The adversary Adv compromises exactly i RPs different from

the ARP (with 0 ≤ i ≤ k − 1)}.

It holds:

P (RAdv |XAdv,xAdv) = P (BAdv |XAdv,xAdv) +
min(xAdv ,k−1)∑

i=0

1
k − i

The terms P (BAdv |XAdv,xAdv) and P (CAdv
i |XAdv,xAdv) depends on the type of adver-

sary.

Adversary S

Considering S, since it chooses randomly a priori the xS nodes to compromise,

we have

P (BS |XS,xS) =
xS
n

74 4 Providing Tor with recipient anonymity against a global adversary

and

P (CS
i |XS,xS) =

(k−1
i

)(n−k
xS−i

)(n
xS

)
that derives (with a little modification to take into account the fact that the selected

nodes have to be different from the ARP) from the hypergeometric distribution (un-

der the assumption that n− k − x > 0).

Then for S, we have

P (RS |XS,xS) =
xS
n

+
min(xS ,k−1)∑

i=0

1
k − i

(k−1
i

)(n−k
xS−i

)(n
xS

)
.

We can simplify the second term as follows.

min(xS ,k−1)∑
i=0

1
k − i

(k−1
i

)(n−k
xS−i

)(n
xS

) =
1
k

min(xS ,k−1)∑
i=0

(k−1
i

)(n−k
xS−i

)(n
xS

) +
1
k

min(xS ,k−1)∑
i=0

i
k − i

(k−1
i

)(n−k
xS−i

)(n
xS

)
By applying the following properties of the binomial coefficients:(

x
y

)
=
x+ 1− y

y

(
x

y − 1

)
(
x
y

)
=

x
y

(
x − 1
y − 1

)
(
x
y

)
=

x
x − y

(
x − 1
y

)
we obtain:

1
k

min(xS ,k−1)∑
i=0

(k−1
i

)(n−k
xS−i

)(n
xS

) =
1
k

min(xS ,k−1)∑
i=0

(k−1
i

)(n−k
xS−i

)
n

n−xS
(n−1
xS

) =
n− xS
kn

min(xS ,k−1)∑
i=0

(k−1
i

)(n−k
xS−i

)(n−1
xS

) =

n− xS
kn

where the last step derives from the properties of the hypergeometric distribu-

tion.

Furthermore,

1
k

min(xS ,k−1)∑
i=0

i
k − i

(k−1
i

)(n−k
xS−i

)(n
xS

) =
1
k

min(xS ,k−1)∑
i=1

i
k − i

(k−1
i

)(n−k
xS−i

)(n
xS

) =
1
k

min(xS ,k−1)∑
i=1

(k−1
i−1

)(n−k
xS−i

)(n
xS

) =

1
k

min(xS ,k−1)∑
i=1

(k−1
i−1

)(n−k
xS−i

)
n
xS

(n−1
xS−1

) =
xS
kn

min(xS−1,k−2)∑
t=0

(k−1
t

)(n−k
xS−t−1

)(n−1
xS−1

) ≤ xS
kn

min(xS−1,k−1)∑
t=0

(k−1
t

)(n−k
xS−t−1

)(n−1
xS−1

) =

xS
kn

This leads to:

P (RS |XS,xS) ≤ xS
n

+
xS
kn

+
n− xS
kn

=
xS
n

+
1
k

4.7 Security Analysis 75

Therefore, we obtain:

P (RS) =
nS∑

xS=0

P (RS |XS,xS)P (XS,xS) ≤
nS∑

xS=0

(xS
n

+
1
k

)
P (SnS = xS) =

1
n

nS∑
xS=0

xSP (SnS = xS) +
1
k

nS∑
xS=0

P (SnS = xS) =
nSpb
n

+
1
k

where the last step leverages the properties of the binomial distribution.

This concludes the second statement of the theorem, i.e., S breaks RPA with prob-

ability

P (RS) ≤
nSpb
n

+
1
k

.

Adversary A

Finally, consider A. Since it can choose the nodes to compromise after the cir-

cuit is established, it attempts to break directly only the RPs. Indeed, there is no

advantage to compromising other nodes. Therefore, we assume xA ≤ nA ≤ k − 1 (if it

compromises k − 1 nodes, it identifies the ARP since either it is one of these k − 1 or

it is the other node).

Then, we have

P (BA|XA,xA) =
xA
k

and

P (CA
i |XA,xA) =

0 if i , xA
k−xA
k if i = xA

That leads to

P (RA|XA,xA) =
xA
k

+
1
k

=
xA + 1

k
.

Finally,

P (RA) =
nA∑

xA=0

P (RA|XA,xA)P (XA,xA) =
nA∑

xA=0

xA + 1
k

(
nA
xA

)
pxAb (1− pb)nA−xA =

nApb + 1
k

This ends the proof.

Theorem 4.3. In B-Tor:

1. W breaks RPA with probability P (RW) = 1
k

2. S breaks RPA with probability P (RS) ≤ α

3. A breaks RPA with probability P (RA) ≤ nApb
r + 1

k

where α = 1
k + 1

rl+1 + (r+l)nSpb
nk + rl(2n−1)nSpb

kn(n−1) − rl(n2
SGp

2
b+nSpb(1−pb))
kn(n−1) .

76 4 Providing Tor with recipient anonymity against a global adversary

Proof.

Adversary W

We start considering W and analyze the three phases of B-Tor. In the set-up

phase the steps 1–3 and 5–7 are the same as L-Tor, then W, by A1, can identify the

AHS only with probability 1
k .

In Step 4, there are two cases: either the ARP is a BRP bi or the ARP is a CRP

xi,j . In both cases, the client builds a circuit until bi that is extended until br with

the same approach of L-Tor, then not allowing W to detect that a new circuit is

established between bi and br (W cannot distinguish the new circuit from a standard

extension).

Moreover, in both cases, each bz , bi builds a circuit until xz,l . Regarding bi , in

case (1) it performs as the other BRPs (i.e., builds a circuit until xi,l), otherwise (case

(2)) it builds a circuit until the ARP xi,j that extends (as in L-Tor) the circuit until

xz,l thus making case (2) indistinguishable from case (1). Therefore, we conclude that

from the set-up phase W breaks RPA only with probability 1
k .

Regarding the forward phase, the same two cases may occur. However, in both

cases, all the RPs perform in the same way making the two cases indistinguishable

for W. Indeed, in both cases, each bj , bi and each xp,q , xi,j performs in the same

way. Regarding bi , in case (1) it performs as bj while in case (2) it forwards the actual

request to xi,1 in place of a dummy request. However, since the cells are encrypted

and change hop-by-hop, W does not distinguish these two cases. Regarding xi,j , sim-

ilarly, in case (1) it performs as the other CRPs xp,q while in case (2) it receives an

actual request and replaces it with an encrypted dummy request indistinguishable

from the actual request.

Finally, for the response phase, several flows of dummy cells originated by the

TCRPs travel until the BRPs. The mechanism is the same as L-Tor so that W can-

not identify if a CRP injects the actual response or just forwards dummy traffic.

Regarding the BRPs, each of them receives two flows and forwards a flow to the

previous BRP (in the backward path) at the maximum rate between the rates of the

two flows (regardless of which flow contains the actual response), so no information

can be drawn by W. When the actual response is injected (regardless of whether it

is injected by a CRP or a BRP), it replaces the dummy cells in such a way that it is

indistinguishable from them.

This concludes the first part of the theorem, i.e., W breaks RPA with probability

P (RW) = P (RW |XW,0) =
1
k

.

Preliminary considerations on S and A

4.7 Security Analysis 77

We now consider S and A that have the capability to compromise some nodes. As

in L-Tor they obtain an advantage only by compromising an RP. However, differently

from L-Tor, four cases have to be considered when an RP is compromised.

The first case is that the RP is the ARP (either a BRP or a CRP). In this case, RPA

is broken with probability 1.

In the second case, the RP is a CRP (different from the ARP) and the anonymity

set is reduced by one unity since the adversary can exclude such an RP.

In the third case, the RP is a BRP (different from the ARP), such that no CRP in its

chain is an ARP. In this case, the anonymity set is reduced by l+1 nodes. Indeed, the

adversary can exclude such a BRP and the l CRPs associated with it, since the BRP

knows that the ARP is not in its chain. Finally, in the last case, the RP is a BRP such

that the ARP is a CRP in the chain of this BRP. As in the first case, RPA is broken

immediately since the BRP knows the ARP is in its chain.

Moreover, when more RPs are compromised, we have to take into account the fact

that if the adversary breaks the CRP xi,j and the BRP bi in the same chain, then the

anonymity set is reduced just by l + 1 (and not of l + 2) since breaking the CRP does

not provide any information additional with respect to that obtained by breaking

just the BRP.

Adversary S

Consider the adversary S. In favor of security, we assume that even though a

compromised CRP is in the same chain of a compromised BRP, the anonymity set

is reduced by l + 2. In other words, we search for an upper bound of the actual

probability.

Specifically, we define three events: BS={S compromises a CRP that is the ARP

or a BRP bi such that either bi is the ARP or the CRP xi,j (with any j) is the ARP},

CS
i ={S does not compromise the ARP and compromises i BRPs bs (with 1 ≤ s ≤ r)

such that the ARP is not a CRP xs,p for any 1 ≤ p ≤ l }. DS
j ={S compromises exactly j

CRPs different from the ARP}.

Since P (BS), P (CS
i), and P (DS

i) vary according to the fact that the ARP is a BRP or

a CRP, we introduce two additional events: E={The ARP is a BRP} and F={The ARP

is a CRP} (that is the complementary event of E).

It holds:

P (RS |XS,xS) ≤ P (E)P (BS |(XS,xS ∩E)) + P (F)P (BS |(XS,xS ∩F))+

min(xS ,r−1)∑
i=0

P (E)
1

k − (l + 1)i
P (CS

i |(XS,xS ∩E)) +
min(xS ,r−1)∑

i=0

P (F)
1

k − (l + 1)i
P (CS

i |(XS,xS ∩F))+

min(xS ,lr)∑
j=0

P (E)
1

k − j
P (DS

j |(XS,xS ∩E)) +
min(xS ,lr)∑

j=0

P (F)
1

k − j
P (DS

j |(XS,xS ∩F))

78 4 Providing Tor with recipient anonymity against a global adversary

where:

• P (E) = r
k

• P (F) = rl
k .

• P (BS |(XS,xS ∩E)) = xS
n

• P (BS |(XS,xS ∩F)) = 1−
(2

0)(
n−2
xS

)
(n
xS

) = xS (2n−xS−1)
n(n−1)

• P (CS
i |(XS,xS ∩E)) =

(r−1
i)(n−r

xS−i)
(n
xS

)

• P (CS
i |(XS,xS ∩F)) =

(r−1
i)(n−r−1

xS−i)
(n
xS

)

• P (DS
j |(XS,xS ∩E)) =

(rlj)(
n−rl−1
xS−j)

(n
xS

)

• P (DS
j |(XS,xS ∩F)) =

(rl−1
j)(n−rl−1

xS−j)
(n
xS

) for j ≤ rl − 1

• P (DS
j |(XS,xS ∩F)) = 0 for j = rl

At this point, we solve the four sums separately.

First sum.

min(xS ,r−1)∑
i=0

1
k − (l + 1)i

P (CS
i |(XS,xS ∩E)) =

min(xS ,r−1)∑
i=0

1
k − (l + 1)i

(r−1
i

)(n−r
xS−i

)(n
xS

) =

1
k

min(xS ,r−1)∑
i=0

(r−1
i

)(n−r
xS−i

)(n
xS

) +
1
k

min(xS ,r−1)∑
i=0

i(l + 1)
k − (l + 1)i

(r−1
i

)(n−r
xS−i

)(n
xS

)
The first term is the same as in the proof of Theorem 4.2 with r in place of k, then

we obtain:

min(xS ,r−1)∑
i=0

1
k − (l + 1)i

(r−1
i

)(n−r
xS−i

)(n
xS

) =
n− xS
nk

+
l + 1
k

min(xS ,r−1)∑
i=0

i
k − (l + 1)i

(r−1
i

)(n−r
xS−i

)(n
xS

) ≤

n− xS
nk

+
l + 1
k

min(xS ,r−1)∑
i=0

i
r − i

(r−1
i

)(n−r
xS−i

)(n
xS

) ≤ n− xS
nk

+
(l + 1)xS

kn
=
n+ lxS
nk

where the last sum was solved in the proof of Theorem 4.2 with r in place of k.

Second sum.

min(xS ,r−1)∑
i=0

1
k − (l + 1)i

P (CS
i |(XS,xS ∩F)) =

min(xS ,r−1)∑
i=0

1
k − (l + 1)i

(r−1
i

)(n−r−1
xS−i

)(n
xS

) ≤

min(xS ,r−1)∑
i=0

1
k − (l + 1)i

(r−1
i

)(n−r
xS−i

)(n
xS

) ≤ n+ lxS
nk

Third sum.

4.7 Security Analysis 79

min(xS ,rl)∑
i=0

1
k − i

P (DS
i |(XS,xS ∩E)) =

min(xS ,rl)∑
i=0

1
k − i

(rl
i

)(n−rl−1
xS−i

)(n
xS

) ≤

min(xS ,rl)∑
i=0

1
rl + 1− i

(rl
i

)(n−rl−1
xS−i

)(n
xS

) ≤ 1
rl + 1

The last sum is solved as in the proof of Theorem 4.3 with rl + 1 in place of k

Fourth sum.

min(xS ,rl)∑
i=0

1
k − i

P (DS
i |(XS,xS ∩F)) =

min(xS ,rl−1)∑
i=0

1
k − i

(rl−1
i

)(n−rl−1
xS−i

)(n
xS

) ≤

min(xS ,rl)∑
i=0

1
rl + 1− i

(rl
i

)(n−rl−1
xS−i

)(n
xS

) ≤ 1
rl + 1

where the last sum is solved as in the proof of Theorem 4.3 with rl in place of k − 1.

Then, it results:

P (RS |XS,xS) ≤ rl
k

xS (2n− xS − 1)
n(n− 1)

+
n+ (r + l)xS

nk
+

1
rl + 1

Finally, we obtain:

P (RS) =
nS∑

xS=0

P (RS |XS,xS)P (XS,xS) ≤

nS∑
xS=0

(
rl
k

xS (2n− xS − 1)
n(n− 1)

+
n+ (r + l)xS

nk
+

1
rl + 1

)
P (SnS = xS)

=
1
k

+
1

rl + 1
+

(r + l)nSpb
nk

+
rl(2n− 1)nSpb

kn(n− 1)
− rl
kn(n− 1)

nS∑
xS=0

x2
SGP (SnS = xS) =

1
k

+
1

rl + 1
+

(r + l)nSpb
nk

+
rl(2n− 1)nSpb

kn(n− 1)
−
rl(n2

SGp
2
b +nSpb(1− pb))

kn(n− 1)
= α

This concludes the second statement of the theorem, i.e., S breaks RPA with prob-

ability

P (RS) ≤ α

Adversary A

Finally, consider A. Since it can choose the nodes to compromise after the circuit

is established, it attempts to break the BRPs directly since there is no advantage to

compromising another node in place of a BRP. Therefore, we assume xA ≤ nA ≤ r. If

xA = r, P (RA|XA,xA) = 1. Then, we study xA ≤ r − 1.

If we denote by BA the event BA ={A compromises a CRP that is the ARP or a

BRP bi such that either bi is the ARP or the CRP xi,j (with any j) is the ARP}, we have

that:

80 4 Providing Tor with recipient anonymity against a global adversary

P (RA|XA,xA) = P (BA|XA,xA) + (1− P (BA|XA,xA))
1

k − xA(l + 1)
=

xA
r

+
r − xA

r
1

k − xA(l + 1)
=
xA
r

+
r − xA

r
1

r(l + 1)− xA(l + 1)
=

xA
r

+
r − xA

r
1

(l + 1)(r − xA)
=
xA
r

+
1
k

Finally:

P (RA) =
nA∑

xA=0

P (RA|XA,xA)P (XA,xA) ≤
nA∑

xA=0

(xA
r

+
1
k

)(nA
xA

)
pxAb (1− pb)nA−xA =

nApb
r

+
1
k

This ends the proof.

At this point, we give our result about relationship anonymity by proving that it

coincides, in the considered protocols against the considered adversaries, with the

recipient anonymity.

Theorem 4.4. For Tor, L-Tor, B-Tor, for any type of adversary W,S,A, the probability

to break RLA is the same as the probability to break RPA.

Proof.

From [219], RPA implies RLA. Therefore, if RPA holds with probability p, then

RLA holds with probability p′ ≥ p. Since for W, S, and A, the sender is known with

probability 1, we conclude that p = p′ .

To conclude the section, we compare the three protocols. First, Tor does not offer

any anonymity guarantee.

Against W, both L-Tor and B-Tor offer the same probability to break RPA and

RLA equal to 1
k , therefore B-Tor should be adopted due to the benefits in terms of

performance.

Observe that, as expected, in both L-Tor and B-Tor, if we consider the probabil-

ities to break RPA and RLA against both S and A, they include at least the term 1
k

since such adversaries have at least the power of W.

Furthermore, we obtain that L-Tor offers better resistance to the break of RPA

and RLA than B-Tor.

However, to give a concrete idea of the gain in terms of anonymity obtained by

L-Tor and B-Tor, we provide a numeric example.

In particular, we consider the realistic values n = 7000, r = l = 7, k = r(l + 1) = 56,

pb = 0.05, LT = 1 hour, δS = 6 hours, δA = 10 minutes, ∆S = 30 days. These values

lead to nS = 120 and nA = 6.

Then for L-Tor, we obtain, P (RW) ≃ 1,79%, P (RS) ≤ 1,87%, P (RA) ≃ 2,32% and

for B-Tor to P (RW) ≃ 1,79%, P (RS) ≤ 4%, P (RA) ≤ 6,07%.

4.8 Analytical Evaluation 81

By these results, we can observe that a small difference exists between W and

S (by making B-Tor more suitable for its better performance also against S) while

there exists a price to pay (we move from 2,32% to 6%) against A when adopting

B-Tor in place of L-Tor.

Anyway, also in this toy example, we can see that B-Tor offers very good protec-

tion against all adversaries.

4.8 Analytical Evaluation

Protocol Set-up Forward Return

L-Tor d(2k2 + 10k + 6) (k + 6)d + w
B (k + 6)d + q

B

B-Tor d(2r2 + 10r + 6 + 2l(l − 1)) (r + l + 6)d + w
B (r + l + 6)d + q

B

Table 4.3: Latency in L-Tor and B-Tor for the three phases.

Through this section, we provide an analytical evaluation of L-Tor and B-Tor,

conducted on the basis of some slight approximations. Specifically: (1) we assume

that all the nodes have the same bandwidth; (2) we assume all the links have the

same delay; and (3) we consider that the cost of the operations in the set-up phase

involving the DS is negligible.

Furthermore, in this section, we pursue another goal, i.e., to derive a “design

formula" for B-Tor allowing us to set the proper values of r and l to obtain a given

anonymity level k.

We denote by d the propagation time (in ms) of any link between two nodes and

by B the bandwidth of the nodes. Therefore, to exchange a message of size s between

two nodes directly connected to each other, it requires s
B + d ms.

Now, observe that, for both L-Tor and B-Tor, all the messages exchanged end-

to-end between the client and each RP in the set-up phase are forwarded in a single

cell of size c = 512 bytes. For realistic values of B, the ratio c
B is negligible compared

to d. Then, we assume that a cell requires xd ms to walk x links.

Consider the set-up phase of L-Tor. To build the L-Tor circuit, the client first

builds a Tor circuit of two ORs with the first RP. To do this, the client sends a 1-cell

message (including its DH parameter) to the first OR, which replies with a 1-cell

message. Then, another 1-cell message is sent to the second OR through the first

OR (thus walking two links). Then, the second OR responds with another 1-cell

message walking two links too. In sum, this preliminary step requires 6 elementary

(i.e., 1-cell) single-hop transmissions. At this point, the client sends a 1-cell message

82 4 Providing Tor with recipient anonymity against a global adversary

to the first RP (thus walking 3 links). The first RP replies with a 1-cell message

(walking 3 links too). Then, the client replies with a 1-cell message containing the

rendezvous cookie to the first RP (again, walking 3 links), which, in turn, replies

with another 1-cell message (and, then, walking 3 links). Therefore, to provide the

first RP with the secret key, 12 elementary single-hop transmissions occurred and a

time of 12d ms is required. Now, to exchange the same information with the second

RP, 16 transmissions occur since the four 1-cell messages exchanged have to cross the

first RP (thus, 1 further hop for each message is required). This pattern is iterated

for the other RPs of the L-Tor circuit.

Therefore, the total latency is: LsL = d

(
6 +

k∑
i=1

(4i + 8)
)

= d(2k2 + 10k + 6).

Observe that, this latency increases quadratically with k, exactly as in Tor, with

the difference that Tor is not thought to set up circuits with numerous relays. Of

course, this is not a good point in favor of L-Tor. For example, for a realistic value of

d = 45 ms and k = 50, we obtain that the set-up phase requires LsL ≃ 4 minutes, which

could be acceptable in some applications, but, in general, results in a perception of

low network performance.

Regarding the forward phase, by also considering the size of the request w, the

time before the AHS receives the request depends on the position of the ARP. In the

worst case, the ARP is in the last position. This leads to a latency of LfL = (k+6)d+ w
B ,

since there are three links (two relays) between the client and the first RP, k−1 links

between the first RP and the last RP, and four links (three relays) between the last

RP and the AHS.

Finally, for the response phase, independently of its position, the ARP has to wait

for the cells originated by the last RP before injecting the response. If we denote by

q the size of the response, then we have LrL = (k + 6)d + q
B .

Now, we apply the same reasoning for B-Tor. In the set-up phase, the main ad-

vantage is that the client builds a circuit with just r BRPs, and each BRP builds (in

parallel) a circuit with l CRPs. Therefore, by considering the two hops from the client

to the first BRP, the set-up time for B-Tor is LsB = d(2r2 +10r+6+2l(l+1)). If we con-

sider d = 45 ms and r = l = 7 that leads to k = 56, we have LsB ≃ 12.9 seconds, which

represents a relevant improvement with respect to L-Tor.

For the forward and response phase, by assuming the worst case in which the

ARP is the CRP xr,l (i.e., the last CRP of the last chain), we obtain L
f
B = (r+ l+6)d+ w

B

and LrB = (r + l + 6)d + q
B since the messages have to walk (round trip) the entire path

of CRPs of length l from xr,l until br and the entire path of length r − 1 from br to

b1. Moreover, we include the three links between the client and b1 and the four links

between xr,l and the AHS.

All the previous results are summarized in the table in Figure 4.3.

4.9 Experimental Validation 83

To conclude this section, we derive the design formula to set the parameters r

and l in B-Tor.

Specifically, given a privacy level k, we found the optimal values (minimizing

latency) of r and l to build a circuit in B-Tor. We can minimize either the set-up

latency or the forward latency (equal to the return latency). Regarding the set-up

latency, by replacing l = k−r
r in LsB and by setting

∂LsB
∂r = 0, we obtain the optimal

value of r, say rso ≃ ⌈1
4

√
16k + 9− 3⌉.

Then, given a privacy level k, we can set r = rso and l = lso = ⌈ k−r
s
o

rso
⌉.

Similarly, to minimize the latency of the forward phase and return phase, we

obtain r
f
o = ⌈

√
k⌉ and l

f
o = ⌈

√
k − 1⌉.

Observe that, for increasing k, rso approaches r
f
o , therefore approximately, the

value r = ⌈
√
k⌉ minimizes both the set-up latency and the communication latency.

Then, we move from the set-up latency of L-Tor, which increases quadratically with

the number of RPs, to the latency of B-Tor, which increases linearly with the num-

ber of RPs. Moreover, we move from the communication latency of L-Tor, which

increases linearly with the number of RPs, to the latency of B-Tor, which increases

according to the square root of the number of RPs. Thus, in any case, we obtain the

reduction of a magnitude order.

4.9 Experimental Validation

In this section, we provide a performance evaluation of L-Tor and B-Tor and com-

pare them with the standard Tor protocol when the hidden services mechanism is

enabled. The experiments have been conducted through ns-3 [122], a discrete-event

network simulator for Internet systems. Since we are interested in maintaining all

the Tor features, we base our implementation on nstor [268], a Tor module for ns-3

publicly available on GitHub. As stated in [268], this code is modeled along the lines

of the original Tor software, which is an additional guarantee of the accuracy of our

results.

4.9.1 Experimental Setup

According to the Tor design [258], Tor relays use a token bucket approach to enforce

a long-term average rate of incoming bytes. Therefore, in our simulations, we need to

set a realistic average bandwidth value for each relay. Specifically, we configure the

relays of the Tor network so that they offer an average bandwidth of 526.097 KB/s

per Tor client. This value derives from [111], in which the authors experimented, on

the real Tor network, an average bandwidth of 404.69 KB/s per Tor client. However,

the paper refers to the value of bandwidth in 2020, and in the last two years, this

84 4 Providing Tor with recipient anonymity against a global adversary

value has grown. Then, by the official Tor metrics [226], we found that the total

bandwidth value has grown by 30% from 2020 to 2022. Then, we set the relays

so that the average bandwidth per client can be considered equal to 404.69 · 1.3 =

526.097 KB/s.

Once the bandwidth is set, we have to set other network parameters, namely

the link delay of the network. To do this, we again refer to the official Tor metrics.

Specifically, we consider the average time to download a file in the real Tor network

and set the delay of the links so that the same time is obtained in our simulations.

This value depends on two factors: the size of the file and the performance of the

relays. Regarding the first factor, the Tor metrics report the download time for three

sizes: 50KiB, 1MiB, and 5MiB. Regarding the second factor, several clusters of relays

(with different throughputs) are reported in the Tor metrics. We consider the cluster

op-us6, representing relays offering an intermediate throughput with respect to the

other clusters.

Then, starting from the cluster op-us6 and a file size of 50KiB, we set the average

delay of the links in the network, so that the total download time in our simulations

is the same as reported in the Tor metrics for 50KiB. This leads to an average link

delay of 110 ms. To confirm the validity of our result, we set this average delay in our

simulation environment and measure the download times of the files of sizes 1MiB

and 5Mib. The times obtained are very close to those reported in Tor metrics (with

an error bounded by 10%). We conclude that the above configuration of the network

allows us to obtain a realistic representation of the Tor network when users rely on

the hidden services mechanism.

In principle, the same network configuration (i.e., the same values of bandwidth

of the relays and delay of the links) should be adopted to simulate L-Tor and B-Tor.

However, to be fair, we have to consider a negative effect on the bandwidth in the

adoption of L-Tor and B-Tor. Indeed, the circuits of these two protocols involve a

greater number of relays than the standard Tor. This means that the average band-

width that each relay can offer to each client, in the case of L-Tor or B-Tor, is less

than the value of 526.097 KB/s considered for Tor. Then, we found a scaling factor to

set the proper average bandwidth offered by the relays per client. This scaling factor

is obtained as follows. We denote by n the total number of relays of the Tor network

and by c the (average) total number of simultaneously active clients forming a cir-

cuit. We recall that a standard Tor circuit (with hidden services) involves 6 relays.

Then, if the c clients ask for a standard circuit, each relay, on average, will serve 6c
n

circuits. On the other hand, by denoting by k the number of relays involved in L-Tor

or B-Tor, each relay will serve, on average, kc
n circuits. Therefore, when considering

4.9 Experimental Validation 85

the network conditions of B-Tor and L-Tor, we divide the bandwidth of 526.097

KB/s by a factor k
6 .

However, this factor reflects the condition in which all the standard Tor circuits

are replaced by B-Tor or L-Tor circuits. Actually, this is a very unlikely worst case.

Indeed, we can assume that only a portion of Tor users are interested in obtaining the

high privacy protection of B-Tor and L-Tor, whereas the rest of the clients use the

standard Tor. Therefore, in the analysis we perform, we consider different network

configurations in which standard Tor circuits and B-Tor\L-Tor circuits coexist. In

particular, we consider 3 network configurations in which the B-Tor\L-Tor circuits

are: the 100% (worst case), the 75%, and the 50% of the total circuits. In favor of

the significance of the experimental results, we did not consider lower percentages,

which would be advantageous for our B-Tor\L-Tor. The 100% configuration corre-

sponds to dividing by a factor of k
6 . For the other configurations, we proportionally

scale this factor as follows:

x =
k
6
· c[kα + 6(1−α)]

kc

where α ∈ [0,1] represents the fraction of B-Tor\L-Tor circuits with respect to

the total number of circuits and x represents the resulting scaling factor. Indeed, the

denominator kc represents the total number of relays involved in the case of 100%

B-Tor\L-Tor, while the numerator c[kα + 6(1 − α)] represents the total number of

relays involved in case the network includes the fraction α of B-Tor\L-Tor circuits.

Therefore, we obtain

x = α · k
6

+ (1−α)

According to the experimental settings, for α we consider only the values 0.50,

0.75, and 1.

However, the so-obtained value for x is not the final one. Indeed, according to the

Tor metrics, only 1
3 of the available bandwidth of the network is currently used by the

clients (https://metrics.torproject.org/bandwidth.html). Therefore, this un-

used portion of bandwidth would be employed by B-Tor\L-Tor without resulting

in relay bandwidth reduction. Thus, the final bandwidth we set for the simulation

of B-Tor \L-Tor will result equal to 3·526.097
x KB/s.

4.9.2 Results

We simulated both B-Tor and L-Tor considering two topologies having k = 30 and

k = 56, respectively. Specifically, for B-Tor, we set r = 5 and l = 5, in order to obtain

k = 30, and we set r = 7 and l = 7, in order to obtain k = 56. Indeed, according to

the design formula obtained in Section 4.8, to minimize the latency of the forward

86 4 Providing Tor with recipient anonymity against a global adversary

and return phase, r and l should be of the magnitude of
√
k. As explained in Section

4.9.1, we consider 3 network configurations in which the B-Tor\L-Tor circuits are:

the 100% , the 75%, and the 50% of the total circuits. Therefore, we set the band-

width for each relay accordingly. Once the parameters for both protocols are fixed,

we measure the time needed to download files of different sizes (i.e., 50KiB, 320KiB,

500KiB, 1MiB, 3MiB, and 5MiB) over the network. The results of our simulations

are reported in Figures 4.7, 4.8, and 4.9.

0
10
20
30
40
50
60
70
80
90

100

1000 2000 3000 4000 5000

T
im

e
to

d
ow

nl
oa

d
a

fi
le

[s
]

File size [KiB]

L-Tor
B-Tor

Tor

(a) k = 30.

0
20
40
60
80

100
120
140
160
180

1000 2000 3000 4000 5000

T
im

e
to

d
ow

nl
oa

d
a

fi
le

[s
]

File size [KiB]

L-Tor
B-Tor

Tor

(b) k = 56.

Fig. 4.7: Time to download a file (s) in Tor, B-Tor, and L-Tor when 100% of the total

circuits are B-Tor (or L-Tor) circuits.

0
10
20
30
40
50
60
70
80
90

100

1000 2000 3000 4000 5000

T
im

e
to

d
ow

nl
oa

d
a

fi
le

[s
]

File size [KiB]

L-Tor
B-Tor

Tor

(a) k = 30.

0
20
40
60
80

100
120
140
160
180

1000 2000 3000 4000 5000

T
im

e
to

d
ow

nl
oa

d
a

fi
le

[s
]

File size [KiB]

L-Tor
B-Tor

Tor

(b) k = 56.

Fig. 4.8: Time to download a file (s) in Tor, B-Tor, and L-Tor when 75% of the total

circuits are B-Tor (or L-Tor) circuits.

If we compare B-Tor to Tor (table in Figure 4.12) we can see that the latency re-

quired by B-Tor to download a file is higher than Tor, under the same file size. How-

4.9 Experimental Validation 87

0
10
20
30
40
50
60
70
80
90

100

1000 2000 3000 4000 5000
T

im
e

to
d

ow
nl

oa
d

a
fi

le
[s

]

File size [KiB]

L-Tor
B-Tor

Tor

(a) k = 30.

0
20
40
60
80

100
120
140
160
180

1000 2000 3000 4000 5000

T
im

e
to

d
ow

nl
oa

d
a

fi
le

[s
]

File size [KiB]

L-Tor
B-Tor

Tor

(b) k = 56.

Fig. 4.9: Time to download a file (s) in Tor, B-Tor, and L-Tor when 50% of the total

circuits are B-Tor (or L-Tor) circuits.

ever, the smaller the file to download, the lower the price to pay. Indeed, considering

the latency to download 320KiB, Tor requires 6.02s, while B-Tor (considering a net-

work in which 100% of the circuits are B-Tor circuits) requires 7.38s, when k = 30,

and 9.55s, when k = 56. Hence, moving from Tor to B-Tor to download 320KiB,

leads to an absolute increase of at most 3.53s. Conversely, if we consider the latency

to download 5MiB, Tor requires 22.05s, while B-Tor (considering the same percent-

age of circuits as before) requires 43.10s, when k = 30, and 65.34s, when k = 56.

Therefore, the price to pay when moving from Tor to B-Tor to download 5MiB is

more consistent, since the absolute increase in terms of latency is at most 43.29s.

Clearly, the benefits in terms of anonymity provided by B-Tor, with respect to

Tor, come at a price in terms of performance. However, if we consider the time re-

quired to download a web page (which corresponds to downloading a file of 320KiB

[142]) this price appears to be acceptable.

As expected, B-Tor always outperforms L-Tor, under the same network con-

ditions and the same k. The difference is most appreciable when considering the

latency values for downloading 5MiB. Indeed, considering the scenario in Figure

4.7a, B-Tor requires 43.1s, while L-Tor requires 94.39s, with an increase by a fac-

tor of 2.19. Similarly, considering the scenario in Figure 4.7b, B-Tor requires 65.34s,

while L-Tor requires 160.57s, with an increase by a factor of 2.46.

Moreover, B-Tor is strongly advantageous when considering a higher k value.

Indeed, considering for instance the scenario in which the B-Tor\L-Tor circuits are

the 100% of the total circuits, when k = 30 (Figure 4.7a), B-Tor leads to a time to

transfer a file lower than L-Tor of at least 4.6s. On the contrary, under the same

88 4 Providing Tor with recipient anonymity against a global adversary

percentage of B-Tor\L-Tor circuits, when k = 56 (Figure 4.7b), B-Tor leads to a time

to download a file lower than L-Tor of at least 9.7s.

0

100

200

300

400

500

600

700

800

10 15 20 25 30 35 40 45 50 55 60T
im

e
to

co
m

p
le

te
th

e
se

t-
u

p
p

ha
se

[s
]

k

L-Tor
B-Tor

Fig. 4.10: Time to complete the set-up phase (s) in B-Tor and L-Tor varying k.

0

10

20

30

40

50

60

70

1000 2000 3000 4000 5000

T
im

e
to

d
ow

nl
oa

d
a

fi
le

[s
]

File size [KiB]

100%
75%
50%

Fig. 4.11: Time to download a file (s) in B-Tor when k = 56.

These results can be easily explained by considering the number of hops through

which the request and the related response travel. Indeed, for k = 30, in L-Tor, the

number of hops crossed by request and response, is at most k+6 = 36, while in B-Tor

the number of hops, is at most r+l+6 = 16. Instead, for k = 56 in L-Tor the number of

hops, is at most k+6 = 62, while in B-Tor, the number of hops is at most r+l+6 = 20.

This clearly leads to an advantage of B-Tor over L-Tor in terms of latency, under the

same anonymity set. This result applies also to the set-up phase as reported in Figure

4.10. Therein, we show that, as k increases, in L-Tor the time to perform the set-up

phase increases faster than in B-Tor. In particular, the time to perform the set-up

4.10 Related Work 89

Protocol 320KiB 5MiB

Tor (six-hop) 6.02s 22.05s

L-Tor (k = 30) 12.02s 94.39s

B-Tor (k = 30) 7.38s 43.1s

L-Tor (k = 56) 19.41s 160.57s

B-Tor (k = 56) 9.55s 65.34s

Fig. 4.12: End-to-End Latency comparison among Tor, L-Tor, and B-Tor. For the last

two, we consider 100% of circuits in the network.

phase increases linearly with k in B-Tor, while it increases quadratically with k in

L-Tor, thus confirming the considerations made in Section 4.8.

To complete our reasoning, we compare the time to download a file in B-Tor,

considering k = 56, when the number of B-Tor circuits in the network represents

the 100%, 75%, and the 50% of the total circuits. The comparison is reported in

Figure 4.11. The picture shows that for file sizes smaller than 1MiB the three plots

are nearly overlapping. Indeed, the time required to download a file of 1MiB when

the percentage is 50% is 16.69s, while the time required to download the same file

when the percentage is 100% is 18.23s. Thus, the increase of the number of B-Tor

circuits in the network impacts the download of relatively small files of at most

1.54s. Conversely, for bigger file dimensions (greater than 1MiB) the difference in the

measured latency at the three percentages becomes more pronounced. For instance,

the time required to download a file of 5MiB when the percentage is 50% is 52.53s,

while the time required to download the same file when the percentage is 100% is

65.34s, with an increase of 12.81s.

4.10 Related Work

Our work is related to the domain of anonymous routing, in which a wide literature

is available, which witnesses the strong attention of researchers towards this topic.

Specifically, our proposal refers to the Tor protocol. Tor [258] is the de-facto standard

implementation of the Onion protocol, originally proposed in [108].

A significant part of the literature focused on the study of Tor security, high-

lighting many vulnerabilities[7]. Indeed, the Tor overlay network does not provide

anonymous guarantees in the severe threat model of a global passive adversary [209],

which can observe the entire network traffic. In addition, even though we relax the

adversary’s power, many attacks are still possible [150, 239, 91].

90 4 Providing Tor with recipient anonymity against a global adversary

The class of traffic analysis attacks [17, 88, 193, 190], in which the adversary an-

alyzes the traffic to find correlations, is the most famous class of attacks. This class

includes both temporal attacks [167, 259, 107], in which the adversary observes the

timing of messages arriving and leaving from nodes to find correlations, and traffic

confirmation attacks [231], in which the adversary controls and observes two pos-

sible end-relays of a Tor circuit to conclude that they actually belong to the same

circuit.

Tor is not resistant also to watermarking attacks [136], in which the adversary

manipulates the traffic stream by introducing an identifiable pattern. Another cat-

egory of attacks involves the selection of the relays used to build the Tor circuit.

The standard selection is based on network and CPU performance reported by the

nodes themselves. This enables self-promotion attacks [247]. Some recent proposals

[146, 54, 307] overcome this problem.

Particular attention has been also devoted to Tor and Onion performance [19,

213, 157]. In [51], accurate measurement techniques are proposed and applied

to de-anonymization attacks. Some studies are devoted to investigating how to

deanonymize Tor by using external information [143].

This work focuses on the weakness of Tor against global adversaries. In partic-

ular, we extend Tor to obtain recipient anonymity, which is enough to have rela-

tionship anonymity [219], in a threat model considering global eavesdroppers, pos-

sibly compromising the secret keys of some nodes of the network. The recipient is

hidden among a sufficiently large anonymity set whose size can be a priori config-

ured. Therefore, we refer to the notion of communication k-anonymity [274]. More-

over, cover traffic is also enabled. It is well known in the literature [71] that any

solution achieving such a goal requires the introduction of cover traffic, i.e., dummy

traffic exchanged in the network with the aim to hide the real traffic.

To understand how to achieve sender anonymity in Tor, the reader can refer to

Chapter 3 and [43].

Extending the perspective to the general landscape of anonymous communica-

tion networks, resistance to global adversaries has been obtained in the past by fol-

lowing three approaches: buses [124, 21, 296], mixnets [98, 61, 158, 279, 165, 61, 243],

whose original definition has been given in [59], and DC-Nets [245], based on secure

multi-party cryptographic protocols.

5

An anonymity protocol for uplink-intensive

applications

Sender anonymity in network communication is an important problem, widely addressed

in the literature. Mixnets, combined with onion routing, represent certainly the most con-

crete and effective approach to achieving the above goal. In general, the drawback of these

approaches is that anonymity has a price in terms of traffic overhead and latency. On

the Internet, to achieve scalability and not require relevant infrastructure and network-

protocol changes, only P2P overlay protocols can be adopted. Among these, the most repre-

sentative proposal is certainly Tarzan, which is designed to obtain strong anonymity still

preserving low-latency applications. In this chapter, we propose C-Tarzan, an anonymous

overlay routing protocol extending Tarzan. Through experimental analysis, we show that

C-Tarzan outperforms Tarzan in the case of uplink-intensive applications.

5.1 Introduction

The most known and used anonymous protocol is Tor [258]. However, unless to im-

plement non-trivial solutions as those discussed in Chapters 3 and 4, anonymity is

easily broken under even weak threat models [150]. A challenging goal is to guaran-

tee robust sender anonymity because it is enough to achieve relationship anonymity

[219]. By robust, we mean that both passive sniffers and malicious participants can-

not distinguish whether a node initiates a message or simply relays it.

The most effective approaches existing in the literature achieving the above goal

are based on the concept of mixnet [59] including cover traffic. Mixnet protocols

rely on intermediate servers (called mix-nodes) that mix the messages coming from

different sources to hide the relationship between the incoming messages and the

outcoming messages from the mix-nodes. When cover traffic is included in mixnets,

serious problems of traffic overhead may arise. While a wide literature regarding

mixnets exists, a few proposals mixnet-based oriented to a concrete Internet (low-

latency) implementation of the notion of mixnet, including cover traffic, are avail-

92 5 An anonymity protocol for uplink-intensive applications

able. Among these, if we refer to P2P approaches (thus not requiring infrastructure

changes), the most meaningful proposal is certainly Tarzan [98].

Despite its age, Tarzan is the only effective proposed anonymous routing pro-

tocol guaranteeing low latency even in large-scale Internet scenarios. Indeed, the

protocol allows a client to anonymously contact a server through a tunnel whose

length is independent of the number of nodes participating in the peer-to-peer net-

work. As a matter of fact, Tarzan implements a peer-to-peer overlay network at the

IP layer, in which peers collaborate with each other to implement anonymous tun-

nels through which a client may reach a proxy node (called PNAT) from which the

server is reached. Another advantage of Tarzan with respect to recent state-of-the-art

approaches is that, unlike the emerging mixnets that adopt centralized and explicit

shuffling nodes ([223]), the peer-to-peer approach makes the solution more robust

against possible attacks on the nodes of the route (or their collusion). Indeed, all the

nodes of the network are potentially sender or relay nodes and then there are no

explicit targets for the attacker.

The aim of this chapter is to understand whether the change of type of Internet

traffic due to various reasons (emerging applications for IoT, M2M, cloud, etc.), for

which uplink traffic is increasingly increasing [206, 289, 242, 24], might allow us to

find some improvements to the Tarzan approach to make it more suitable to the new

scenario.

The study conducted in this chapter leads to the definition of a new P2P overlay

anonymous protocol, called C(yclic)-Tarzan, which outperforms Tarzan in the case

of uplink-intensive applications. The core idea is that the topology of the overlay

network allows us to set in the network just unidirectional cover traffic instead of

the bidirectional traffic required in Tarzan.

Our study is based on the well-known trilemma, called the anonymity trilemma

[74], which states the existence of a trade-off between three metrics: the anonymity

set size, the latency, and the cover traffic level. Specifically, we show that for uplink-

intensive applications, by fixing the same latency and the same cover traffic volume,

C-Tarzan offers a greater anonymity set size than Tarzan.

5.2 Background: The Tarzan Protocol

In this section, we provide the technical background about the Tarzan Protocol [98].

We focus just on the main aspects useful to understand the approach we propose in

this chapter.

5.2 Background: The Tarzan Protocol 93

Tarzan is a peer-to-peer anonymous IP network overlay. It offers a degree of

anonymity against both a number of malicious nodes and a global adversary able

to observe the entire traffic exchanged in the network.

Each node, in order to communicate anonymously with a destination, builds a

tunnel composed of a sequence of nodes in which the last node communicates with

a special node, called PNAT, which acts as a proxy towards the destination.

Each intermediate node of the tunnel acts as a relay by forwarding the messages

coming from the previous node. Anyway, since it does not know its position in the

tunnel, it is not able to identify the originator of the traffic.

In Tarzan, the construction of the tunnel (i.e., the choice of the intermediates

nodes) is not left entirely free to the initiator, which has to satisfy some constraints.

Specifically, each node is associated with a group of nodes called mimics. To build

the tunnel, the initiator a chooses as the first relay one of its mimics, say bi . Then,

bi communicates to the initiator the set of its mimics, and a will choose the second

relay of the tunnel among the nodes of this set. This procedure is iterated until the

tunnel reaches a certain length.

To send messages through this tunnel, the initiator needs to exchange a symmet-

ric key with each node of the tunnel. This procedure is similar to the construction of

a virtual circuit in the Tor Protocol [258]. To do this, the initiator first exchanges a

symmetric key with the first relay of the tunnel, then it exchanges a symmetric key

with the second relay through the first relay, then it exchanges a symmetric key with

the third relay through the first two relays of the tunnel built so far, and so on. To

exchange a symmetric key with a relay, the initiator encrypts it by using the public

key of such a relay. In such a way, each node of the tunnel cannot tell which it is

exchanging the key with.

Once exchanged these keys, the messages can be sent through the tunnel en-

crypted in a layered fashion. This means that the initiator first encrypts the message

with the key of the last relay of the tunnel, then encrypts the result with the key

of the second-last relay, and so on. A relay receiving a message removes its layer of

encryption and forwards the message to the next relay.

A key role in the Tarzan Protocol is played by the selection of mimics. Tarzan

relies on a gossip protocol so that each node can discover the other peers of the

networks. Among these peers, the node has to select k mimics. Observe that, since

each node selects k mimics, we can expect, on average, that it is selected as a mimic

from other k nodes. Therefore, the average number of mimics for each node is 2k.

A node establishes, with each of its mimics, a bidirectional cover traffic flow into

which real data can be inserted, indistinguishable, from dummy traffic. To do this, a

94 5 An anonymity protocol for uplink-intensive applications

symmetric hop-by-hop key is exchanged when a node connects to a new mimic and

all the traffic exchanged between these two nodes will be encrypted with such a key.

The bidirectional cover traffic guarantees the anonymity of the senders against

a global adversary and traffic analysis attacks. Moreover, the bidirectional flow of

traffic allows us to use, for the response, the same tunnel utilized to forward the

request. In this case, each node crossed by the response adds a layer of encryption to

each message by using a symmetric key shared with the initiator. When the initiator

receives the response, it removes all the layers of the encryption.

In Tarzan, each node maintains a three-level hierarchy dynamic hash table (DHT)

in which the nodes are inserted in a given position according to their IP addresses.

This table offers a lookup function that, given a string as input, returns as output

an IP address of a node of the network. Observe that the input can be any arbitrary

string.

To select k mimics, each node a invokes the function lookupi(a.ipaddr) for 1 < i ≤

k + 1 where a.ipaddr represents the IP address of a.

The DHT offers two advantages. First, since the DHT is shared by all the nodes,

mimic selection is publicly verifiable and then this prevents an adversary node from

selecting more than k mimics. The second advantage is that the mimics for a node

are randomly selected in different IP domains so that if an adversary controls an

entire domain by generating a huge number of malicious nodes in that domain, it

does not increase the probability that a malicious node of such domain is selected as

a mimic.

To conclude this section, we discuss the anonymity degree achieved in Tarzan

against a malicious node in the tunnel. This degree can be measured in terms of

anonymity set that is the set of potential initiators of the traffic. The anonymity set

size, besides depending on the number of mimics (i.e., degree) of the node, increases

exponentially with the length of the tunnel.

5.3 Problem Formulation and Basic Approach

In recent years, we observed an increase in uplink traffic demand [206]. A lot

of uplink-intensive applications emerged in different fields such as cloud-enabled

ecosystem [256], IoT networks [164], sensor and actuator networks [77], and so on.

In this chapter, we address the problem of guaranteeing a measurable degree of

anonymity in uplink-intensive applications. A solution could be to apply the Tarzan

protocol, discussed in the previous section, in which cover traffic is adopted to offer

anonymity guarantees against a global adversary. On the other hand, the cover traffic

represents overhead which results in a waste of bandwidth and energy consumption.

5.3 Problem Formulation and Basic Approach 95

In Tarzan, there are three main metrics to consider [74]: latency, the amount of

cover traffic, and the size of the anonymity set. Often, the latency is a project con-

straint as well as the anonymity degree. Therefore, finding a solution that, under the

same cover traffic level (that cannot be increased for the above reasons) and a fixed

latency, offers a better anonymity degree than Tarzan represents an advancement of

the state of the art.

Roughly speaking, we consider, as a measure of the cover traffic, the degree of the

nodes. Indeed, the more links in the network the more cover traffic has to be gener-

ated. Moreover, Tarzan requires bidirectional cover traffic in each link, otherwise, a

significant reduction of the anonymity set arises [98].

Therefore, a challenge could be to eliminate the bidirectionality of cover traf-

fic while preserving the Tarzan-like approach. This is basically the purpose of our

proposal.

In principle, unidirectional traffic could still be enabled in the Tarzan protocol

just by rearranging node mimics in such a way that they form a cycle. Once mimics

are so organized, we can build a tunnel as in Tarzan, but requiring that two adjacent

nodes in the tunnel belong to a cycle. This way, the response can be routed by moving

back, at each hop between two nodes, by traveling the entire cycle involving these

nodes. Thus, no bidirectional traffic is needed.

This idea is sketched in Figure 5.1, in which the red lines represent the forward

path and the green lines represent the cycles traveled by the response.

Fig. 5.1: Forward path (red arrow) and return path (green arrow)

However, there might be a price in terms of latency to pay when applying this

cyclic approach, since, in general, the response would go through a longer path than

the forward path. Instead, in Tarzan, forward and return paths are the same. There-

fore, a solution based on the above idea is not trivially applicable.

The first immediate consideration is that it is convenient to minimize the size of

cycles. Being Tarzan bidirectional links equivalent to 2-nodes cycles, the minimum

dimension for non-trivial cycles is the case of 3-nodes cycles. On the other hand, it

is intuitive to understand that no advantage can derive from having bigger cycles.

A much less clear point is to understand whether we have to pay a price also in

terms of anonymity set.

96 5 An anonymity protocol for uplink-intensive applications

This question derives from the following qualitative analysis.

(a) Tarzan topology with in-

degree=out-degree=3

(b) Cyclic topology with in-

degree=out-degree=2

(c) Cyclic topology with in-

degree=out-degree=3

Fig. 5.2: Uncertainty at two hops

Fig. 5.3: Extension of figure 5.2a

Fig. 5.4: Extension of figure 5.2b

We start by considering the uncertainty at two hops in the standard Tarzan topol-

ogy and a two-hop equivalent topology in which cycles are enabled. This is repre-

sented in Figure 5.2. Specifically, in Figure 5.2a, we represent the standard Tarzan

topology in which each node has three mimics. Suppose that the grey node receives

a message from the red node. In this case, the candidate senders, at a maximum

distance of two hops, are the red node and the two green nodes.

5.3 Problem Formulation and Basic Approach 97

Fig. 5.5: Extension of figure 5.2c

The same uncertainty is obtained in the cyclic topology represented in Figure

5.2b in which, again, the candidate senders, at a maximum distance of two hops, are

the red node and the two green nodes.

Regarding the cover traffic, we observe that in Figure 5.2a, we have three bidi-

rectional links while in Figure 5.2b we have four unidirectional links, thus saving

two unidirectional links. Therefore, it appears that keeping the same uncertainty,

we have a significant reduction in the cover traffic.

Unfortunately, we can realize that the growth of the size of the anonymity set for

the cyclic approach is slightly slower than that of standard Tarzan. We can under-

stand this just by considering the case of tunnel length equal to four. To see this, we

extend the topologies of Figures 5.2a and 5.2b, in Figures 5.3 and 5.4 respectively, to

include tunnels with a maximum length of four hops.

In this case, the anonymity set of Figure 5.3 contains 15 nodes, while the anonymity

set of Figure 5.4 contains 11 nodes.

Moreover, we have to take into account also the price in terms of latency required

in the cyclic approach. However, the advantage in terms of cover traffic is maintained

with respect to Tarzan.

Therefore, it is interesting to understand what happens if we compare the stan-

dard Tarzan with the cyclic version by considering two topologies that determine

the same cover traffic.

The effect at two hops is highlighted in Figure 5.2c in which there are 6 unidi-

rectional links equivalent to three bidirectional links of Tarzan. Therein, we can see

that the candidate senders are the red node and the three green nodes. Therefore,

the uncertainty at two hops is increased.

The extension to four hops of Figure 5.2c is represented in Figure 5.5. In this

case, the anonymity set contains 30 nodes. Therefore, under the same cover traffic,

98 5 An anonymity protocol for uplink-intensive applications

the cyclic approach offers a greater anonymity set size. However, the price in terms

of latency still remains.

Clearly, in Tarzan, the latency depends only on the tunnel length. In the cyclic

approach, it mostly depends on the tunnel length, and in a small measure also de-

pends on the node degree (as explained in Section 5.5). Moreover, the disadvantage

of the cyclic version depends also on the balance between downlink and uplink traf-

fic (the more the weight of the downlink, the more the disadvantage).

In fact, the price we pay in terms of latency is related to the downlink traffic for

the return path, which is in general longer than the forward path.

Thus, the problem we want to study is the following: In the cyclic approach, can

we reduce the tunnel length to reduce latency and still be able to have an anonymity

set size greater than Tarzan?

If in general, the answer to this question could be negative, it is interesting to un-

derstand what happens when there is an unbalance between the quantity of uplink

and downlink traffic.

As we will describe in the sequel of the chapter, the result we achieve is that for

uplink-intensive networks, the above approach is definitely advantageous.

5.4 C-Tarzan

In this section, we propose a new protocol, called Circular Tarzan (C-Tarzan), based

on the cyclic approach introduced in the previous section.

The idea is to extend the standard Tarzan protocol described in Section 5.2 by

moving from bidirectional links to unidirectional links. This is possible if the re-

sponse is routed through cycles to which mimics belong. As discussed above, we

consider cycles of three nodes to minimize the price in terms of latency.

To build the cycles among mimics nodes, we design a new mimic selection algo-

rithm that differs from that of Tarzan.

We assume that the same Tarzan DHT table (with the lookup function) is used in

C-Tarzan for the mimic selection.

Each node a chooses k′ mimics through the lookup function (see Section 5.2)

as in Tarzan. Specifically, a selects bi = lookupi(a.ipaddr) for 1 < i ≤ k′ + 1. Each

chosen mimic bi can verify the correctness of the selection. Anyway, differently from

Tarzan, a unidirectional link directed from a to bi is established. At this point, each

bi will choose a mimic ci = lookupi(a.ipaddr ||bi .ipaddr) and a unidirectional link

directed from bi to ci is established. Observe that since the function lookup accepts

any arbitrary string as input and returns an IP address of a node of the network, it is

guaranteed that the node ci always exists in the network. ci can verify the correctness

5.4 C-Tarzan 99

of the mimic selection started by a, involving the node bi . Finally, to close the cycle,

a unidirectional link is established from ci to a.

It is easy to realize that each node has on average 6k′ mimics. Indeed, each node

A selects directly k′ mimics B1, . . .Bk′ to build k′ cycles. In each cycle involving the

node Bi , there will be a node Ci that establishes a link with A to close the cycle.

Then, A will have further k′ mimics C1, . . .Ck′ , resulting in a total of 2k′ mimics. At

this point, on average, A is selected directly by k′ nodes to build further k′ cycles. This

leads to further 2k′ mimics for A. Finally, on average, A is selected indirectly by k′

nodes that in turn are selected directly by other k′ nodes to build cycles. As before,

this results in further 2k′ mimics for A. Therefore, since unidirectional links are

established between pairs of mimics, each node has, on average, 6k′ unidirectional

links (3k′ outgoing and 3k′ ingoing).

We recall that, in Tarzan, if a node selects k mimics, it has, on average, 2k mimics

and then 2k bidirectional links corresponding to 4k unidirectional links. Therefore,

by considering the number of links as a measure of cover traffic, we have that, to

obtain the same level of cover traffic in Tarzan and C-Tarzan, we have to set k′ such

that 6 · k′ = 4 · k i.e., k′ = 2
3 · k.

At this point, we discuss how the messages are forwarded anonymously to the

destination and the latter can reply to the initiator.

As in Tarzan, we assume that a symmetric hop-by-hop key is exchanged prelim-

inarily between mimics.

To enable communication, we need to redefine the entire building process of the

tunnel. Specifically, the initiator a selects, as first relay, one of its outgoing mimics bi ,

i.e., a mimic bi such that a directed link from a to bi exists. Similarly to the standard

Tarzan protocol, a needs the set of the (outgoing) mimics of bi and to exchange a

symmetric key with bi . Anyway, since the link between a and bi is unidirectional, a

reply cannot be sent directly from bi to a, because it would be not covered by dummy

traffic.

Therefore, to enable the reply, we define the function C.next that can be invoked

by a node C. This function receives as input a node B and returns as output the node

A, such that there exist: (i) a direct link from B to C, (ii) a direct link from C to A, (iii)

a direct link from A to B. Observe that, the next function leverages the fact that each

node locally stores all the cycles it belongs to. Therefore, for a node C, given a node B

as input, it is straightforward to compute the next of the node C (i.e., A = C.next(B))

in the cycle BCAB.

Then, bi encrypts the response for a by using the hop-by-hop key exchanged with

a and forwards this message to ci = bi .next(a). This encrypted message is encrypted,

in turn, by bi with the hop-by-hop key exchanged with ci . At this point, ci decrypts

100 5 An anonymity protocol for uplink-intensive applications

the message, invokes the function next to retrieve a = ci .next(bi), encrypts the mes-

sage again with its hop-by-hop key exchanged with a, and forwards it to a. Observe

that, even though ci knows that some real traffic has to be forwarded to a from bi , ci

does not know the content of it, and then it has no more information than bi about

the fact that a is the actual initiator or just an intermediate node of the tunnel.

Once obtained the outgoing mimics of bi , a selects a new mimic among them, say

di , and needs to exchange a symmetric key and the set of outgoing mimics of di . Now,

two cases may occur. The first case is that di = ci i.e., a,bi ,di are in the same cycle

and di coincides with ci . In this case, the list of mimics of ci can be communicated

directly through the link between ci and a.

The second (complementary) case occurs when di has no common cycle with a.

In this case, the list of mimics has to be forwarded from di to ai through bi . To

enable the communication between di and bi , since no direct link exists from di to

bi , we apply the approach discussed above. Specifically, di forwards this list through

another node ei = di .next(bi).

(a) Second relay in the same cycle of

the initiator

(b) Second relay in a different cycle

from the initiator

Fig. 5.6: Second relay selection

These two cases are represented in Figures 5.6a and 5.6b, respectively. Therein,

we represent by a red arrow the forward communication between the initiator and

the second relay of the tunnel, and by a green dashed arrow the backward commu-

nication from the second relay to the initiator.

The building of the tunnel proceeds iteratively until the last node.

Once the tunnel is set, the initiator can communicate with the recipient through

this tunnel as in the standard Tarzan protocol.

Regarding the response by the recipient, the approach used to enable the ex-

change of information between a node of the tunnel and a previous node is applied.

Specifically, at each hop of the tunnel starting from the last node until the initiator,

if a direct link exists between a node and a previous node of the tunnel, then the re-

sponse is directly forwarded through this link, otherwise, the response is forwarded

through an intermediate node.

Some more detail will be discussed in Section 5.5.

5.5 Latency in Tarzan and C-Tarzan 101

5.5 Latency in Tarzan and C-Tarzan

In the previous sections, we mentioned that our solution introduces a price in terms

of latency, assuming the same cover traffic and the same tunnel length in Tarzan and

C-Tarzan. To give an answer to the question of Section 5.3, we have to quantify this

price.

To perform an analytic analysis, we use as a measure of this metric the number

of hops traveled by a message in the forward path and in the return path.

We introduce the following notation. We denote by τ the average delay of the

links of the network. We start by evaluating the latency for Tarzan. We denote by h

the tunnel length of Tarzan and by Lf and Lr the latency of the forward path and the

latency of the return path of Tarzan, respectively.

Since the same tunnel is used both for the request and the response, it is easy to

see that Lf = Lr = (h+ 2) · τ , where the term 2 derives from the fact that there is one

hop between the last node of the tunnel and the PNAT and one hop from the PNAT

and the destination.

Consider now C-Tarzan. We denote by h′ the tunnel length and by L′f and L′r the

latency of the forward path and the latency of the return path, respectively.

For the forward path, no difference with Tarzan exists and then L′f = (h′ + 2) · τ .

On the other hand, for the return path, it is not trivial to estimate the number of

hops in the return path, since it depends on the tunnel construction.

We can provide an approximation of the return latency representing an upper

bound of its actual value.

The two cases of Figures 5.6a and 5.6b have to be considered. In particular, con-

sider the selection of the first two relays of the tunnel. If the second relay is in the

same cycle as the initiator (case a), then the response goes directly from the second

relay ci to the initiator a and this means that two hops in the forward path corre-

spond to just one hop in the return path.

In case (b), the second relay di belongs to a different cycle and then the response

goes from di to the first relay bi , through an intermediate node ei (2 hops) and, then,

from bi to the initiator a, through another intermediate node ci (again, 2 hops).

In other words, for the first two hops of the forward phase, if case (a) occurs, then

the response requires one hop, otherwise (case (b)), the response requires four hops.

It remains to estimate the probability that cases (a) and (b) occur.

To do this, we denote by d = 3k′ the average number of outgoing mimics of a

node.

Obviously, since the mimics are selected uniformly at random, case (a) occurs

with probability 1
d , and case (b) occurs with probability d−1

d .

102 5 An anonymity protocol for uplink-intensive applications

So far, no approximation has been introduced.

If we assume that the third relay of the tunnel is selected in a different cycle

than the first relay (it happens with probability d−1
d), we can apply the reasoning

followed for the first two relays to the third and fourth relays. Therefore, to find

an approximation, we neglect the event that the relays in an odd position i of the

tunnel are selected in the same cycle of the relay in position i − 2 (it happens with

probability 1
d at each choice).

Under this hypothesis, we have that, for every two hops in the forward phase, if

case (a) occurs, then the response requires one hop, otherwise (case (b)), the response

requires four hops.

It is easy to realize that, if such a hypothesis is not satisfied, then the response

requires a lower number of hops and then, our approximation represents an upper

bound of the actual latency.

Therefore, for h′ even, the latency of the return path of C-Tarzan results: (h
′

2 · (
1
d ·

1 + d−1
d · 4) + 2) · τ = (h′ · (2− 3

2·d) + 2) · τ .

On the other hand, for h′ odd, the latency results: ((h′ − 1) · (2− 3
2·d) + 4) · τ .

By considering equally likely the events that h′ is odd and h′ is even, we conclude

that the return latency for C-Tarzan is: L′r = (h′ · (2− 3
2·d) + 3

4·d + 2) · τ .

Observe that L′r increases as d increases. This is due to the fact that, as d increases,

the probability that a mimic of the tunnel is selected in a different cycle increases.

Then, the response requires more hops, and the return latency increases.

5.6 Experiments

Through this section, we perform an experimental validation of C-Tarzan by high-

lighting the conditions under which it outperforms the standard Tarzan protocol.

5.6.1 Metrics and Experiment Setting

As already introduced, we consider three metrics: cover traffic, latency, and anonymity

set size.

Regarding the cover traffic, we use as a measure the number of ingoing and out-

going links of the nodes, by considering that every link concurs, on average, with the

same portion of cover traffic. As discussed in Section 5.4, to obtain the same cover

traffic in Tarzan and C-Tarzan, we have to set

k′ =
2
3
· k (5.1)

Regarding the latency, as seen in Section 5.5, to obtain the same total latency (for-

ward latency plus return latency) we need to set h′ such that Lf + Lr = L′f + L′r i.e.,

5.6 Experiments 103

h′ =
2h− 3

4·d
3− 3

2·d
. However, since we are interested in studying what happens when the bal-

ance between uplink and downlink traffic varies, we introduce two coefficients wf

and wr , such that wf + wr = 2, to associate with the forward latency and the return

latency, respectively. For example, wf = wr = 1 represents balanced traffic between

uplink and downlink, while wf = 2 (and wr = 0) represents only uplink traffic.

Therefore, the condition to satisfy is wf ·L′f +wr ·L′r = wf ·Lf +wr ·Lr , that leads to

h′ =
2 · h− 3

4·d ·wr

wf + 4·d−3
2·d ·wr

(5.2)

Now, we denote by AS(k,h) the size of the anonymity set of Tarzan obtained as a

function of k and h. Furthermore, we denote by AS ′(k′ ,h′) the size of the anonymity

set of C-Tarzan obtained as a function of k′ and h′ .

Thus, the question now is whether, by setting k′ and h′ as in equations 5.1 and

5.2, respectively, it holds that AS ′ is greater than AS. If this is the case, then our

approach introduces an advantage with respect to Tarzan.

Due to the complexity of retrieving the analytical formulas for AS and AS ′ , we

do this by simulation, leaving the analytical study as future work.

Furthermore, in order to obtain realistic results, we do not use directly the upper

bound provided by 5.2 (see Section 5.5), but we find experimentally the values of h

and h′ leading to the same latency for Tarzan and C-Tarzan, respectively (actually,

verifying the results obtained in Section 5.5).

To summarize, we find the values (h,k,h′ , k′) that satisfy the following system.

k′ = 2
3 · k

wf +wr = 2

wf ·L′f +wr ·L′r = wf ·Lf +wr ·Lr

AS ′ ≥ AS

(5.3)

In detail, the simulation has been performed in JAVA as follows. We considered

a network of 100,000 nodes. First, we set some values of wf (and, then, wr = 2−wf),

k′ , and h′ for C-Tarzan and, then, we generated a topology (the links are obtained

considering that each node selects directly k′ mimics to build cycles).

On this topology, we measured the average degree of each node counting both

the actual ingoing and the outgoing links (cover traffic), the actual number of hops

that a request and the corresponding response have to cross on a path of height h′ (a

measure of latency), and the size of the corresponding anonymity set.

We repeated the experiment with the same parameters for 100 rounds (by vary-

ing the topology) to obtain steady results.

104 5 An anonymity protocol for uplink-intensive applications

At this point, by the first equation of the system (5.3), we set k = 3
2 · k

′ . Then, by

using the value wf ·L′f +wr ·L′r obtained experimentally for C-Tarzan and by recalling

that Lf = Lr = (h + 2) · τ , by the second and third equations of the system (5.3), we

found the proper value of h =
wf ·L′f +wr ·L′r−4·τ

2·τ .

Then, we performed again 100 rounds of simulation with k,h to measure the

cover traffic, latency, and anonymity set of Tarzan.

We confirmed that the obtained values of cover traffic and latency are the same

as C-Tarzan (with an error of less than 1 % for both). Therefore, we obtain an exper-

imental validation of the fact that the first three equations of (5.3) hold. We discuss

the results regarding the anonymity set size in the next section.

5.6.2 Results

In this section, we compare Tarzan and C-Tarzan in terms of anonymity set size, by

setting the same cover traffic and same latency.

In the first analysis, we show as the anonymity set size of both protocols varies

as the cover traffic increases. We plot in the y-axis the ratio between the size of the

anonymity set of C-Tarzan AS ′ and the size of the anonymity set of Tarzan AS. In

the x-axis, we consider the degree d representing the number of outgoing (or in-

going) links in C-Tarzan (as defined in Section 5.5) that is equal to the number of

bidirectional links in Tarzan (to obtain the same cover traffic).

The results of this analysis are reported in Figures 5.7,5.8,5.9, for different values

of h′ and wf .

0.4

0.6

0.8

1

1.2

1.4

1.6

3 3.5 4 4.5 5 5.5 6

A
S’

/A
S

d

Threshold
wf=1.5
wf=1.6
wf=1.7
wf=1.8
wf=1.9

Fig. 5.7: Anonymity set ratio vs cover traffic d with h′=3

5.6 Experiments 105

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

3 3.5 4 4.5 5 5.5 6
A

S’
/A

S

d

Threshold
wf=1.5
wf=1.6
wf=1.7
wf=1.8
wf=1.9

Fig. 5.8: Anonymity set ratio vs cover traffic d with h′=4

0

0.5

1

1.5

2

2.5

3

3 3.5 4 4.5 5 5.5 6

A
S’

/A
S

d

Threshold
wf=1.5
wf=1.6
wf=1.7
wf=1.8
wf=1.9

Fig. 5.9: Anonymity set ratio vs cover traffic d with h′=5

We represent with a dashed black line the ratio equal to 1. When the plots exceed

this line, C-Tarzan outperforms Tarzan (in terms of anonymity set size).

We observe that our performance (for a fixed h′) decreases as d increases.

This happens because, as d increases, the latency of C-Tarzan increases, then the

tunnel length of Tarzan h (that offers the same latency of C-Tarzan) increases too.

Therefore, the anonymity set size of Tarzan increases.

Even though the anonymity set size of both the protocols has a polynomial

growth with d, the exponential growth of the anonymity set size of Tarzan with h

is dominant. Therefore, as d increases, the ratio between AS ′ and AS decreases.

Regarding wf , as it increases (by considering the same d), the performance of

C-Tarzan increases. This happens because an increasing weight wf represents pre-

106 5 An anonymity protocol for uplink-intensive applications

dominant uplink traffic that leads to lower total latency for C-Tarzan (since the re-

turn path is longer than the forward path). This implies that the tunnel length h of

Tarzan, which offers the same latency, decreases, and then AS decreases too.

As a final consideration, we observe that, until a certain level of cover traffic (cor-

responding to some d), it is advantageous to employ the C-Tarzan protocol, while

when this threshold is exceeded, Tarzan is more convenient. Moreover, in the con-

dition of increasing uplink traffic, this threshold also increases by making C-Tarzan

suitable within a higher range of cover traffic level.

Observe that lower values of d are desirable since they represent cover traffic in-

jected in the network. On the other hand, the reader might ask whether lower values

of d result in acceptable anonymity set size in absolute terms (in relative terms C-

Tarzan outperforms Tarzan). The response is affirmative, indeed as we discuss in the

sequel, the anonymity set increases exponentially with h and h′ . Then, with a small

increment of h′ , we are able to obtain a good anonymity set size still outperforming

Tarzan. Just an example, with d = 4 and h′ = 4, we obtain an anonymity set size of

about 100.

We conclude this section, by showing as the performances of C-Tarzan vary with

respect to Tarzan as h′ varies.

The plot in Figure 5.10 shows AS and AS ′ as h′ varies with two different values

of wf and d = 4.

As expected, AS ′ increases exponentially with h′ . Moreover, when h′ increases, h

increases too (to offer the same latency), and then also AS increases exponentially.

Observe that AS ′ with wf = 1.5 is essentially (modulo experimental error) the

same as AS ′ with wf = 1.9. Indeed, AS ′ does not depend on wf .

On the contrary, h depends on the total latency of Tarzan, which is equal to the

total latency of C-Tarzan that, in turn, depends on wf . Therefore, as wf increases, h

decreases and AS decreases too.

To conclude this section, in Figures 5.11, 5.12, and 5.13, we show the ratio be-

tween the anonymity set of Tarzan and C-Tarzan as h′ varies for different values of

wf and d.

According to the previous analysis, C-Tarzan outperforms Tarzan for low d and

for increasing wf . Regarding h′ , we observe a fluctuating behavior in which there are

some ranges of h in which there is an increasing trend of the ratio and other ranges

in which there is an opposite trend. This is due to a compensation effect between the

growth of the anonymity set size and the latency. In particular, for C-Tarzan, when h′

increases, AS ′ increases, and the total latency increases too. Anyway, in some ranges,

the increment of latency is limited. This leads to an increment of the tunnel length of

5.6 Experiments 107

0

100

200

300

400

500

600

3 3.5 4 4.5 5
A

no
ny

m
it

y
Se

t

h’

Tarzan wf=1.9
Tarzan wf=1.5

C-Tarzan wf=1.5
C-Tarzan wf=1.9

Fig. 5.10: Anonymity set vs h′ with d=4

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3 3.5 4 4.5 5

A
S’

/A
S

h’

Threshold
wf=1.5
wf=1.6
wf=1.7
wf=1.8
wf=1.9

Fig. 5.11: Anonymity set ratio vs tunnel length h′ with d=3

Tarzan h that is not sufficient to obtain an anonymity set size AS which compensates

for the growth of AS ′ .

On the contrary, once h′ reaches a peak value, the effect of the growth of the

latency assumes a more relevant role by leading to values of h corresponding to

anonymity set size AS able to compensate for the growth of AS ′ .

As a final remark, observe that, in this analysis, we show the advantage of our ap-

proach just in terms of anonymity set size (under the same latency and cover traffic

level). Clearly, this advantage can be translated into an advantage in terms of latency

or cover traffic, by fixing the same anonymity set size for both protocols.

108 5 An anonymity protocol for uplink-intensive applications

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

3 3.5 4 4.5 5

A
S’

/A
S

h’

Threshold
wf=1.5
wf=1.6
wf=1.7
wf=1.8
wf=1.9

Fig. 5.12: Anonymity set ratio vs tunnel length h′ with d=4

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

3 3.5 4 4.5 5

A
S’

/A
S

h’

Threshold
wf=1.5
wf=1.6
wf=1.7
wf=1.8
wf=1.9

Fig. 5.13: Anonymity set ratio vs tunnel length h′ with d=5

5.7 Related Work

Anonymous Communication Networks (ACN) [284, 245] are networks in which

users are provided with anonymity services protecting their privacy. An ambitious

goal to achieve is to offer anonymity guarantees against passive eavesdroppers (in-

cluding a global adversary) and malicious participants. As stated in [71], to achieve

this goal, dummy traffic needs to be injected into the network to hide the actual

traffic.

In the literature, three main approaches leveraging dummy traffic are available.

The first is based on buses [124, 21, 296]. In this solution, a predetermined route

is used by the sender to anonymously communicate with the destination. However,

5.7 Related Work 109

this technique is not scalable on a large network, since it requires an Eulerian path

passing through all the nodes which leads to a prohibitive cost in terms of latency.

A second approach is represented by DC-Nets [58], which offer cryptographic

guarantees of anonymity, but they suffer from scalability problems as buses [245].

The third approach is represented by the mixnets [59, 158, 22] which, in general,

offers a lower latency with a price in terms of cover traffic.

Some recent mixnet proposals exist [158, 273, 223, 269]. Anyway, some draw-

backs should be taken into account.

For example, as recently stated in [6], the work proposed in [158] suffers from

very large communication overhead. Regarding [273], as stated by the authors them-

selves, the end-to-end latency is about 37 seconds, which may be too high for sev-

eral applications. Moreover, these approaches rely on a server-oriented architecture,

which is known to be less robust against possible attacks on the nodes of the route

(or their collusion) [243] and less scalable than P2P architecture [245].

Therefore, the state of the art of P2P approach for low-latency applications is

represented by Tarzan [98], which is a work with high impact in the (even current)

scientific literature.

Actually, another P2P mixnet proposal, less recent but adopted in practice, is I2P

[299]. However, it suffers from different vulnerabilities such as brute-force attacks

or timing attacks. Then, as reported on the official website (geti2p.net), the authors

suggest adopting some mitigations (e.g., constant-rate cover traffic) present in [98].

The work presented in this chapter strongly refers to [98], by proposing an ex-

tension improving Tarzan in the case of uplink-intensive applications. To the best

of our knowledge, no proposal outperforming Tarzan is available in the state of the

art. On the other hand, the considered domain is relevant. Indeed, uplink-intensive

applications are becoming more and more common in recent years [206, 289]. Some

examples of uplink-dominant applications are represented by M2M [197, 55], Indus-

trial IoT [164], and Wireless-Sensor-Network [77]. Furthermore, intrinsically, cloud-

based applications increase the uplink bandwidth demand with respect to tradi-

tional client-server applications [256].

Part II

Anonymous communication over an existing

application layer

113

The protocols presented in Part I have the advantage of being independent of the

application layer implemented over them. However, they may require heavy infras-

tructural changes (e.g., the format of the packets) in the underlying network.

Furthermore, there are situations in which anonymity features have to be achieved

within applications offering other types of services.

For example, we can consider a social network providing all the traditional social

features along with anonymity services. Since these anonymity services may lever-

age these social features (e.g, communicating users do not know each other but share

some interests), they have to be delivered through the communication channels of-

fered by the social network itself (as currently happens in Facebook or Instagram).

In these cases, setting external anonymous communication channels is not practical

or is not possible at all.

Therefore, it is relevant to design anonymous communication protocols work-

ing only on specific application layers that require minimal network infrastructural

changes. This is precisely the purpose of this second part of the thesis.

We point out that by designing a protocol ad-hoc for a specific application layer,

we can obtain benefits in terms of performance by leveraging specific characteris-

tics of the application itself. For example, in Chapter 6, just a few asynchronous

messages have to be exchanged and latency is not a crucial issue. This allows us to

design a protocol in which cover traffic is reduced. It corresponds to a reduction

of CPU and bandwidth overhead required by users that often rely on smartphones

when using the services.

In this part, we propose two protocols.

The first is presented in Chapter 6. Therein, we present an anonymous commu-

nication protocol enabling three communication primitives within a social network.

The first primitive allows communication between an anonymous sender and an ex-

plicit recipient (possibly coinciding with the social network provider). The second

primitive enables the response to the first primitive. Finally, the last primitive en-

ables communication from an anonymous sender to an anonymous recipient. The

114

strong point of this solution is that anonymity is achieved against a global adversary

able to observe the entire traffic of messages exchanged in the social network. Actu-

ally, it is a necessary condition to obtain a working solution, since the social network

provider represents a typical real-life example of a global adversary. An application

of this solution to the domain of proximity-based services is also provided.

Another anonymous protocol built over an existing application layer is presented

in Chapter 7. In this case, the application layer is MQTT and due to the low-energy

consumption requirements, it is crucial that the involved entities exchange messages

through this lightweight protocol without relying on external communication chan-

nels. In particular, our solution leverages the bridging mechanism natively offered

by MQTT to deploy a network enabling anonymous publishing/subscribing to top-

ics. The approach we follow is based on the Crowds protocol [230]. The experimen-

tal analysis performed shows that the overhead introduced by our approach with

respect to the standard MQTT is negligible considering the throughput and accept-

able considering the latency.

6

Anonymous communication in Social networks

Several innovative applications could be advantageously placed within social networks, to

be effective, attractive, and pervasive. Examples of application domains that could bene-

fit from social networks are e-democracy, e-participation, online surveys, crowdsourcing,

and proximity-based services. In all the above cases, users’ anonymity could represent a

considerable added value or could be even necessary to develop the service. We observe

that all the above domains are characterized by the fact that only a few asynchronous

messages should be exchanged. Therefore, we do not need the full communication power

of anonymous communication networks, in which low-latency and connection-oriented

communication should be supported. On the other hand, unlike communication networks,

the threat model we have to consider assumes the presence of an adversary (represented by

an honest-but-curious social network provider) able to monitor the entire flow of the ex-

changed messages. In this chapter, we propose an anonymous communication protocol for

short communications in social networks, based on a collaborative approach. The results

of this approach are included in two research papers [37, 42].

6.1 Introduction

Social networks probably represent the most disrupting digital innovation of the

last twenty years. Different kinds of applications are nowadays implemented on top

of social networks. However, the power of social networks could be better exploited

in various application contexts, such as e-democracy, e-participation, online surveys,

crowdsourcing, proximity-based services, and so on. Often, in the above settings, the

communication should happen between anonymous users or between anonymous

users and explicit entities (possibly, the social network platform itself). Therefore,

anonymity is a necessary feature. The problem is not trivial. Indeed, the social net-

work provider should be seen, in a realistic threat model, as a global (at least) passive

adversary, able to monitor the whole flow of messages among users.

116 6 Anonymous communication in Social networks

The same threat occurs in the case of a data breach. Therefore, privacy is achieved

if not only the content of messages is protected against the adversary, but also the

communication itself.

An important point is that the above applications are characterized by the

common denominator that only a few asynchronous messages have to be anony-

mously exchanged. Therefore, we do not need the full communication power usu-

ally aimed in the domain of anonymous communication networks [245], supporting

low-latency and connection-oriented communication.

To the best of our knowledge, there exist a few proposals regarding anonymous

communication in social networks [203, 148]. However, [203] only deals with anony-

mous group communication and [148] does not provide sender anonymity against

the global passive adversary, which is the goal we pursue in this chapter.

Indeed, the aim of this chapter is to achieve communication anonymity (in the

case of short asynchronous messages) in social networks, against the global passive

adversary.

If we refer to existing centralized social networks, the only way to make commu-

nications anonymous against the social network provider is to require the collabora-

tion of social network users. This can be done by implementing an overlay network

over the application layer provided by the social network itself. Indeed, an alternate

approach based on a centralized party playing as an anonymizer, has very limited

effectiveness in our threat model, as shown in [276].

Therefore, an idea could be to translate into the domain of social networks one of

the P2P approaches used in communication networks to achieve anonymity against

the global passive adversary.

Existing P2P overlay network routing techniques resisting the global passive

adversary always require the inclusion of cover traffic (i.e., dummy traffic to hide

the actual messages) [71] and are based either on mixnets [98, 158, 23], or on buses

[124, 21, 296].

It is intuitive to understand that state-of-the-art mixnet-based approaches re-

quire a high amount of cover traffic, which, in our context, would result in band-

width and CPU overhead (thus also battery consumption) for social network users.

In the approach based on buses, anonymity is achieved by implementing routes

(either deterministic [124, 21] or non-deterministic [296]) independent of the in-

tended communication, which senders and receivers can opportunistically exploit.

With this approach, cover traffic is drastically reduced with respect to mixnets (at the

price of higher latency). Indeed, here, no mixing is adopted and the incoming (cover)

traffic, for each node, has exactly one 1-hop source, and each node can indifferently

play the role of the sender, recipient, or relay node. However, both deterministic (in

6.2 Background: Identity-based Encryption 117

which the fixed route is an Eulerian path passing through all the nodes) and non-

deterministic approaches (in which the latency highly increases with the number of

nodes) are unrealistic in scenarios with a huge number of nodes like social networks.

Actually, our approach uses the concept of fixed deterministic routes of buses to

minimize cover traffic. However, unlike buses, this mechanism is not used to hide

inside both senders and receivers. Indeed, we set two disjoint deterministic cyclic

routes to obtain, separately, the anonymity of senders and recipients. This allows us

to modulate the size of these predetermined cyclic routes to manage the trade-off

between privacy level and latency.

Recall that, we are in a specific situation in which no general-purpose connection-

oriented communication is required, but only the anonymous exchange of a few

short asynchronous messages. For example, in the field of proximity services, we can

accept that proximity tests are performed within an order of magnitude of minutes.

6.2 Background: Identity-based Encryption

Our protocol leverages the Identity-based Encryption (IBE) [56] to encrypt messages.

In this section, we provide some background notions about IBE.

IBE is a type of public-key encryption in which the public key of a user is rep-

resented by some unique information associated with the user’s identity. As we will

see next, in the configuration of our protocol, the identity of the user is composed

of the user’s name, surname, and email address. In IBE, each user may encrypt a

message for another user without requiring the public key to any external party, by

directly using the information associated with the identity of the other user.

Formally, an IBE scheme is composed of four algorithms:

Setup(k): it takes as input a security parameter k and outputs a master secret key

MSK and master public key MPK .

Extract(MPK , MSK , ID): it takes as input the master public key MPK , the master

secret key MSK , and a parameter ID representing the identity of a user. It outputs

a private key d associated with the user’s identity ID.

Encrypt(MPK , ID, M): it takes as input the master public key MPK , a parameter

ID representing the identity of a user, and a message M. It outputs a ciphertext C

intended for the user with identity ID.

Decrypt(MPK , C, d): it takes as input the master public key MPK , a ciphertext C,

and a private key d. It outputs the decryption M of the ciphertext C.

These four algorithms are used as follows.

A trusted third party, called Private Key Generator (PKG), is involved. Prelimi-

nary, in the setup phase, the PKG invokes Setup(k) to obtain MPK and MSK . MPK

118 6 Anonymous communication in Social networks

is provided to all the users and MSK is kept secret by PKG. A user U with identity

IDu , who wants to obtain a secret key associated with IDU , contacts the PKG, which

invokes Extract(MPK , MSK , IDU) to obtain dU , and sends it to U . Clearly, the PKG

sends dU after verifying the identity of U , for example through the intervention of

an Identity Provider [229]. Suppose another user Y wants to send a message M to U

(whose identity IDU is known to Y). Y has to invoke Encrypt(MPK , IDU , M) to ob-

tain the ciphertext C and then can send C to U . Eventually, U invokes Decrypt(MPK ,

C, dU) to retrieve the message M. Observe that Y , during the encryption process,

does not interact with any party. This works in favor of anonymity.

In our protocol, we require that the adopted IBE scheme is anonymous. This

means that it is not possible from the ciphertext to retrieve the identity of the recip-

ient. The schemes [53, 33] satisfy our requirements.

6.3 The anonymity communication protocol

The aim of this section is to provide an anonymity communication protocol in social

networks implementing the following three communication primitives:

• P1: anonymous sending to an explicit recipient. This primitive is used by a

sender A who wants to remain anonymous when communicating with an ex-

plicit recipient B. The explicit recipient can also coincide with the social network

provider itself.

• P2: response from an explicit recipient to an anonymous sender. This primitive

is used by the explicit recipient B of Primitive P1 to respond to the anonymous

sender A by preserving the anonymity of A.

• P3: anonymous sending to an anonymous recipient. This primitive is used by

a sender A to communicate with a recipient B in such a way that both remain

anonymous. Observe that the response to this primitive can be obtained by in-

voking the primitive itself in the opposite direction.

The rest of this section is devoted to the provision of a concrete mechanism for

implementing them.

6.3.1 Identity management

In our solution, the way in which identities are managed is critical, because the goal

we pursue is anonymity. In this section, we treat this aspect, which is independent

of how anonymous communication primitives are implemented (which we describe

in Section 6.3.7).

6.3 The anonymity communication protocol 119

Each user is associated with two identities. The real identity RI of a user is com-

posed of three attributes: name, surname, and email address.

The SN identity SI of a user is obtained by applying a cryptographic hash function

hR to the real identity (i.e., SI = hR(RI)).

SN identities are used as identifiers in the social network. Therefore, the URL of

the profile of a user is derived from their SI.

We assume that a user A who knows B, also knows the real identity of B and,

thus, can retrieve their SN identity (needed for the communication) without lever-

aging SN. The autonomy of the sender in this task is necessary to maintain sender

anonymity.

However, this is not enough when encryption to achieve message confidentiality

is enabled. Indeed, as the preliminary symmetric-key exchange among all possible

pairs of users is not feasible, public-key encryption should be used. On the other

hand, even a PKI to manage public keys would threaten anonymity, when the ini-

tiator of a communication contacts the PKI to obtain the public key of the recipient.

To avoid this, we adopt an anonymous IBE (described in Section 6.2) defined on the

domain of the real identities. This way, a user A just has to know the name, sur-

name, and email address of the recipient B, to encrypt a message being sent to B,

without compromising sender anonymity when contacting the PKI. We observe that

the adoption of an anonymous IBE instead of a standard IBE is necessary in our

case. Indeed, in a standard IBE, the identity of the recipient is in plain text in the

encrypted message (this is not the case with anonymous IBEs). This would break

recipient anonymity.

To obtain the private key necessary to decrypt a message encrypted for a given

real identity ⟨N,S,E⟩ (name, surname, and email address), a user pretending to be

the recipient has to prove to the PKG that they control the email address E. This

could be done by sending a challenge to this email address, which the user has to

solve. Observe that this could be the classical confirmation email received when a

user registers with most online services. Clearly, this procedure is performed just

once in the set-up phase to obtain the IBE private key that will be used to decrypt all

the messages intended for the user.

The way in which SN identities are obtained allows us to have a one-to-one map-

ping between the real identity of the recipient and their profile in the social network,

provided that the email address of the real identity is kept under the control of the

legitimate user. To make the email account violation not dangerous for our system,

more secure proof should be provided to the PKG to demonstrate their real iden-

tity. In a concrete scenario, we could think of adopting a secure public digital iden-

tity system, like a system compliant with eIDAS regulation in the European Union

120 6 Anonymous communication in Social networks

[84], or a robust Self Sovereign Identity system [110], like that designed in the EBSI

framework [271].

For the sake of clarity, we detail the solution in the case of eIDAS-based identity

proof.

A user U with real identity RIU = ⟨NU ,SU ,EU ⟩ contacts the PKG to obtain a pri-

vate key associated with RIU . First, the PKG sends a random number C (challenge)

to the email address EU , which U turns back to PKG by proving their control on EU .

Furthermore, to prove the possession of NU and SU , an identity provider IP is

required, which is a trusted third party to which U is preliminarily registered by

means of an identification process with a high level of assurance. A typical iden-

tity system compliant with eIDAS leverages a federated authentication protocol like

SAMLv2, in which the service provider SP requests a valid signed assertion (embed-

ded in an authentication response) from the IP, proving the identity of the user. In

our case, the PKG would play the role of the service provider. The above consider-

ations allow us to conclude that, at least in the European Union, the identity man-

agement we consider in our solution could be concretely adopted at a high-security

level, by considering that eIDAS enforced the Member States to have an interopera-

ble digital identity system since 2016.

The flow of this authentication procedure is depicted in the sequence diagram

reported in Figure 6.1

PKG User U IP

Real Identity RIU

Challenge C to email address

C

Authentication Request

Authentication Request

Authentication Response

Authentication Response

IBE Private Key

Fig. 6.1: eIDAS-based authentication procedure with PKG to obtain the IBE private

key

To conclude, we recall that Primitive P1 allows the sender to communicate with

an explicit recipient, possibly coincident with the social network provider. In the for-

mal definition of such a primitive, given in Section 6.3.7, we pass as input the real

6.3 The anonymity communication protocol 121

identity of the recipient. Therefore, to allow anonymous sending to the social net-

work provider, we assume that also the social network provider has a real identity.

In practice, it simply means that it is registered with the PKG and that it obtains the

IBE private key to decrypt the messages intended for it. In this case, the real iden-

tity is not composed of a name, surname, and email address but it just consists of a

simple public string associated with the social network (e.g., the URL of the social

network).

6.3.2 Application domains

Anonymity is obtained through a cooperative approach, involving the users of SN.

The collaboration is considered a special feature of certain application domains,

each forming a collaboration community. The users of each community require

anonymity when a certain type of service is delivered.

The formal definition of application domain is the following.

Definition 6.1. An application domain A is a tuple ⟨IDA,NA, kA⟩, where IDA ⊆N is a

finite set of the SN identities of the involved users, NA represents the cardinality of IDA,

and kA ∈N+ is said privacy level.

The meaning of the privacy level regards the objective of our protocol, which

is anonymity. Anonymity regards the sender and recipient of a message (thus also

relationship) and is reached by requiring a sufficient degree of uncertainty.

Given an application domain A, the privacy level kA represents just the obtained

degree of uncertainty, in the sense that the adversary can identify an item (sender or

recipient) with a probability not greater than 1
kA

.

As introduced earlier, we are considering services in which anonymous commu-

nication between users or between users and SN is required. Observe that, even with

robust anonymous communication primitives, the knowledge that some users are

more likely to communicate between themselves rather than with other users, would

lead to a break of anonymity anyway.

Therefore, we say that an application domain is well-formed if, from the point

of view of an adversary attempting to break anonymity, all the users have the same

probability to communicate between them or with SN.

To achieve this feature, the building process of the application domains has to

take into account the type of delivered service and the background knowledge of

the adversary (possibly, SN itself) about the users leveraging such a service.

For example, if, for the specific application, the geographical location (e.g., the

IP zone) is a quasi-identifier, then the domain has to be identified on the basis of

geographical information. Consider the case of a national survey not requiring more

122 6 Anonymous communication in Social networks

specific geographical information. We expect that the domain can include only pro-

files belonging to the national territory. In general, depending on the application,

privacy guarantees are achieved by taking into account different constraints, possi-

bly leveraging privacy notions like l-diversity [178] and t-closeness [169].

From now on, we assume that the application domains are well-formed.

6.3.3 The ring schema

In this section, we describe the structural elements of the model on which the solu-

tion relies.

We start with the definition of ring schema.

Definition 6.2. Given an application domain A = ⟨IDA,NA, kA⟩, a number nA such that

nA = α ·kA (for any α ∈N+), and the set DA = {0, . . . ,nA−1}, the (α-)ring schema (of A) is

the set of the equivalence classes each containing all the elements of DA congruent modulo

α. Each class is called (α-)ring (of A). A ring is identified by the canonical representative

of the equivalence class. Given an element x ∈ DA, we denoted by ring(x) (with ring(x) ∈

DA) the canonical representative of the ring to which x belongs. The elements of a ring are

called nodes.

It is easy to see that the cardinality of an α-ring schema is α and that the identifiers of

the classes are 0,1, . . . ,α − 1. Moreover, all the classes are of cardinality kA. Observe

that the ring schema is completely defined by the parameters NA, kA, and α. The

parameters of the adopted ring schema are notified to all the users of the application

domain.

Example 6.3. An example of ring schema for α = 2 and kA = 5 (then nA = 10) is

reported in Figure 6.2. Therein, being α = 2, we have 2 rings (i.e., ring 0 and ring 1)

each including kA = 5 nodes. Moreover, for example, ring(2) = 0 and ring(9) = 1.

Fig. 6.2: Ring schema for α = 2 and kA = 5

6.3 The anonymity communication protocol 123

From now on, throughout the chapter, assume given an application domain A =

⟨IDA, NA, kA⟩ and its α-ring schema, for a given α.

The ring schema is the basic notion of our solution, because it allows us to iden-

tify a topological structure suitable to support a cover-message-based mechanism

which hides senders and recipients through the mutual collaboration of the users of

the application domain. To do this, the so far abstract nodes of rings have to be as-

sociated with users of the domain. This is done by uniformly mapping (through a

classical hash function h) the set of SN identities of a domain IDA to the set of nodes

in DA.

Definition 6.4. A user mapping on the α-ring schema of A is any function h : IDA→DA

such that the probability that h(SIX) = h(SIY) (for each SIX ,SIY ∈ IDA, such that SIX ,

SIY) follows the uniform distribution.

From now on, we consider, as a user mapping, the hash function h such that

h(SIX) = SIX mod nA, for each SIX ∈ IDA. It is well known that this function allows

us to fulfill the condition required by Definition 6.4. However, a different user map-

ping could be adopted, also by taking into account possible specific characteristics

of the set IDA.

Also, the user mapping is notified to the users.

Example 6.5. By referring to Example 6.3 (in which α = 2, kA = 5), suppose NA = 5

and IDA = {17,15,38,11,27}. The users (whose SIs are in IDA) will be mapped to the

nodes of the ring 0 and ring 1, as depicted in Figure 6.3.

The users with SIs 17 and 27 are mapped to node 7, the user with SI 15 is mapped

to node 5, the user with SI 38 is mapped to node 8, and the user with SI 11 is mapped

to node 1. The other nodes are not associated with any user.

Fig. 6.3: Example of user mapping.

We introduce now another notion, allowing us to characterize each ring as a sort

of virtual cyclic circuit (thus motivating the name we choose for the rings).

124 6 Anonymous communication in Social networks

Definition 6.6. we define the function fA : DA→DA such that fA(x) = x+α mod nA.

Example 6.7. By referring again to Example 6.3, fA(2) = 2+2 mod 10 = 4, fA(3) = 3+2

mod 10 = 5, and fA(8) = 8 + 2 mod 10 = 0

On the basis of both the function fA and the user mapping, the rings represent

virtual cyclic circuits of groups of users. In other words, if the ring v0 is {v0, . . . , vkA−1},

where vi < vj for 0 ≤ i < j ≤ kA − 1, then fA(vi) = vi+1, for each 0 ≤ i < kA − 1 and

fA(vkA−1) = v0. Moreover, with each vi (0 ≤ i ≤ kA − 1), a set of users, identifiable

by reversing the function h, is associated. The multiplicity of users associated with

nodes has the scope to give redundancy to these virtual cyclic circuits (as we better

explain in the next subsection). Observe that, through the user mapping, each user

belongs to exactly one node in a ring of a given domain.

The user mapping is not materialized by the users. As we will see later, they just

could need to compute some of its values. Instead, SN stores a hash table H (based

on h) materializing the user mapping in such a way that if a user requires to know

the group of SN identities mapped to a given node v of a ring, then SN can efficiently

provide the correct answer just by accessing the hash table at the index v.

Example 6.8. The hash table referred to the user mapping of Example 6.5 is depicted

in Figure 6.4.

Fig. 6.4: Example of hash table referred to the user mapping in Figure 6.3

Therefore, a user, starting from the knowledge of a given SI, say SIX , can de-

termine which is the node associated with this SI just by computing h(SIX). Then,

they can calculate the entire sequence of nodes of the ring (for example, the node at

distance j from the node in which SIX is mapped is obtained as f j
A(h(SIX))) and can

retrieve from SN the list of SIs associated with any node of the ring. We can assume

that each user always knows the SIs associated with each node of the ring to which

the user belongs. Moreover, for each of these SIs, the user knows also their public

keys.

6.3 The anonymity communication protocol 125

This information, i.e., the set of pairs (SI-public key), is called configuration of the

ring. Any change in the configuration of the ring is communicated by SN to all the

users of the ring, as we will see in Section 6.3.5.

6.3.4 Redundancy

The ring model so far presented implicitly assumes that all the users mapped by the

hash function h to a ring are alive and collaborative. Under this assumption, kA ac-

tually represents the guaranteed privacy (i.e., anonymity) level, as a ring represents

the anonymity set of a sender or a recipient. As this assumption is not realistic, in

this section, we relax it. Specifically, we show how to include into the ring the right

level of redundancy to guarantee a given level of anonymity. Being the problem we

are considering inherently probabilistic, we give to the term guarantee a probabilistic

meaning. Therefore, we set a (suitably high) probability threshold τ , and we say that

an event is sufficiently guaranteed if it occurs with a probability not below τ .

Moreover, we assume that, if we pick a user, the probability that they are alive

and collaborative is p.

It can be realized that the probability that at least one of r users is alive and

collaborative is 1 − (1 − p)r (corresponding to the probability of the complementary

event that all the r users are not available). This supports the following definition.

Definition 6.9. We define the redundancy level of A, denoted by rA, as the minimum

value r such that 1− (1− p)rA ≥ τ (i.e., it is sufficiently guaranteed that at least one of rA

users is alive and collaborative).

The redundancy level is useful to introduce another definition, which takes into

account the distribution of the users over the ring. The aim is to represent the fact

that a given ring schema offers a level of privacy not below kA.

Definition 6.10. We say that the α-ring schema is τ-safe with respect to a given user

mapping h, if for each α-ring y (0 ≤ y ≤ α − 1), |{x ∈ IDA : ring(h(x)) = y}| ≥ kA · rA.

It is easy to see that if the α-ring schema is τ-safe, for any α-ring, it is sufficiently

guaranteed that the ring includes at least kA users alive and collaborative. Therefore,

the ring can play the role of anonymity set with privacy level kA. The value kA · rA is

called kA-anonymity threshold.

Example 6.11. Suppose p = 0.99 and τ = 0.999. The redundancy level (see Definition

6.9) is rA = 1.5. It is easy to see that the ring schema with the users mapped as in

Figure 6.3 is not τ-safe since the anonymity threshold is 5 ·1.5 = 7.5. Indeed, the ring

0 has just 1 user, and the ring 1 has just 4 users. An example of ring schema τ-safe

is reported in Figure 6.5. Here, NA = 19, kA = 5 and α = 2.

126 6 Anonymous communication in Social networks

Fig. 6.5: Ring schema τ-safe.

6.3.5 System update

The previous definitions do not take into account possible updates regarding an

application domain. Updates, which are joins and leaves of users, can be managed

as follows.

User Join. When a new user U with real identity RIU joins the application domain

A, an SI SIU = hR(RIU) is assigned to this user, and it suffices for SN to include the

new user in the hash table H at the index h(SIU). As this addition cannot threaten

the number of expected users alive in the affected ring (i.e., the ring including the

node h(SIU)), the join does not impact the ring schema.

The new SI SIU and the public key of U are included in the new configuration of

the ring. The new configuration is notified, through SN, to all users in the affected

ring.

No further action is required.

Example 6.12. We take the ring schema of Figure 6.5. If the user U with SIU = 84

joins the application domain, then SIU is simply mapped to the node 4. The resulting

τ-safe ring schema is reported in Figure 6.6

Fig. 6.6: Ring schema after the join of the user with SI 84.

User Leave. When a user U with SN identifier SIU leaves the application domain A,

SN has to remove the user from the hash table H , at the index h(SIU). The number

6.3 The anonymity communication protocol 127

of users is obviously updated as N ′A = NA − 1. Similarly to the case of join, the users

of the affected ring are notified about the changes that occurred in the ring, in such

a way that the local information about the configuration of the ring is kept coherent.

However, the event might threaten the fact that the ring schema is τ-safe. In this case,

as the ring goes below the kA-anonymity threshold, we have to restore the τ-safety

property by changing the hash function h. This is done by properly decreasing nA.

Therefore, SN finds α′ < α (and, then, n′A < nA) such that, for each α′-ring y (0 ≤ y ≤

α′−1), |{x ∈ IDA : ring(h(x)) = y}| ≥ kA ·rA. This implies that SN has to redistribute the

users in the new hash table (of size n′A = α′ · kA), with computational cost O(N ′A). SN

has to notify all users in the domain the updated parameters of the ring schema (i.e.,

N ′A and α′) and the new ring configuration. No computation overhead is required

user-side.

Example 6.13. Consider the ring schema of Figure 6.6. With rA = 1.5, the kA-anonymity

threshold is 5 · 1.5 = 7.5 and both the rings 0 and 1 have a number of users alive ex-

ceeding this threshold.

Suppose the user with SI 29 leaves the ring 1. In this case, the ring 1 will have

7 < 7.5 users. The value of nA has to be decreased. The only possibility is to choose

α′ = 1 and n′A = kA = 5. The new ring schema is reported in Figure 6.7

Fig. 6.7: New ring schema after the user with SI 29 leaves the ring 1 of Figure 6.5

Even though the worst case for leaves triggers a server-side (albeit linear, in the

number of users) computational overhead, we can argue that, in real-life cases, com-

munities tend to grow, or, at worst, joins and leaves are balanced. Therefore, with

proper "safety margins" applied to the set value of α, the above worst case happens

very rarely. Observe that also the growth of the number of users might trigger the

resizing of the hash table even though this is not necessary for the correctness of the

ring schema. Indeed, it could be opportune not to have rings with an actual privacy

level much higher than the required value.

128 6 Anonymous communication in Social networks

Finally, concerning system updates, one could think that drastic changes in the

system not corresponding to changes in the communication characteristics can en-

able classical intersection attacks, thus breaking anonymity. However, this is not the

case, because we only consider short communications, whose lifetime is certainly

much less than the lifetime of the ring structure.

6.3.6 Cover-message mechanism

At this point, we describe the cover-message mechanism mentioned earlier, which is

the basis of the anonymity services provided by our solution.

Consider a ring {v0, . . .vkA−1}. With a certain rationale, we choose rA users belong-

ing to the nodes of the ring responsible for maintaining the circulation of dummy

messages called tokens. rA is the value that determines the kA-anonymity threshold

(i.e., kA · rA). Therefore, it is sufficiently guaranteed that at least one responsible user

is alive. Now, we define how the token is built. It is a fixed-length message with

three fields: ⟨M̄, D̄,B⟩, where M̄ is a message possibly encrypted, D̄ is an encrypted

SN identity, B is a bit indicating if the token is empty (B = 0) or filled (B = 1). Observe

that M̄ may also include a dummy message.

The exact meaning of the above fields will be clarified below with the description

of the communication primitives. Each token turns in the ring in which it has been

generated, by crossing, for each node, any alive user associated with this node. This is

done according to the increasing value of the corresponding SIs. To formally describe

the above mechanism, we need the following definition, introducing the notion of

next live user for a given user in a ring.

Definition 6.14. Given a node v of a ring with at least one live user, we denote by f irst(v)

the lowest SI associated with v and by last(v) the highest SI associated with v. The

closeness between two live users with SIs SIX and SIY belonging to a ring (denoted by

closenessA(SIX ,SIY)), is recursively defined as follows:

• closenessA(SIX ,SIY) = 0, if SIX = SIY ;

• closenessA(SIX ,SIY) = |{SIZ ∈ IDA | SIZ , SIX is alive,h(SIZ) = h(SIX),SIX ≤ SIZ ≤

SIY }|, if h(SIX) = h(SIY) and SIX < SIY ;

• closenessA(SIX ,SIY) = closenessA(SIX , last (h(SIX)))+closenessA (f irst(h(SIY)),SIY)+

j · (NA − 1) for the least j > 0 such that f j
A(h(SIX)) = h(SIY), otherwise.

We define the function nextA : IDA → IDA as follows. For any user X alive with SN

identity SIX , nextA(SIX) is the SN identity SIY of the user Y (alive) of the ring such that

SIX , SIY and the closeness between SIX and SIY is minimum.

In words, the next user of a user with SN identity SIX is the first ,live user who

is encountered by moving first in the node of the ring h(SIX) in the direction of

6.3 The anonymity communication protocol 129

increasing SIs, and then (if there is no live user in h(SIX) with SI higher than SIX) to

the closest node according to the function fA with live users and, therein, by taking

the user with the lowest SI.

According to Definition 6.14, the token is sent by a live user with SN identity

SIX who received it to the user with SN identity nextA(SIX), and proceeds in the ring

with the same rule. Therefore, it is not sure that the token moves from the node vi

to the next node fA(vi), because a jump is possible (in the case no live user is present

in the node fA(vi)).

At each hop, the token is encrypted by the current user with the public key of

the next user. Thus, an external eavesdropper cannot distinguish an empty token

from a filled token. For efficiency reasons, the token is encrypted with a symmetric

on-the-fly key which is, in turn, encrypted with a public key and sent along with the

token. When a node receives the token, first it decrypts the symmetric key and then

the token. For the sake of presentation, from now on, when we refer to public-key

encryption, we mean the above procedure.

In Figure 6.8, an example of a route fragment followed by a token is depicted. In

the figure, we highlight only 4 nodes of a ring, each composed of 3 users (in general,

this number could vary among nodes). Green circles represent live users, while red

circles denote non-live users. The token turns in the ring according to the function

next of Definition 6.14.

Fig. 6.8: Example of a fragment of the route of a token in a ring.

Periodically, SN publishes a cross-domain random R ∈N+, with a certain round-

ing protocol obtained through a PRNG verifiable by the users. R, implicitly identifies

a user per ring, called bridge user, as follows. To identify the bridge user of their ring,

130 6 Anonymous communication in Social networks

a user with SN identity SIX has to find the live user with the lowest SI belonging to

the node f
j
A(vy), such that j ≥ 0 is the minimum value and at least one live user is

in f
j
A(vy) and vy = ring(h(SIX)) + R · α mod nA. Observe that all the nodes of a ring

identify the same bridge user. The bridge user is responsible for sending the mes-

sages outside the ring (playing the role of exit user) or for injecting into the ring the

messages coming from outside (playing the role of entry user) as explained in the

next section.

6.3.7 Communication primitives

At this point, we are ready to formally define the communication primitives sup-

porting privacy-preserving services. We have three primitives, defined as follows.

• P1: anonymous sending to explicit recipient. This primitive is invoked by a

user U and receives as input a message M and a real identity RID . The message

M (possibly encrypted) is forwarded from U to the user D with real identity RID

by keeping U anonymous.

U knows the SN identity SIX and the public key P KX of the bridge user X of the

ring in which U is located. In this primitive, we say that X plays the role of exit

user.

First, U derives the SN identity SID associated with RID i.e., SID = hR(RID). Ob-

serve that this operation does not involve SN, so the anonymity of U is not com-

promised.

Then, U waits for the earliest empty token of the ring (recall that a user, when

receives a token, has to decrypt it to decide if forwarding or processing it, be-

cause the token is encrypted with its public key) and fills its fields ⟨M̄, D̄,B⟩ as

follows: M̄ = M, D̄ = E(P KX ,SID) (i.e., the encryption for the bridge user X of the

SN identity of the destination D), B = 1 (that represents the fact that the token is

filled).

We denote by T the so-obtained token. Now, U encrypts the filled token T with

the public key of the user Z with SN identity SIZ = nextA(SIU). Then, the token

is sent to Z. The token turns in the ring until the user X, who is the only user

able to decrypt D̄, thus obtaining SID .

At this point, X forwards M to SID .

Finally, X sets B to 0 and M̄, D̄ to random values and forwards the token in the

ring to the user with SI equal to nextA(SIX).

• P2: response from an explicit recipient to an anonymous sender. This primi-

tive is invoked by the destination D of Primitive P1 to reply to the sender U in

such a way that the latter remains anonymous. The primitive receives as input a

6.4 Comparison with other approaches 131

message R (possibly encrypted). In addition, we assume as implicit input the SN

identity SIX of the bridge user X acting as exit user in Primitive P1.

First, D sends R to X.

X injects the response in the ring just by waiting for the earliest empty token

and filling it with R. In this case, M̄ = R, B = 1, and D̄ remains undefined. Then,

the filled token turns in the ring until U receives R. This is the actual recipient

of the response. U does not empty the token and just forwards it. This operation

is done by X (for security reasons, as discussed in Section 6.6) when the token

reaches them again by setting B to 0 (and the other fields to random values) and

by further forwarding the token in the ring.

• P3: anonymous sending to an anonymous recipient. This primitive is invoked

by a user U and receives as input a message M and a ring identifier vk . The

message M (possibly encrypted) is forwarded from U to a user D with SN iden-

tity SID such that vk = ring(h(SID)), in such a way that both U and D remain

anonymous.

We denote by X the bridge user, with SN identity SIX and public key P KX , of the

ring in which U is located.

As in Primitive P1, U waits for the earliest empty token of the ring and fills it by

setting its fields ⟨M̄, D̄,B⟩ as follows: M̄ = M, D̄ = E(P KX ,vk), B = 1 (representing

the fact that the token is filled).

The token turns in the ring until the user X, who retrieves vk .

At this point, through the collaboration of SN, X identifies the bridge user Y of

the ring vk and forwards M to Y .

Finally, Y injects the message in the ring as in Primitive P2, thus eventually

reaching the actual destination D. As for Primitive P2, D does not empty the

token, which will be emptied by Y .

Observe that a possible reply of D to the message M sent by U can be done by

using the same primitive.

6.4 Comparison with other approaches

After presenting the anonymous protocol, we show, in this section, that the defini-

tion of a new specific protocol represents actually an added value. In other words, by

considering the attempt to apply existing approaches taken from the field of anony-

mous communication networks, we show why design an original anonymous routing

protocol tailored to the considered scenario.

132 6 Anonymous communication in Social networks

As mentioned in the introduction, there are two possible approaches in the litera-

ture that can be used to obtain communication anonymity against the global passive

adversary: buses [124, 21, 296] and mixnets [98, 59].

In deterministic buses [124, 21], the route is a path involving all the nodes of

the network. This results in intolerable latency when, as in the case of social net-

works, the number of nodes is huge. Consider that, given an application domain

⟨IDA,NA, kA⟩, for our method, the latency time is Ω(kA), while for deterministic

buses it is Ω(NA). In real-life applications, we expect that NA≫ kA. Coherently with

the experiments shown in Section 6.5.3, any single hop of communication takes a

time of order of magnitude 10−1 seconds. Therefore, for a realistic domain of just

104 users, the latency time for a given message communication is 103 seconds, which

is not acceptable for the considered applications (e.g., proximity testing). Our ap-

proach allows us to modulate the cardinality of the anonymity sets in order to find a

good trade-off between privacy and latency, independently of the size of the appli-

cation domain. As shown in Section 6.5.3, for a good privacy level (i.e., the cardinal-

ity of the anonymity sets) of 102 users, we obtain times of the order of magnitude

of minute for a worst-case anonymous communication (including a number of ex-

changed messages).

Consider now non-deterministic buses [296]. This technique leads to very high

latency times, as analytically highlighted in the paper itself. Indeed, the delivery

time follows an equation of the form K1(
1−(n−2

n−1)K2
) , where K1 and K2 are suitable con-

stants and n is the number of nodes of the network, meaning that, for large values

of n, we have huge latency time. Indeed, the simulation conducted in [296], which

does not take into account the emulation over social networks, in a network with

only 2048 nodes (and thus a maximum privacy level of the order of magnitude 103)

produces an average latency time of 20 minutes.

Regarding mixnets, we adopt a simplified yet general model extracted from [98],

in which bi-directional cover traffic over any link of the overlay network is enabled

(this is necessary to hide communications from the global passive adversary). The

idea is to obtain the anonymity set by mixing the traffic at each hop of the communi-

cation and by hiding the real traffic inside the cover traffic. This fan-out mechanism

allows us to obtain that the cardinality of the anonymity set increases exponentially

with the length of the communication path. In Figure 6.9, we represent a simple

mixnet with a degree mixing 2 (i.e., the messages of 2 senders are mixed into a re-

ceiver at each step). This way, for a communication path of length l, the anonymity

set resulting from the knowledge of a given receiver, has cardinality 2l . However,

to obtain this level of uncertainty, as clearly stated in [98], bi-directional cover traf-

fic should be injected, over all the links of the network. For simplicity, we assume

6.4 Comparison with other approaches 133

Fig. 6.9: Mixnet with n = 4 and m = 2.

.

that cover traffic is injected at a constant rate so that the amount of traffic can be

represented just by the number of links in which it is injected. Let denote by m the

mixing degree and by n the number of nodes participating in the mixnet. Note that,

to achieve exponential growth of anonymity degree with the number of hops, we

require that the mixing always involves new nodes, as depicted in Figure 6.9.

Hence, the number of links allowing us to protect the communication among n

nodes is (m+ 1) ·n as the degree of each node is m+ 1. For example, in Figure 6.9, the

total number of links is 12 = 4 ·3, where n = 4 and m = 2 and the degree of each node

is 3. As cover traffic is bi-directional, the estimation of the total amount of cover

traffic is 2 · (m+ 1) ·n. This means that the minimum required cover traffic is 6 ·n, as,

to enable the fan-out mechanism, m ≥ 2 should hold.

In our approach, cover traffic corresponds just to tokens 1-directionally turning

in the rings. Therefore, the number of links is exactly n, which is the measure we

can use to represent the total amount of cover traffic. Moreover, when m is fixed to

the minimum value, we reduce cover traffic of a multiplicative factor equal to 6. For

higher values of m, the advantage increases.

Regarding communication latency, we can say that, to achieve the same privacy

level kA in the mixnet, we have to set l = logmkA. Therefore, at the same privacy

level kA, the length of the communication path of our method is kA, while the (av-

erage) length of the mixnet tunnel is logmkA. Therefore, the advantage we obtain

in terms of cover traffic has a price in terms of communication latency. However,

this is not critical for our application domains in which no low-latency connection-

oriented communication should be supported. Indeed, Section 6.5.3 shows that the

134 6 Anonymous communication in Social networks

privacy-preserving services implemented on top of our anonymous communication

protocols are performed in a reasonable amount of time.

6.5 Application to the proximity-based services: Prototype and

Experiments

The protocol described in this chapter was applied in [42] to the domain of proximity-

based services [181].

In this section, we describe the prototype we developed to validate our protocol.

In particular, this prototype implements a service called KN-Service and described

in [42]. This service leverages the three communication primitives described in Sec-

tion 6.3.7.

We start by introducing the KN-Service.

6.5.1 KN-Service

The details about this service can be found in [42] and are outside the scope of this

thesis. In this section, we describe just the interface of this service.

The KN-service (standing for known nearby service) is a service aimed to test the

proximity of users who know each other. Roughly, we provide the privacy features

to a service similar to Facebook Nearby Friends.

In particular, we consider two users knowing each other and want to discover

reciprocally if they are in proximity. The test is symmetric. This means that if a user

X discovers the proximity of another user Y , then Y discovers the proximity of X.

To perform this test, some anonymous communications have to be performed on

the social network. In particular, we need user-to-user communications (Primitive

P3) and user-to-SN communications (Primitive P2).

6.5.2 Prototype

To both show the applicability of the proposed protocol and to validate it by experi-

ments, we provide a prototype of a plug-in implementing the KN-Service. In princi-

ple, this plug-in could be integrated into any existing social network. This prototype

is available on https://github.com/vincenzodeangelisrc/KN-Service_UNIRC.

It is implemented in JAVA and uses the WebSocket technology [96] that offers

full-duplex communication channels between a server and a client. It is used for

real-time applications such as chats and real-time games.

The data are exchanged in JSON format.

6.5 Application to the proximity-based services: Prototype and Experiments 135

The plug-in includes two modules: (1) a server-side module to integrate back-

end functions of our protocol into the social network and (2) a client-side module to

integrate client-side functions into the social-network app of the user.

The server-side module implements the ring mechanism presented in Section

6.3. Specifically, the client app forwards the token to its next in the ring through

the server. This module also includes the data structures necessary to detect the

proximity between two users and to notify them.

The client-side module allows the client to receive a token, fill it (if empty), and

forward it to the next client. The module also implements the role of the proxy node

that empties the tokens and forwards them into the ring. To test the performance,

this module includes several parameters to simulate the activity of more users, the

cells in which they are located, the number of proximity tests to perform, and so on.

6.5.3 Experiments

By using the prototype described in the previous section, we performed an experi-

mental evaluation of the proposed solution. We consider, as a metric of our analysis,

the total time required to obtain the result of a proximity test in the KN-service.

Unlike experiments presented in [38, 41], we do not rely on the API of any spe-

cific social network and implement from scratch the prototype. This better simulates

a real-life implementation of the proposal, which would require, as done in our pro-

totype, the presence of a back-end module also to support quick communication

between client and server. Moreover, this way, our prototype could be integrated

into every existing social network, provided that our server-side module is imported

from it.

In this analysis, we included hash computations, public-key encryptions, symmetric-

key encryptions, xoring, and all the operations required by the service. Furthermore,

to obtain realistic results, the server and the clients are remotely connected through

the Internet (with a ping time of about 50 ms). Observe that, in the available social

networks, lower ping times can be obtained, such as for Facebook (30 ms). Then,

the actual performance of our solution, in a real-life implementation, might be also

better than those experimented through this simulation.

The clients are simulated through threads running on PCs equipped with i7-

8550U CPU (1.80GHz) and 16 GB of RAM. The server-side module is run on a PC

equipped with i7-6500U CPU (2.50GHz) and 12 GB of RAM.

As discussed in [42], the worst case corresponds to a successful proximity test.

Therefore, we measured the time elapsed between the instant in which a user starts

the test and the instant in which the same user receives the ephemeral confirmation

136 6 Anonymous communication in Social networks

from the other user. To be precise, we consider, in the analysis, also the time a user

has to wait before receiving the first empty token to start the proximity test.

The main parameters affecting the performance of our solution are three.

The first is the privacy level kA. Indeed, the more users are in the ring, the higher

the time required for the messages to exit from the ring or to reach the destination.

The second parameter is the number of tokens NT circulating in the ring. Indeed,

the more tokens, the higher the probability that a user receives an empty token (and

then that they can transmit).

Finally, the last parameter measures the activity of the user in the ring. Indeed, if

users send messages very often, then the percentage of available tokens for any user

is reduced, and the total time they have to wait to receive the result is reduced too.

Regarding the latter parameter, to have a controllable environment, we define an

activity level σ ∈ [0,1). It represents the probability that, at each turn of the ring, a

given token is empty or filled. In particular, the proxy, with probability σ , sets each

token filled, so that it cannot be used by other users.

At this point, we evaluate the performance of our protocol as the above three

parameters vary.

The results are represented in Figures 6.10, 6.11, 6.12. Therein, we show as the

total time required to perform a proximity test varies as the privacy level kA varies.

We consider kA ∈ [40,100].

Each figure includes three plots, each associated with a different number of to-

kens (NT = 1,5,10) circulating in the rings.

Finally, the three figures differ in terms of activity level. Specifically, we consider

three activity levels 0,0.25,0.5 for the Figures 6.10, 6.11, 6.12, respectively.

10000
15000
20000
25000
30000
35000
40000
45000
50000
55000
60000
65000

40 50 60 70 80 90 100

T
im

e[
m

s]

kA

NT=1
NT=5

NT=10

Fig. 6.10: Total proximity-testing time vs privacy level with σ = 0.

6.5 Application to the proximity-based services: Prototype and Experiments 137

10000

20000

30000

40000

50000

60000

70000

80000

40 50 60 70 80 90 100
T

im
e[

m
s]

kA

NT=1
NT=5

NT=10

Fig. 6.11: Total proximity-testing time vs privacy level with σ = 0.25.

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

40 50 60 70 80 90 100

T
im

e[
m

s]

kA

NT=1
NT=5

NT=10

Fig. 6.12: Total proximity-testing time vs privacy level with σ = 0.50.

As a first consideration, observe that, for all the possible configurations of kA,σ ,NT ,

the time of a proximity test results acceptable (the worst result corresponds to

k = 100,NT = 1,σ = 0.5 that leads to a total time of about 90 seconds).

As expected, the total time increases with kA (we observe an almost linear

growth). Furthermore, the total time decreases with NT even though (regardless of

the traffic conditions) no significant difference exists between the case with NT = 5

and the case with NT = 10. Observe that an increase of NT results in bandwidth

waste and energy consumption for the devices (since they have to process more to-

kens). Therefore, NT = 5 can represent a good choice that leads to a total time of

about 30− 40 seconds with k = 100 and any σ .

Finally, the total time increases as the activity level σ increases. Anyway, this

effect is more evident when NT = 1 and less relevant for NT = 5 and NT = 10. This

138 6 Anonymous communication in Social networks

confirms that NT = 5 allows us to obtain good performance independently of the

activity of the users (in the considered range).

To better highlight the performance of our solution in a realistic scenario, we

report in Figure 6.13 the total time of a proximity test with a high privacy level

(kA = 80) for NT = 5,10 and σ = 0,0.25,0.5.

0

5000

10000

15000

20000

25000

30000

35000

σ=0
σ=0.25

σ=0.50

T
im

e[
m

s]

NT=5
NT=10

Fig. 6.13: Total proximity-testing time with kA = 80.

We note that the total time is in the range of 25−35 seconds and is almost stable

when σ varies.

6.6 Security analysis

In this section, we provide the security analysis of our solution. We start by defining

the threat model TM. We introduce the following assumptions:

• A1: The application domains are well-formed.

• A2: The applied α-ring schema is τ-safe (with respect to a given user mapping

h).

A1 can be obtained as discussed in [42]. A2 is guaranteed by ring schema updat-

ing 6.3.5. We recall that A2 implies that for each α-ring, it is sufficiently guaranteed

that at least kA users are alive and collaborative.

Adversary Model. We consider as an adversary the social network provider SN. It is

honest but curious in the sense that it legally performs the steps of the protocol, but

attempts to break the anonymity of the user victim.

6.6 Security analysis 139

Observe that SN acts as a global passive adversary able to monitor the entire flow

of messages exchanged between users. The proposed protocol offers anonymity in

this severe adversary model.

The next three Theorems show how the three Primitives of Section 6.3 guarantee

anonymity.

Theorem 6.15. A user U invoking P1 can be identified with probability not greater than
1
kA

(sender anonymity).

Proof. Since the token has a fixed size and changes hop-by-hop due to encryption,

U cannot be identified as the sender when filling the token. Therefore, the only way

for the adversary to identify that U is the sender is to detect a possible transition

empty/filled or filled/empty of a token in another point of the ring and try to draw

some information starting from this observation.

The only point of the ring from which the adversary can draw such information is

the bridge user, say X. Indeed, this is the only point of the ring in which the possible

transition empty/filled or filled/empty of a token could be in principle related to the

observable incoming or outcoming traffic in/from the bridge. Transitions occurring

at other points are not identifiable.

Therefore, we have to consider the following two cases (they are the only cases

potentially helpful for the adversary). Either (1) the adversary observes incoming

traffic in X (i.e., X may play the role of entry user), or (2) the adversary observes

outcoming traffic from X (i.e., X plays the role of exit user). In case (1), two alterna-

tives are possible. Either (1).a X actually injects a token into the ring by inserting the

message coming from outside, or (1).b X empties a token circulating in the ring as

the final step of Primitive P2 or P3, and then X cannot process the incoming traffic.

In case (1).a, the token cannot be filled by U , therefore we are not in the case of the

hypothesis. Consider now case (1).b. The adversary knows that the token injected by

X is empty. Two cases may hold. Either (1).b.1, i.e., the token, after a turn, reaches

X still empty, or (1).b.2, i.e., the token, after a turn, reaches X filled. The adversary

may understand which of the above cases ((1).b.1 or (1).b.2) occurs, just by observing

if outcoming traffic arises from the arrival of the token (i.e., X, after the turn, plays

the role of exit user). In the positive case, we are in case (1).b.2, otherwise, we are

in case (1).b.1. In the latter case, no sender is involved and we are not in the case

of the hypothesis. In case (1).b.2, a sender (possibly, U) filled the token somewhere

during the turn. But, due to Assumptions A1 and A2, the adversary cannot identify

the sender with probability greater than 1
kA

.

In case (2) (i.e., X plays the role of exit user), the adversary can infer that the

token injected by X into the ring is empty. Two cases may hold. Either (2).a, i.e.,

140 6 Anonymous communication in Social networks

the token, after a turn, reaches X still empty, or (2).b, i.e., the token, after a turn,

reaches X filled. The adversary may understand which of the above cases ((2).a or

(2).b) occurs, just by observing if outcoming traffic arises from the arrival of the

token (i.e., X, after the turn, plays again the role of exit user). In the positive case,

we are in case (2).b, otherwise, we are in case (2).a. In the latter case, no sender is

involved in this turn and we are not in the case of the hypothesis. In case (2).b, a

sender (possibly, U) had filled the token somewhere during the turn. But, due to the

assumptions, the adversary cannot identify the sender with probability greater than
1
kA

. The proof is then concluded.

Theorem 6.16. A user U receiving a message through Primitive P2 (as a response to

Primitive P1) can be identified with probability not greater than 1
kA

(recipient anonymity).

Proof.

This proof follows a similar reasoning to the proof of Theorem 6.15.

Since the token has a fixed size and changes hop-by-hop due to the encryption, U

cannot be identified as the recipient when emptying the token. Therefore, the only

way for the adversary to identify U as the recipient is to detect a possible transition

empty/filled or filled/empty of a token in another point of the ring and try to draw

some information from this transition. The only point of the ring from which the

adversary can draw such information is the bridge user, say it X.

Therefore, we have to consider the following two cases (they are the only cases

potentially helpful for the adversary). Either (1) the adversary observes incoming

traffic in X (i.e., X could play the role of entry user), or (2) the adversary observes

outcoming traffic from X (i.e., X plays the role of exit user). In case (1), two alter-

natives are possible. Either (1).a X actually injects a token in the ring inserting the

message coming from outside or (1).b X empties a token circulating in the ring as

the final step of Primitive P2 or P3, and then X cannot process the incoming traf-

fic. In case (1).a, the adversary can infer that a recipient (possibly, U) exists for this

token. The only way to draw more information about this recipient is to follow the

token and observe it when it reaches the bridge. At this point, the adversary can

detect a transition filled/empty in X, but this does not give any additional informa-

tion about where the message has been received. Therefore, due to Assumptions A1

and A2, the adversary cannot identify the recipient with probability greater than 1
kA

.

Consider now case (1).b. The adversary knows that the token injected by X is empty.

In this case, no recipient is present for such a token and we are not in the case of the

hypothesis.

6.6 Security analysis 141

In case (2) (i.e., X plays the role of exit user), the adversary can infer that the

token injected by X into the ring is empty. Again, no recipient is present for such a

token and we are not in the case of the hypothesis. The proof is then concluded.

Theorem 6.17. Let U be a user sending a message to a user D through P3. It holds: (1)

U can be identified as the sender with probability not greater than 1
kA

and (2) D can be

identified as the recipient with probability not greater than 1
kA

.

Proof.

(1) can be proved as in Theorem 6.15. (2) can be proved as in Theorem 6.16.

This concludes the security analysis.

7

A Crowd-based approach to achieve anonymity in

MQTT

MQTT is the most popular IoT protocol for communication of constrained devices. Since it

is designed to be lightweight, security issues were not natively addressed in MQTT. While

security aspects have been extensively studied in the literature, to the best of our knowl-

edge, anonymity issues have received very little attention. In this chapter, we propose a

new protocol, called MQTT-A, extending bridging-mode-MQTT to support anonymity of

both publishers and subscribers. This task is accomplished through the P2P collaboration

of intermediate bridge brokers, which forward the publish/subscribe requests of the clients

so that the final broker cannot understand the actual source/destination. Moreover, an

anonymity-preserving topic discovery mechanism is also provided. Importantly, all the

MQTT-A messages are exchanged through the standard MQTT primitives and by lever-

aging the bridging mechanism natively offered by MQTT. This allows us not to require

changes in the standard MQTT infrastructure to apply our solution, making it propos-

able from a practical point of view as well. The experimental validation shows that, from

the performance point of view, we only pay a reasonable price in terms of latency. No

significant impact on goodput occurs.

7.1 Introduction

Internet of things [11] is an evolving paradigm in which smart objects are connected

to each other to deliver services. Since IoT devices can be resource-constrained, tra-

ditional communication protocols such as HTTP cannot be adopted to connect them.

Therefore, researchers proposed new lightweight protocols allowing communication

in scenarios in which limited bandwidth is available and energy consumption is a se-

rious issue. MQTT [251] is the most popular protocol in the current IoT scenario. For

example, Facebook Messenger uses MQTT for instant messaging [300].

Despite its large adoption, MQTT does not include built-in security. The main

reason lies in the fact that complex security solutions require intensive CPU and

memory usage, making them not applicable to constrained devices. Then, in the

144 7 A Crowd-based approach to achieve anonymity in MQTT

literature, several solutions have been proposed to the trade-off between security

and efficiency [244, 67, 272].

In this chapter, we deal with a specific security aspect, that is anonymity, for

which very little attention has been devoted so far (to the best of our knowledge).

Specifically, we aim to prevent the identification of publishers and subscribers when

sending/receiving data, in every phase of the protocol, including the topic discovery.

As a matter of fact, while anonymity in communication networks has been exten-

sively studied for some decades, no specific solution exists in the domain of MQTT.

Therefore, a practical solution MQTT-compliant borrowed from ideas belonging

to the field of anonymous communication networks [71] is highly desirable. This is

just the contribution of this chapter.

Again, as in the previous chapters, we refer to three types of communication

anonymity that we can reach: sender anonymity, recipient anonymity, and relation-

ship anonymity.

In MQTT, publishers play the role of senders and subscribers play the role of

recipients. Our solution reaches both sender and recipient anonymity, then relation-

ship anonymity too. Furthermore, the proposed approach can be applied just from

one side (publishers or subscribers) achieving just one between sender and recipient

anonymity (but still enough to obtain relationship anonymity).

The problem with the standard MQTT approach is that clients communicate di-

rectly with the broker so that it is able to infer important information about them

[134].

To solve this problem, we take advantage of the bridging architecture that MQTT

offers. In this architecture, clients do not communicate directly with the broker but

through an intermediate broker called bridge broker. The bridging mechanism imple-

ments natively a low level of anonymity since devices are not directly connected to

the final broker hosting the topics. However, this is not enough. Indeed, the bridge

broker simply forwards the requests of the clients without hiding some patterns

(number of requests, topics of interest, and so on) sufficient for the re-identification

of the clients.

The core of our proposal is to set up an anonymous peer-to-peer (P2P) network

composed of the bridge brokers so that the final broker cannot discover which actual

bridge broker has started the communication. Our solution takes inspiration from

[230]. We chose this protocol since it is lighter than alternative solutions (e.g., [258])

and then, more suitable for IoT applications. Moreover, our solution is designed to be

transparent to MQTT clients, leaving all the complexities to the brokers. This leads

to two main advantages. First, clients can use our protocol regardless of whether they

7.2 Background 145

implement standard MQTT or MQTT-SN [252]. Second, also resource-constrained

clients can leverage our protocol.

The experiments performed in Section 7.7 show that an (acceptable) price in

terms of latency has to be paid if both sender and recipient anonymity are de-

sired (and then relationship anonymity too). However, if just one between sender

and recipient anonymity is enough (maintaining relationship anonymity too), then

the latency required by our protocol is halved. In terms of goodput, no appreciable

difference exists.

To provide a complete and effective solution, we did not neglect an aspect not

strictly regarding the MQTT communication, but still critically important with re-

spect to anonymity. We refer to the problem of topic discovery, that is, how to allow

clients to know which topics are available and which brokers host them. This aspect

is not treated in the standard MQTT protocol [225, 153], in which it is assumed that

clients know in advance topics and where to find them. This can be true for some

applications where publishers can advertise the topics to which they send data or

subscribers can advertise their interest in a given topic. However, when anonymity

is desired, this is not true anymore. Then, a suitable mechanism has to be imple-

mented.

To summarize, the main highlights of this chapter are the following:

• We provide an anonymity protocol supporting publisher and subscriber anony-

mous communication with a remote broker. We call this protocol MQTT-A(nonymous).

• We define a discovery protocol allowing the clients to know the available topics

and the brokers hosting them.

• All the exchanged information used to implement the above protocols is pro-

vided through standard MQTT messages. This avoids infrastructural changes in

the architecture and does not require particular effort for clients and brokers.

7.2 Background

MQTT is a client-server publish/subscribe messaging transport protocol [251]. Two

kinds of agents are involved in the message exchange: MQTT clients and MQTT bro-

kers. In turn, MQTT clients can be of two types: publisher (producer of information)

and subscriber (consumer of the provided information). We stress that an MQTT

client can play both roles of publisher and subscriber even at the same time. The

MQTT protocol requires that the information provided by a publisher must be as-

sociated with a topic, which in general is used to categorize the information itself.

Therefore, a subscriber can manifest that it is interested in receiving certain infor-

mation by just specifying its topic.

146 7 A Crowd-based approach to achieve anonymity in MQTT

A topic can present one or more levels separated by a forward slash (‘/’). This

way, topics can be organized in a hierarchical structure. Nevertheless, there is no

standardized semantic model for MQTT topics, therefore the name of a topic can be

chosen freely by publishing or subscribing entities [221].

Unlike the classical client-server architecture, in the MQTT architecture (Fig.

7.1), publishers and subscribers do not communicate directly between them but

through an MQTT broker. When a publisher sends a message to the broker, it spec-

ifies the information and the topic under which that information should be pub-

lished. Then, the broker forwards the published information to all the subscribers

interested in that topic.

Concerning MQTT messages, they present a limited amount of overhead, since

the protocol header is only 2 bytes. Moreover, MQTT limits the payload dimension

up to a maximum size of 256 MB. These constraints make MQTT suitable for low-

bandwidth networks and resource-constrained clients, such as IoT devices.

Furthermore, in both publish and subscribe messages, an MQTT client can spec-

ify the desired Quality of Service (QoS) level. MQTT supports three different Quality

of Service (QoS) levels (0,1, and 2). In detail:

• level 0 implies that messages are delivered at most once;

• level 1 implies that messages are delivered at least once;

• level 2 implies that messages are delivered exactly once.

Suppose a publisher sets QoS level QoSp when it publishes to a topic t. Simi-

larly, a subscriber chooses QoS level QoSs when it subscribes to the same topic t.

Two cases might occur: i) if QoSp > QoSs, then the broker forwards the data to the

subscribing client using QoSs; ii) if QoSp ≤ QoSs, then the broker forwards the data

to the subscribing client using QoSp.

Another feature provided by the MQTT protocol is represented by the retained

messages. A retained message is an MQTT message, with the retained flag set to true.

When a broker receives a retained message labeled with topic t, it stores it for that

topic. Thus, when a client subscribes to the topic t it will receive the retained mes-

sage immediately after the subscription. A broker can store only one retained mes-

sage per topic. Therefore, to update the retained message for a topic, it is sufficient

for a publisher to send a new message, for that topic, with the retained flag set to

true.

A core MQTT feature is represented by the bridging mechanism (Fig. 7.2) that al-

lows two MQTT brokers to connect together so that they can share messages between

them.

7.3 Scenario and motivations 147

Fig. 7.1: MQTT architecture.

Fig. 7.2: MQTT bridging mechanism.

This configuration is adopted to connect an edge broker (which will act as a

bridge) to a public broker. In such a way, the bridge broker will act as an MQTT

client for the public broker, thus it can send a subscribe or a publish message to the

latter.

Usually, clients are connected to the bridge broker through the local network,

and it can decide on which local topics to apply the bridging mechanism. This way,

not all the MQTT traffic locally generated is meant to be sent to a remote broker.

Moreover, MQTT allows the remapping of the local topics into public broker’s

topics. This procedure takes place in the bridge broker, in such a way that it is trans-

parent to MQTT clients. It is worth noting that, through the bridging mechanism,

information produced behind different brokers can be aggregated in a single place at

a public broker, thus allowing the subscribers to recover it with a single connection.

7.3 Scenario and motivations

The aim of this chapter is twofold. First, we want to offer anonymity guarantees

to both publishers and subscribers. Indeed, in a classical MQTT architecture, the

148 7 A Crowd-based approach to achieve anonymity in MQTT

Table 7.1: Notations.

Symbol Description

BR set of the bridge brokers

BP set of the public brokers

BD set of discovery brokers

p a generic publisher

s a generic subscriber

pub(T ,I) publish message of the information I on the topic T

sub(T) subscribe message on the topic T

B
p
R bridge broker directly connected to the publisher p

BsR bridge broker directly connected to the subscriber s

TN
topic under which new topics available on a certain public broker

are published

TN ′
topic under which new bridge brokers joining the network are

published

TS
topic under which the current set of all the available topics

is published

TS ′
topic under which the current set of all bridge brokers

is published

TF
(forwarding topic) topic-prefix labelling

information coming from remote bridge brokers

TA (actual topic) actual topic labelling an information

REMOTE topic-prefix labelling information coming from MQTT clients

broker can observe which subscribers are interested in which topics and which pub-

lishers send messages to those topics.

The adoption of end-to-end confidentiality mechanisms (regarding messages

and/or topics) is impractical since it would require a key exchange between MQTT

clients. This is possible only in restricted scenarios in which publishers and sub-

scribers are predefined and know each other.

Anyway, data-confidentiality-based solutions do not solve the anonymity prob-

lem. Indeed, the broker is still able to observe which publishers and subscribers are

communicating. Therefore, attacks based on background knowledge about even one

client can allow the broker to infer the topic and, as a consequence, information

about all the clients communicating on this topic.

7.3 Scenario and motivations 149

On the basis of the above considerations, in this chapter, we choose to achieve the

privacy goals by hiding the identities instead of contents. If the identity of clients

is really hidden, then the broker cannot link contents with clients. Privacy is then

achieved. Consider that the trivial use of a pseudonym for the client is not enough

because de-anonymization is always possible, also by taking into account that the

source and the destination of the communication (i.e., the IP addresses) are quasi

identifiers [68]. Therefore, we have to guarantee that both publishers and subscribers

are entities that the broker is not able to identify in the network. This is a goal typi-

cally reached in the context of anonymous communication networks [71].

To accomplish the above objective, we refer to the MQTT bridging mode (see Sec-

tion 7.2) in which clients interact (publish/subscribe) with a public broker through

a bridge broker. This natively implements a low level of anonymity, in the sense that

clients do not connect directly to a broker but are hidden behind their bridge brokers

acting as proxies. However, it is not enough to achieve actual anonymity. First, also

the identification of the local bridge could threaten privacy in the case in which the

local bridge serves a restricted group of clients. Moreover, two other problems arise.

The first is that it might happen that the bridge broker aggregates similar clients (in

terms of interests). Therefore, the above-mentioned issues still occur. This problem

is related to the concept of l-diversity [178]. In general, inference-based attacks are

still possible.

The idea we follow in this chapter is to hide the identity of the clients by making

anonymous and not identifiable the local bridge from/to which the communication

comes/goes, To do this, we implement, in Section 7.5, an anonymity peer-to-peer

protocol inspired by [230], in which the peers are represented by the bridge brokers.

To make effective the approach, we also provide a protocol allowing the clients

to discover which topics are offered by which public brokers. This is an impor-

tant aspect to take into consideration even when anonymity features are not re-

quired. Indeed, MQTT does not implement any native mechanism to accomplish

this task [225]. Furthermore, this becomes a fundamental pillar when publishers re-

main anonymous. Indeed, being anonymous, a publisher cannot otherwise advertise

the topics on which it will publish.

To conclude this section, we provide the notations we use through the rest of the

chapter. We denote by BR the set of the bridge brokers. They form the peer-to-peer

network of the anonymity protocol. We denote by BP the set of the public brokers.

They represent the actual brokers in which the clients publish or subscribe to topics

anonymously. Finally, we denote by BD the set of discovery brokers. They implement

the discovery protocol allowing the clients to know which public broker offers which

topic. Moreover, they allow peer discovery for the anonymity protocol.

150 7 A Crowd-based approach to achieve anonymity in MQTT

Finally, we denote by pub(T ,I) the publish message of the information I on the

topic T , and by sub(T) the subscribe message on the topic T .

We report in Table 7.1 the notations used throughout the rest of the chapter.

7.4 The discovery protocol

Through this protocol, we offer a discovery service to the bridge brokers so that they

can know which topics are available and which public brokers offer them. This ser-

vice is provided by the discovery brokers. In principle, just a single discovery broker

is enough to implement this protocol. Anyway, for scalability, it is more realistic

to distribute the service to more brokers so that bridge and public brokers are not

connected to a single possible point of failure [175].

Each discovery broker in BD maintains:

• a set of pairs S = {(T ,BP)} where BP ∈ BP . Each pair (T ,BP) ∈ S represents the

information that the topic T is available on the public broker BP . The set S has

to be the same for all the discovery brokers in BD .

• a topic TN that will contain a single pair (T ,BP) denoting that a new topic T is

available on the public broker BP .

• a topic TS that will provide the current set S to the new bridge brokers joining

the network. S is stored as a retained message for the topic TS .

Since S could exceed the maximum size allowed for the content of a topic, we

may consider more topics T 1
S , . . .T

k
S , each one containing a portion of S. For the sake

of presentation, we consider just a single topic TS , which is also the more realistic

case.

The topics TN and TS are prefixed strings in the system.

The broker BD publishes (to itself) the message S with the retained flag set to

true. In this way, all the clients subscribing to the topic TS receive the retained mes-

sage immediately after subscribing. To update the set S, it is sufficient for the broker

to just re-publish again S (with retained flag set to true). Doing so, as explained in

Section 7.2, only the last retained message will be stored.

Consider now a new bridge broker BR ∈ BR joining the system. It randomly se-

lects a discovery broker BD ∈ BD and sends it the message sub(TS). In other words,

BR subscribes to the topic TS hosted by the broker BD . This way, BR receives (as a

retained message) the current set S. Then, it removes its subscription to TS so that it

does not receive repeated information (i.e., the set S) when other bridge brokers join

the network.

However, a mechanism to update S (when a new topic is available on some public

broker) is needed to BR and BD . This mechanism is based on TN .

7.5 The anonymity protocol MQTT-A 151

In particular, when the bridge broker BR joins the network and (randomly) selects

the discovery broker BD , BR also sends sub(TN) to it. This subscription is maintained

over time.

Consider now a public broker BP ∈ BP receiving a publish message or a subscribe

message to a new topic T ∗ through the anonymity protocol of Section 7.5. BP has to

advertise the fact that it hosts this new topic.

To do this, BP randomly selects a discovery broker BD and sends the message

pub(TN , (T ∗,BP)). BD adds the pair (T ∗,BP) to the set S. Moreover, since some bridge

brokers are subscribers to TN , they also receive (through the standard MQTT ap-

proach) the new pair and update the set S. To propagate the new information to all

the bridge brokers, BD sends the message pub(TN , (T ∗,BP)) to all the other discovery

brokers. Since each bridge broker is a subscriber on TN on some discovery broker, all

the bridge brokers eventually receive (T ∗,BP) through the standard MQTT protocol.

7.5 The anonymity protocol MQTT-A

The anonymity protocol we propose in this section takes inspiration from the

Crowds protocol [230]. Our solution relies on a P2P network formed by bridge

brokers collaborating to forward publish/subscribe messages from MQTT clients to

the intended public broker. The collaboration among brokers exploits the bridging

mechanism, which is natively supported by the MQTT protocol, thus not requiring

infrastructural changes in the MQTT architecture.

Similarly to Crowds, our protocol is characterized by a forwarding probability

pf , namely a probability for a message to remain within the peer network. More-

over, as in Crowds, we require that each bridge broker knows all the peers partic-

ipating in the P2P network. To guarantee this, we propose an MQTT-based peer

discovery protocol, thanks to which every peer maintains an updated set of all the

bridge brokers forming the network. This protocol is based on the approach pre-

sented in Section 7.4. It leverages one or more discovery brokers holding a set of

pairs S ′ = (IPBR
,portBR

), where IPBR
and portBR

represent the IP address and the port

of the bridge broker BR participating in the network.

Moreover, each discovery broker stores two additional prefixed topics: TN ′ and

TS ′ . The topic TN ′ is used by the discovery broker itself to publish any update of the

set S ′ (an update typically happens whenever a new peer joins the network). Instead,

the topic TS ′ holds the set S ′ as retained message, so that any new peer joining the

network, after subscribing to this topic, immediately receives the set S ′ .

152 7 A Crowd-based approach to achieve anonymity in MQTT

When a bridge broker joins the P2P network, it proceeds as follows. First, it sub-

scribes to the two topics TS ′ (to receive the set S ′) and TN ′ of a randomly selected

discovery broker BD .

Then, the bridge broker sends a publish message for the topic TN ′ advertising its

IP address and its port to BD . Doing so, every bridge broker subscribed to the topic

TN ′ of BD receives such a message and, at the same time, BD can update the set S ′ .

At this point, BD sends a publish message to all the other discovery brokers for the

topic TN ′ , advertising the new pair of IP address and port. Since each bridge broker

is a subscriber on TN ′ of some discovery broker, this procedure allows every bridge

broker to learn all other brokers of the network.

We stress that, as described in Section 7.4, every bridge broker, joining the P2P

network, must subscribe to both TN ′ and TS ′ . However, while the subscription to TN ′

lasts over time, the subscription to TS ′ is undone once the set S ′ is received.

This concludes the description of the peer discovery protocol.

In the following, we describe in detail the anonymity protocol we propose.

To describe our solution we set a scenario involving:

• a public broker BP ∈ BP hosting the topic TA (where A stands for actual);

• a publisher p aiming to publish information to the topic TA;

• a subscriber s interested in the topic TA;

• the set of bridge brokers BR, among which the broker B
p
R ∈ BR represents the

bridge broker directly connected to the publisher p, and the broker Bs
R ∈ BR

represents the bridge broker directly connected to the subscriber s.

Among other topics, each bridge broker stores two prefixed topics known to all

the bridge brokers: a topic TF , where F stands for forwarding, and a topic REMOTE.

When a publish or subscribe message is labelled with a topic having prefix

REMOTE or TF , such a message is forwarded to another broker via the bridging

mechanism. Nevertheless, there is a slight difference between the two mentioned

topics. A broker can only receive a message labelled with the topic REMOTE/# from

MQTT clients directly connected with it. On the contrary, publish or subscribe mes-

sages coming from bridge brokers can only be labelled with the topic TF /#.

Consider now a publisher p that wants to publish the information DATA un-

der the topic TA. p sends the message pub(REMOTE/TA,DATA) to the broker B
p
R.

B
p
R randomly selects a bridge broker, say B1

R, among the peers participating in the

network. Then, it remaps the topic of the original publish message (REMOTE/TA)

to TF /TA and sends the message pub(TF /TA,DATA) to B1
R, via the bridging mecha-

nism. We recall that the bridging mechanism allows B
p
R to act as an MQTT client (a

publisher, in this case) towards B1
R.

7.5 The anonymity protocol MQTT-A 153

Once receiving the message, B1
R acts as follows. First, it extracts a random number

R between 0 and 1. At this point, two cases can occur.

If R ≤ pf , then B1
R randomly selects a bridge broker B2

R among the peers partici-

pating in the network. Then, B1
R sends the message pub(TF /TA,DATA) to B2

R, via the

bridging mechanism. Observe that, no topic remapping is needed in this case.

If R > pf , then the message must be published at the public broker holding the

topic TA, if any. To do this, B1
R finds the pair (TA,BP) in the locally stored set S. If such

a pair exists, then B1
R simply sends the message pub(TA,DATA) to BP . Conversely, if

such a pair does not exist yet, B1
R chooses at random a public broker BP ∈ BP and then

sends it the message pub(TA,DATA). In this case, being TA a new topic for BP , BP

must activate the discovery protocol (see Section 7.4) to notify all the bridge brokers

of the new topic. This way, each bridge and discovery broker will update the set S.

Consider now the case in which R ≤ pf . In this case, B2
R receives from B1

R the mes-

sage pub(TF /TA,DATA). At this point, the procedure above described is recursively

applied. Therefore, B2
R again extracts a random number R′ and compares it with pf .

If R′ ≤ pf , the message pub(TF /TA,DATA) is sent to a bridge broker B3
R chosen at

random. Observe that, in this case, no topic remapping is needed. On the contrary, if

R′ > pf , then B2
R sends the message pub(TA,DATA) to the public broker BP , follow-

ing the procedure described above.

Fig. 7.3: MQTT-A(nonymous).

The mechanism so far described provides anonymity to publishers. Actually, a

similar mechanism can be employed so that the same anonymity guarantees are pro-

vided to subscribers.

154 7 A Crowd-based approach to achieve anonymity in MQTT

Consider the subscriber s interested in the topic TA. s sends the message

sub(REMOTE/TA) to its broker Bs
R. Then Bs

R chooses at random a bridge broker, say

B4
R, and sends it the message sub(TF /TA), via the bridging mechanism.

Once receiving the above message, B4
R acts as follows. First, B4

R stores Bs
R in the

list of clients subscribed to the topic TF /TA, creating this topic if it has not already

been locally stored. Afterward, it extracts a random number and compares it to pf to

decide whether to send the subscription message to the public broker BP (retrieved

from its local set S) or to another bridge broker.

In the first case, B4
R sends sub(TA) to BP and then the procedure stops. Observe

that, in this case, the original topic TF /TA needs to be remapped to TA. In the second

case, B4
R sends sub(TF /TA) to a randomly chosen bridge broker, say B5

R. At this point,

B5
R recursively repeats the procedure described above. Therefore, B5

R stores B4
R in the

list of clients subscribed to the topic TF /TA, possibly creating this topic. Then, B5
R ex-

tracts a random to decide where to send the received subscribe message. Eventually,

after a certain number of iterations, the subscribe message will reach the intended

public broker BP .

Finally, when BP receives a publish message, say pub(TA,DATA), it broadcasts

the payload DATA to all the subscribers to the topic TA. Suppose B5
R is the bridge

broker directly subscribed to the topic TA at BP . B5
R will receive DATA and, then, it

will broadcast this payload to all the clients subscribed to the topic TF /TA, among

which there is B4
R. Observe that, being B5

R the bridge broker directly connected to

BP , the topic TA must be remapped to TF /TA. Again, following the same mechanism,

B4
R will send the payload DATA to all the subscribers interested in the topic TF /TA,

among which there is Bs
R. Once Bs

R receives the payload DATA, it will remap TF /TA

to REMOTE/TA and, then, it will broadcast DATA to all the subscribers interested

in REMOTE/TA, among which there is s.

To conclude this section, we summarize the anonymity protocol in Figure 7.3.

7.6 Path intersection and QoS management

In Section 7.5, to simplify the description of the protocol, we considered the case

of a single publisher and a single subscriber. Moreover, we assumed that the paths

followed by the publish and subscribe messages labeled with the same topic do not

intersect.

Now, we remove the above simplifying assumptions and deal with the conse-

quent impact on QoS guarantees of subscribers.

Two cases deserve to be investigated: (i) the paths followed by at least two sub-

scribe messages labeled with the same topic intersect, (ii) the paths followed by at

7.6 Path intersection and QoS management 155

least one publish message and at least one subscribe message labeled with the same

topic intersect.

As we will see in the following, the problem of path intersection requires ad-hoc

strategies to guarantee the QoS level chosen by each subscriber.

We recall that QoS levels 0 and 1 allow duplicate messages, while QoS level 2

requires the message to be delivered exactly once. We stress that both publishers

and subscribers can independently choose the desired QoS level for each message

being sent or received. Therefore, as an example, it might happen that a client p

publishes on a topic with QoS level 1, while there is a subscriber s interested in the

same topic but aiming to receive data with QoS level 2. Therefore, s cannot be sure

about the fact that it is not receiving duplicate messages.

This QoS mismatching represents an open problem even in standard MQTT.

Without loss of generality, in the following, we will consider that clients always pub-

lish messages with QoS level 2. This way, any QoS level chosen by subscribers can be

met. Moreover, to improve the readability of our discussion, in the following, unless

otherwise stated, we will implicitly refer to publish and subscribe messages labeled

with the same topic.

7.6.1 Subscribe-Subscribe Path intersection

In this section, we consider a scenario in which a set of subscribers are interested

in the same actual topic TA, hosted by the public broker BP . Each subscriber might

select arbitrarily a certain QoS level for its subscribe message.

Following our protocol, each subscribe message crosses a certain number of

bridge brokers before reaching the public broker BP . Suppose that, before reaching

BP , two or more subscribe messages cross the same bridge broker. In the following,

we will call such a broker as intersection broker.

At this point, the intersection broker can choose one of the following strategies:

• blind strategy;

• topic-aware strategy;

• topic-and-QoS-aware strategy.

These three strategies are sketched in Figures 7.4,7.5, and 7.6, respectively.

An intersection broker, implementing the blind strategy, treats all the subscribe

messages the same, regardless of whether they are labeled with the same or different

topics. Therefore, subscribe messages labeled with the same topic, in principle, can

be routed to different brokers.

An intersection broker, implementing the topic-aware strategy, treats the sub-

scribe messages labeled with the same topic differently from all the other messages

156 7 A Crowd-based approach to achieve anonymity in MQTT

Fig. 7.4: Blind strategy.

crossing it. In particular, referring back to our scenario, just the first received sub-

scribe message to the topic TF /TA is forwarded according to the protocol described in

Section 7.5. On the contrary, all the other subscribe messages to the same topic that

come later are not forwarded further. For such messages, the intersection broker has

just to memorize the bridge brokers they come from in the list of brokers interested

in topic TF /TA. This is enough to guarantee that all the subscribers will be able to

receive the data later published to the actual topic TA. We recall that this strategy

is not QoS-aware and therefore messages labeled with the same topic but requiring

different QoS are not treated differently.

An intersection broker, implementing the topic-and-QoS-aware strategy, distin-

guishes messages, labeled with the same topic, on the basis of the QoS level they

require. To handle the different QoS levels, each bridge broker hosts three forward-

ing topics TF /Q0, TF /Q1, and TF /Q2. Therefore, subscribe messages sent by clients

interested in the actual topic TA but with different QoS levels will follow different

paths in the network. In fact, subscribe messages requiring different QoS levels are

treated as messages labeled with different topics (either TF /Q0, TF /Q1, or TF /Q2).

7.6 Path intersection and QoS management 157

Fig. 7.5: Topic-aware strategy.

On the other hand, concerning messages labeled with the same actual topic and

QoS level, the following strategies are applied:

• concerning topics TF /Q0 and TF /Q1, both blind strategy and topic-aware strategy

can be applied (In Figure 7.6, we consider the topic-aware strategy);

• concerning topic TF /Q2, only the topic-aware strategy can be applied.

7.6.2 Publish-Subscribe Path intersection

In this section, we consider a scenario in which a client aims to publish on the actual

topic TA (hosted by the public broker BP) and at least one subscriber is interested in

the same actual topic TA.

Following our protocol, each (publish or subscribe) message crosses a set of

bridge brokers before reaching the public broker BP . Suppose that, before reaching

BP , at least one subscribe message and one publish message cross the same bridge

broker. As before, we call such a broker an intersection broker.

158 7 A Crowd-based approach to achieve anonymity in MQTT

Fig. 7.6: Topic-and-QoS-aware strategy.

At this point, the intersection broker can choose one of the three strategies men-

tioned above (i.e., either the blind strategy, the topic-aware strategy, or the topic-and-

QoS-aware strategy).

An intersection broker, implementing the blind strategy, acts as follows. When it

receives the publish message it does not publish this message locally, regardless of

whether it has locally memorized other bridge brokers subscribed to the same topic

labeling the publish message. Therefore, the publish message is further forwarded

until it reaches the public broker BP .

An intersection broker that implements the topic-aware strategy acts as follows.

When it receives the publish message, it first verifies whether it has locally memo-

rized other bridge brokers subscribed to the same topic of the publish message. If

this is not the case, then the intersection broker behaves as described by the blind

strategy. Conversely, if the above condition is met, the intersection broker publishes

the received message locally. This way, all the bridge brokers subscribed to the same

topic receive the payload associated with the publish message and, in turn, this pay-

7.6 Path intersection and QoS management 159

load is forwarded up to the actual subscribers. Observe that, even though the topic-

aware strategy is applied, the publish message has to be further forwarded to the

public broker BP , since this is the only way that message can reach all the interested

subscribers.

As already described, implementing the topic-and-QoS-aware strategy requires a

slight modification to the forwarding topics hosted by each bridge broker. Indeed,

according to this strategy, each bridge broker hosts three forwarding topics: TF /Q0,

TF /Q1, and TF /Q2. When a publish message for the topic TF /TA reaches an intersec-

tion broker, such a broker follows the topic-aware strategy. However, differently from

before, the message is locally published only under topics TF /Q0 and TF /Q1.

7.6.3 Strategies Comparison

To conclude this section, we examine the advantages and drawbacks of the presented

strategies. Overall, the blind strategy represents the easiest solution to implement.

However, adopting this strategy leads to higher bandwidth consumption than other

strategies since messages intersecting in the same broker are simply propagated into

the network without being aggregated [249]. On the contrary, the topic-aware strat-

egy requires the least bandwidth of the three strategies. However, the main draw-

back of this strategy is that it is not QoS-aware. To explain why this may represent

an issue, we consider the following example. Suppose there are two subscribers s1

and s2 both interested in the topic TA but requiring different QoS, 0 and 2 respec-

tively. We consider that the paths followed by the two subscribe messages in the

network intersect. According to the topic-aware strategy, the intersection broker fur-

ther forwards only the first received subscribe message. This way, all the brokers

(including the intended public broker BP) crossed by such a message will memo-

rize the QoS level that it requires. Such QoS level can be either 0 or 2 depending on

which subscribe message comes first at the intersection broker. Observe that, since

the public broker will be aware of just one subscription out of the two, applying the

topic-aware strategy also turns out to be advantageous anonymity-wise speaking, not

just bandwidth-wise speaking.

Therefore, all the data published on the topic TA will cross all the bridge brokers

from the public broker to the intersection broker respecting the QoS level required

by the subscribe message. Observe that, this may be an issue, either for s1 or s2.

Indeed, supposing the s1 subscription (requiring QoS level 0) comes first at the in-

tersection broker, the QoS level required by s2 cannot be satisfied, since it is higher

than 0. On the contrary, supposing the s2 subscription (requiring QoS level 2) comes

first at the intersection broker, the QoS level required by s1 can be satisfied, since it

is lower than 2. However, this comes with a cost. Indeed QoS level 2 is satisfied in the

160 7 A Crowd-based approach to achieve anonymity in MQTT

path from the public broker to the intersection broker, while QoS level 0 is satisfied

in the path from the intersection broker to s1. In general, the overhead introduced

by the QoS level 2, in the first part (i.e., from the public broker to the intersection

broker) of the path, may not be acceptable for s1.

A similar case might happen when the paths followed by a publish and a sub-

scribe message intersect. Suppose there are a publisher p and a subscriber s, both

requiring QoS level 2. According to the topic-aware strategy, the subscriber s receives

the publish message by the intersection broker. Actually, s will receive the same pub-

lish message also by the public broker. Therefore, despite the fact that s chose the

QoS level 2, s will receive duplicate messages. This is due to the fact that, regard-

less of whether or not a path intersection has occurred, the publish message, as well

as the subscribe message, must reach the public broker. This way, all the interested

subscribers can receive the publish message and the subscriber s can receive all the

messages published on the topic by all the publishers in the network, not just by p.

As the occurrence of the two situations above described is not acceptable, bridge

brokers can implement the topic-and-QoS-aware strategy. Indeed, referring back to

our last example, when the publish message reaches the intersection broker, it is

locally published just under topics TF /Q0 and TF /Q1, which are also the QoS lev-

els that can tolerate duplicate messages. Such a strategy ensures that the QoS level

required by subscribers is always met, provided that publishers guarantee an appro-

priate QoS level. However, this comes with a cost. Indeed this strategy requires more

bandwidth consumption than the topic-aware strategy.

7.7 Experiments

Through this section, we perform an experimental validation of MQTT-A and com-

pare it with the standard MQTT protocol. To obtain the anonymity features, MQTT-

A introduces a communication overhead. Therefore, the aim of this section is to show

that the price we pay is tolerable and the performance results acceptable.

7.7.1 Experimental Setting

For implementation and testing, we relied on HiveMQ CE [125], which is a Java-

based open source MQTT broker. We customized the bridge brokers to implement

our solution and deployed a P2P network leveraging also Digital Ocean cloud plat-

form [205] to have remote peers. No change is required for clients and public bro-

kers. In detail, for our experiments, we consider two network configurations, one

for MQTT-A and the other for MQTT. The aim is to compare the two protocols by

measuring latency and goodput.

7.7 Experiments 161

MQTT-A Configuration In MQTT-A, we have the following components:

• Clients: They are deployed through the Java library provided in [126] with no

change. They are connected to the bridge brokers through a local network.

• Bridge Brokers: They are implemented by customizing the Java library [125]

and deployed to form a P2P network. In particular, they are partially deployed

on standard laptops and partially deployed on the Digital Ocean cloud platform

[205]. To obtain realistic results, the communication bridge-to-bridge brokers

always happens through the Internet.

• Public Brokers: They are deployed on HiveMQ Cloud, a cloud-based platform

hosting MQTT brokers. They are standard brokers and do not require any imple-

mentation change. Clearly, the communication bridge-to-public brokers always

happens through the Internet.

MQTT Configuration In MQTT, the scenario is a simplification of the previous sce-

nario. In particular, clients are connected to bridge brokers through the local net-

work and bridge brokers are directly connected to public brokers through the Inter-

net.

Regarding MQTT-A, we chose to adopt the blind strategy (see Section 7.6), which

is the simplest one but the worst in terms of performance. As a measure of perfor-

mance, we considered goodput and latency.

7.7.2 Goodput

For goodput, we mean the number of useful information bits received by a subscriber

in the unity of time.

To measure it, we fixed a sending rate for the publishers and observed the corre-

sponding goodput for the subscribers. We considered three different sending rates:

1 KBytes/s, 10 KBytes/s, and 100 KBytes/s. We study as the goodput varies as the

forward probability of MQTT-A varies. Since the higher the forward probability the

longer the paths, we expect the goodput of MQTT-A decreases as the forward prob-

ability increases. Obviously, the goodput of MQTT does not depend on the forward

probability.

We performed our experiment by considering two levels of QoS (0 and 2). Since

QoS level 2 requires additional communication overhead with respect to QoS level

0, the goodput of both MQTT and MQTT-A is lower than QoS level 0.

The results with QoS level 0 are reported in Figures 7.7, 7.8, and 7.9, for sending

rate of 1 KBytes/s, 10 KBytes/s, and 100 KBytes/s, respectively. The results with QoS

level 2 are reported in Figures 7.10, 7.11, and 7.12, for sending rate of 1 KBytes/s,

10 KBytes/s, and 100 KBytes/s, respectively.

162 7 A Crowd-based approach to achieve anonymity in MQTT

Regarding QoS level 0, we observe that for all the sending rates and almost all

the forwarding probabilities, the percentage difference between MQTT and MQTT-

A ranges from 3 to 5%. The worst case corresponds to a forward probability equal

to 0.9 and sending rate of 100 KBytes/s. The corresponding percentage difference is

less than 8%.

Considering QoS level 2, MQTT-A shows a slight worsening. Indeed, for almost

all the sending rates and almost all the forwarding probabilities, the percentage dif-

ference is between 7-10%. The worst case corresponds to a forward probability of

0.9 and sending rate of 100 KBytes/s in which the percentage difference is less than

18%.

However, high forwarding probabilities cannot be adopted also for security rea-

sons (see Section 7.8). Therefore, we can conclude that the price in terms of through-

put is not relevant. For completeness, we show in Figure 7.13, the goodput with a

forwarding probability equal to 0.67 and sending rate of 10 KBytes/s. We can ob-

serve that the goodput is essentially the same for MQTT and MQTT-A and it is very

close to the sending rate.

950

1000

1050

1100

1150

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

G
oo

d
p

u
t[

B
yt

es
/s

]

pf

MQTT-A
MQTT

Sendind Rate

Fig. 7.7: Goodput with sending rate 1 KBytes/s and QoS level 0.

7.7.3 Latency

The second considered metric is the end-to-end latency measured between the in-

stant in which a message is sent by the publisher and the instant in which it is re-

ceived by the subscriber. We study how this latency varies as the forwarding proba-

bility of MQTT-A varies. We measured the latency for three different message sizes

7.7 Experiments 163

9600

9800

10000

10200

10400

10600

10800

11000

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

G
oo

d
p

u
t[

B
yt

es
/s

]

pf

MQTT-A
MQTT

Sending Rate

Fig. 7.8: Goodput with sending rate 10 KBytes/s and QoS level 0.

96000

98000

100000

102000

104000

106000

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

G
oo

d
p

u
t[

B
yt

es
/s

]

pf

MQTT-A
MQTT

Sending Rate

Fig. 7.9: Goodput with sending rate 100 KBytes/s and QoS level 0.

(100 Bytes, 1000 Bytes, and 10000 Bytes), considering two QoS levels (0 and 2). The

results are reported in Figures 7.14, 7.15, and 7.16, respectively.

As a first observation, we see that there is no appreciable difference when the

packet size changes in both protocols.

Second, latency increases for both protocols by approximately the same factor

(1.4-1.5) when the QoS level goes from 0 to 2.

Finally, as expected, the latency of MQTT-A increases with the forward proba-

bility (corresponding to longer paths). This is the main drawback of the proposed

approach.

164 7 A Crowd-based approach to achieve anonymity in MQTT

960

980

1000

1020

1040

1060

1080

1100

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

G
oo

d
p

u
t[

B
yt

es
/s

]

pf

MQTT-A
MQTT

Sendind Rate

Fig. 7.10: Goodput with sending rate 1 KBytes/s and QoS level 2.

8000

8500

9000

9500

10000

10500

11000

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

G
oo

d
p

u
t[

B
yt

es
/s

]

pf

MQTT-A
MQTT

Sending Rate

Fig. 7.11: Goodput with sending rate 10 KBytes/s and QoS level 2.

However, we have to consider that this condition guarantees both sender and

recipient anonymity. If we relax this constraint and require just one of the two, the

latency of MQTT-A is halved.

In Figure 7.17, we set the forward probability to 0.67 and show the value of la-

tency of MQTT (in blue) and MQTT-A when both sender and recipient anonymity

are achieved (green) or when just one of two properties is supported (red).

We observe that in the first case (green bar) the ratio between the latency of

MQTT-A and MQTT is less than 3, while in the second case, it is less than 1.5. This

applies with minimum differences for the two QoS levels and packet sizes.

7.8 Threat Model and Security Analysis 165

90000

95000

100000

105000

110000

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

G
oo

d
p

u
t[

B
yt

es
/s

]

pf

MQTT-A
MQTT

Sending Rate

Fig. 7.12: Goodput with sending rate 100 KBytes/s and QoS level 2.

0

2000

4000

6000

8000

10000

12000

14000

QoS=0

QoS=2

G
oo

d
p

u
t[

B
yt

es
/s

]

Sending Rate
MQTT

MQTT-A

Fig. 7.13: Goodput with pf = 0.67 and sending rate 10 KBytes/s.

7.8 Threat Model and Security Analysis

Since our anonymity protocol is based on [230], we consider the threat model of the

original paper. However, a very significant difference exists. In [230], the recipient of

the communication to protect is an end server that in our solution corresponds to a

public broker. Anyway, such a public broker is not the actual recipient that, instead,

is a subscriber to a topic on this public broker. Then, this difference has to be taken

into account in our analysis. For example, in Table 1 of [230], when considering the

protection of the recipient against the end server as an attacker, it results N/A since

the recipient is the end server itself. On the other hand, in our solution, it is not true

anymore.

166 7 A Crowd-based approach to achieve anonymity in MQTT

0

100

200

300

400

500

600

700

800

900

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

L
at

en
cy

[m
s]

pf

MQTT-A QoS 0
MQTT-A QoS 2

MQTT QoS 0
MQTT QoS 2

Fig. 7.14: Latency with packet size of 100 Bytes.

0

100

200

300

400

500

600

700

800

900

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

L
at

en
cy

[m
s]

pf

MQTT-A QoS 0
MQTT-A QoS 2

MQTT QoS 0
MQTT QoS 2

Fig. 7.15: Latency with packet size of 1000 Bytes.

We now describe the considered threat model.

We consider the same adversaries and security properties of [230]. Clearly, they

are properly adapted (and contextualized) to our approach to take into account the

fact that the recipient of the communication is not a central server (i.e., the pub-

lic broker), but a subscriber connected to a bridge broker participating in the P2P

network.

Attackers.

• Local Eavesdropper: An attacker that compromises the bridge broker directly

connected to a publisher or subscriber.

7.8 Threat Model and Security Analysis 167

0

100

200

300

400

500

600

700

800

900

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

L
at

en
cy

[m
s]

pf

MQTT-A QoS 0
MQTT-A QoS 2

MQTT QoS 0
MQTT QoS 2

Fig. 7.16: Latency with packet size of 10000 Bytes.

0

50

100

150

200

250

300

QoS=0

QoS=2

L
at

en
cy

[m
s]

MQTT
MQTT-half-A

MQTT-A

Fig. 7.17: Latency with pf = 0.67 and packet size of 100 Bytes.

• Collaborating bridge brokers: A set of bridge brokers participating in the P2P

network that collaborate to identify publishers and subscribers.

• Public broker: The public broker hosting the actual topics in which MQTT

clients are interested. It represents the end server of [230].

Clearly, as [230], our proposal is not oriented to the protection against a global

adversary able to observe the entire flow of messages exchanged in the network. As

a matter of fact, MQTT (and our proposal too) is designed for wide-area networks,

in which the existence of a global adversary is unrealistic.

Security properties [219].

• Sender Anonymity: The identity of the publishers is hidden.

168 7 A Crowd-based approach to achieve anonymity in MQTT

• Recipient Anonymity: The identity of the subscribers is hidden.

• Relationship Anonymity: The attacker cannot discover that a publisher and a

subscriber are communicating with each other.

By [219], it is sufficient to guarantee either sender anonymity or recipient anonymity

to obtain relationship anonymity.

Now, we analyze how the attackers perform against the security properties. To

do this, we consider the following scenario.

We have a publisher p directly connected to a bridge broker B
p
R that publishes

data on a topic TA hosted by the public broker BP . Similarly, we consider a subscriber

s directly connected to a bridge broker Bs
R interested in the topic TA hosted by BP .

In favor of security, we neglect the low level of anonymity introduced natively

by the bridging mechanism and assume that sender anonymity is broken when the

adversary identifies Bp
R (in place of p). Similarly, we assume that recipient anonymity

is broken when the adversary identifies Bs
R (in place of s).

Resistance against the local eavesdropper. In this case, the attacker compromises

either B
p
R or Bs

R. When the attacker is B
p
R, it is able to observe directly the incoming

publish messages coming from p, then sender anonymity is not achieved. However,

B
p
R is not able to identify the subscriber s interested in the offered topic. Indeed, even

in the case B
p
R receives a subscribe message to forward towards BP on the same topic,

it cannot distinguish Bs
R from the other bridge brokers of the network. Therefore,

if the P2P network is sufficiently huge, recipient anonymity is guaranteed and then

also relationship anonymity.

Similar considerations can be applied when the attacker is Bs
R. In this case, since

it is able to observe directly the incoming subscribe messages coming from s, then

recipient anonymity is not achieved. However, Bp
R cannot be identified by Bs

R, thus

preserving sender anonymity and then relationship anonymity.

Resistance against collaborating bridge brokers. Regarding this type of adversary,

in [230], it is provided a detailed probabilistic analysis that can be applied also to

our solution. For the sake of presentation, we report directly the two main results of

the analysis and do not repeat the calculations.

The first result is that, given n nodes forming the peer network, we obtain

probable innocence with respect to sender anonymity against c collaborators, if n ≥
pf

pf − 1
2

(c+ 1).

Probable innocence means that, from point of view of the attacker , the sender

appears no more likely to be the originator of a message than to not be the originator.

According to this result, a higher probability pf allows us to resist a higher num-

ber of corrupted nodes.

7.9 Related Work 169

The second result is that if n is sufficiently high, we obtain absolute privacy for

sender anonymity with a probability approaching 1. However, the growth of prob-

ability can be slow if pf is large since it is more likely to involve a corrupted node

in the path. Therefore, there exists a security trade-off regarding the value of the

probability pf .

Absolute sender privacy against an attacker means that the attacker can in no

way distinguish the situations in which a potential sender actually sent communica-

tion and those in which it did not.

Clearly, in our application, the role of the sender considered in [230] is played

both from B
p
R and Bs

R. As a consequence, if we have a sufficiently high number of

bridge brokers, then our solution offers both sender and recipient anonymity and

then relationship anonymity.

Resistance against the public broker. In this case, the attacker is BP . Similarly to

[230], sender anonymity is achieved since the publish message sent by B
p
R cannot

be distinguished by BP from a publish message originated from any other bridge

broker. Unlike the previous adversary, this result does not depend on the probability

pf .

Regarding recipient anonymity, while in [230] it is not applicable since the re-

cipient is the server itself, in our application we can consider the recipient from the

point of view of BP simply as a sender of a subscribe message. Then, by applying the

same reasoning done for Bp
R, also Bs

R cannot be distinguished from any other bridge

broker.

Then, we obtain sender, recipient, and relationship anonymity against this ad-

versary.

7.9 Related Work

Security in MQTT is an open problem [215, 217, 184]. On the one hand, implement-

ing security mechanisms is crucial to protect end-to-end clients. On the other hand,

since MQTT is adopted when constrained devices are involved [263], complex se-

curity solutions cannot be applied. Therefore, MQTT does not provide any built-in

security mechanism.

A first issue regards confidentiality. The basic approach consists of using TLS to

establish secure channels [80]. However, it has a negative impact on performance

and energy consumption [224]. Therefore, more advanced solutions have been pro-

posed in the literature [182, 253, 2, 244, 237, 81, 204, 138].

Often, the confidentiality mechanisms are adopted to reach also authorization

(with a focus on access control) [198, 187]. A lot of works pursuing both authorization

170 7 A Crowd-based approach to achieve anonymity in MQTT

and confidentiality are based on CP-ABE or KP-ABE [116, 31, 185, 172]. Clearly,

these schemes differ from the standard ABE schemes since they are tailored for being

used by constrained devices.

Another security feature investigated in MQTT is authentication [48, 30, 15]. For

example, in [46], a multi-factor blockchain-based solution for authenticating clients

is provided.

The problem of privacy in MQTT [9, 133] is more related to our work. An inter-

esting solution aimed to obfuscate the topics when public brokers are involved is

provided in [97]. However, it requires pre-shared keys between clients making this

solution not compliant with more general scenarios (such as that described in this

paper) in which publishers and subscribers do not know each other. The same con-

sideration applies for [133]. In principle, the above techniques aim to protect the

content of communication, while our proposal is devoted to protecting peer identi-

ties. Clearly, the two approaches are not in contrast and could be combined to obtain

a higher level of privacy.

The exact context in which our paper falls is anonymity, in which the aim is to

prevent the identification of the clients publishing or subscribing to some topics. In

the literature, to the best of our knowledge, no relevant and complete proposal is

available in this direction. The only approach that presents some similarities with

our proposal is [227]. Therein, a Tor-like [258] solution is designed in which clients

connect to the brokers through a path of intermediate brokers that forward messages

encrypted in Onion fashion. However, in the short paper, only the rough idea of the

approach is presented without providing any implementation or experimental vali-

dation. Furthermore, no discovery protocol and no security analysis are included.

Part III

Anonymous Service delivery

173

When a given service is provided on the basis of some personal data, the pro-

tection of the communication between the user and the service provider may not be

enough to protect the identity of the users.

A typical example is provided by location-based services (LBS) in which a user

obtains a service after disclosing their position. As well-known in the literature, the

position is a quasi-identifier [240], easily linkable with user’s identity. In this case,

also by relying on a perfect anonymous communication network, the identity of the

user may be retrieved by a service provider receiving the position. Then, new chal-

lenges arise.

The goal of this third part of the thesis is twice. On the one hand, we want to

provide users with privacy-preserving services so that their identity is kept secret

from all the non-trusted parties. This is achieved in Chapter 8, in which we propose

a hierarchical LTS system offering protection against a global adversary. The services

we consider in this solution are location-based services and the aim is to provide the

users with guarantees about the fact that the provider is not able to identify their

positions. As with many state-of-the-art approaches, our solution relies on the pres-

ence of some location-trusted servers (LTSs) that build, starting from the position

of a user u, a cloaking area including at least k − 1 different users indistinguishable

from u. However, in standard LTS-based solutions, the LTS is a centralized entity

with a global view of all the positions of the users. In our approach, we reduce the

trust required of a single LTS by splitting its competence on a given set of positions

among many LTSs, each possibly managed by an autonomous organization.

The second goal of this part is to give an answer to the following question. It is

possible to enable new useful features, by relaxing the anonymity requirements. The

answer to this question is positive and it is the objective of Chapters 9 and 10.

In Chapter 9, we present a solution to the trade-off between accountability and

anonymity. In particular, we consider a scenario in which a user is known to the ser-

vice provider just by means of a pseudonymous username. To enable the possibility

to re-identify the user in case of malicious or illegal behavior, we require the collab-

174

oration of three parties. This is the main advantage with respect to other solutions in

which just the collaboration of two parties is enough. This solution can be adopted

to support an anonymous social network in which users can interact anonymously

also with respect to the service provider itself. However, in the case of acts of cyber-

bullying or incitement to hate, a law-authorized party can identify the user with the

collaboration of the three parties involved in our protocol.

Regarding Chapter 10, we present a solution that enables the anonymous linkage

of open data only by some authorized parties. Specifically, we are in a smart city sce-

nario in which a user interacts with several subsystems by producing data published

in the form of open data. Even though these data are anonymized for privacy rea-

sons, our solution enables their linkage only to authorized parties which, however,

are unable to discover the real identity of the user to whose data refers.

8

A hierarchical LTS system offering protection against a

global adversary.

Privacy-aware location-based services (LBS) can be obtained by protecting the user’s iden-

tity so that queries cannot be linked with users. A way to do this is to use a Location

Trusted Service (LTS, for short), to transform the exact position of the user into a cloaking

area including at least k users (thus, obtaining k-anonymity). In wide-area scenarios, a

centralized LTS organization might represent a serious threat in terms of security and pri-

vacy. This chapter proposes a hierarchical multi-provider distributed LTS organization,

which mitigates the above security privacy risks by splitting competence areas and mini-

mizing access to punctual data. This hierarchical organization of the LTS enables also the

possibility to gain protection against a global passive adversary without flooding the net-

work as would occur with a centralized approach. Finally, the hierarchical organization

traces the road for a possible edge-cloud-based implementation, whose benefits are also

highlighted by our experiments. Some preliminary results of this approach are published

in a research paper [39].

8.1 Introduction

Location-based services (LBS) occupy an important position within pervasive, ubiq-

uitous, and wide-area computing systems. There are many types of location-based

services, such as navigational, resource-discovery (typically, points of interest), traf-

fic, news, weather, emergency, advertising, location-based games, etc. [255, 28, 174,

298, 154]. They can be continuous (such as navigational services), may require dif-

ferent localization precision, and can be delivered as push services. LBS may repre-

sent a serious threat to people’s privacy. Indeed, the link between the content of the

required service and the location itself may allow an honest-but-curious provider

to link the user’s identity with sensitive information like habits, health state, reli-

gious, or sexual orientation. This is a very well-known problem in the literature,

and basically, it depends on the fact that location data are quasi-identifiers, allowing

176 8 A hierarchical LTS system offering protection against a global adversary.

the adversary to discover the identity of the victim if combined with background

knowledge or through collusion among different adversary parties.

One of the approaches used to contrast the above problem is to protect the user’s

identity. The goal is to prevent location-based queries from being linked to users’

identities. This can be obtained by relying on a Trusted Third Party, named Loca-

tion Trusted Service (LTS, for short). The role of the LTS is to mediate the queries

coming from the users proxying them to the LBS provider. However, each query is

not forwarded as it is. Instead of the exact user position, the LTS builds a cloaking

area including at least k users and such that, for each of those k users, the associated

cloaking area is the same. This way, location k-anonymity [102, 145, 113] is achieved.

The stability condition of the cloaking area, called reciprocity [149, 106, 63] is funda-

mental, because it prevents reverse-engineering attacks [63] that can reduce actual

anonymity. Cloaking areas should also satisfy the effectiveness property [106] that

requires the minimization of their extension.

A problem with the LTS-based approach is that the concrete implementation of

the LTS in wide-area scenarios is a complex task. Indeed, implementing the LTS as a

centralized entity might represent a serious threat in terms of security and privacy.

This is due to the fact that the LTS keeps the entire location data of users and tracks

them every time and everywhere. Moreover, if the LTS is compromised, it will pose

user information in jeopardy.

This chapter deals with the above problem by providing a concrete location-

trusted service system based on a hierarchical multi-provider distributed organi-

zation. The proposed system is distributed and hierarchically organized, in such a

way that the competence is split among many LTSs, each possibly managed by an

autonomous organization. Moreover, multiple services and possible overlapping of

regions are managed.

Clearly, a hierarchical approach can really mitigate the above security privacy

risks only if the providers covering wide areas (thus, high in the hierarchy) do not

manage exact location data, but only aggregate values.

Therefore a problem to study for an effective hierarchical LTS implementation,

is how to exploit any existing cloaking-area-construction algorithm that works on

exact positions to build cloaking areas on aggregate data preserving both reciprocity

and effectiveness.

In this chapter, we propose a solution to the above problem.

Observe that the LTS-based approach is completely nullified if a global passive

adversary is allowed, able to monitor the flow of messages, as the source of the query

can be identified among the anonymity set of users. In real-life contexts, this is for

example the case in which we want to provide LBS completely within a mobile so-

8.2 Background 177

cial network. In this case, the LTS could be an entity that interacts with the users

and the LBS provider (possibly, the social network itself) by using communication

mechanisms provided by the social network (and thus completely observable by the

provider). Concerning this aspect, a nice feature of our approach is that the hierar-

chical organization of the LTS enables the possibility to use position notification as

cover traffic to hide queries and multicast to hide responses against the global ad-

versary, without flooding the network as would occur with a centralized approach.

In this chapter, we also highlight that our hierarchical distributed approach can

benefit from the edge-cloud paradigm [151, 171] for a real-life implementation. In-

deed, the lower the LTSs in the hierarchy, the closer to the user they can be imple-

mented, thus reducing network latency for local queries and better distributing the

computational load.

8.2 Background

In this section, we provide the background knowledge useful for the comprehension

of the rest of the chapter. Specifically, we give the fundamentals of the location-

trusted-service-based approach used to protect privacy in location-based services.

Location-based services (LBS) are services based on the location of users. They may

lead to serious threats to privacy. There are different approaches used to contrast this

problem. Our proposal refers to the approach aimed to protect the user’s identity.

This approach is based on the presence of a Trusted Third Party (TTP), called Loca-

tion Trusted Service (LTS), which plays the role of anonymizer of the user’s requests

towards the LBS provider. The LTS receives the query from the user and, instead

of the exact position, sends a cloaking area to the LBS provider including at least

k users (including the requester), in such a way that location k-anonymity [113] is

achieved. This means that the probability for the adversary (i.e. the LBS provider) to

identify the user requesting a location-based service is at most 1
k , provided that an

additional feature (detailed below) is adopted.

To give the flavor of the approach based on the location k-anonymity, let’s con-

sider the following example. Suppose that Bob wants to know the points of interest

close to his position by relying on an LBS provider. To prevent an honest-but-curious

LBS provider from learning information about Bob related to the query, a possible

way is to protect Bob’s identity, so that the LBS query cannot be linked to him. Un-

fortunately, the use of anonymous IDs is not enough. Indeed, the location itself is a

quasi-identifier and, therefore, allows the LBS provider to identify Bob if the location

data are combined with other public data, background knowledge, or through col-

lusion with external parties. To avoid this, the LTS is placed in the middle, between

178 8 A hierarchical LTS system offering protection against a global adversary.

Fig. 8.1: An example of construction of a cloaking area.

.

Bob and the LBS provider. The query is submitted by Bob to the LTS (playing as

Trusted Third Party), along with his exact position. The LTS builds a cloaking area,

including an anonymity set of users (AS), to which Bob belongs. If the required pri-

vacy level is k, then the cardinality of the anonymity set must be no smaller than k.

These users are selected in such a way that, on the basis of the knowledge available

for the LBS provider, they are indistinguishable to the latter. The LTS removes the

user ID and submits the query to the LBS provider along with the cloaking area,

instead of the exact position. This is done with the objective to obtain that the prob-

ability for the adversary (i.e., the LBS provider) to identify Bob and link him to the

query is not higher than 1
k , which is acceptable for a sufficiently large value of k.

The LBS sends the answer to Bob’s query to the LTS, which can filter it based on

Bob’s exact location, and sends the refined response to Bob to minimize client-side

communication overhead. The above scheme is summarized in Figure 8.1.

More formally, we define the following.

Definition 8.1. Consider a user u issuing a query with privacy level k. A cloaking

area (built by the LTS) is any area A such that a set of users AS (called, anonymity set)

can be found by the LTS within A such that u ∈ AS and |AS | ≥ k.

Unfortunately, a cloaking area so defined is not enough to guarantee the required

privacy level, even though users inside AS are really indistinguishable to the adver-

sary. Indeed, a technique only satisfying the above requirements is vulnerable to

reverse-engineering attacks [63].

To prevent this problem, the following property has to be required.

Definition 8.2. (Reciprocity Property [106]). Consider a user u issuing a query

with privacy level k, associated by the LTS with a cloaking area A, and involving

the anonymity set of users AS. We say that A satisfies reciprocity if every user in AS

also generates the same anonymity set AS for the given privacy level k. A cloaking-

area-construction algorithm is reciprocal, if every returned cloaking area A (for each

possible user, and each possible privacy level k) satisfies reciprocity.

8.3 Approximate Cloaking Areas 179

Clearly, the condition stated in Definition 8.2 is also satisfied if every user in AS

also generates the same cloaking area A (which then involves the same anonymity set

AS). As a matter of fact, this is the condition satisfied by reciprocal algorithms pro-

posed in the literature, starting from the first proposal given in [106]. On the other

hand, different returned cloaking areas, even including the same AS, could enable

reverse-engineering attacks if not adequately built.From Definition 8.1, immediately

follows that a cloaking area satisfying reciprocity satisfies also location k-anonymity.

However, Definition 8.2 entails that k-anonymity ensures equal probability 1
|AS | for

the adversary to identify a user. As shown in [106, 63], without reciprocity, reverse-

engineering attacks are possible allowing the adversary to reduce the above prob-

ability below the aimed level 1
k . Observe that reciprocity has been independently

formulated as the k-shared property in [63].

8.3 Approximate Cloaking Areas

Our approach relies on any existing reciprocal cloaking-area-construction algorithm

(see Definition 8.2). Since reciprocity, for a given privacy level k, implies location

k-anonymity, for a reciprocal cloaking-area-construction algorithm and for the re-

turned cloaking areas, we say that they satisfy the k-reciprocity property, to highlight

the privacy level k. Recall that if the returned cloaking area includes at least k users

and is the same for all those users, then the algorithm is reciprocal. As highlighted in

Section 8.2, coherently with the reciprocal algorithm proposed in the literature, Def-

inition 8.2 is applied in our approach in the sense that the returning cloaking area is

the same for every user in the anonymity set AS. Moreover, throughout the chapter,

we implicitly assume that the anonymity set is the set of all the users belonging to

the cloaking area.

Consider a geographical area A that is a set of GPS coordinates, called positions,

identifying the portion of a territory with a certain degree of granularity. We denote

by P ⊆ A the set of the positions associated with all the users located in A. P is called

actual position set.

Definition 8.3. A Cloaking Oracle OA (for the area A) is a partial function that receives

as input a privacy requirement k, a set of positions Q, and a position p ∈ Q, and returns,

if any, a cloaking area CQ ⊆ A such that p ∈ CQ and satisfies k-reciprocity.

According to the definition of reciprocity recalled in Section 8.2, from the above

definition it follows that there exist at least k positions p1, . . . ,pk ∈ CQ ∩Q including

p such that OA(k,Q,p1) = . . . = OA(k,Q,pk) = CQ.

Observe that, the Cloaking Oracle is a partial function because, depending on k,

on a certain input, it could happen that there is no way to build the cloaking area.

180 8 A hierarchical LTS system offering protection against a global adversary.

Anyway, this is not a limit of our work, which considers an ideal algorithm. This case

only refers to the intrinsic non-compliance of the distribution Q with the privacy

requirement (for example, if |Q| < k).

Now, consider a partition ZA of A identifying sub-areas of the territory. Even

though the partition we consider in Section 8.4 divides A into a grid of equi-sized

squares, the next result works for any shape of the sub-areas. Each element of ZA is

called cell.

We introduce the following two definitions.

Definition 8.4. The aggregation mapping (on P) is a function DP : ZA →N which, for

each cell, returns the number of positions of P in it included. Formally, DP (z) = |z∩P |, for

each z ∈ ZA.

Definition 8.5. Given DP , a set of positions P ′ ⊆ A is said equivalent to P , if DP =

DP ′ (i.e., |z∩ P | = |z∩ P ′ |, for each z ∈ ZA).

In words, P ′ is any redistribution of the users (starting from the actual distribution

represented by P) preserving the number of users occurring in each cell. We denote

by R(DP) a given fixed generation schema (i.e., a deterministic function) of a set of

positions equivalent to P . Therefore, given DP , any party that is aware of this schema

can deterministically generate the same set of positions P ′ =R(DP) equivalent to P .

From now on, throughout the chapter, consider given the geographical area A, the

actual position set P , the partition ZA, and the generation schema R.

Given a cloaking area CQ, for a certain set of positions Q, we denote by SCQ
= {z ∈

ZA|z∩CQ , ∅}. SCQ
represents the set of cells that are involved by CQ.

Definition 8.6. We define the approximate cloaking area (of CQ) as CQ =
⋃

z∈SCQ
z.

Observe that CQ identifies a sub-area of A including CQ.

Given a set of positions P ′ equivalent to P , consider the cloaking area CP ′ ob-

tained as output of OA(k,P ′ ,p). The idea is that, from just the knowledge of DP , any

agent may construct a cloaking area by satisfying the k-reciprocity requirement, just

by calling the Cloaking Oracle on a set of positions P ′ equivalent to P .

We are ready to define the algorithm that an LTS can follow to build a valid

clocking area (with respect to a given privacy requirement k), by relying only on the

aggregation mapping DP , instead of P .

The Algorithm 1, called approximate cloaking-area construction (denoted as

Acloak(k,DP ,p
′)), has input: (1) the privacy requirement k, (2) an aggregation map-

ping DP , and (3) p′ ∈ R(DP), and output either fail or an approximate cloaking

area. Acloak proceeds as follows: (1) Relying on DP and R, it builds the position

set P ′ = R(DP) (recall that P ′ is equivalent to P); (2) It calls OA(k,P ′ ,p′). If the Ora-

cle is not able to respond (i.e., OA(k,P ′ ,p′) is not defined), then Acloak returns fail,

8.3 Approximate Cloaking Areas 181

Algorithm 1 Approximate cloaking-area construction
Notation OA: the Cloaking Oracle for the area A

Notation R: the generation schema

Input k: privacy requirement

Input DP : aggregation mapping

Input p′ : a position in R(DP)

Output fail or CP ′

1: P ′ =R(DP)

2: if (OA(k,P ′ ,p′) is not defined) then

3: return fail

4: else

5: CP ′ = OA(k,P ′ ,p′)

6: return CP ′ of CP ′

7: end if

else (CP ′ = OA(k,P ′ ,p′)), the execution goes to the next step; (3) Acloak returns the

approximate cloaking area CP ′ of CP ′ .

In Figure 8.2, an example of execution of the approximate cloaking-area con-

struction is reported.

Specifically, map (a) represents the geographical area A divided into cells by ZA,

including a certain set of users with actual positions P , and a given position (in red),

which the LBS request comes from. To understand the meaning of the red and green

areas, we need first to describe the other maps. Suppose that the privacy require-

ment is k =12, so that the final cloaking area must include at least 12 users. Map

(b) denotes the application of the aggregation function on P . Finally, map (c) shows

the redistribution P ′ = R(DP) of users (preserving the aggregation mapping), the

cloaking area CP ′ (in green) returned by the Cloaking Oracle, and the approximate

cloaking area CP ′ (in red). The example shows that even though the Cloaking Or-

acle returns on P ′ the green cloaking area fulfilling the privacy requirement (as it

includes k=12 positions), being P ′ a set of dummy positions, the cloaking area itself

could be not valid if applied to the actual position set P . This is the case we are rep-

resenting. Indeed, when projecting the green cloaking area from map (c) to map (a),

we see that the actual involved positions are less than the required number (as they

are 10 positions).

In contrast, the red approximate cloaking area, which, by construction, includes

the same number of positions if applied to either P or P ′ (for P and P ′ equivalent),

satisfies the privacy requirement as the number of actual (or dummy) included po-

sitions equal to 16.

For simplicity, in this example, we did not consider the reciprocity property.

182 8 A hierarchical LTS system offering protection against a global adversary.

Fig. 8.2: An example of construction of an approximate cloaking area.

.

8.4 The Distributed LTS

In this section, we describe the LTS organization. The area A is divided into n rect-

angles each containing a number of square cells in ZA. Let denote by AZ = {A1, . . .An}

the set of such rectangles. The choice of the rectangle as a shape of an elementary

group of cells is done only for the sake of simplicity. Any other shape could be in

principle utilized.

In our system, multiple hierarchical LTSs are adopted, each possibly managed by

an autonomous organization. They are organized as follows. Each rectangle, called

0-zone, is under the responsibility of an LTS of level 0. Each LTS of level 0 respon-

sible for the 0-zone Ai (with 1 ≤ i ≤ n) knows a subset of actual positions Pi ⊆ P

representing the actual positions of the users in the 0-zone Ai .

The LTSs system basically implements a forest of tree spatial indices. Specifi-

cally, a number of LTSs of level 0 managing adjacent 0-zones constitutes the set of

children of an LTS of level 1. Such an LTS is responsible for a 1-zone obtained as the

union of the 0-zones which each of its children is responsible for and knows only the

restriction of the aggregation mapping DP to the subset of P involved by the 0-zones

forming the 1-zone of its competence.

In general, a number of LTSs of level i managing adjacent i-zones constitutes

the set of children of an LTS of level i + 1. Such an LTS is responsible for an (i + 1)-

zone obtained as the union of the i-zones which each of its children is responsible

for and knows only the restriction of the aggregation mapping DP to the subset of P

involved by the 0-zones mapped to the (i+1)-zone of its competence. In other words,

each LTS of level i > 0 has competence on a number of rectangles of A and, then, on

the involved cells but knows only, for each cell, the number of users positioned in it

and not the exact position. This happens also for the root of each tree, which is set in

such a way that the size of the map of its competence is feasible. This is the reason

why we do not have a single tree, but a forest of trees. We assume that all the LTSs

share the generation schema R.

8.4 The Distributed LTS 183

The LTS hierarchical organization is sketched in Figure 8.3.(a). In detail, there are

three 0-zones, colored in green, red, and blue, respectively, and their LTSs of level

0. Users are also represented. The red user is submitting an LBS query. The union

of these three 0-zones forms the 1-zone of competence of the black LTS of level 1.

Figure 8.3.(b) reports the view from the black LTS of this 1-zone (which includes

only the aggregation mapping). The red dot corresponds to the position which the

query comes from. The red-line ellipse and the black-line region will be described

later.

8.4.1 Registration

When a user enters a 0-zone, it performs a pseudonymous registration to the LTS of

level 0 responsible for such a zone. Each LTS of level i ≥ 0 (in a tree of the forest)

knows its parent LTS (of level i + 1) according to the LTS hierarchy defined above.

Similarly, each LTS of level i ≥ 1 knows all its children (LTS of level i − 1).

8.4.2 Position Notification

Periodically, with a given frequency, each user located in a 0-zone Ai sends their

position to the LTS of level 0 responsible for such a 0-zone. Therefore, such LTS, say

L, knows the set of positions Pi of the users in the 0-zone. The above component of

the position notification process is called detailed position notification.

Now, we describe how aggregate positions are notified to the higher levels of the

LTS hierarchy. We call this task aggregate mapping notification. Let’s consider the LTS

L again. We denote by DPi , the restriction of DP to Pi . L can compute P ′i = R(DPi).

Then, it builds and maintains a one-to-one correspondence S between the sets Pi

and P ′i in such a way that any actual position p ∈ Pi is associated with a dummy

position S(p) ∈ P ′i such that p,S(p) ∈ z for some z ∈ ZA (i.e., p and S(p) are in the

same cell). As will be clarified in Section 8.6, this is done to guarantee k-reciprocity

(not with the purpose of hiding the actual position).

Periodically, L sends DPi to its parent LTS (of level 1). This counts the number

of users for each cell contained in its 0-zone. At this point, the LTS of level 1, by

merging the information coming from its children, is able to know the restriction of

DP to P ∗, where P ∗ is the set of the positions of the users in the 1-zone which such an

LTS is responsible for. Observe that, it does not know P ∗. Periodically, this restriction

of DP is sent to its parent LTS (of level 2). The process is iterated until the root of the

tree is reached.

184 8 A hierarchical LTS system offering protection against a global adversary.

8.4.3 LBS Request Processing

Suppose a user in position p performs an LBS request. To prevent the global adver-

sary can identify that a user submits a query to the LBS provider, the user replaces

one of the messages of the detailed position notification (intended for the LTS of

level 0 responsible for the 0-zone which the user is located in) with the LBS request

including the position p and an on-the-fly key K . Suppose that such 0-zone is Ai and

the set of positions of the users including in it is Pi , this LTS invokes the Cloaking

Oracle OA(k,Pi ,p).

We distinguish 2 cases. The first case is when the Cloaking Oracle outputs a

cloaking area CPi , then the LTS can directly perform the request to the LBS provider

and after receiving the response and (possibly) filtering it, sends the response en-

crypted with K in multicast to the users included in the cloaking area.

The second case occurs when the Cloaking Oracle fails. If this happens, the LTS

of level 0 forwards the request to its parent LTS (of level 1), by replacing p with

p′ = S(p).

Again, to hide that a request is sent, the LTS of level 0 replaces one of the mes-

sages of the aggregate mapping notification (intended for its parent) with the request

itself. At this point, the LTS of level 1 invokes Acloak by passing as input the privacy

requirement k, the restriction of the aggregation mapping to the positions set in-

cluded in the 1-zone of its competence, and the position p′ .

Since Acloak might positively respond or fail, we have to distinguish two cases

again. If Acloak succeeds, then it returns an approximate cloaking area and the LTS

of level 1 performs the request to the LBS provider. When it receives the response,

filters it, and starts what we define as the cloaking multicast mechanism. This mech-

anism first requires the selection of the children LTSs of level 0 which the filtered

response has to be sent to. The selection is done by finding the LTSs of level 0 which

are responsible for at least one cell included in the approximate cloaking area. Then,

the filtered response is multicasted to such LTSs encrypted with K . In turn, each LTS

sends the response in multicast to all the users belonging to the involved cells.

Otherwise (i.e, Acloak fails), the request is forwarded (by replacing, as usual, an

aggregate-mapping-notification message) by the LTS of level 1 to its parent. The

process is iterated until the root of the tree. The LBS request can be satisfied only if,

eventually, an LTS is able to positively respond.

In Figure 8.3.(b), an example of an approximate cloaking area built by an LTS of

level 1 is depicted. The red-line ellipse represents the cloaking area returned by the

Cloaking Oracle invoked by the black LTS. The black-line region is the approximate

cloaking area of the previous cloaking area.

8.5 Service Management, LTS overlapping, and Implementation Aspects 185

Fig. 8.3: Example of LTS hierarchy and approximate cloaking area for the LTS of

level 1.

.

8.5 Service Management, LTS overlapping, and Implementation

Aspects

The aim of this chapter is to provide a concrete solution based on a theoretical back-

ground to implement a real-life LTS system. Then, in this section, we provide some

enhancements to the model, to capture some practical aspects. Specifically, we in-

troduce the dimension of the service, to allow an LTS to be involved only in some

specific services from those available in the territory.

We start by defining the role of the organizations involved in the system. The

users belong to the set U . We assume that they are identified by their positions in P .

• An organization, called SP, providing the set of location-based services SA in the

area A.

• A set of organizations Li = {Li1, . . . ,Limi
} (0 ≤ i ≤ imax}) interested in providing

the LTS services at level i. imax represents the highest level of the LTS hierarchy

(possible real-life values for imax are 3 or 4) and mi represents the cardinality of

the set of organizations at level i.

• The telephone service provider TSP supporting communications.

An agreement between SP and TSP exists, to implement an edge-cloud solution

sketched at the end of this section. Let ST be the entity representing this agreement.

Observe that this entity can play the role of global passive adversary, because it has

the technological capabilities to monitor the entire traffic generated and received by

the users.

We define now a number of mappings associating services with 0-zones, LTSs,

and users, and defining the LTS hierarchy.

186 8 A hierarchical LTS system offering protection against a global adversary.

• A mapping returning the set of services on which a given LTS of level 0 works

in a certain 0-zone: services : L0 ×AZ → 2SA . To define this mapping, every LTS

of level 0 establishes which services it wants to support. A given LTS of level 0

keeps only the restriction of the function services regarding itself. This allows

us to store the information just close to the user, coherently with the edge-cloud

paradigm. Obviously, this information is notified to all the registered users.

• A mapping returning the set of LTSs of level 0 working on a given 0-zone:

zero_lts : AZ → 2L0
. This mapping is managed by ST, and, again, notified to all

the users occurring in a given 0-zone, concerning its restriction to this 0-zone.

• A mapping returning the set of LTSs of level i + 1 with which a given LTS of

level i (0 ≤ i ≤ imax − 1) has established an agreement to forward users’ requests:

upi : Li → 2Li+1
, and a mapping returning the set of LTS of level i − 1 with which

a given LTS of level i has established an agreement to receive users’ requests:

downi : Li → 2Li−1
.

• A mapping defining the set of services on which a user does not want to collab-

orate for the construction of the cloaking area: deny_s : U → 2SA . This mapping

is defined by the user and is notified to and kept by the LTSs of level 0 to which

the user is registered.

• A mapping returning, for a given LTS of level 0, say L, a service s ∈ SA, and a

0-zone Aj ∈ AZ , a set of positions P L
j corresponding to users belonging to Aj of

competence of L, registered with the LTS L, who did not deny the service s and

s ∈ services(L,Aj): position : L0 × SA ×AZ → 2P , where P , we recall, is the set of

all the positions as defined in Section 8.3.

The set P L
j , referring to the 0-zone Aj , will be used by any LTS of level 0 L of

competence of Aj , to build a cloaking area only for a query regarding the service

s. Each LTS of level 0 keeps the proper restriction of the above mapping, which is

populated thanks to the detailed position notification described in Section 8.4.2.

Given a cell z ∈ ZA included in Aj , we denote by P L
j [z], the subset of the positions

of P L
j belonging to the cell z.

Since the LTSs of level i may require the collaboration of LTSs of level i + 1 to satisfy

a request on a given service, we require that each LTS of level i (with i > 0), say Lix,

supports all the services supported by the LTSs in downi(Lix).

The inclusion of multiple services and the changes introduced in the LTS hier-

archy do not have an impact on the mechanism by which the cloaking area is con-

structed, provided that this is done by selecting just the proper dimension (i.e., the

service), to avoid intersection attacks. For example, suppose that in the 0-zones Ai

the services s1 and s2 are provided, and, in the adjacent 0-zone Aj the services s2 and

s3 are provided. Now, consider a user belonging to Ai who submits a query regarding

8.5 Service Management, LTS overlapping, and Implementation Aspects 187

the service s1 that cannot be resolved by the LTS of level 0. If we allow the LTS of

level 1 to use all (independently of the service) the positions in Ai and Aj to build

the cloaking area, then the adversary can infer that the actual anonymity set of users

is restricted to Ai thus breaking k-anonymity. To avoid this, for a query on a service

s, the positions that can be used for this service at any level of the hierarchy must

come from 0-zones in which s is provided. This allows us, for the security analysis

provided in Section 8.6, to consider the simpler model of a single service.

The introduction of the new features in the system model affects only the regis-

tration phase and the position notification.

8.5.1 Impact on the Registration Phase

The registration phase defined in Section 8.4.1 is affected by the inclusion of multiple

services and LTS competence overlap basically due to the mapping denys and to the

fact that the user can choose the LTSs to contact for any service.

Specifically, the registration is modified as follows. Each user performs a global

registration (in pseudonymous form) with ST and obtains a global pseudonymous

ID.

When a user requires the collaboration of an LTS of level 0 to obtain a service,

they perform a local registration with such an LTS and provide it with their global

pseudonym. Therefore, all the LTSs of level 0 to which the user is registered will own

its global pseudonymous ID. As it will be clear in the next section, we need a unique

identifier for the users because the higher-level LTSs should have a global view (even

in aggregate form) of the user distribution. Therefore, users who are registered with

multiple LTSs of a given 0-zone, should be counted once, and then their records

should be reconciled. The exact mechanism to obtain this goal without breaking

users’ privacy is explained in Section 8.5.2.

Given a user u belonging to a 0-zone Aj , u can perform the local registration with

one or more LTSs of level 0 belonging to the set zero_lts(Aj).

For each LTS L0
i chosen by the u, we assume by default that u provides their

positions to build cloaking areas for all the services in services(L0
i ,Aj). Anyway, u

can specify the services on which they do not want to adhere and notify them to

the selected LTSs of level 0. This latter operation represents the way in which the

function deny is updated.

8.5.2 Impact on the Position Notification

The revision of the basic model provided in the above section has an impact on

the position notification defined in Section 8.4.2. This basically happens due to the

presence of multiple services and to LTSs competence overlapping.

188 8 A hierarchical LTS system offering protection against a global adversary.

The presence of multiple services induces a trivial change. Indeed, when a user

denies a service, all the LTSs of level 0 in which the user is registered should make

aware of this denial. Therefore, the position of that user is not considered for that

service. Moreover, the view of the positions of the users is specific for a certain ser-

vice, as induced by the definition of the mapping positions introduced earlier.

From now on, consider implicitly given a service s, and only those users who did

not deny this service.

Concerning the detailed position notification, the only difference with respect to

the basic definition is that the set of positions that is updated by an LTS of level 0,

say L, working on a 0-zone Aj , is just the partial view P L
j = positions(L,s,Aj) of the

overall set of positions of users belonging to Aj . Therefore, two LTSs A and B of level

0 working on the same 0-zone, may have a different view of the positions of the users

occurring in this 0-zone. In other words, it may happen that P A
j , P

B
j , because there

could be a difference between the set of users registered with A and registered with

B.

Also the aggregate mapping notification to the higher level is affected by the

overlapping of LTSs of level 0. For instance, it might happen that on a given cell

z ∈ ZA, belonging to the 0-zone Aj , there are two LTS of level 0 of competence, say A

and B. In this case, some users located in the cell z could be registered only with A,

some users could be registered just with B, and other users could be registered with

both A and B. Let denote by kA (kB, respectively) the number of users registered only

with A (B, respectively) and let kAB the number of users registered with both A and

B. It happens that, the actual restriction of the aggregation mapping to notify to the

proper LTSs of level 1 should be kA + kB + kAB. Unfortunately, thanks to the detailed

position notification, the only information available to A is |P A
j [z]| = kA+kAB, whereas

the information available to B is |P B
j [z]| = kB + kAB. To overcome this drawback, the

two LTSs should know the cardinality of the intersection between the |P A
j [z]| users

registered with A and the |P B
j [z]| users registered with B. To avoid unwanted leakage

of privacy, this task can be accomplished by using an efficient protocol for multi-

party private set intersection cardinality (MPSI-CA), like those proposed in [155, 76],

or an approximate technique, to achieve better efficiency, like that proposed in [83]

(in this case, an extra value of the privacy level k should be set to guarantee that the

anonymity threshold 1
k is fulfilled). MPSI-CA is a secure multi-party-computation

(SMPC) protocol, allowing any party among a group of participants, each owning

a private set of items, to compute the cardinality of the intersection of these sets,

without learning anything about the sets of the other participants. This way, in our

case, A knows nothing about users of B (not registered to A) and vice versa.

8.5 Service Management, LTS overlapping, and Implementation Aspects 189

To generalize the above case (and then, also to understand why we need to com-

pute private set intersection cardinality among multiple parties –more than two), we

introduce the following notions.

Definition 8.7. Given a cell z ∈ ZA, we denote by Lz the set of LTSs of level 0 supporting

the service s in z. Given a set of LTSs of level 0 X ⊆ Lz, we define now the following

recursive notion:
c∅ =

∣∣∣∣⋂Y∈Lz P
Y
j [z]

∣∣∣∣
cX =

∣∣∣∣⋂Y∈Lz\X P Y
j [z]

∣∣∣∣−∑
Y⊂X cY

The next result holds.

Theorem 8.8. Given a cell z ∈ ZA, and a set of LTSs of level 0 X ⊆ Lz, cX represents the

cardinality of the set of the users who are registered with all and only the LTSs of level 0

belonging to the set Lz \X.

Proof. We proceed by induction on the cardinality of the set X, by proving that the

property stated in the theorem holds when |X | ≤ k, for any k ≥ 0.

Basis. (i.e., |X | ≤ 0). In this case, X = ∅, and then, trivially, c∅ =
∣∣∣∣⋂Y∈Lz P

Y
j [z]

∣∣∣∣ repre-

sents the set of the users who are registered with all and only the LTSs of level 0

belonging to the set Lz.

Induction. We have to show that if the theorem statement holds for any set X with

|X | ≤ k, it also holds for any set X with |X | ≤ k + 1. According to Definition 8.7,

cX =
∣∣∣∣⋂Y∈Lz\X P Y

j [z]
∣∣∣∣−∑

Y⊂X cY .

The term
∣∣∣∣⋂Y∈Lz\X P Y

j [z]
∣∣∣∣ counts all the users who are registered with all the LTSs

of level 0 belonging to the set Lz \X.

However, the above summation also includes those users who are registered also

with LTSs in X. To prove induction, we have to show that cX does not also count

these users. This actually happens thanks to the subtractive second term. Indeed, by

the inductive hypothesis, for any Y ⊂ X (and, thus, |Y | ≤ k), cY represents the set of

the users who are registered with all and only the LTSs of level 0 belonging to the

set Lz \ Y . Then, sumY⊂XcY represents the number of users that are registered with

all the LTSs of level 0 belonging to the set Lz \X and at least one LTS of level 0 in X.

Therefore, the difference
∣∣∣∣⋂Y∈Lz\X P Y

j [z]
∣∣∣∣ −∑

Y⊂X cY = cX represents the number

of users that are registered with all the LTSs of level 0 belonging to the set Lz and

are not registered with any LTSs of level 0 in X. The proof is then concluded. ⊓⊔

Thanks to the above result, we describe now how each LTS of level 0 in Lz can

compute the number of users belonging to the cell z to notify it to the higher LTS

level. Observe that, this number, denoted by nz, is independent of the LTS counting

it because it counts the overall number of users not denying the service s registered

with any of the LTSs in Lz.

190 8 A hierarchical LTS system offering protection against a global adversary.

Assume that, preliminary, in each 0-zone Aj , all the LTSs of level 0 operating

on it (Lz, for each z in Aj) know each other (this task can be supported by ST). The

protocol can proceed as follows, cell by cell (in parallel) in the 0-zone:

• For each subset of LTSs in Lz, the MPSI-CA (multi-party private set intersec-

tion cardinality) protocol is executed among the corresponding sets of registered

users to obtain the cardinality of the intersection of such sets. The overall ef-

fort of this step is 2|Lz | − |Lz | − 1 MPSI-CA executions. Observe that, this is not

prohibitive because we expect, in real-life situations, very few LTSs per 0-zone.

Moreover, due to the parallel execution of the intersections, the overall compu-

tation is bounded by one MPSI-CA execution among |Lz | sets.

• Each LTS in L ∈ Lz notifies to all the LTSs of level 1 in up0(L) the following in-

formation: (1) |P L
j [z]|, and (2) the result of any executed intersection in which L

is involved. To avoid duplication of communications, a P2P protocol could be

established among the LTSs involved. For simplicity, we omit this aspect. Even-

tually, each LTS of level 1 is aware of all the needed information to compute cXs,

for each subset X ⊆ Lz.

• At this point each LTS of level 1 can compute nz. This is done by choosing any

LTS of level 0, say A, and then by computing: nz = |P A
j [z]|+

∑
{Y∈2Lz | A∈Y } cY . This

immediately follows from Definition 8.7 and Theorem 8.8, due to the fact that,

for two distinct subsets of LTSs X1 and X2, the corresponding cXs refer to disjoint

sets. Therefore, the second term of the above expression counts all the users not

registered with A.

• The value nz is forwarded by the LTSs of level 1 to the higher level, and so on.

In the next example, we give an instance of the application of the above protocol

to a case with three LTSs of level 0 and 1 LTS of level 1.

Example 8.9. Suppose that, for a given cell z in the 0-zone Aj , there are three LTSs of

level 0 operating on it, i.e., Lz = {A,B,C}. Suppose that up0(A) = up0(B) = up0(C) =

{D}, that is the three LTSs of level 0 are down just 1 LTS of level 1. Now, we show

how the above protocol is executed. For simplicity, we denote by IX = P X
j [z], for any

LTS X ∈ Lz. The overall number of MPSI-CAs to perform is 4 (i.e., 23 − 3 − 1). They

are: (1) IA,B,C = |IA∩IB∩IC |; (2) IA,B = |IA∩IB|, (3) IA,C = |IA∩IC |, and (4) IB,C = |IB∩IC |.

Once they are executed, IA,B,C , IA,B, IA,C , IB,C , |IA|, |IB|, and |IC | are notified to D.

At this point, D is able to compute the following:

8.5 Service Management, LTS overlapping, and Implementation Aspects 191

c∅ = IA,B,C

c{A} = IB,C −
∑

Y subset{A} cY = IB,C − IA,B,C
c{B} = IA,C −

∑
Y subset{B} cY = IA,C − IA,B,C

c{C} = IA,B −
∑

Y subset{C} cY = IA,B − IA,B,C
c{A,B} = |IC | −

∑
Y subset{A,B} cY = |IC | − (c{A} + c{B} + c∅) =

= |IC | − (IB,C − IA,B,C + IA,C − IA,B,C + IA,B,C) =

= |IC | − IB,C − IA,C + IA,B,C

c{B,C} = |IA| −
∑

Y subset{B,C} cY = |IA| − (c{B} + c{C} + c∅) =

= |IC | − (IA,C − IA,B,C + IA,B − IA,B,C + IA,B,C) =

= |IC | − IA,C − IA,B + IA,B,C

c{A,C} = |IB| −
∑

Y subset{A,C} cY = |IB| − (c{A} + c{C} + c∅) =

= |IB| − (IB,C − IA,B,C + IA,B − IA,B,C + IA,B,C) =

= |IB| − IB,C − IA,B + IA,B,C

Now, D can compute nz, by choosing any LTS, say A:

nz = |IA|+
∑

{Y∈2Lz | A∈Y }

cY = |IA|+ (c{A} + c{A,B} + c{A,C})

8.5.3 Implementation Aspects

As highlighted earlier, our hierarchical distributed LTS system enables the possi-

bility to adopt the emergent edge-cloud architecture for mobile applications, like

that presented in [264]. Indeed, the above paper is a state-of-the-art architecture

that deploys cloud servers at the network edge and designs the edge-cloud as a tree

hierarchy of geo-distributed servers. Therefore, this architecture perfectly fits our

case. Indeed, even though the use of cloud resources appears necessary for any LTS-

based solution, to serve the spatial peak loads from mobile users, our LTS organi-

zation enables a hierarchical architecture of edge cloud, which allows incremental

local management of the peak loads across different tiers of cloud servers to better

distribute the mobile workloads and reduce network latency. Differently from the

approach presented in [264], in which a workload placement algorithm is defined

to hierarchically distribute the computation load, we expect that the decentraliza-

tion of computation is a for-free side-effect of the inherent locality of cloaking areas

for even high privacy levels. Indeed, supposing to consider a 5G scenario [260], if

we implement the LTSs of level 0 at the small cells, and then, the higher levels at the

higher tiers (by using the various levels of macro cells), placing the highest LTSs at the

(traditional) cloud, we expect that the most queries can be resolved by LTSs of low

level (0 or 1), with a significant positive impact both in the overall computational

workload and, importantly, from the side of service latency.

192 8 A hierarchical LTS system offering protection against a global adversary.

Even though, in this proposal, we do not provide an edge-cloud implementation

of our system, the aim of this section is to highlight this implementation aspect

as a relevant nice feature of our approach. In Section 8.7, we analyze the impact

on the latency of a 4-tiers edge-cloud implementation against a traditional 1-tier

implementation by simulating users’ requests in different configurations, obtain a

confirmation of the above expectation.

8.6 Security Analysis

In this section, we provide the security analysis of our solution. We start by defining

the threat model.

Actors. We consider the following actors:

Users: They submit LBS queries.

LTSs: They process the queries of the users, build the cloaking areas and contact ST.

Finally, they provide the answers to the users.

ST: It represents the agreement between TSP, providing the communication infras-

tructure, and SP, which receives the requests from LTSs and replies to them.

As discussed in Section 8.5, for a query submitted by a user on a service s, the po-

sitions that can be used for this service at any level of the hierarchy must come from

0-zones in which s is provided. This allows us, for the security analysis provided in

this Section, to consider the case of a single service.

Assumptions. We make the following assumptions.

A1: All the messages exchanged between users and LTSs and between LTSs them-

selves have the same size and are encrypted by using a secure probabilistic encryp-

tion scheme.

A2: The LTSs are considered trusted.

A3: The Cloaking Oracle is reciprocal, according to Definition 8.3.

Observe that, regarding the Assumption A2, the LTSs of level 0 know the exact

positions of the users but only limited to the 0-zone of their competence. This is the

standard assumption of each LBS system employing LTSs. However, the LTSs of level

i > 0 have less power than the LTSs of level 0. Indeed, they know only the number of

users for each cell of the i-zone of their competence.

Adversaries. We consider as adversary ST playing also as a global passive adversary.

Indeed, ST (1) is able to monitor all the exchanged messages (this is performed by

TSP that controls the communication infrastructure), (2) can maliciously exploit the

received information (this is accomplished by SP when receives the queries along

with the cloaking areas), and (3) thanks to the background knowledge (SP) and/or

8.6 Security Analysis 193

physical tracking of the users in the cells through the antennas (TSP), it is able to

know the positions of the users in the territory.

Observe that, due to Assumption A2 no other adversary can exist, because a user

does not access any information regarding other users.

We guarantee the following security property.

SP: It is not possible for the adversary to link an LBS request with the identity of the

user performing it with probability greater than 1
k (this property coincides with the

classical notion of location k-anonymity).

It is easy to see that SP would be immediately broken if ST, playing as a global

adversary able to monitor all the traffic in the system, can identify the source of the

query. However, this is not possible according to the following reasoning. Indeed, the

requests are hidden into the position-notification messages and, due to Assumption

A1 and A2, the adversary is not able to know when a user sends a request instead

of a detailed-position-notification message. Similarly, the adversary is not able to

know when an LTS forwards a request to an LTS of a higher level. However, the ad-

versary detects that a request has been originated, because it receives such a request

(forwarded by a certain LTS). The adversary can identify from where the query has

been originated by observing the response. Clearly, if the coverage of the response

that the adversary can track reduces someway the cloaking area, then the adversary

is able to break SP. It is easy to see that this is not the case. Indeed, thanks to the

multicast mechanism, the response messages are directed to all the users belonging

to the constructed cloaking area.

Therefore, it remains to prove that our method preserves the property fulfilled

by the Cloaking Oracle stated in Assumption A3 (i.e., k-reciprocity). This guarantees

Property SP.

To do this, recall that the cloaking area is the result of either (i) the invocation

of the Cloaking Oracle OA (if the area can be constructed by an LTS of level 0) or

(ii) the invocation of Algorithm Acloak. In case (i), due to Assumption A3, the above

statement is clearly satisfied. In case (ii), the cloaking area is built by an LTS of level

greater than 0. Recall that, in this case, Algorithm Acloak returns an approximate

cloaking area CP ′ of CP ′ = OA(k,P ′ ,p′) where P ′ = R(P), and p′ = S(p) ∈ P ′ where

p ∈ P is the actual position of the user performing the request.

The next theorem states that our approximate construction-cloaking-area tech-

nique is reciprocal.

Theorem 8.10. Acloak is reciprocal.

Proof. We have to prove that there exist at least k positions p1, . . . ,pk ∈ CP ′ ∩ P such

that CP ′ =Acloak(k,DP ,x), for each x = S(pi), for any 1 ≤ i ≤ k.

194 8 A hierarchical LTS system offering protection against a global adversary.

By Assumption A3, being CP ′ = OA(k,P ′ ,p′), there exist at least k positions

p′1, . . . ,p
′
k ∈ CP ′∩P ′ such that CP ′ = OA(k,P ′ ,p′i), for any 1 ≤ i ≤ k. Since p′i ∈ P

′ (for any

1 ≤ i ≤ k), by definition of S (that is a one-to-one mapping) there exist at least k posi-

tions p1, . . . ,pk ∈ P such that p′i = S(pi) for each 1 ≤ i ≤ k. Since CP ′ = OA(k,P ′ ,p′i), for

any 1 ≤ i ≤ k, by definition of Acloak, CP ′ = Acloak(k,DP ,x), for each x = p′i = S(pi),

for any 1 ≤ i ≤ k. Indeed, CP ′ depends only on CP ′ . Therefore, it suffices to prove

that Pr = {p1, . . . ,pk} ⊆ CP ′ . Let q be a position in Pr . We have to prove that q ∈ CP ′ . By

definition of S , there exists q′ ∈ P ′ such that q′ = S(q) and q,q′ ∈ z, for some z ∈ ZA.

Therefore, we show that z ⊆ CP ′ . By definition of CP ′ = OA(k,P ′ ,q′), q′ ∈ CP ′ , and

then z ∩ CP ′ , ∅. Therefore by definition of SCP ′ , z ∈ SCP ′ . Finally, by definition of

CP ′ =
⋃

y∈SCP ′
y, therefore z ⊆ CP ′ . The proof is then concluded. ⊓⊔

8.7 Experiments

Through this section, we perform a deep experimental analysis of the proposed so-

lution to validate it in terms of both cloaking-area minimality (i.e., effectiveness) and

network-performance advantages of its decentralized architecture.

8.7.1 Experimental set-up

We start by recalling that our approach is parametric with respect to any cloaking-

area-construction algorithm. In the theoretical framework, we called Cloaking Or-

acle the underlying cloaking-area-construction algorithm. For the experiments, we

consider a state-of-the-art approach, called Casper [189].

Casper is an LTS-based system aimed to achieve location k-anonymity. The

Casper system architecture consists of two components: the location anonymizer and

the privacy-aware query processor.

The location anonymizer plays the role of LTS. It is responsible for the construc-

tion of cloaking areas. The user, at registration time, sets a privacy profile, which is de-

fined as a pair (k,Amin). k is the privacy level, while Amin represents the lower bound

of the size of the returned cloaking area (too small cloaking areas can threaten users’

privacy). Mobile users can change their privacy profile at any time. The anonymizer

maintains the locations of the clients using a pyramid data structure, similar to a

Quad-tree, in which minimum cell size corresponds to the anonymity resolution.

The privacy-aware query processor is embedded inside the LBS provider. It handles

anonymous queries and cloaking areas. The privacy-aware query processor returns

a list of candidate answers to the location-based query via the location anonymizer.

The size of the candidate list largely depends on the user’s privacy profile (for ex-

ample, a strict privacy profile would result in a large list of candidates). Casper is

8.7 Experiments 195

set in our experiments with a very high granularity level (indeed, as mentioned ear-

lier, it allows granularity modulation), in such a way that negligible approximation

is introduced by Casper itself.

To execute Casper, we exploited its JAVA implementation provided in [277]. We

modify this JAVA project also to implement our solution. Due to the computational

effort required to conduct the experiments, to reduce the time to complete experi-

ments, we employ three personal computers in parallel equipped with 1.8 GHz Intel

i7-8850 CPU and 16 GB of RAM, 2.5 GHz Intel i7-6500 CPU and 12 GB of RAM, and

1GHz Intel i5-1035G1 CPU and 8 GB of RAM respectively. As in [297], in our ex-

periment, the user data are generated by using the Thomas Brinkhoff data generator

[34]. Furthermore, we also consider the mobility pattern, provided by the generator,

to study the stability of our approach when users move into the map.

According to different metrics that we will explain next, we execute our tech-

nique by using Casper as an underlying technique, by varying different parameters.

In other words, Casper plays the role of Cloaking Oracle.

We chose to conduct our experiments on a portion of the center of the city of

Reggio Calabria (Italy) in which a huge presence of users is possible in real life. In

fact, we also analyze the performance as the number of users varies. In Figure 8.4, the

considered 2 km × 2 km map provided by OpenStreetMap (OSM) [117] is depicted,

including the distribution of 6000 users generated by [34] at a given instant.

As for the implementation of our approach, in favor of the clarity of the analysis,

we referred to the basic tree-like LTS hierarchy, with a single-service assumption and

square zones. We considered a four-layer LTSs hierarchy.

Specifically, there is a single 3-zone of size 2 km × 2 km. This 3-zone is divided

into four 2-zones of size 1 km×1 km. Each 2-zone includes twenty-five 1-zones of size

200 m×200 m. In turn, each 1-zones includes twenty-five 0-zones of size 40 m×40 m.

Finally, we consider cells of size 8 m × 8 m. Therefore, the 0-zones include 25 cells,

the 1-zones include 625 cells, the 2-zones include 15,625, and the 3-zone include

62,500 cells.

Observe that such configuration of zones and LTSs is aligned to the edge-cloud

implementation discussed in Section 8.5.3. Indeed, the 0-zones are of the order of

5G small cells.

8.7.2 Metrics

In our experiments, we consider three metrics: Cloaking Area Size, Stability, and

Transmission Latency.

196 8 A hierarchical LTS system offering protection against a global adversary.

Fig. 8.4: Distribution of the users in the selected area of Reggio Calabria.

(a) Ratio between the size of the cloaking area

returned by our approach and the size of the

cloaking area returned by Casper as k varies.

(b) Size of cloaking area of our approach and

Casper with N = 6000.

(c) Size of cloaking area of our approach and

Casper with N = 12000.

(d) Size of cloaking area of our approach and

Casper with N = 18000.

Fig. 8.5: Performance as k varies.

8.7 Experiments 197

(a) Ratio between the size of the cloaking area

returned by our approach and the size of the

cloaking area returned by Casper as N varies.

(b) Size of cloaking area of our approach and

Casper with k = 50.

(c) Size of cloaking area of our approach and

Casper with k = 150.

(d) Size of cloaking area of our approach and

Casper with k = 300.

Fig. 8.6: Performance as N varies.

Cloaking Area Size

Since, in our approach, the approximate cloaking area includes the cloaking area re-

turned by the Cloaking Oracle (considering a redistribution of the users), we expect

that our performances are worse than Casper regarding this metric. Indeed, once a

privacy level k is fixed, to minimize the cloaking area including at least k users is in

general aimed. In the literature, this property is called effectiveness [106]. As a matter

of fact, large cloaking areas incur high processing overhead from the side of LBS and

network cost, due to the high numbers of candidate results to return to the LTS. In

our business model, coherently with what is stated in the literature [106], the users

are charged depending on the required privacy level, but also on the overhead that

this requirement imposes on the system.

The aim of our experiments is to show that the extra size of the cloaking area

returned by our method with respect to the underlying cloaking-area-construction

algorithm is very limited. Therefore, the price we pay in terms of minimality is ac-

ceptable.

198 8 A hierarchical LTS system offering protection against a global adversary.

First, we measured the size of the cloaking area as the privacy requirement k

varies. Specifically, since the cloaking area varies according to the user performing

the query, we repeat the query, for each value of k, 50 times for different users and

calculate the average value. The plots in Figure 8.5a show as the ratio between the

size of the cloaking area returned by our approach and the size of the cloaking area

returned by Casper as k varies.

The three plots correspond to three different numbers of total users in the consid-

ered area of 2 km× 2 km. We denote by N such a number. We observe that for small

values of k, the ratio is almost 1. The reason is that such queries can be resolved

(in most cases) by the LTSs of level 0 and, therefore, the approximate cloaking area

is equal to the cloaking area returned by Casper. As the value of k increases, the

queries involve also the LTS of level i > 0. Thus, the ratio increases too. Anyway, as k

reaches a certain value, the queries are resolved (in most cases) only by the LTSs of

higher level (2 or 3). In this case, the areas returned by Casper are bigger and the ap-

proximation introduced by our cells has a smaller impact so that the ratio decreases.

Regarding the differences between the total number of users on the map, we observe

that, basically, the plots are translated. Indeed, if the density of the users increases

for the same value of k, the queries can be resolved by lower LTSs. Therefore, as N

increases, we require a greater value of k before the ratio rises from 1 and a greater

value of k before the ratio decreases. We observe that the maximum ratio is about

1.3 and it is obtained for a limited range of values of k. For most of the values of k

the ratio ranges from 1 to 1.1. Therefore, our performance regarding such a metric

appears acceptable.

The actual size of the average cloaking areas (for our approach and Casper) as

k varies are shown in the plots in Figures 8.5b,8.5c,8.5d for different values of N .

Clearly, as expected, such size increases as k varies. We observe that, by fixing a

value of k, the value of the size of the cloaking area for both approaches decreases as

N increases. Again, this is due to the fact that the more users occurring in the map,

the lower the level of the LTSs able to construct the cloaking areas is.

Dual to the first analysis, we fixed the value of k and studied the size of the

cloaking area as N varies. The result is reported in Figure 8.6a.

We expect that this plot is mirrored with respect to the plot in Figure 8.5a. In-

deed, for small values of N , the queries are resolved by the LTSs of higher level

that results in greater areas with a smaller approximation. Therefore, the ratio as-

sumes small values (even if greater than 1). As N increases, the LTSs of lower lev-

els start to get involved in the resolution of the queries and the ratio increases.

When N reaches a certain threshold only the LTSs of level 0 are involved, there-

fore the ratio approaches 1. This is evident for the plot with k = 50. For the other

8.7 Experiments 199

plots (k = 150, k = 300), this is less evident since we considered the maximum value

of N = 25000 and a greater value of N is required. Anyway, we did not consider

N > 25000 since it is not realistic in the city of Reggio Calabria inside the considered

area (2 km×2 km). For completeness, in Figures 8.6b, 8.6c, 8.6d we report the actual

size of the cloaking area as N varies.

Clearly, in accordance with the plots in Figures 8.5b,8.5c,8.5d, such size increases

as k increases and decreases as N increases.

Stability

Another metric we considered in our experiment is the stability of our approach with

respect to Casper when users moving into the map (a real-life case mapping this

situation is for example when the user in a vehicle wants to continuously visualize

the gasoline stations available on the map).

Specifically, we follow a user in different time instants and evaluate the size of

the cloaking area obtained for a query coming from this user with our approach and

with Casper. We consider three mobility models of the users provided by [34]: Slow,

Middle, and Fast.

In our experiment, we measure the cloaking area size of 80 users (randomly se-

lected) when they move on the map. Since each user experiments a different cloak-

ing area instant by instant (according to their position) we selected a representative

user and show as the size of the cloaking area obtained with our approach and with

Casper, varies in the time domain.

We consider two approaches to selecting the representative user. The first repre-

sentative user is an average user, in which the cloaking area at each instant is given

by the average of the cloaking area of the 80 users at the same instant. The limit of

this approach is that the average user is not any real user and could obtain cloaking

areas very different from any real user.

Another approach to select the representative user is to find a real user who ex-

periments a median standard deviation σ of the distribution of ratios (in the time)

between the size of the cloaking area returned by our approach and the size of the

area returned by Casper. This way, we select a user well representing the sample

from the stability point of view because the above standard deviation is a measure

of stability. Indeed, a lower value of σ , means that the user obtains similar ratios

(and then, probably, similar cloaking area for our approach and Casper) as the time

varies. After filtering the data by removing outlier users, we selected the median user

as those with the median σ (if the number of users was even, we selected one of the

two users with σ nearest to the median σ).

200 8 A hierarchical LTS system offering protection against a global adversary.

For completeness, we considered both the above representative users, namely,

average and median.

The result of both the approaches is shown in Figures 8.7a, 8.7b, 8.7c, 8.8a, 8.8b,

and 8.8c for different values of k and N = 6000.

We observe that, as expected, the plots in the Slow scenario are less variable (and

then more stable) than the plot in the Middle and Fast Scenario for both Casper

and our approach. This is due to the fact that the distribution of the users does not

change rapidly in the time and then the cloaking areas obtained are similar. The

plots are more stable with higher values of k since they involve, in most cases, the

higher LTSs, which return similar cloaking areas due to the exponential growth of

the areas in Casper.

For the median user, we observe that they maintain the same area for some in-

tervals and then suddenly change. This is due to the discontinuity arising when the

user crosses different zones. This effect is smoothed for the average user.

Finally, to confirm the previous considerations, we show the average relative

standard deviation of the size of the cloaking area experimented by the 80 users

moving into the maps. The result is shown in Figures 8.9a, 8.9b, and 8.9c for differ-

ent values of k and N = 6000.

As expected, no appreciable difference exists between our approach and Casper.

Our method slightly outperforms Casper (since we have a lower average relative

standard deviation) due to our approximation. Indeed, a little modification in the

Casper cloaking area does not result in a modification of our cloaking area.

Clearly, the Slow scenario is more stable than the middle scenario, which is more

stable than the fast scenario.

Finally, the scenarios with higher values for k are more stable than the scenarios

with lower values for k.

Advantage of the Decentralized Implementation

The last considered metric is the network latency required to solve the queries. The

aim of this experiment is to provide a first validation of the advantages that our

decentralized solution can give when an edge-cloud implementation is adopted. As

recently reassessed in [75], in today’s Internet, although there can be considerable

delay variation over very short time scales, end-to-end latencies can be considered

operationally constant on long timescales (e.g., the order of a day). Latencies can be

considered operationally constant if they remain within bounds that could be con-

sidered operationally equivalent. With no the ambition to give a conclusive evalua-

tion of an edge-cloud implementation of our solution (not provided in this paper),

8.7 Experiments 201

(a) Size of the cloaking area of the average user as the time varies with k = 50 and N = 6000.

(b) Size of the cloaking area of the average user as the time varies with k = 150 and N = 6000.

(c) Size of the cloaking area of the average user as the time varies with k = 300 and N = 6000.

Fig. 8.7: Average User.

202 8 A hierarchical LTS system offering protection against a global adversary.

(a) Size of the cloaking area of the median user as the time varies with k = 50 and N = 6000.

(b) Size of the cloaking area of the median user as the time varies with k = 150 and N = 6000.

(c) Size of the cloaking area of the median user as the time varies with k = 300 and N = 6000.

Fig. 8.8: Median User.

but only to have a validation of this implementation direction, we study by simu-

lation the network latency, according to the above results, by setting the bounds to

10-20 ms, 50-80 ms, 100-150 ms, and 200-300 ms for queries resolved by the LTSs

of level 0, 1, 2, and 3, respectively. Indeed, we recall, we consider an edge-cloud

implementation based on hierarchic tiers like that proposed in [264].

Regarding Casper, we consider a unique LTS of level 3 of competence of the en-

tire zone that solves all the requests. Regarding our approach, if a request cannot be

8.7 Experiments 203

(a) Average relative standard deviation with k = 50 and N = 6000.

(b) Average relative standard deviation with k = 150 and N = 6000.

(c) Average relative standard deviation with k = 300 and N = 6000.

Fig. 8.9: Average relative standard deviation.

204 8 A hierarchical LTS system offering protection against a global adversary.

(a) Average transmission delay as k varies with N = 6000.

(b) Average transmission delay as k varies with N = 12000.

(c) Average transmission delay as k varies with N = 18000.

Fig. 8.10: Median User.

8.8 Related Work 205

resolved by an LTS of level i, it is forwarded to an LTS of level i + 1 and the total

latency is the sum of the single latencies associated with the level i and i + 1 (it is

slightly overestimated in favor of the fairness of the experiments. Indeed, the hier-

archical edge-cloud architecture might allow lower end-to-end latency when an LTS

of level i + 1 is contacted by an LTS of level i instead of directly the user).

The average latency as k varies is reported in Figures 8.10a, 8.10b, and 8.10c for

three values of N (i.e., 6000, 12000, 18000).

Clearly, for Casper, the delay is constant as k and N vary. Regarding our ap-

proach, the latency increases with k and decreases with N since higher values of k or

lower values of N involve higher-level LTSs to resolve the queries.

We observe that, in the plots, for all the values of k considered, our approach

outperforms Casper. This occurs since the LTS of level 3 is never involved to build a

cloaking area. Anyway, higher values of k are not required in real-life applications.

8.8 Related Work

In this section, we review the literature related to the subject of our work. Our

proposal is related to the wide literature existing in the field of privacy-preserving

location-based services (LBS). In this field, different types of protection techniques

are available in the literature depending on the asset to be protected, as described in

[28, 29, 160, 145, 292]. In detail, it is possible to categorize the LBS services, accord-

ing to the technique used, into user’s location, query content and user’s identity.

In the case of user’s location, the goal is to protect the location information

through a perturbation on location data or by hiding realistic data within dummy

information [152, 294, 201]. In [281], the authors emphasize the importance of de-

centralized approaches, in which secret sharing is used to obtain position obfusca-

tion. The proposed techniques aim to ensure, however, a good quality of the ser-

vice despite the obfuscation allowing to contrast also inference attacks. A specific

focus on inference attacks is given in [254, 161]. A type of perturbation used to

obtain obfuscation is enlarging, adopted in many works available in the literature

[70, 62, 10, 121, 214].

Query content techniques have the purpose to protect the content of LBS queries.

There exist many proposals belonging to this category [222, 283]. Also this approach

is prone to inference attacks. Differential-privacy or machine-learning-based tech-

niques [8, 285, 232, 200, 90] exist to increase robustness of obfuscation and pertur-

bation techniques against inference attacks. Other approaches, giving privacy guar-

antees, are based on PIR (Private Information Retrieval) [101].

206 8 A hierarchical LTS system offering protection against a global adversary.

The last category of techniques is user’s identity, which is the category our paper

belongs to. In this case, by making sufficiently anonymous the user, the sensitivity

of the query does not threaten their privacy. In the literature, the approach well-

consolidated aimed to protect the user’s identity is based on cloaking areas which are

zones that include at least k users and allow us to achieve location k-anonymity [113].

Some very recent papers using this approach are [302, 1, 287, 304, 95, 141].

Our work falls within this type of technique, and, in particular, in those reach-

ing this goal by using a Trusted Third Party, called Location-Trusted Service (LTS)

[240, 113, 216]. This approach is explained in detail in Section 8.2. To have effective

location k-anonymity, it is necessary to satisfy reciprocity [106, 63] that is fulfilled if

the returned anonymity set includes at least k users whose anonymity set is the same.

A considerable effort has been devoted (also recently) in the literature [280, 16, 115]

to obtain cloaking areas with robust privacy guarantees.

A different class of techniques aimed to obtain cloaking areas are those based on

density services [278, 140]. In this case, no trusted party is involved (thus, the LTS

does not exist). The users, in collaboration, relying on public services making avail-

able the distribution of people in the territory, construct autonomously the cloak-

ing area. Then, through an anonymous communication network, submit the query

along with the cloaking area directly to the LBS provider. Filtering the response is

also in charge of the users. Observe that, the density-service-based system proposed

in [140], is hierarchical too. Anyway, this class of techniques is not comparable with

the LTS-based techniques, for evident reasons.

Despite the fact that a number of LTS-based hierarchical approaches exist in the

literature [166, 66], this aspect is restricted to the cloaking-area-construction algo-

rithm. In our case, the hierarchy is at the basis of a multi-organization distributed

implementation of the LTS system. To the best of our knowledge, the only existing

proposal of distributed LTS system is given in [306]. However, there are many dif-

ferences with our approach.

First, the solution proposed in [306] is not hierarchical and requires the presence

of a secure comparison server and a directory server. Furthermore, the user has to ac-

tively participate in the protocol by encrypting some data. Another difference is that

even though the authors enable location broker overlapping, each user can register

only with a single broker. On the other hand, in our approach, we allow users to

register with multiple LTSs (playing the role of location broker). Finally, in [306],

no explicit mechanism is provided to protect the anonymity of the communication

against a global adversary able to observe the flow of exchanged messages.

Concerning the global adversary threat model, the only existing approach is

based on P2P collaboration among users to mix LBS requests and prevent traffic

8.8 Related Work 207

analysis ([179] is a paper well representing this approach). Other P2P approaches

to resolve the single-point-of-failure problem of the LTS have been proposed [104].

However, in our paper, we refer to scenarios in which P2P collaborative approaches

can be considered little realistic since users are in general not inclined to open their

device to incoming anonymous traffic. Moreover, the mechanism of incentives is not

effective. The only non-P2P previous approaches rely on a further Trusted Third

Party (TTP) [216, 301] (called Function Generator and Converter, resp.). Even though

these approaches could be in principle combined with our technique, the authors

themselves highlight the serious drawback that both the LTS and these additional

TTPs are not allowed to collude with malicious users, thus forgetting that any entity

can always play the role of user.

9

Anonymous service delivery with accountability

guarantees

Anonymous service delivery has attracted the interest of research and industry for many

decades. To obtain effective solutions, anonymity should be guaranteed against the ser-

vice provider itself. However, if full anonymity of users is implemented, no accountability

mechanism can be provided. This represents a problem, especially when referring to sce-

narios in which a user, protected by anonymity, may perform illegally when leveraging the

anonymous service. In this chapter, we propose a blockchain-based solution to the trade-off

between anonymity and accountability. In particular, our solution relies on three indepen-

dent parties (one of which is the service provider itself) such that only the collaboration of

all three actors allows the disclosure of the real identity of the user. In all the other cases,

anonymity is guaranteed. To show the feasibility of the proposal, we develop a prototype

with user-friendly interfaces that minimize client-side operations. Our solution is then

effective also from the point of view of usability. The results of this solution are published

in a research paper [45].

9.1 Introduction

Anonymous services are privacy-preserving services offered to users without requir-

ing them to disclose their identities.

We can distinguish two types of services. The first type is represented by one-

time services exploited by users just once. Some examples are electronic auctions

[119, 173], anonymous surveys [128], or e-voting [52]. In the second type of services,

users keep an anonymous account and exploit the same service more times. Each

user is associated with a pseudonymous username to which their account’s activity

is linked. The action of users includes also possible data generated by the user when

leveraging the service. A typical example is represented by anonymous social net-

works [276, 103], in which a pseudonymous username is associated with some data

such as private messages or posts. In this chapter, we refer to the second type of

services.

210 9 Anonymous service delivery with accountability guarantees

A minimal requirement is to provide anonymity to the users with respect to other

users leveraging the same service. However, to be effective, anonymity should be

guaranteed also against the service provider itself.

Even though, for the first type of services, full anonymity may be required, when

referring to the second type, it is impractical to pursue user anonymity without tak-

ing accountability into consideration. Indeed, without the fear of being identified,

held responsible, and punishable when they abuse the services, users are likely to

misbehave due to selfishness or malice, thereby disrupting system operations and

harming everyone else [132]. Therefore, a trade-off between anonymity and account-

ability exists [92].

In this chapter, we try to solve this trade-off by proposing a blockchain-based

protocol including two further parties in addition to the user and the service

provider. They are: (1) an identity provider, which knows the real identity of the

user, and (2) a linkage agency, acting as a third independent party, which allows the

re-identification of the users if needed (e.g., when required by a court order).

In particular, our solution allows the identification of the users only when all

three parties (i.e., service provider, identity provider, and linkage agency) collabo-

rate. In all the other cases, anonymity is guaranteed. The present solution reaches

similar goals of approaches like [47, 44, 236] with the relevant difference that, in our

solution, the collaboration of just two third parties is not enough to de-anonymize

the user.

From the security point of view, in our threat model, we require only a minimum

degree of trust in the identity provider, in the sense that it does not perform active at-

tacks such as impersonation. However, we allow it to passively collude with at most

one of the other entities by disclosing the information it knows (i.e., the real iden-

tity of the users) while preserving unlinkability. No trust is required in the service

provider and in the linkage agency.

At the basis of our solution, we rely on a challenge-response mechanism lever-

aging a smart contract deployed on the Ethereum blockchain. This smart contract

also provides an account recovery mechanism in case the user loses their access cre-

dentials. Indeed, traditional recovery mechanisms based on the telephone number

or email address cannot be adopted, since they would reveal personal information

about users.

To show the applicability of our proposal, we provide a user-friendly implemen-

tation including a time-cost analysis. In this implementation, we care about usability

by reducing the number of operations performed client-side. This shows that our so-

lution can be easily applied in real-life contexts.

9.2 Background 211

9.2 Background

In this section, we provide some background notions about blockchain technology

with a focus on Ethereum.

Blockchain is a peer-to-peer network that keeps track of the occurrence of events.

An entity can generate a transaction towards another entity to exchange a value.

This transaction is validated by peers participating in the network, thus without re-

quiring any third-trusted party to validate the transaction. This represents the main

advantage offered by this technology. Other features are:

• The transactions have to be validated and cannot be modified after their valida-

tion.

• Users cannot repudiate a transaction that they had generated.

• Anyone can access and verify the transactions stored on the blockchain.

• The users generating the transactions should remain anonymous.

Regarding the latter point, for example, Ethereum guarantees pseudonymity, in

the sense that the identity of the users is not revealed, but their transactions are

linkable.

The above properties are generic of the blockchain technology and apply to al-

most all the existing public-permissionless implementations [25, 265], even though

there exist blockchains supporting full anonymity [191, 131].

To give a concrete proposal, in the proposed solution, we refer to the Ethereum

blockchain.

In Ethereum, there are two types of accounts. The first type is represented by

the External Owned Accounts (EOAs), which are controlled by users through pri-

vate/public key pairs. Specifically, a user U generates a random string of 32 bytes. It

represents the private key P RKU of U .

Ethereum leverages the Elliptic Curve Digital Signature Algorithm (ECDSA)

[147], by selecting the curve secp256k1. Then, by applying the ECDSA algorithm

to P RKU , U obtains a public key P BKU of 64 bytes (it represents the coordinates of

a point of the elliptic curve). Finally, U applies the hash function Keccak256 [27]

to P BKU and takes the last 20 bytes to obtain an Ethereum address. This Ethereum

address is used to send and receive transactions and identifies (in pseudonymous

form) U in the network.

Each transaction generated by U is signed with the private key P RKU . The signed

transaction is broadcast in the blockchain network. Anyone can verify the signature,

by retrieving the public key of the signer (from the signature and the transaction)

and checking that it is equal to the expected public key. Furthermore, the Ethereum

212 9 Anonymous service delivery with accountability guarantees

address of the signer can be obtained from the public key by applying Keccak256 as

described above.

The second type of account is called contract account, and represents an account

controlled by code (i.e., a smart contract). A smart contract [220] can be viewed as a

collection of data and functions. To deploy an instance of a smart contract, an EOA

sends an Ethereum transaction containing the compiled code (on the Ethereum VM)

of the smart contract without specifying any recipient. Each instance has its own

data (also called state) and functions, and it is associated with an Ethereum address.

To invoke a function of the smart contract, an EOA generates a transaction includ-

ing the input of the function, intended for the address of an instance of the smart

contract. This function may change the state of such an instance. Since the transac-

tion invoking the function is stored on the blockchain, due to the properties of im-

mutability and non-repudiation, anyone can verify the correct state of any instance

at any time.

9.3 Actors and notation

Our solution involves four actors:

• The user U : they require access to an anonymous service offered by a service

provider SP .

• The service provider SP : it offers the anonymous service to U . U interacts with

SP through a pseudonym username userU not linkable to the real identity IDU of

U .

• The identity provider IP : it knows and manages the real identity IDU of U .

• The linkage agency LA: it is a third independent party that, after receiving an

order by a court, is able, through the collaboration of IP and SP , to link the real

identity IDU with the username userU .

As discussed in Section 9.1 and shown in Section 9.7, just the collaboration of

two out of IP , SP , and LA is not enough to associate IDU with userU , but all the

three parties have to be involved.

During the interaction between U and SP , some information is generated and

associated with userU (since SP does not know the real identity IDU). We denote

by IU such account information. For example, if SP is an anonymous social network,

IU is represented by the private messages exchanged between U and other users,

the messages posted by U , the “likes" released by U , and so on. Like almost all web

services, IU is maintained server-side by SP . Observe that the access to IU is what

the user has to recover in case of loss of credentials.

9.4 Challenge-Response mechanism 213

An association among EOAs (see Section 9.2) and actors is established. Specifi-

cally, U owns two Ethereum addresses AddU1 and AddU2 . SP owns the Ethereum ad-

dress AddSP . IP owns the Ethereum address AddIP . Finally, LA owns the Ethereum

address AddLA.

Observe that AddU1 and AddU2 are pseudonyms of U not linkable between them

or with IDU . AddSP , AddIP , AddLA are made publicly available by SP , IP , and LA,

respectively.

As we will see in Section 9.4, our proposal is based on a challenge-response mech-

anism implemented by the smart contract reported in Listing 1. A number of in-

stances of such a smart contract are deployed by SP , IP , and LA.

Specifically, SP deploys two instances CSP
1 and CSP

2 with Ethereum addresses

AddC
SP
1 and AddC

SP
2 , respectively. CSP

1 is used by U during the registration phase

with SP . It allows SP to associate the Ethereum address AddU2 with userU . Clearly,

this operation is performed by SP without knowing the real identity IDU of U . More-

over, userU is not publicly disclosed. CSP
2 is used by U to retrieve IU , in case U loses

the credentials to connect with SP .

IP deploys the instance CIP with Ethereum address AddC
IP

. It is used by IP to

associate AddU1 with the real identity IDU of U without disclosing it.

Finally, LA deploys the instance CLA with Ethereum address AddC
LA

. CLA is used

by LA to link the Ethereum addresses AddU1 and AddU2 of U (without knowing the

real identity IDU and the username userU).

To conclude this section, we introduce a notation to model the Ethereum trans-

actions. In our application, the transactions are generated by the actors only towards

instances of a smart contract to invoke some functions. No user-to-user transaction

is performed and no Ether transfer is needed. Therefore, we model an Ethereum

transaction as a tuple T = ⟨sender,destination,f unction(params)⟩.

sender ∈ {AddU1 , AddU2 , AddSP , AddIP , AddLA} represents the Ethereum address

of the actor generating the transaction. destination ∈ {AddC
SP
1 , AddC

SP
2 , AddCIP ,

AddCLA} represents the destination address of the transaction. It can be an instance

of the smart contract. Finally, f unction(params) represents the invoked function of

the smart contract along with the input parameters.

9.4 Challenge-Response mechanism

At the basis of our protocol, there is a challenge-response mechanism implemented

by the smart contract reported in Listing 1.

It offers the following three security properties.

214 9 Anonymous service delivery with accountability guarantees

Listing 1 Smart Contract implementing a challenge-response mechanism.

1 contract SmartContract {

2

3 address private owner;

4

5 mapping(address => string) public stateMap;

6 mapping(address => bytes32) challengeMap;

7

8 modifier isOwner() {

9 require(msg.sender==owner, "Caller is not owner");

10 _;

11 }

12

13 constructor() {

14 owner=msg.sender;

15 }

16

17 function setChallenge(address user, bytes32 challenge) public isOwner {

18 stateMap[user]="To Confirm";

19 challengeMap[user]=challenge;

20 }

21

22 function solveChallenge(bytes32 solution) public{

23 address sender=msg.sender;

24 if(compareStrings(stateMap[sender],"To Confirm")){

25 bytes32 challenge=challengeMap[sender];

26 if(keccak256(abi.encode(solution))==challenge){

27 stateMap[sender]="Confirmed";

28 }

29 }

30 }

31

32 function compareStrings(string memory a, string memory b) public view

33 returns (bool) {

34 return (keccak256(abi.encodePacked((a))) ==

35 keccak256(abi.encodePacked((b))));

36 }

37 }

9.4 Challenge-Response mechanism 215

• P1: IP , SP , LA have to be sure that the users really own the claimed Ethereum

addresses.

• P2: if the previous check is satisfied and the owner of an address is able to solve

a given challenge, then the smart contract sets, in a verifiable way, the state of

such an address as "Confirmed".

• P3: the smart contract allows us to notarize some information.

Even though, at this stage of the chapter, it is not clear why we need these prop-

erties, we show as the smart contract allows us to satisfy them. Further details are

provided in Section 9.5, where we exploit the proposed mechanism to implement

our protocol.

Our smart contract includes two mappings, called stateMap and challengeMap,

and two functions, called setChallenge and solveChallenge.

stateMap associates an Ethereum address with a string representing the state

of such an address. We admit three possible states: "" (the built-in default state of

Ethereum smart contracts), "To Confirm", and "Confirmed". By default, all the ad-

dresses are in state "".

challengeMap associates an Ethereum address with a bytes32 variable contain-

ing the challenge that such an address has to solve.

setChallenge can be invoked only by the owner (i.e., the entity who deployed)

of the instance of the smart contract (in our application, the owner can be IP , SP ,

or LA). It receives as input an Ethereum address and a challenge. Then, it associates

the challenge with the address in the challengeMap and sets the state of the address

to "To Confirm" in the stateMap.

solveChallenge can be invoked by anyone and receives the solution to the chal-

lenge as input. The solution to the challenge is a 32-byte word (corresponding to the

digest of a cryptographic hash function). The technical detail about how this solution

is computed is described in Section 9.5. First, it checks that the address originating

the transaction invoking this function is in state "To Confirm". This guarantees P1,

since only the owner of an Ethereum address can generate a transaction from such an

address. If the check is positive, then the function verifies that the solution solves the

challenge associated with this address. In the positive case, the state of the address is

set to "Confirmed" in the stateMap. This clarifies as the smart contract guarantees

P2.

The mechanism to verify the solution to the challenge is straightforward. The

smart contract simply checks that challenge = Keccak256(solution).

Regarding P3, the solution to the challenge itself represents the information

to notarize. Observe that, since this information is published in plaintext on the

216 9 Anonymous service delivery with accountability guarantees

blockchain, it should not compromise the anonymity of the user. This will be ex-

plained in the next section, in which the whole protocol is described.

9.5 The proposed approach

Our solution involves three interactions performed just once (in a registration phase)

by U with IP , SP , and LA, respectively. The goal is to obtain accountability only if

LA collaborates with SP and IP to discover the real identity of a user performing il-

legally when using the anonymous service offered by SP . Furthermore, the proposed

approach provides a mechanism to recover the account information IU when U loses

the access credentials.

9.5.1 Interaction between U and IP .

Through this interaction, IP associates the Ethereum address AddU1 with the real

identity IDU of U . At the end of this phase, AddU1 will result in state "Confirmed"

and will be used by LA in the next interaction. This phase proceeds as follows.

First, U authenticates with IP and provides it with AddU1 . Then, IP picks a ran-

dom R and generates a challenge ch = Keccak256(Kekkac256(R∥IDU)). We recall that

U is preliminarily registered with IP , which knows their real identity IDU .

IP generates a transaction T1 = ⟨AddIP ,AddCIP
, setChallenge(AddU1 , ch)⟩ intended

for the instance CIP of the smart contract. This transaction invokes the function

setChallenge that associates the challenge ch with the address AddU1 and sets AddU1

in state "To Confirm". Finally, IP sends U the random R.

After receiving R, U computes the solution to the challenge as

sol=Kekkac256

(R∥IDU) and generates the transaction T2=⟨AddU1 ,AddC
IP
, solveChallenge(sol)⟩. This

proves to IP that U is the owner of AddU1 . The function solveChallenge sets AddU1

in state "Confirmed". Observe that the random R acts as a salt for the hash function

Kekkac256. This way, IDU cannot be reversed by sol even performing dictionary

attacks by testing all the possible real identities. On the other hand, if IP discloses

R to LA, the association IDU −AddU1 can be verified through the instance CIP of the

smart contract.

Finally, IP verifies the state "Confirmed" of the address AddU1 and stores locally

the tuple ⟨AddU1 , IDU ,R⟩ to provide LA if needed.

The above steps are summarized in the sequence diagram of Figure 9.1.

The next two interactions are between U and LA and between U and SP , respec-

tively. They have to be performed in an anonymous form without any authentication

of U . Clearly, to avoid IP geolocation, anonymous communication protocols like Tor

9.5 The proposed approach 217

Fig. 9.1: Sequence diagram of the interaction between U and IP .

[258] and VPNs [234] can be adopted. We do not treat this aspect in detail. For fur-

ther details about the anonymous communication protocols, the reader can refer to

parts 1 and 2 of this thesis.

9.5.2 Interaction between U and LA

Through this interaction, LA links AddU1 and AddU2 without knowing the real iden-

tity of U .

First, U contacts (anonymously) LA and provides it with AddU1 . LA needs to ver-

ify two conditions. The first is that AddU1 is an Ethereum address associated with a

real identity by IP . However, LA does not need to know such a real identity. This con-

dition can be easily verified by checking that AddU1 is in state "Confirmed" on CIP .

The second condition is that AddU1 really belongs to the user contacting LA. This is

done to avoid a user trying to impersonate another user already authenticated with

IP .

Even though the challenge-response mechanism used in the previous section al-

lows this task, we should not use it. Indeed, it requires some interactions through

the blockchain that would disclose the linkage AddU1 −Add
U
2 to anyone.

Therefore, to verify the second condition, LA generates a random R′ and pro-

vides U with it. U signs R′ with the private key associated with AddU1 , obtaining a

signature σ . Finally, U replies to LA with the pair (σ,AddU2).

Starting from σ and R′ , LA verifies the signature and retrieves the public key as-

sociated with AddU1 . Then, as explained in Section 9.2, LA computes the hash func-

218 9 Anonymous service delivery with accountability guarantees

tion Keccak256 on this public key and takes the last 20 bytes to obtain the address

AddU1 . If AddU1 = AddU1 , then LA is sure that the user contacting it owns AddU1 .

At this point, LA needs to verify that U owns AddU2 . The same challenge-response

mechanism used with IP is adopted. This way, AddU2 will move to the state "Con-

firmed" on the instance CLA and will be used by SP in the next interaction with

U .

In detail, LA picks a random R̄ and generates a challenge

ch = Keccak256(Kekkac256(R̄∥AddU1 ∥Add
U
2 ∥σ)).

Then, LA generates a transaction T3 = ⟨AddLA, AddCLA
, setChallenge(AddU2 , ch)⟩.

This transaction invokes the function setChallenge that associates the challenge

ch with the address AddU2 and sets AddU2 in state "To Confirm". The random R̄ is

provided to U .

U computes the solution of challenge as sol = Kekkac256(R̄∥AddU1 ∥Add
U
2 ∥σ) and

generates the transaction T4=⟨AddU2 ,AddC
LA
, solveChallenge(sol)⟩. This proves to LA

that U is the owner of AddU2 , which will be set in state "Confirmed" by the function

solveChallenge.

Finally, LA verifies the state "Confirmed" of the address AddU2 and stores locally

the tuple ⟨AddU1 ,AddU2 , R̄,σ⟩.

The above steps are summarized in the sequence diagram of Figure 9.2.

9.5.3 Interaction between U and SP

Through the third interaction of our protocol, SP associates AddU2 with a pseudonym

userU chosen by U . For simplicity, we assume that the access credentials of U are

represented by a pair username-password. However, the password can be replaced

by the DeviceID of the user’s phone as with Whisper [276].

Again, we exploit the challenge-response mechanism of Section 9.4.

U provides SP with (AddU2 ,userU ,passU), where passU is the password chosen

by U . SP verifies AddU2 is in state "Confirmed" on the instance CLA. Then, it picks

a random R̂ and generates the challenge ch = Keccak256(Kekkac256(R̂∥userU)). Fi-

nally, SP generates a transaction T5=⟨AddSP , AddC
SP
1 , setChallenge(AddU2 , ch)⟩. This

transaction invokes the function setChallenge that associates the challenge ch with

the address AddU2 and sets AddU2 in state "To Confirm". The random R̄ is provided

to U .

U computes the solution to the challenge as sol = Kekkac256(R̂∥userU) and gen-

erates the transaction T6 = ⟨AddU2 ,AddC
SP
1 , solveChallenge(sol)⟩. This proves to SP

that U is the owner of AddU2 , which will be set in state "Confirmed" by the function

solveChallenge.

9.5 The proposed approach 219

Fig. 9.2: Sequence diagram of the interaction between U and LA.

Finally, SP verifies the state "Confirmed" of the address AddU2 on the instance

CSP
1 and stores locally the tuple ⟨AddU2 ,userU , R̂,passU ⟩. Observe that the password

passU is not included in the notarized information since it is used by SP only to

authenticate U .

The above steps are summarized in the sequence diagram of Figure 9.3.

We conclude this section by observing that, as we will see in Section 9.6.2, to de-

velop a user-friendly application, almost all the client-side operations are performed

automatically by some scripts without requiring the interaction of the users. They

have just to confirm some operations (generation of the transactions and signature of

messages) for security reasons. Furthermore, to simplify the client-side operations,

the interactions of U with SP and LA are merged into a single interaction with SP

in which the user is redirected to LA.

9.5.4 Account information recovery

Suppose U loses the access credentials with SP and wants to recover the account

information IU . U has just need to prove to SP the ownership of the Ethereum ad-

dress AddU2 with which U is registered at SP . This is done, as already discussed in

the previous sections, through the challenge-response mechanism involving the in-

220 9 Anonymous service delivery with accountability guarantees

Fig. 9.3: Sequence diagram of the interaction between U and SP .

stance CSP
2 of the smart contract. After verifying the possession of AddU2 , SP enables

the standard module to change the password and provides U with IU .

9.5.5 Law-enforced re-identification of U

Suppose a law court receives a notification about an illegal behavior of a user with

username userU , when leveraging the anonymous service provided by SP . After ver-

ifying whether such behavior violates the law, it emits an order to ask LA to retrieve,

in a verifiable way, the real identity IDU of the user with username userU . First, LA

contacts SP to obtain the Ethereum address AddU2 associated with userU . Then, LA

retrieves the Ethereum address AddU1 linked with AddU2 (this linkage is maintained

by LA itself). Finally, LA contacts IP to obtain the real identity IDU of U associ-

ated with AddU1 . Observe that, the mapping userU −AddU2 is verifiable through the

instance CSP
1 by disclosing the random R̂. Similarly, the mapping AddU1 −Add

U
2 is

verifiable through the instance CLA by disclosing the random R̄. Finally, the map-

ping AddU1 − IDU is verifiable through the instance CIP by disclosing the random

R.

9.6 Implementation and Time-Cost Analysis

In this section, we describe the prototype developed to implement the solution pro-

posed in Section 9.5.

9.6 Implementation and Time-Cost Analysis 221

Fig. 9.4: User interface of IP .

Fig. 9.5: Selection of a IP -validated Ethereum Account.

Fig. 9.6: Completion of Step 1.

9.6.1 Adopted technologies

We developed three JAVA web applications to implement IP , SP , and LA. Each appli-

cation leverages the Apache Struts2 web framework [235]. Struts is an open-source

framework that employs a Model, View, Controller (MVC) architecture and that en-

ables you to create maintainable and flexible web applications. The View part of

our web applications is constructed using JavaServer Pages (JSP) [163]. To improve

the user experience we used Asynchronous JavaScript and XML (AJAX) [100], thus

allowing the user’s interaction with the application to happen asynchronously.

As explained in the previous sections, our web applications need to interact with

the Ethereum blockchain both server-side and client-side.

222 9 Anonymous service delivery with accountability guarantees

Fig. 9.7: Signature of the LA challenge.

Fig. 9.8: Selection of the Ethereum address AddU2 .

Server-side, our applications leverage Infura [137]. The Infura API suite allows

you to access the Ethereum network through HTTPS and WebSockets. Infura has

the main advantage of providing all the necessary tools to develop on Ethereum,

without the need to run locally any blockchain node.

Client-side, our applications interface with MetaMask [186] via JavaScript. Meta-

Mask is a very popular application allowing users to write on the blockchain. One

of the main benefits of using MetaMask is that users’ passwords and keys remain on

the user’s device since they are not shared with any other parties interacting with it.

9.6.2 Implementation detail and prototype functionalities

Through this section, we describe in detail the implementation of the prototype (in-

cluding the three web applications) and describe how it works.

The implementation of the IP web application (whose user interface is repre-

sented in Figure 9.4) follows what has been described in Section 9.5. The selection of

the address AddU1 is executed client-side via JavaScript connecting to MetaMask. It

replies with the address that is currently selected in the application. At this point, the

9.6 Implementation and Time-Cost Analysis 223

Fig. 9.9: Transaction to solve the LA challenge.

Fig. 9.10: Completion of the interaction with LA.

Fig. 9.11: Subscription to SP .

challenge-response mechanism starts. IP generates the challenge server-side and in-

vokes the smart contract function setChallenge via Infura API. After this, the user,

client-side, solves the challenge by invoking the smart contract function solveChal-

lenge via MetaMask.

Now, we move to the other two applications.

Even though the high-level workflow described in Section 9.5 only require sepa-

rate interactions between U and the two parties SP and LA, the technical implemen-

224 9 Anonymous service delivery with accountability guarantees

tation of the prototype does this transparently for the user, through a redirection

from SP to LA of the web traffic.

In detail, when the user asks to subscribe to SP , it will redirect the user to LA

for the verification of their Ethereum addresses. The procedure executed with LA is

divided into four steps, as represented in Figure 9.5.

The first step is to aid the user in the selection (on Metamask) of the address

AddU1 , so that the user does not have to remember it. The LA client-side application

asks MetaMask the current address selected by the user and verifies whether or not

it is validated by the IP (i.e., if it is memorized in state "Confirmed" in the instance

CIP). In the case it is not validated, the LA application returns to the user a message

asking them to select a different address (Figure 9.5). The procedure continues until

the user selects an address validated by IP . At this point, the user can proceed with

the second step (Figure 9.6).

During the second step, the user is asked to sign a random provided by the server

(Figure 9.7). Then the signature is sent to the server along with the address AddU1 ,

so that the server can verify that the user owns the address AddU1 .

During the third step, the user is asked to switch to an address different from

AddU1 (Figure 9.8). After doing this, the newly selected address (AddU2) is sent to LA.

At this point, the challenge-response mechanism starts. Therefore, LA sets a chal-

lenge on the instance CLA and provides the client with all the information necessary

to solve this challenge (i.e., a random R̄). Once received, the user has just to autho-

rize the transaction on MetaMask, in order to invoke the solveChallenge function

of the smart contract (Figure 9.9).

Once this transaction is confirmed, the user can proceed to the fourth step, which

consists of a message confirming that the whole procedure succeeded. At this point,

LA will redirect the user to SP forwarding the address AddU2 (Figure 9.10).

On SP (Figure 9.11), after another challenge-response mechanism, the user can

subscribe by entering a username and a password, which will be memorized by SP

along with the address AddU2 .

This address is used also in the case the user forgets their login credentials. Again,

the procedure to recover them consists of the application of the challenge-response

mechanism. We recall that the user needs to select the right address to invoke the

solveChallenge function of the smart contract. To aid the user in the selection of

the right address, the client-side module of SP implements the same mechanism

seen in the first step of the procedure executed with LA. We highlight that this de-

sign choice has two main benefits: (i) the user does not have to memorize AddU2 , (ii)

being a procedure performed exclusively client-side, the user’s other addresses are

not disclosed to the server.

9.6 Implementation and Time-Cost Analysis 225

9.6.3 Time-Cost analysis

Fig. 9.12: Timeline of the interactions between user, IP , and blockchain.

.

Fig. 9.13: Timeline of the interactions between user, LA, SP , and blockchain.

.

We analyzed our implementation measuring the time to perform the operations

required by our solution. The measurements are performed by using a personal com-

puter equipped with 2.8 GHz Intel i7-1165G7 CPU and 16 GB of RAM. The obtained

results are reported in Figures 9.12 and 9.13.

In Figure 9.12, the interaction between user, IP , and blockchain is represented.

In Figure 9.13, the interaction between user, LA, SP , and blockchain is reported.

We distinguish between the tasks executed client-side (marked by CC) and the

tasks executed server-side (marked by SC). The time intervals necessary to perform

these two kinds of tasks are represented with a solid grey line. For each of these

intervals, the time needed to complete it is reported in the figures.

226 9 Anonymous service delivery with accountability guarantees

We also represent the user-dependent time intervals (marked by UDT) with a

grey dashed line. Since the duration of these time intervals depends on the time the

users need to click the buttons, we assume realistic average times of 2− 3s.

Finally, the measurements of the time intervals between sending a transaction to

the blockchain and confirming the transaction itself are reported in the two figures.

To perform these measurements, we choose the Ropsten test network [233], since it

is able to reproduce the network conditions of the live Ethereum mainnet.

Our measurements show that the time intervals pertaining to the blockchain

timeline last 15−25s. From our experiments, these values, compared to the duration

of the other measured time intervals, appear to be predominant but still acceptable.

A factor influencing the duration of the time intervals pertaining to the blockchain

is the selected gas price. Indeed, a high gas price causes a transaction to be processed

faster, at the cost of greater transaction fees. For our experiments, we adopt the de-

fault gas price suggested by Metamask.

To summarize the results, we obtain that the entire registration procedure with

IP requires less than 1 minute while the registration procedure with SP (including

the interaction with LA) requires less than 2 minutes.

By using the default gas price suggested by Metamask, we also measured the

costs, in terms of Ethers, resulting from the following operations: smart contract

deployment, the execution of the setChallenge function, and the execution of the

solveChallenge function.

In the following, we report the resulting costs in terms of Ethers (ETH) and US

dollars ($), in June 2022:

• smart contract deployment: 0.00296997 ETH / 5.34 $;

• setChallenge execution: 0.00029962 ETH / 0.54 $;

• solveChallenge execution: 0.00013468 ETH / 0.24 $.

We stress that, although the smart contract deployment has a relatively high cost,

it is a one-time operation performed by SP , LA, and IP , and therefore its cost is

sustainable.

From the above results, we can estimate the overall cost of a user registration,

which is about 2.20$. In a real business model, this cost can be charged to the user

willing to use the anonymous service. Thereby, our solution does not result in signif-

icant costs either for the user or for the service providers.

9.7 Security analysis

In this section, we discuss the security guarantees offered by our solution.

We analyze the following two compromises possibly affecting our protocol.

9.7 Security analysis 227

• C1: an adversary, not including the collaboration of IP , SP , and LA simultane-

ously, is able to discover the link between the username and the real identity of

a user.

• C2: an adversary is able to forge a fake link, publicly verifiable on the blockchain,

between the username and the real identity of a user.

Regarding C1, it represents a privacy compromise. As already discussed, our pro-

tocol allows the de-anonymization of a username only when IP , SP , and LA collab-

orate. In the other cases, the link real identity-username should not be disclosed to

anyone.

Concerning C2, we refer to attacks in which the adversary attempts to associate a

username userU of a user U with an identity IDŪ of another user Ū to falsely accuse

the latter of an illegal behavior performed by U .

Regarding the trust required of the involved actors, we make only the following

assumption.

• A: IP is honest but curious, in the sense that performs legally the steps of the

protocols but attempts to cause the two compromises C1 and C2.

In other words, A requires that IP does not swap the real identities of two users.

It is a standard assumption of all identity management systems. Indeed, the role of

an identity provider is just to certify the real identity of users. However, in our threat

model, we allow IP to disclose the identities it knows and show that this does not

affect the privacy of the users.

No assumption is made on LA and SP . They can be considered fully malicious

with respect to the considered compromises.

Now, we discuss in detail the two compromises and show how our protocol pre-

vents them.

Compromise C1. This compromise occurs when the adversary identifies the real iden-

tity IDU of a user U associated with a given username userU .

Since external users just see the transactions originating from some Ethereum

addresses on the blockchain, we consider SP , IP , and LA as adversaries. They can

access the blockchain too, then they have at least the knowledge of all external users.

By excluding the collaboration of all three (by hypothesis), we consider as adversary

the collaboration of the pairs (IP ,LA), (LA,SP), and (IP ,SP) and show as C1 does

not occur.

We start by considering the collaboration of IP and LA. Given the user U , IP

knows the real identity IDU of U and the Ethereum address AddU1 . Through the col-

laboration with LA, IP can discover the Ethereum address AddU2 linked with AddU1 .

However, no information about the username userU of U is available to IP and LA.

228 9 Anonymous service delivery with accountability guarantees

Indeed, the only public information containing userU (in obfuscated form), is the

transaction T6 generated by U with the address AddU2 . This transaction contains the

solution to the challenge sol = Kekkac256(R̂∥userU). Without R̂ (maintained by SP),

it is not possible to reverse the hash function Kekkac256 also through dictionary

attacks on all possible usernames.

Similar reasoning applies considering the pair (LA,SP). Their collaboration just

allows the linkage of AddU1 , AddU2 , and userU , but no information is available to

LA and SP about IDU . Indeed, the only public information containing IDU (in ob-

fuscated form), is the transaction T2 generated by U with the address AddU1 . This

transaction contains the solution to the challenge sol = Kekkac256(R∥IDU). Without

R (maintained by IP), it is not possible to reverse the hash function Kekkac256.

Finally, consider the pair (IP ,SP). IP maintains the mapping AddU1 − IDU , while

SP maintains the mapping AddU2 − userU . However, without the mapping AddU1 −

AddU2 (maintained by LA), they are not able to link IDU with userU . The only public

information containing this mapping (in obfuscated form), is the transaction T4 gen-

erated by U . It contains the solution to the challenge sol = Kekkac256(R̄∥AddU1 ∥Add
U
2 ∥σ).

Again, without R̄ and σ (maintained by LA), it is not possible to reverse the hash

function Kekkac256.

Compromise C2. This compromise occurs whether an adversary forges a valid link

(publicly verifiable on the blockchain) between the real identity IDŪ of a user Ū and

a username userU of a different user U .

To forge a valid link, IDŪ has to be present (in obfuscated form) in a transaction

intended for the instance CIP . By Assumption A, IP performs legally the steps of

the protocol and does not notarize the real identity of a user Ū not requiring the

anonymous service. Therefore, we consider Ū as a user with Ethereum address AddŪ1

such that the link between IDŪ and AddŪ1 can be verified through the instance CIP .

To perform the compromise C2, the attacker has two possibilities. The first

possibility is to forge a fake link between AddŪ1 and AddU2 verifiable through

the instance CLA such that AddU2 is associated with userU by SP . To do this, the

blockchain would have a transaction originated by AddLA including the challenge

ch = Keccak256(Kekkac256(R̄∥AddŪ1 ∥Add
U
2 ∥σ̄)), where σ̄ is a signature obtained

from the private key associated with the address AddŪ1 . Moreover, another transac-

tion originated by AddU2 , including the solution to the challenge, would be present

on the blockchain. Even though the attacker coincides with the collaboration of LA

and U (the only parties who can generate these two transactions), it is not able to

forge the signature σ̄ without the collaboration of Ū . Therefore, this first case can-

not occur.

9.8 Related work 229

The second possibility is that, a valid link between AddŪ1 and AddŪ2 (both

belonging to Ū) exists and the attacker attempts to forge a fake link between

AddŪ2 and userU . However, similar to the previous case, to accomplish this, the

blockchain would have a transaction originated by AddSP including the challenge

ch = Keccak256(Kekkac256(R̂∥userU)) and a transaction originated by AddŪ2 , includ-

ing the solution to the challenge. Even though the attacker coincides with the col-

laboration of SP and U , it is able to forge the first transaction but not the second.

Therefore, this possibility also cannot occur.

This concludes the security analysis.

9.8 Related work

In the scientific literature there exist several papers dealing with the general issue of

balancing anonymity and accountability in different fields.

[49, 12, 262] relies on anonymous credential systems and related schemes. Anony-

mous credential systems allow users to interact with a service provider in an anony-

mous yet accountable way [176, 69, 50].

[49] is the first paper proposing an anonymous credential system, in which, to

prevent misuse of anonymity, the anonymity property can be revoked for particular

transactions.

[12] introduces an approach relying on anonymous credentials that allows access

control systems to offer fully anonymous access to resources along with strong ac-

countability guarantees. It is worth noting that the proposed approach relies on a

trusted third party to build a mechanism to escrow the identity of the user.

Most of the solutions present in the literature assume a client-server architecture

in which only the clients care about their privacy. On the contrary, [267] aims to

reach the right balance between privacy and accountability in P2P systems, where

both clients and servers are peer users.

In [82], the authors deal with the issue of accountability in anonymous publi-

cation and storage services where malicious servers can make documents unrecov-

erable. To discourage this kind of behavior, the authors propose the creation of a

“buddy system", that creates an association between pairs of shares from a given

document. Therefore, a server holding a given share is responsible for detecting any

anomaly regarding its buddy.

[85] proposes a framework to provide an anonymous mutual authentication pro-

tocol in wireless mesh networks. The proposed framework utilizes group signatures,

where the private key and the credentials of the users are generated through a secure

three-party protocol. User accountability is implemented via user revocation proto-

230 9 Anonymous service delivery with accountability guarantees

col, whose execution can be done by two semi-trusted authorities, one of which is

the network operator.

[13, 79] deal with the issue of accountability in anonymous communication net-

works. Indeed, [79] highlights that both anonymity and accountability requirements

should be satisfied to gain support for the deployment of large-scale anonymity in-

frastructures. To do this, [13] presents a mechanism that provides practical repu-

diation for the proxy nodes by tracing back selected traffic to the predecessor node

through a cryptographically verifiable chain.

A proposal including some similarities to our work is presented in [202]. Indeed,

the authors proposed a solution that leverages the Bitcoin blockchain as a platform

to manage and determine ownership of users’ access credentials. The authors design

an authentication scheme able to provide anonymity and accountability without re-

lying on any trusted third party.

Anyway, the proposed solution achieves accountability only in the sense that the

service provider can blacklist the misbehaving credentials related to a user. Indeed,

as highlighted by [266], accountability can still be obtained by eliminating the re-

liance on a third trusted party for credentials revocation, but this comes with a cost:

the revoked user remains anonymous.

Another solution relying on blockchain to support anonymous authentication in

VANET is provided in [180].

We conclude this section by discussing some proposals about anonymous social

networks [103]. Indeed, these appear as services that might take advantage of adopt-

ing our solution.

Anonymous Social Networks completely shift the traditional social networks

paradigm. Indeed, while the latter put first the user identity and its social link,

anonymous social networks encourage communication between strangers and allow

users to express themselves without fear of bullying or retaliation [276]. Among the

most famous anonymous social networks, we found Whisper [276] and Yik Yak [32].

Several studies in the literature focus on the anonymity guarantees offered by

popular anonymous social networks [57, 32, 276]. However, to the best of our knowl-

edge, no paper concerning the accountability problem is available, although several

studies suggest that the lack of accountability may encourage users to engage in il-

legal behavior, potentially harming other users [132].

10

Anonymous linkage of open data

User profiling activity has captured the attention of modern enterprises. To maximize the

benefits, a huge quantity of data is needed. Then, the analysts often rely on open data

publicly released and freely accessible. However, privacy threats arise when personal data

is treated. Therefore, anonymizing techniques to hide the identity of the users are adopted.

In this chapter, we consider the case in which data regarding the same user comes from

multiple sources relying on different anonymizing techniques. In this case, on the one

hand, the analysts are interested in linking data (regarding such a user) coming from

different sources. On the other hand, it is not adequate to disclose such linkage to other

parties different from the analysts. Therefore, our aim is to enable the sole analysts to link

data by keeping unknown to them the real identity of the users. We propose a solution to

the above problem, by instantiating it in the domain of smart cities, in which the sources

of the data are represented by city subsystems such as cinemas, theaters, shopping, and

so on. To offer a concrete solution, we refer to an existing open-data standard and we

implement the protocol through a SAML-based SSO framework adhering to the eIDAS

regulation. To the best of our knowledge, our solution is the first proposing the publication

of linkable-by-design open data

10.1 Introduction

User profiling [89] is the process of collecting, analyzing, and inferring new infor-

mation about users. This aspect is particularly critical for modern enterprises [241],

since it allows them to capture users’ interests and offer customized products and

services. Clearly, in order to obtain the most accurate results possible, an enormous

amount of data is required. In the literature and in real life, an effective source of

such data for the activity of user profiling is represented by open data [130], i.e.,

data that can be accessed, used, and shared by anyone [194]. However, when deal-

ing with personal information (even non-sensitive), serious privacy issues have to

be taken into account. In the literature, several proposals are available with the aim

232 10 Anonymous linkage of open data

to anonymize the data published by a source and prevent the linkage with the real

identity of the users [240, 178, 170]. In this chapter, we deal with a different problem

in which data regarding the same user is provided by several sources. In these cases,

the various sources may apply different anonymizing techniques and, as a result, it

is not possible to link the different data, albeit in an anonymous form.

Although this can be viewed as a desirable feature from the point of view of pri-

vacy, it limits considerably the effectiveness of user profiling activity performed by

the analysts, since they cannot link useful information belonging to the same users

but coming from different sources. On the other hand, it appears unnecessary and

potentially dangerous to disclose such a linkage to other parties, except for analysts.

Therefore, we propose a privacy-preserving solution for the linkage of open data

coming from different sources relying on different anonymizing techniques. In par-

ticular, we pursue the following goals:

1. The data coming from different sources have not to be linkable for any party but

the analysts. This also includes the sources themselves of data.

2. The analysts can link the data coming from different sources, but cannot know

the real identity of the user associated with them.

To be concrete, we instance our solution in a smart city scenario [293] in which

the sources of data are represented by city subsystems such as cinemas, theaters,

shopping, and so on. Clearly, they represent the natural sources of useful data for

user profiling [192]. As supported by the literature [14, 3], we assume the subsystems

publish data in the form of open data.

Observe that, this scenario adheres perfectly to the two above-discussed objec-

tives in terms of interoperability and privacy which represent two fundamental pil-

lars for the development of smart cities.

Another contribution of the proposed solution is that it can be easily integrated

into the Single-Sign-On authentication framework [228]. In particular, we refer to

the eIDAS regulation relying on the SAML-based SSO authentication and show how

it can be extended to support our proposal. Finally, the implementation of the solu-

tion, along with a case study, is also provided to witness the feasibility of our pro-

posal.

As highlighted in Section 10.7, all proposals available in the literature aim to

tackle the problem of linking data only in the aftermath. In these approaches, the

linking process requires a lot of computational effort and can fail with a given per-

centage of error. On the contrary, our proposal aims to let the subsystems publish

open data, which are anonymous and linkable by design only to authorized parties.

Thereby, (i) our solution is able to protect individual privacy, (ii) linking data is a

10.2 Background 233

straightforward procedure, i.e., it doesn’t require a lot of computation, (iii) our solu-

tion guarantees the correctness of the linkage process.

10.2 Background

10.2.1 Open data

Open data is data that can be accessed, used, and shared by anyone. The only con-

straints are represented by the obligation to acknowledge the source and to share

them by using the same type of license under which they had been previously re-

leased. In modern contexts, such as smart cities, users interact with several subsys-

tems (e.g., cinemas, theaters, shopping, and so on) resulting in the production of sev-

eral data. These data, properly pre-processed, can be published as open data so that

they can be analyzed by other parties. Clearly, this exposes the users to several pri-

vacy concerns since their habits can be disclosed. Therefore, traditional anonymiza-

tion techniques such as k-anonymity [240], l-diversity [178], and t-closeness [170]

can be adopted before data are exposed. More recent and advanced techniques are

reported in Section 10.7.

As a best practice, Tim Berners-Lee introduces 5 levels [26] for the definition

of the format in which open data should be published. The first level regards data

made available on the web in any format (not necessarily machine-readable). Level

5 refers to Linked Open Data [18] by requiring that machine-readable data coming

from different sources can be linked to perform much more interesting analyses with

respect to data coming from a single source. In this chapter, we refer to level 5, since,

in smart cities, the citizens use several subsystems by producing different data that

may be linked.

10.2.2 eIDAS and SAML 2.0

The eIDAS regulation aims to “provide a common normative basis for secure elec-

tronic interactions between citizens, businesses and public administrations and at

increasing the security and effectiveness of electronic services and e-business and

e-commerce transactions in the European Union” [270]. In this Chapter, we focus

on the eIDAS authentication framework for the management and verification of the

digital identities of the citizens. This framework is based on the concept of inter-

operability in such a way that the member states recognize the digital identities of

other member states to promote cross-border cooperation.

The most famous standards to implement the eIDAS authentication framework

are two: SAML 2.0 [135] and OpenID Connect [238]. To be concrete, in this chapter,

234 10 Anonymous linkage of open data

we refer to the former that is largely diffused in government and enterprise espe-

cially when the single Sign-On (SSO) approach is adopted. SSO is an authentication

method allowing users to authenticate with multiple services by using a single set of

credentials.

SAML 2.0 is an XML-based standard for the exchange of secure authentication

and authorization messages. There are three main actors:

• The users: they are associated with a digital identity registered at an identity

provider. They need to prove such an identity to a service provider to obtain a

service.

• Service provider: it provides a service to the users after obtaining guarantees

about their digital identity.

• Identity provider: it manages the digital identities of the users and provides the

service provider with an assertion certifying a digital identity.

We conclude this section by describing the details of the SAML authentication

procedure involving the above-mentioned actors. This procedure performs in several

steps reported in Figure 10.1, in which the browser represents a user.

Fig. 10.1: SSO SAML authentication procedure.

1. The user asks the service provider for a resource.

2. Since the user is not authenticated, the service provider generates an Authenti-

cation request that is forwarded to the identity provider by the user.

3. The Identity provider asks the user for the credentials.

4. The user authenticates with the identity provider.

10.3 Problem formulation and notation 235

5. If the authentication is successful, the identity provider generates a Response

containing an Assertion certifying the success of the authentication. This asser-

tion is digitally signed and forwarded (through the user) to the service provider.

6. The service provider checks the digital signature and the validity of the asser-

tion.

7. If the previous check is successful, the service provider supplies the required

resource.

Observe that the user can leverage the same credentials to authenticate with a

different service provider. Indeed they are provided to the identity provider and not

directly to the service provider. This is exactly the goal of SSO.

10.3 Problem formulation and notation

In this section, we introduce the notation to model the access to the services offered

by the smart city and the publication of the associated open data. We denote by

{S1, . . . ,Sn} a set of subsystems in a smart city. Each of these subsystems offers a cer-

tain service to the population. We say that a subsystem represents a service provider

in the eIDAS framework. We express the data generated by a service provider Si

as ⟨I j ,Dj
i ⟩, where I j represents the real identity of an individual j registered at an

identity provider that is known to the service provider Si , while D
j
i stands for the

set of data, belonging to j, collected by Si . We consider the case where each ser-

vice provider is willing to publish its data as open data, thus making them publicly

available so that they can be freely used for different purposes. Actually, before be-

ing published, these data must undergo several transformations (the so-called data

anonymization process) in order to make them compliant with privacy regulations.

More formally, we will express these transformations with two functions: αi and

δi , which are applied, by the subsystem i, to the real identity I j and its data D
j
i ,

respectively. In detail, αi aims to hide sensitive information about a person’s iden-

tity. Although the data may appear anonymous after hiding just all the sensitive

information, this procedure alone does not prevent the risk that individuals can be

re-identified. Indeed, the remaining information (i.e., Dj
i) can be used to re-identify

individuals by linking or matching the data with other data or by examining unique

features found in the released data [257]. Therefore, as discussed in Section 10.2,

more advanced privacy-preserving techniques must be applied to the data. In the

following, we denote by δi the overall transformations applied to D
j
i not only to re-

move any useless details for the purpose of publication, but also to make the data

difficult to de-anonymize. At this point, we assume that each subsystem Si publishes

its own data as the pair: ⟨P j
i , D̄

j
i ⟩ = ⟨αi(I j),δi(D

j
i)⟩. We denote by P

j
i a pseudonym

236 10 Anonymous linkage of open data

of the real identity j as published by Si and by D
j
i the result of the transformation

applied on D
j
i .

Observe that, different subsystems, in principle, use different α and δ. Thus, even

if the data belonging to the same individual I i are published by two different sub-

systems Sj and Sk (in the form of ⟨P i
j , D̄

i
j ⟩ and ⟨P i

k , D̄
i
k⟩, respectively), neither the

subsystems Sj and Sk , nor any other party, can link these data to I i . Certainly, this

feature is highly desirable, as it aims to protect the privacy of citizens. Indeed, if,

on the contrary, the subsystem Sj is able to reverse the function αk (i.e., to compute

I i = α−1
k (P i

k)), it is able to link D̄ i
k with D̄ i

j , and to relate these data to the real identity

Ii , which is known to it.

However, as a drawback, this solution prevents, for any party, the linkage of open

data belonging to a single individual, even in an anonymous form. Indeed, for ex-

ample, researchers may need to combine anonymized data from many subsystems

related to an individual in order to identify new patterns of relationships that would

otherwise remain unknown. Clearly, these analyses cannot be performed with a sin-

gle data source. Thus, this chapter aims to allow a third authorized party (e.g., a

research institute) to find out which of the published data are linked to the same

individual without violating that individual’s privacy.

10.4 The proposed protocol

In this section, we propose a solution to the problem tackled in Section 10.3.

In detail, we will present our solution from a theoretical point of view, while in

Section 10.5 we will show a practical implementation of it.

We will distinguish four different actors in our system:

• Users: denoted by U ;

• Service providers: denoted by the set {S1, . . . ,Sn};

• Identity provider: denoted by IP ;

• Analysts: denoted by the set {A1, . . . ,At};

The first three mentioned actors are the three parties that should interact in a

classical SSO approach as described in Section 10.2. In the following, we will re-

fer interchangeably to the actor Si as service provider or subsystem. In particular,

the service provider has the faculty of collecting data from the interaction with the

users. Such data, properly anonymized, will be published in some format as open

data so that they will be publicly available to any other external party (i.e., par-

ties non-directly involved in the authentication process). To be concrete, we refer to

an identity provider adhering to the eIDAS regulation as described in Section 10.2.

However, the solution can be easily adapted to any different SSO-based approach.

10.4 The proposed protocol 237

Fig. 10.2: SSO SAML proposed solution

The peculiarity of our problem demands the definition of a fourth actor, the an-

alysts, which should be treated differently from any other external party. Indeed,

once the service provider publishes the collected data, while any other external party

should not be able to link the data related to the same individual, the analysts should

have this capability. Suppose a user U accesses the subsystem Si , after authenticat-

ing through the IP , and interacts with it. From these interactions a new set of data

⟨IU ,DU
i ⟩ will be available. As highlighted in Section 10.3, such information will be

published in the form of ⟨P U
i , D̄U

i ⟩ = ⟨αi(IU),δi(D
U
i)⟩. We aim to redefine the func-

tion α in such a way that only the analysts will be able to link the published open

data referring to the same user U . No change is required for the function δ.

In particular, referring to Figure 10.1, our solution requires a simple modification

of the SAML standard. Indeed, in our proposal, we need to include, in the Assertion

message (step 5 of Figure 10.1) the following information:

• an order number N . This value represents the number of authentications per-

formed (through the identity provider IP) so far by the user U . In other words,

N will be incremented by a unity every time a user is successfully authenticated

through the IP , regardless of the service provider U is willing to connect to.

238 10 Anonymous linkage of open data

• a value Y = MAC(IU ,SecrU), where MAC represents a secure message authenti-

cation code applied to IU with key SecrU that is a secret owned by the IP associ-

ated with the user U . This secret will prevent an external party from discovering

IU through a dictionary attack performed on Y . Moreover, as Y is the output of

a hash function, no collision can be found. Therefore, Y can be uniquely associ-

ated with the user U . Finally, observe that two different subsystems will receive

the same Y when the same user requires two different services. This is on the

basis of the procedure performed by the analysts allowing the data linkage.

We assume that for each subsystem Sk , there is a subset Ak ⊆ {A1, . . . ,At} of the

analysts interested in the data collected by Sk . Moreover, all the analysts inAk share

a secret Xk associated with the subsystem Sk .

Once the subsystem Si receives the assertion containing ⟨Y ,N ⟩, the following

steps are performed:

• Si sends the pair ⟨Y ,N ⟩ to each analyst in the subset Ai , as defined above.

• Si chooses randomly an analyst Ax belonging to Ai , to obtain a label to associate

with D̄U
i

At this point the chosen analyst Ax proceeds as follows:

• Ax computes Ti = MAC(Y ,Xi), where Y is the value described above, and Xi is

the secret shared with all the analysts in Ai and associated with the subsystem

Si as defined above;

• Ax uses Ti as seed of a PRNG, and computes the value P RNGN (Ti), denoting the

N -th number obtained by the PRNG;

• Ax sends Si the pair ⟨Y ,P RNGN (Ti)⟩.

We recall that Ti is related to the identity of the user U (since it depends on Y

that in turn depends on IU). Therefore P RNG(Ti) represents the re-definition of the

α function we propose in our solution.

Lastly, the subsystem Si matches the message ⟨Y ,P RNGN (Ti)⟩ to the data DU
i

related to Y and publishes it (as open data) in the form ⟨P U
i , D̄U

i ⟩ = ⟨αi(IU),δi(D
U
i)⟩ =

⟨P RNGN (Ti),δi(D
U
i)⟩.

Suppose now, U performs Z further authentications with other subsystems after

connecting with Si . We denote by Sj the subsystem with which U performs the N+Z-

th authentication.

Sj will publish the data DU
j , related to U , in the form ⟨P RNGN+Z (Tj),δ(DU

j)⟩.

The value P RNGN+Z (Tj) is provided by an analyst Ax′ belonging to the subset Aj ⊆

{A1, . . . ,At} of the analysts interested in the data of Sj .

10.5 Case study and implementation 239

At this point, both δ(DU
i) and δ(DU

j) result to be linkable, albeit in an anonymous

form, only for authorized third parties, i.e., the analysts in Aj ∩Ai , representing the

analysts interested in both the data published by Si and Sj .

Indeed, the analysts in Aj ∩Ai owns both the secrets Xi and Xj . Since such ana-

lysts receive the values N and N +Z associated with the same Y from the subsystems

Si and Sj respectively, they are able to compute Ti and Tj and then P RNGN (Ti) and

P RNGN+Z (Tj). Therefore, they are able to spot all the open data related to the same

user. Moreover, the intrinsic properties of the PRNG assure that no other party can

do the same. These points are analyzed more in detail in Section 10.6.

The steps of our solution are summarized in Fig. 10.2, in which we extend the

standard SSO approach of Figure 10.1.

10.5 Case study and implementation

Through this section, we provide the implementation of the protocol described in

Section 10.4 and show how it works in a simple case study.

Our implementation consists of four modules corresponding to the actors of the

protocol, i.e., the user, the identity provider, the service provider, and the analyst.

The user module is simply represented by a web browser. The identity provider

module is based on Keycloak [65], an open-source JAVA implementation of an iden-

tity management system allowing the SSO authentication. To implement the func-

tions described in Section 10.4, we properly modified the saml-core.jar library, by

adding the components we need, and by intervening, in particular, on the SAML as-

sertion. We will provide further details in the sequel of the section. Finally, the ser-

vice provider and the analyst modules have been implemented from scratch through

Servlet and JSP technology [218]. As the format for the open data, we choose JSON-

LD [250], a lightweight Linked Data format recommended by W3C. It implements

the level 5 format for open data described in Section 10.2.

The case study considered is the following. We have a single user named John

Smith, an identity provider IP , two subsystems S1 and S2, and two analysts A1 and

A2. Suppose S1 is a streaming service (such as Netflix) and S2 is a DVD rental activity.

Furthermore, suppose both A1 and A2 are interested in analyzing the data coming

from S1 and S2, i.e., A1 =A2 = {A1,A2}.

John authenticates with S1 through the IP to see the movie Ghostbuster. The

IP has to compute the values Y and N as described in Section 10.4, and send them

to S1. In our implementation, the IP maintains a folder for each registered user in

which it stores the secret SecrJ (where J represents the user John) and the number

N counting the number of authentication performed by John. Suppose the secret of

240 10 Anonymous linkage of open data

Listing 2 Fragment of code to integrate in the library saml-core.jar included in

Keycloak.

1 byte[] Y= null; Integer N;

2 try {

3 File file = new File("PATH_TO_SECRET_KEY");

4 BufferedReader br = new BufferedReader(new FileReader(file));

5 String key=br.readLine();

6 Mac mac = Mac.getInstance("HmacSHA256");

7 SecretKeySpec secretKeySpec = new

SecretKeySpec(key.getBytes(), "HmacSHA256");↪→

8 mac.init(secretKeySpec);

9 Y = mac.doFinal(idp.getNameIDFormatValue().getBytes());

10

11 file = new File("PATH_TO_N");

12 br = new BufferedReader(new FileReader(file));

13 String n=br.readLine();

14 N= Integer.parseInt(n)+1;

15 FileWriter myWriter = new FileWriter("PATH_TO_N");

16 myWriter.write(String.valueOf(N));

17 myWriter.close();

18

19 String pair=encodeHexString(Y)+"-"+String.valueOf(N);

20 nameIDType.setValue(pair);

21 }catch (Exception e) {

22 }

John is SecrJ=superSecretPassword and N = 0 (i.e., this is the first authentication

of John). Since the computation of Y requires an identifier of John maintained by IP ,

we used, for simplicity, the Keycloak username of John, say johnSmith20. Finally, we

implemented the MAC function through HMAC [159] based on the cryptographic

hash function SHA256.

In Listing 2, we show a fragment of code to compute ⟨Y ,N ⟩ and set them in

the SAML Assertion for the service provider. This code has to be included in the

class org.keycloak.saml.processing.api.saml.v2.response.SAML2Response of

the saml-core.jar library. Observe that the instruction in Line 20 sets the pair

⟨Y ,N ⟩ in field SubjectID of SAML Assertion in place of the standard username.

With the values set as above, S1 will receive the pair

⟨d94fe9ff76414b9e742819635f7dccf5fddd03c45e201ab34976f2cd9b4459a7,1⟩.

10.5 Case study and implementation 241

Listing 3 Fragment of code to compute the P RNGN (T) in the analyst module.

1 SecureRandom sr = null;

2 try

3 {

4 sr = SecureRandom.getInstance

5 ("SHA1PRNG");

6 }

7 catch (NoSuchAlgorithmException e)

8 {

9 }

10 sr.setSeed(T);

11 long PrngN = 0;

12 for (int i=0;i<N;i++)

13 PrngN=sr.nextLong();

Such a pair is retrieved by a service provider (implemented through Servlet) with

the instruction String pair=request.getUserPrincipal().getName()+"-"+

UUID.randomUUID().toString().replace ("-", "").

At this point, S1 forwards such a pair to A1 and A2. Moreover, it selects A1 ∈ A1

to obtain the pseudonymous to associate with John’s data.

A1 computes T1 = MAC(Y ,X1), where X1 is a secret shared among A1 and A2 and

associated with S1. Suppose X1 = AnalystSecret. Again, we chose HMAC to imple-

ment the MAC function, then resulting in T1 =13715fb857d317962073856cbedbbf41

7c9d68eb1fe411d6713f260b7ec8af4a. To obtain the pseudonymous to associate

with the data, A1 needs to compute P RNG1(T1). We implemented the PRNG through

a cryptographically strong random number generator (CRNG)[208]. In particular,

we relied on the Java class SecureRandom and chose the algorithm SHA1PRNG. The

complete code implemented in the analyst module is reported in Listing 3.

The result of this computation is P RNG1(T1) =1807256804637968330 that is pro-

vided, along with Y , to S1.

At this point, S1 can publish the data in JSON-LD format as shown in Listing 4.

Therein, we refer to the Schema.org vocabulary [112], managed by a collaborative

community with the aim to create, maintain, and promote schemas for structured

data on the Internet. This way, our solution maintains full interoperability between

data generated by different service providers. In this example, we have an array con-

taining two objects: a Person identified by the pseudonymous obtained through our

solution, and a Movie that includes, among its properties, the property "provider"

242 10 Anonymous linkage of open data

Listing 4 Open data published by S1

1 [

2 {

3 "@context": "https://schema.org/",

4 "@type": "Person",

5 "identifier": "1807256804637968330"

6 },

7 {

8 "@context": "https://schema.org/",

9 "@type": "Movie",

10 "name": "Ghostbusters",

11 "productionCompany": {

12 "@type": "Organization",

13 "name": "Black Rhino"

14 },

15 "countryOfOrigin": {

16 "@type": "Country",

17 "name": "USA"

18 },

19 "genre":"science fiction",

20 "provider": {

21 "@type": "Organization",

22 "legalName": "S1"

23 }

24 }

25]

standing for the subsystem releasing such a movie. Observe that no useful informa-

tion identifying John is published.

Now, we continue the description of the case study.

Since John is a fan of the genre science fiction, it interacts with the subsystem

S2 to rent the movie Interstellar. The procedure is very similar to the interaction

of S1. Then, John authenticates with IP and obtains a new pair ⟨Y ,N ⟩ where Y is the

same as before, while N is increased by one. In our case study, S2 receives the pair

⟨d94fe9ff76414b9e742819635f7dccf5fddd03c45e201ab34976f2cd9b4459a7,2⟩ and

forwards it to both A1 and A2. Moreover, it selects A2 ∈ A2 to obtain the pseudony-

mous to associate with John’s data.

10.5 Case study and implementation 243

Listing 5 Open data published by S2

1 [

2 {

3 "@context": "https://schema.org/",

4 "@type": "Person",

5 "identifier": "8871020241650837923"

6 },

7 {

8 "@context": "https://schema.org/",

9 "@type": "Movie",

10 "name": "Interstellar",

11 "productionCompany": {

12 "@type": "Organization",

13 "name": "Syncopy Films"

14 },

15 "countryOfOrigin": {

16 "@type": "Country",

17 "name": "USA"

18 },

19 "genre":"science fiction",

20 "provider": {

21 "@type": "Organization",

22 "legalName": "S2"

23 }

24 }

25]

A2 computes the seed T2 = MAC(Y ,X2), where X2 is a secret shared among A1

and A2 and associated with S2. Suppose X2 =AnalystSecret2. Then, A2 generates

a pseudonymous P RNG2(T2) =8871020241650837923 that forwards to S2. At this

point, the data can be published by S2 as shown in Listing 5.

We conclude this section by observing that, for any entity except for A1 and A2,

the identifiers 1807256804637968330 and 8871020241650837923 are not linkable.

This includes also the subsystems S1 and S2. On the other hand, since both A1 and

A2 receive the same Y and know the same secrets X1 and X2, they can link the two

data, but they do not know the identity of John.

244 10 Anonymous linkage of open data

10.6 Security analysis

Through this section, we provide a security analysis of the proposed solution. We

start with two basic assumptions.

A1: The used cryptographic functions are secure.

A2: The anonymizing functions δ used by the subsystems prevent privacy attacks.

A3: The SSO authentication is secure and prevents impersonation attacks.

In our setting, A1 involves the MAC and P RNG functions. This assumption is easily

satisfied if the identity provider and analysts use secure implementations available

in the literature for such functions. Some examples, used for our implementation in

Section 10.5, are HMAC based on SHA256 for the MAC and the CRNG offered by

the class SecureRandom implemented with the algorithm SHA1PRNG.

Regarding A2, again several techniques are available in the literature as dis-

cussed in Section 10.7. Finally, A3 is a standard requirement and it is realistic since

it is adopted in several real-life systems.

Consider a user U who has performed the N -th authentication with the subsys-

tem Si . We recall that the analysts involved in this process are in the subsetAi . Now,

consider U performs the (N + Z)-th authentication with the subsystem Sj . In this

case, the involved analysts are in the subset Aj .

Our system offers the following properties.

P1: The analysts inAi∩Aj are able to link the data published by Si and Sj associated

with U .

P2: A user Ū cannot make a subsystem publish data linkable with the data associ-

ated with U .

P3: No entity but the analysts in Ai ∩Aj is able to link the data published by Si and

Sj associated with U .

P4: No analyst can discover the real identity of U .

Property P1

Since the identity provider maintains the same secret SecrU for the user U , it

computes the same Y = MAC(IU ,SecrU). Si receives ⟨Y ,N ⟩ and Sj receives ⟨Y ,N+Z⟩.

⟨Y ,N ⟩ is sent to all the analysts in Ai and ⟨Y ,N +Z⟩ is sent to all the analysts Aj .

The data provided by Si are associated with a label P RNGN (Ti), where Ti =

MAC(Y ,Xi). Similarly, the data provided by Sj are associated with a label P RNGN+Z (Tj),

where Tj = MAC(Y ,Xj). We recall that Xi is shared by all the analysts in Ai and Xj

is shared by all the analysts in Aj .

At this point, all the analysts inAi ∩Aj receive both ⟨Y ,N ⟩ and ⟨Y ,N +Z⟩. More-

over, all the analysts in Ai ∩Aj owns both Xi and Xj . Therefore, all the analysts in

10.6 Security analysis 245

Ai ∩Aj are able to compute both P RNGN (Ti) and P RNGN+Z (Tj), and then to link

the data associated with U .

Property P2

This property can be broken only if two cases occur. The first is that a user

Ū authenticates with a subsystem Sk in place of U . However, by Assumption A3,

impersonation attacks are not possible. The other case is that the data actually

related to Ū are associated with a label accidentally equal to a label associated

with some data related to U . More formally, it means that there exist two pairs

⟨Y ,N ⟩ and ⟨Ȳ , N̄ ⟩ such that P RNGN (T) = P RNGN̄ (T̄) where T = MAC(Y ,X) and

T̄ = MAC(Ȳ , X̄). We start by assuming N , N̄ . In this case, by Assumption A1, the

PRNG is secure, then the probability that P RNGN (T) = P RNGN̄ (T̄) is negligible

regardless the values of T and T̄ . Consider now N = N̄ (it means that U and Ū

performed the same number of authentications). If T , T̄ , again, by A1, the prob-

ability that P RNGN (T) = P RNGN̄ (T̄) is negligible. Otherwise (T = T̄ and N = N̄),

P RNGN (T) = P RNGN̄ (T̄) and P2 is broken. However, it is easy to see that the prob-

ability that T = T̄ is negligible. Indeed, T = T̄ means MAC(Y ,X) = MAC(Ȳ , X̄). If

X , X̄, by Assumption A1, the MAC function is secure, then the probability that

T = T̄ is negligible. Similarly, if X = X̄ (i.e., the data are published by the same sub-

system), but Y , Ȳ , again by A1 the probability that T = T̄ is negligible. Otherwise

(X = X̄ and Y = Ȳ), T = T̄ and P2 is broken. However, it is easy to see that the proba-

bility that Y = Ȳ is negligible. Since Y = MAC(IU ,SecrU) and Ȳ = MAC(I Ū ,SecrŪ),

Y = Ȳ only if the inputs of the MAC functions are the same or if a collision occurs.

The first case (same inputs) implies that Ū successfully impersonates U in the au-

thentication process. This is not possible by Assumption A3. Finally, the second case

(accidental collision), as usual, is impossible by Assumption A2.

Property P3

To link the data published by Si and Sj (associated with U), the attacker should

know the pairs ⟨Ti ,N ⟩ and ⟨Tj ,N +Z⟩. The values N and N +Z can be easily guessed

by brute force. On the other hand, Ti is known only by the analysts Ai and Tj is

known only by the analystsAj . Therefore, the only parties that simultaneously know

Ti and Tj are the analysts in Ai ∩Aj . No other party, even knowing only Ti or only

Tj , can link the data published by Si and Sj .

Property P4

This property can be broken if two cases occur. In the first case, the analyst can

invert the MAC function producing Y . In the second case, the analyst can directly

de-anonymize the published data. However, the first case cannot occur by Assump-

tion A1. Similarly, the second case cannot occur by Assumption A2, i.e., the subsys-

tems use only robust anonymizing functions delta.

246 10 Anonymous linkage of open data

10.7 Related work

In the scientific literature, numerous papers witness the benefits derived by the use

of open data [194, 156]. Indeed, open data can improve the efficiency of public ser-

vices [282, 20], but also produce economic growth in the private sector [308].

In the following, we report different examples of how open data also can play a

crucial role in the smart city ecosystem.

Indeed, as highlighted by [196], the growing volume and variety of data pro-

duced in the urban ecosystem might be exploited to build knowledge-based solu-

tions for smarter and more sustainable urban development.

As an example, [188] presents the design of a service for providing a personal-

ized path to users with special needs. The designed system leverages data from sens-

ing and crowdsourcing (provided by users) and open data (provided by bus service

providers).

[123] discusses how the exploitation of open data can turn a city (in this specific

case the city of Helsinki) into a smart city aiming to offer better services to citizens.

Indeed, opening up data and enabling startups to use public data at no cost have

the main benefits to create new business opportunities in the form of new services

and new applications. Another more recent study focusing on urban digitization

and smart city development in the context of Nordic society is provided in [295].

Therein, the cities of Helsinki and Espoo are examined.

A different point of view is shown in [177]. Indeed this work investigates what

barriers hinder the adoption of open data and, as a countermeasure, proposes practi-

cal recommendations to enhance open data development in the context of emerging

smart cities. The case study considered in this work focuses on the city of Hong

Kong.

Another realistic case study is presented in [14], in which it is explored how the

city of Barcelona turned into a leading metropolis in Europe by applying smart city

strategies. One of the main components of these successful strategies resides in the

exploitation of open data.

Despite all the benefits coming from the exploitation of open data in different

scenarios, many privacy issues may arise when it comes to disclosing data related

to individual preferences and behavior [139]. As a matter of fact, removing from

a given dataset all the obviously identifiable information is not enough to prevent

individual re-identification. Indeed, such a method is not effective when the attacker

already knows some information about the individuals in question [144].

Traditional solutions to protect individual privacy (thus preventing the above-

mentioned attack) are based on the notions of k-anonimity [240], l-diversity [178]

10.7 Related work 247

and t-closeness [170]. Unfortunately, this method can still leak information when the

attackers already know something about the information contained in the dataset

[144].

In recent years, differential privacy [86] has been gaining attention and is consid-

ered among the most promising paradigms for privacy-preserving data publication

and analysis [290]. Many approaches, trying to reach differential privacy, are based

on adding noise to the data before disclosing them [87].

An emerging, but very promising, technique to obtain differential privacy, in-

volves the use of Generative Adversarial Networks (GANs) [288, 303, 286]. Such a

technique is used by [99], in which the authors propose a framework for releasing

new open data while protecting the users’ privacy.

Another challenging issue is represented by the lack of links between related

data. The aim of data linkage is to merge all information related to the same entity

that can be scattered among different datasets, in order to perform more powerful

and efficient analysis.

As highlighted by [64], the linkage process is challenged by the lack of a common

unique entity identifier. Therefore [64] proposes a data linkage system called Febrl,

which is a platform for researchers to develop, implement and evaluate new data

linkage algorithms and techniques. There are two potential limitations in the use of

this approach: (i) running large-scale linkage can take days to complete the compu-

tation, (ii) there is still a problem of privacy since, even offloading the computation

in local computers, data linkage always deals with partially identified data.

[120] provides an overview of challenges in linking administrative data for re-

search. In particular, the authors highlight the need to preserve privacy (for the in-

dividual) without negatively impacting performance and linkage quality (accuracy

of results). In the work [305], the authors investigate the privacy issues related to

linkable data in smart IoT systems. Indeed, individual privacy might be severely

threatened by the smart IoT ecosystem, since contents from more sources (related

to the same user) are collected. Unfortunately, in [305], no solution is proposed to

address this problem.

[129, 35] report the case of the Western Australian Data Linkage System (WADLS),

established in 1995, able to maximize efficiency and minimize risk to privacy by

centralizing data linkage activities, in addition to supporting related health system

management. WADLS has provided linked data to researchers, medical practition-

ers, and strategic planners of Western Australia for more than 10 years.

Part IV

Conclusions

251

In this thesis, we proposed several protocols to achieve anonymity features in

different applications. Two macro-areas are considered: anonymous communication

and anonymous service delivery.

Anonymous communication refers to the protection of the identity of the users

sending and/or receiving data over the Internet. In this area, we proposed two differ-

ent types of protocols. The first type is represented by protocols implemented over

the transport layer. In principle, they support any application layer built over them.

In this class, among other approaches, we included two extensions of the famous

Tor protocol. The second type of protocols for anonymous communication that we

considered is implemented on an existing application layer. In this case, the proto-

cols are not general-purpose and work only for the specific application layer consid-

ered. This is relevant when it is not possible to set external anonymous communica-

tion channels. Furthermore, we can take advantage of the specific characteristics of

the application layer, to develop a high-performance protocol. Regarding this latter

point, the main metrics in the field of anonymous communication (i.e., latency, cover

traffic, and anonymity) are taken into consideration, also through experimental val-

idation, in the design of our protocols.

Concerning the second macro-area, we changed our point of view about anonymity.

In particular, we do not focus on anonymous communication between users, but we

aim to provide users with services by protecting their identity. In this area, we also

investigated new useful features achieved by relaxing the anonymity requirements.

Indeed, in some scenarios, full anonymity is not desirable since it fuels cyberbul-

lying, incitement to hate, and so on. In this case, the accountability of the actions

performed by the users and their possible re-identification can discourage these phe-

nomena. However, this re-identification should happen under the order of a court

and should require the collaboration of more parties (no single party, even trusted,

can re-identify the user). Another scenario in which we can relax the anonymity con-

straints is the anonymous linkage of data. Therein, we present a solution in which

different data coming from the same user can be linked only by authorized parties to

extract useful statistical information. However, no other party can make this linkage,

and authorized parties cannot identify the user to whom the data relate.

A point we want to stress is the security offered by the proposed solutions. All

the protocols presented in this thesis include a security analysis performed in terms

of adversary capabilities and security properties, that represent a threat model. We

investigated different threat models, including one very severe concerning a global

adversary able to observe the entire flow of messages exchanged in the network. We

show as our solutions achieve protection against such an adversary by paying an

acceptable price in terms of performance.

11

Ringraziamenti

Una considerazione personale (assolutamente opinabile) è che nel momento in cui

i ringraziamenti includono una lunga lista di persone (anche per pura formalità) si

rischia di non far emergere il reale valore dei ringraziamenti fatti a coloro che sono

stati davvero fondamentali nella stesura dell’ elaborato. Questa premessa è neces-

saria per evidenziare quanto sentito sia il mio ringraziamento al Prof. Francesco

Buccafurri ed anche il motivo per cui è l’unica persona inclusa in questi ringrazia-

menti.

Ringrazio il professore non solo per il contributo dato alla stesura di questo elab-

orato ma a tutto il mio percorso di dottorato. Fin dal primo momento in cui ho

conosciuto il professore al corso di Algoritmi e Strutture Dati ho capito di condi-

videre la stessa visione e approccio scientifico. Ho trovato nettamente conferma di

questo nei tre anni del mio percorso di dottorato. Lo ringrazio per tutti gli inseg-

namenti trasmessi e i consigli che mi ha fornito. Lo ringrazio anche per la fiducia

e la disponibilità dimostrata in qualsiasi ora del giorno e della notte (letteramente

considerando le varie call alle 23:00).

Per concludere, aggiungo che nei tre anni di questo percorso ho capito di condi-

videre non solo la sua visione scientifica ma anche la sua visione sui valori etici e

morali.

Pertanto, non credo di esagerare nell’affermare che attualmente è la persona che

stimo maggiormente e alla quale mi ispiro come esempio lavorativo e di vita.

References

1. Osman Abul and Ozan Berk Bitirgen. Anonymous location sharing in urban area mo-

bility. Knowledge and Information Systems, pages 1–23, 2021.

2. Jameel Ahamed, Md Zahid, Mohd Omar, and Khaleel Ahmad. Aes and mqtt based

security system in the internet of things. Journal of Discrete Mathematical Sciences and

Cryptography, 22(8):1589–1598, 2019.

3. Bengt Ahlgren, Markus Hidell, and Edith C-H Ngai. Internet of things for smart cities:

Interoperability and open data. IEEE Internet Computing, 20(6):52–56, 2016.

4. Masoud Akhoondi, Curtis Yu, and Harsha V Madhyastha. Lastor: A low-latency as-aware

tor client. In 2012 IEEE Symposium on Security and Privacy, pages 476–490. IEEE, 2012.

5. Judith Aldridge and David Décary-Hétu. A response to dolliver’s “evaluating drug traf-

ficking on the tor network: Silk road 2, the sequel”. International Journal of Drug Policy,

26(11):1124–1125, 2015.

6. Nikolaos Alexopoulos, Aggelos Kiayias, Riivo Talviste, and Thomas Zacharias. Mcmix:

Anonymous messaging via secure multiparty computation. In 26th {USENIX} Security

Symposium ({USENIX} Security 17), pages 1217–1234, 2017.

7. Malak Alfosail and Peter Norris. Tor forensics: Proposed workflow for client memory

artefacts. Computers & Security, 106:102311, 2021.

8. Miguel E Andrés, Nicolás E Bordenabe, Konstantinos Chatzikokolakis, and Catuscia

Palamidessi. Geo-indistinguishability: Differential privacy for location-based systems.

In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications secu-

rity, pages 901–914, 2013.

9. Joseph Jose Anthraper and Jaidip Kotak. Security, privacy and forensic concern of mqtt

protocol. In Proceedings of International Conference on Sustainable Computing in Science,

Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur-India, 2019.

10. Claudio A Ardagna, Marco Cremonini, Sabrina De Capitani di Vimercati, and Pierangela

Samarati. An obfuscation-based approach for protecting location privacy. IEEE Trans-

actions on Dependable and Secure Computing, 8(1):13–27, 2009.

11. Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A survey.

Computer networks, 54(15):2787–2805, 2010.

256 References

12. Michael Backes, Jan Camenisch, and Dieter Sommer. Anonymous yet accountable access

control. In Proceedings of the 2005 ACM Workshop on Privacy in the Electronic Society,

pages 40–46, 2005.

13. Michael Backes, Jeremy Clark, Aniket Kate, Milivoj Simeonovski, and Peter Druschel.

Backref: Accountability in anonymous communication networks. In International Con-

ference on Applied Cryptography and Network Security, pages 380–400. Springer, 2014.

14. Tuba Bakıcı, Esteve Almirall, and Jonathan Wareham. A smart city initiative: the case of

barcelona. Journal of the knowledge economy, 4(2):135–148, 2013.

15. Ranbir Singh Bali, Fehmi Jaafar, and Pavol Zavarasky. Lightweight authentication for

mqtt to improve the security of iot communication. In Proceedings of the 3rd International

Conference on Cryptography Security, and Privacy, pages 6–12, 2019.

16. Bhuvan Bamba, Ling Liu, Peter Pesti, and Ting Wang. Supporting anonymous location

queries in mobile environments with privacygrid. In Proceedings of the 17th international

conference on World Wide Web, pages 237–246, 2008.

17. Lamiaa Basyoni, Noora Fetais, Aiman Erbad, Amr Mohamed, and Mohsen Guizani. Traf-

fic analysis attacks on tor: A survey. In 2020 IEEE International Conference on Informatics,

IoT, and Enabling Technologies (ICIoT), pages 183–188. IEEE, 2020.

18. Florian Bauer and Martin Kaltenböck. Linked open data: The essentials. Edition mono/-

monochrom, Vienna, 710, 2011.

19. Kevin Bauer, Micah Sherr, and Dirk Grunwald. {ExperimenTor}: A testbed for safe and

realistic tor experimentation. In 4th Workshop on Cyber Security Experimentation and Test

(CSET 11), 2011.

20. Grace M Begany and J Ramon Gil-Garcia. Understanding the actual use of open data:

Levels of engagement and how they are related. Telematics and Informatics, 63:101673,

2021.

21. Amos Beimel and Shlomi Dolev. Buses for anonymous message delivery. Journal of

Cryptology, 16(1), 2003.

22. Iness Ben Guirat, Devashish Gosain, and Claudia Diaz. Mixim: Mixnet design decisions

and empirical evaluation. In Proceedings of the 20th Workshop on Workshop on Privacy in

the Electronic Society, pages 33–37, 2021.

23. Krista Bennett and Christian Grothoff. Gap–practical anonymous networking. In Inter-

national Workshop on Privacy Enhancing Technologies, pages 141–160. Springer, 2003.

24. Sascha Berger, Meryem Simsek, Albrecht Fehske, Paolo Zanier, Ingo Viering, and Ger-

hard Fettweis. Joint downlink and uplink tilt-based self-organization of coverage and

capacity under sparse system knowledge. IEEE Transactions on Vehicular Technology,

65(4):2259–2273, 2015.

25. Jorge Bernal Bernabe, Jose Luis Canovas, Jose L Hernandez-Ramos, Rafael Torres

Moreno, and Antonio Skarmeta. Privacy-preserving solutions for blockchain: Review

and challenges. IEEE Access, 7:164908–164940, 2019.

26. Tim Berners-Lee. star deployment scheme for open data. http://5stardata.info/ Accessed

on March 2022, 10(04):2016, 5.

References 257

27. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak. In Annual

international conference on the theory and applications of cryptographic techniques, pages

313–314. Springer, 2013.

28. Claudio Bettini. Privacy protection in location-based services: a survey. In Handbook of

Mobile Data Privacy, pages 73–96. Springer, 2018.

29. Claudio Bettini, Sergio Mascetti, X Sean Wang, Dario Freni, and Sushil Jajodia.

Anonymity and historical-anonymity in location-based services. In Privacy in location-

based applications, pages 1–30. Springer, 2009.

30. Adhitya Bhawiyuga, Mahendra Data, and Andri Warda. Architectural design of token

based authentication of mqtt protocol in constrained iot device. In 2017 11th Interna-

tional Conference on Telecommunication Systems Services and Applications (TSSA), pages

1–4. IEEE, 2017.

31. Lochan Bisne and Manish Parmar. Composite secure mqtt for internet of things us-

ing abe and dynamic s-box aes. In 2017 Innovations in Power and Advanced Computing

Technologies (i-PACT), pages 1–5. IEEE, 2017.

32. Erik W Black, Kelsey Mezzina, and Lindsay A Thompson. Anonymous social media–

understanding the content and context of yik yak. Computers in Human Behavior, 57:17–

22, 2016.

33. Zvika Brakerski, Alex Lombardi, Gil Segev, and Vinod Vaikuntanathan. Anonymous ibe,

leakage resilience and circular security from new assumptions. In Annual International

Conference on the Theory and Applications of Cryptographic Techniques, pages 535–564.

Springer, 2018.

34. Thomas Brinkhoff. A framework for generating network-based moving objects. GeoIn-

formatica, 6(2):153–180, 2002.

35. Emma L Brook, Diana L Rosman, and C D’Arcy J Holman. Public good through data

linkage: measuring research outputs from the western australian data linkage system.

Australian and New Zealand journal of public health, 32(1):19–23, 2008.

36. Francesco Buccafurri, Vincenzo De Angelis, Maria Francesca Idone, and Cecilia Labrini.

Wip: An onion-based routing protocol strengthening anonymity. In 2021 IEEE 22nd

International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoW-

MoM), pages 231–235, 2021.

37. Francesco Buccafurri, Vincenzo De Angelis, Maria Francesca Idone, and Cecilia Labrini.

Anonymous short communications over social networks. In Joaquin Garcia-Alfaro, Shu-

jun Li, Radha Poovendran, Hervé Debar, and Moti Yung, editors, Security and Privacy in

Communication Networks, pages 43–63, Cham, 2021. Springer International Publishing.

38. Francesco Buccafurri, Vincenzo De Angelis, Maria Francesca Idone, and Cecilia Labrini.

Anonymous short communications over social networks. In International Conference on

Security and Privacy in Communication Systems, pages 43–63. Springer, 2021.

39. Francesco Buccafurri, Vincenzo De Angelis, Maria Francesca Idone, and Cecilia Labrini.

A distributed location trusted service achieving k-anonymity against the global adver-

sary. In 2021 22nd IEEE International Conference on Mobile Data Management (MDM),

pages 133–138. IEEE, 2021.

258 References

40. Francesco Buccafurri, Vincenzo De Angelis, Maria Francesca Idone, and Cecilia Labrini.

Extending routes in tor to achieve recipient anonymity against the global adversary. In

2021 International Conference on Cyberworlds (CW), pages 238–245, 2021.

41. Francesco Buccafurri, Vincenzo De Angelis, Maria Francesca Idone, and Cecilia Labrini.

A privacy-preserving protocol for proximity-based services in social networks. In 2021

IEEE Global Communications Conference (GLOBECOM), pages 1–6. IEEE, 2021.

42. Francesco Buccafurri, Vincenzo De Angelis, Maria Francesca Idone, and Cecilia Labrini.

A protocol for anonymous short communications in social networks and its application

to proximity-based services. Online Social Networks and Media, 31:100221, 2022.

43. Francesco Buccafurri, Vincenzo De Angelis, Maria Francesca Idone, Cecilia Labrini, and

Sara Lazzaro. Achieving sender anonymity in tor against the global passive adversary.

Applied Sciences, 12(1):137, 2022.

44. Francesco Buccafurri, Vincenzo De Angelis, Gianluca Lax, Lorenzo Musarella, and Anto-

nia Russo. An attribute-based privacy-preserving ethereum solution for service delivery

with accountability requirements. In Proceedings of the 14th International Conference on

Availability, Reliability and Security, pages 1–6, 2019.

45. Francesco Buccafurri, Vincenzo De Angelis, and Sara Lazzaro . A blockchain-based

framework to enhance anonymous services with accountability guarantees. Future In-

ternet, 14(8), 2022.

46. Francesco Buccafurri, Vincenzo De Angelis, and Roberto Nardone. Securing mqtt by

blockchain-based otp authentication. Sensors, 20(7):2002, 2020.

47. Francesco Buccafurri, Gianluca Lax, Serena Nicolazzo, and Antonino Nocera.

Accountability-preserving anonymous delivery of cloud services. In International Con-

ference on Trust and Privacy in Digital Business, pages 124–135. Springer, 2015.

48. Marco Calabretta, Riccardo Pecori, Massimo Vecchio, and Luca Veltri. Mqtt-auth: A

token-based solution to endow mqtt with authentication and authorization capabilities.

Journal of Communications Software and Systems, 14(4):320–331, 2018.

49. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anony-

mous credentials with optional anonymity revocation. In International conference on the

theory and applications of cryptographic techniques, pages 93–118. Springer, 2001.

50. Jan Camenisch and Els Van Herreweghen. Design and implementation of the idemix

anonymous credential system. In Proceedings of the 9th ACM Conference on Computer and

Communications Security, pages 21–30, 2002.

51. Frank Cangialosi, Dave Levin, and Neil Spring. Ting: Measuring and exploiting latencies

between all tor nodes. In Proceedings of the 2015 Internet Measurement Conference, pages

289–302, 2015.

52. Renee Carnley and Sikha Bagui. A public infrastructure for a trusted wireless world.

Future Internet, 14(7):200, 2022.

53. Angelo De Caro, Vincenzo Iovino, and Giuseppe Persiano. Fully secure anonymous hibe

and secret-key anonymous ibe with short ciphertexts. In International Conference on

Pairing-Based Cryptography, pages 347–366. Springer, 2010.

References 259

54. Sergio Castillo-Pérez and Joaquin Garcia-Alfaro. Onion routing circuit construction via

latency graphs. Computers & Security, 37:197–214, 2013.

55. Marco Centenaro and Lorenzo Vangelista. A study on m2m traffic and its impact on

cellular networks. In 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), pages

154–159. IEEE, 2015.

56. Sanjit Chatterjee and Palash Sarkar. Identity-based encryption. Springer Science & Busi-

ness Media, 2011.

57. Vasileios Chatzistefanou and Konstantinos Limniotis. On the (non-) anonymity of

anonymous social networks. In International Conference on e-Democracy, pages 153–168.

Springer, 2017.

58. David Chaum. The dining cryptographers problem: Unconditional sender and recipient

untraceability. Journal of cryptology, 1(1):65–75, 1988.

59. David L Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.

Communications of the ACM, 24(2):84–90, 1981.

60. Chen Chen, Daniele E Asoni, David Barrera, George Danezis, and Adrain Perrig. Hor-

net: High-speed onion routing at the network layer. In Proc. of the 22nd ACM SIGSAC

Conference on Computer and Communications Security, pages 1441–1454, 2015.

61. Chen Chen, Daniele E Asoni, Adrian Perrig, David Barrera, George Danezis, and

Carmela Troncoso. Taranet: Traffic-analysis resistant anonymity at the network layer.

In 2018 IEEE European Symposium on Security and Privacy (EuroS&P), pages 137–152.

IEEE, 2018.

62. Reynold Cheng, Yu Zhang, Elisa Bertino, and Sunil Prabhakar. Preserving user location

privacy in mobile data management infrastructures. In International Workshop on Privacy

Enhancing Technologies, pages 393–412. Springer, 2006.

63. Chi-Yin Chow and Mohamed F Mokbel. Enabling private continuous queries for re-

vealed user locations. In International Symposium on Spatial and Temporal Databases,

pages 258–275. Springer, 2007.

64. Peter Christen, Tim Churches, and Markus Hegland. Febrl–a parallel open source data

linkage system. In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages

638–647. Springer, 2004.

65. Marcus A Christie, Anuj Bhandar, Supun Nakandala, Suresh Marru, Eroma Abeysinghe,

Sudhakar Pamidighantam, and Marlon E Pierce. Using keycloak for gateway authenti-

cation and authorization, 2017.

66. Ningning Cui, Xiaochun Yang, and Bin Wang. A novel spatial cloaking scheme using

hierarchical hilbert curve for location-based services. In International Conference on Web-

Age Information Management, pages 15–27. Springer, 2016.

67. Mauro AA da Cruz, Joel JPC Rodrigues, Pascal Lorenz, Valery V Korotaev, and Victor

Hugo C de Albuquerque. In. iot—a new middleware for internet of things. IEEE Internet

of Things Journal, 8(10):7902–7911, 2020.

68. Tore Dalenius. Finding a needle in a haystack or identifying anonymous census records.

Journal of official statistics, 2(3):329, 1986.

260 References

69. Ivan Bjerre Damgård. Payment systems and credential mechanisms with provable secu-

rity against abuse by individuals. In Conference on the Theory and Application of Cryptog-

raphy, pages 328–335. Springer, 1988.

70. Maria Luisa Damiani, Elisa Bertino, Claudio Silvestri, et al. The probe framework for

the personalized cloaking of private locations. Trans. Data Priv., 3(2):123–148, 2010.

71. George Danezis and Claudia Diaz. A survey of anonymous communication channels.

Technical Report MSR-TR-2008-35 Microsoft Research, 2008.

72. George Danezis and Ian Goldberg. Sphinx: A compact and provably secure mix format.

In 2009 30th IEEE Symposium on Security and Privacy, pages 269–282. IEEE, 2009.

73. George Danezis and Andrei Serjantov. Statistical disclosure or intersection attacks on

anonymity systems. In International Workshop on Information Hiding, pages 293–308.

Springer, 2004.

74. Debajyoti Das, Sebastian Meiser, Esfandiar Mohammadi, and Aniket Kate. Anonymity

trilemma: Strong anonymity, low bandwidth overhead, low latency-choose two. In 2018

IEEE Symposium on Security and Privacy (SP), pages 108–126. IEEE, 2018.

75. Lily Davisson, Joakim Jakovleski, Nhiem Ngo, Chau Pham, and Joel Sommers. Reassess-

ing the constancy of end-to-end internet latency. traffic, 41(44):46, 2021.

76. Sumit Kumar Debnath, Pantelimon Stǎnicǎ, Nibedita Kundu, and Tanmay Choudhury.

Secure and efficient multiparty private set intersection cardinality. Advances in Mathe-

matics of Communications, 15(2):365, 2021.

77. Plinio Santini Dester, Francisco Helder C dos S Filho, and Paulo Cardieri. Performance

analysis of uplink traffic for machine type communication in wireless sensor networks.

In 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), pages 1–5. IEEE, 2018.

78. Massimo Di Pierro. What is the blockchain? Computing in Science & Engineering,

19(5):92–95, 2017.

79. Claudia Diaz and Bart Preneel. Accountable anonymous communication. In Security,

Privacy, and Trust in Modern Data Management, pages 239–253. Springer, 2007.

80. Tim Dierks and Christopher Allen. Rfc2246: The tls protocol version 1.0, 1999.

81. Dan Dinculeană and Xiaochun Cheng. Vulnerabilities and limitations of mqtt protocol

used between iot devices. Applied Sciences, 9(5):848, 2019.

82. Roger Dingledine, Michael J Freedman, and David Molnar. The free haven project: Dis-

tributed anonymous storage service. In Designing Privacy Enhancing Technologies, pages

67–95. Springer, 2001.

83. Changyu Dong and Grigorios Loukides. Approximating private set union/intersection

cardinality with logarithmic complexity. IEEE Transactions on Information Forensics and

Security, 12(11):2792–2806, 2017.

84. Jos Dumortier. Regulation (eu) no 910/2014 on electronic identification and trust ser-

vices for electronic transactions in the internal market (eidas regulation), 2017.

85. Ahmet Onur Durahim and Erkay Savaş. A-make: An efficient, anonymous and account-

able authentication framework for wmns. In 2010 Fifth International Conference on In-

ternet Monitoring and Protection, pages 54–59. IEEE, 2010.

References 261

86. Cynthia Dwork. Differential privacy: A survey of results. In International conference on

theory and applications of models of computation, pages 1–19. Springer, 2008.

87. Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni

Naor. Our data, ourselves: Privacy via distributed noise generation. In Annual interna-

tional conference on the theory and applications of cryptographic techniques, pages 486–503.

Springer, 2006.

88. Matthew Edman and Bülent Yener. On anonymity in an electronic society: A survey of

anonymous communication systems. ACM Computing Surveys (CSUR), 42(1):1–35, 2009.

89. Christopher Ifeanyi Eke, Azah Anir Norman, Liyana Shuib, and Henry Friday Nweke.

A survey of user profiling: State-of-the-art, challenges, and solutions. IEEE Access,

7:144907–144924, 2019.

90. Ehab ElSalamouny and Sébastien Gambs. Differential privacy models for location-based

services. Transactions on Data Privacy, 9(1):15–48, 2016.

91. Esra Erdin, Chris Zachor, and Mehmet Hadi Gunes. How to find hidden users: A

survey of attacks on anonymity networks. IEEE Communications Surveys & Tutorials,

17(4):2296–2316, 2015.

92. Csilla Farkas, Gábor Ziegler, Attila Meretei, and András Lörincz. Anonymity and ac-

countability in self-organizing electronic communities. In Proceedings of the 2002 ACM

workshop on Privacy in the Electronic Society, pages 81–90, 2002.

93. Joan Feigenbaum, Aaron Johnson, and Paul Syverson. Anonymity analysis of onion rout-

ing in the universally composable framework. In Proc. of the 2012 Workshop on Provable

Privacy, 2012.

94. Joan Feigenbaum, Aaron Johnson, and Paul Syverson. Probabilistic analysis of onion

routing in a black-box model. ACM Transactions on Information and System Security (TIS-

SEC), 15(3):1–28, 2012.

95. Jingyu Feng, Yin Wang, Jialin Wang, and Fang Ren. Blockchain-based data management

and edge-assisted trusted cloaking area construction for location privacy protection in

vehicular networks. IEEE Internet of Things Journal, 8(4):2087–2101, 2020.

96. Ian Fette and Alexey Melnikov. The websocket protocol, 2011.

97. Marten Fischer, Daniel Kümper, and Ralf Tönjes. Towards improving the privacy in the

mqtt protocol. In 2019 Global IoT Summit (GIoTS), pages 1–6. IEEE, 2019.

98. Michael J Freedman and Robert Morris. Tarzan: A peer-to-peer anonymizing network

layer. In Proceedings of the 9th ACM conference on Computer and communications security,

pages 193–206, 2002.

99. Lorenzo Frigerio, Anderson Santana de Oliveira, Laurent Gomez, and Patrick Duverger.

Differentially private generative adversarial networks for time series, continuous, and

discrete open data. In IFIP International Conference on ICT Systems Security and Privacy

Protection, pages 151–164. Springer, 2019.

100. Jesse James Garrett et al. Ajax: A new approach to web applications, 2005.

101. William Gasarch. A survey on private information retrieval. Bulletin of the EATCS,

82(72-107):113, 2004.

262 References

102. Bugra Gedik and Ling Liu. Protecting location privacy with personalized k-anonymity:

Architecture and algorithms. IEEE Transactions on Mobile Computing, 7(1):1–18, 2007.

103. Natalie Gerhart and Mehrdad Koohikamali. Social network migration and anonymity

expectations: What anonymous social network apps offer. Computers in Human Behavior,

95:101–113, 2019.

104. Gabriel Ghinita, Panos Kalnis, and Spiros Skiadopoulos. Mobihide: a mobilea peer-to-

peer system for anonymous location-based queries. In International Symposium on Spa-

tial and Temporal Databases, pages 221–238. Springer, 2007.

105. Gabriel Ghinita, Panagiotis Karras, Panos Kalnis, and Nikos Mamoulis. Fast data

anonymization with low information loss. In Proceedings of the 33rd international confer-

ence on Very large data bases, pages 758–769, 2007.

106. Gabriel Ghinita, Keliang Zhao, Dimitris Papadias, and Panos Kalnis. A reciprocal frame-

work for spatial k-anonymity. Information Systems, 35(3):299–314, 2010.

107. Yossi Gilad and Amir Herzberg. Spying in the dark: Tcp and tor traffic analysis. In

International symposium on privacy enhancing technologies symposium, pages 100–119.

Springer, 2012.

108. David M Goldschlag, Michael G Reed, and Paul F Syverson. Hiding routing information.

In International workshop on information hiding, pages 137–150. Springer, 1996.

109. Kaj J Grahn, Thomas Forss, and Göran Pulkkis. Anonymous communication on the

internet. In Proceedings of Informing Science & IT Education Conference (InSITE), pages

103–120, 2014.

110. Alex Grech, Ira Sood, and Lluís Ariño. Blockchain, self-sovereign identity and digital

credentials: promise versus praxis in education. Frontiers in Blockchain, 4:616779, 2021.

111. Andre Greubel, Steffen Pohl, and Samuel Kounev. Quantifying measurement quality

and load distribution in tor. In Annual Computer Security Applications Conference, pages

129–140, 2020.

112. W3C Schema.org Community Group. schema.org project. https://github.com/

schemaorg/schemaorg, 2022.

113. Marco Gruteser and Dirk Grunwald. Anonymous usage of location-based services

through spatial and temporal cloaking. In Proceedings of the 1st international conference

on Mobile systems, applications and services, pages 31–42, 2003.

114. Clement Guitton. A review of the available content on tor hidden services: The case

against further development. Computers in Human Behavior, 29(6):2805–2815, 2013.

115. Ajay K Gupta and Udai Shanker. Omcpr: Optimal mobility aware cache data pre-

fetching and replacement policy using spatial k-anonymity for lbs. Wireless Personal

Communications, pages 1–25, 2020.

116. Vatsal Gupta, Sonam Khera, and Neelam Turk. Mqtt protocol employing iot based home

safety system with abe encryption. Multimedia Tools and Applications, 80(2):2931–2949,

2021.

117. Mordechai Haklay and Patrick Weber. Openstreetmap: User-generated street maps.

IEEE Pervasive computing, 7(4):12–18, 2008.

References 263

118. Feng Hao, Peter YA Ryan, and Piotr Zieliński. Anonymous voting by two-round public

discussion. IET Information Security, 4(2):62–67, 2010.

119. Michael Harkavy, J Doug Tygar, and Hiroaki Kikuchi. Electronic auctions with private

bids. In USENIX Workshop on Electronic Commerce, 1998.

120. Katie Harron, Chris Dibben, James Boyd, Anders Hjern, Mahmoud Azimaee, Mauricio L

Barreto, and Harvey Goldstein. Challenges in administrative data linkage for research.

Big data & society, 4(2):2053951717745678, 2017.

121. Tanzima Hashem, Lars Kulik, and Rui Zhang. Privacy preserving group nearest neigh-

bor queries. In Proceedings of the 13th International Conference on Extending Database

Technology, pages 489–500, 2010.

122. Thomas R Henderson, Mathieu Lacage, George F Riley, Craig Dowell, and Joseph

Kopena. Network simulations with the ns-3 simulator. SIGCOMM demonstration,

14(14):527, 2008.

123. Hendrik Hielkema and Patrizia Hongisto. Developing the helsinki smart city: The role

of competitions for open data applications. Journal of the Knowledge Economy, 4(2):190–

204, 2013.

124. Andreas Hirt, Michael Jacobson, and Carey Williamson. Taxis: scalable strong anony-

mous communication. In 2008 IEEE International Symposium on Modeling, Analysis and

Simulation of Computers and Telecommunication Systems, pages 1–10. IEEE, 2008.

125. HiveMQ. Hive mq community edition. https://github.com/hivemq/

hivemq-community-edition/wiki, 2022.

126. HiveMQ. Hivemq mqtt client. https://hivemq.github.io/hivemq-mqtt-client/,

2022.

127. Nguyen Phong Hoang, Panagiotis Kintis, Manos Antonakakis, and Michalis Polychron-

akis. An empirical study of the i2p anonymity network and its censorship resistance. In

Proceedings of the Internet Measurement Conference 2018, pages 379–392, 2018.

128. Susan Hohenberger, Steven Myers, Rafael Pass, et al. Anonize: A large-scale anonymous

survey system. In 2014 IEEE Symposium on Security and Privacy, pages 375–389. IEEE,

2014.

129. C D’Arcy J Holman, John A Bass, Diana L Rosman, Merran B Smith, James B Semmens,

Emma J Glasson, Emma L Brook, Brooke Trutwein, Ian L Rouse, Charles R Watson, et al.

A decade of data linkage in western australia: strategic design, applications and benefits

of the wa data linkage system. Australian Health Review, 32(4):766–777, 2008.

130. Frank Hopfgartner and Joemon M Jose. Semantic user profiling techniques for person-

alised multimedia recommendation. Multimedia systems, 16(4):255–274, 2010.

131. Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash protocol speci-

fication. GitHub: San Francisco, CA, USA, page 1, 2016.

132. Homa Hosseinmardi, Richard Han, Qin Lv, Shivakant Mishra, and Amir Ghasemianlan-

groodi. Analyzing negative user behavior in a semi-anonymous social network. CoRR

abs, 1404, 2014.

133. Axelle Hue, Gaurav Sharma, and Jean-Michel Dricot. Privacy-enhanced mqtt protocol

for massive iot. Electronics, 11(1):70, 2021.

264 References

134. Axelle Hue, Gaurav Sharma, and Jean-Michel Dricot. Privacy-enhanced mqtt protocol

for massive iot. Electronics, 11(1), 2022.

135. John Hughes and Eve Maler. Security assertion markup language (saml) v2. 0 technical

overview. OASIS SSTC Working Draft sstc-saml-tech-overview-2.0-draft-08, 13, 2005.

136. Alfonso Iacovazzi and Yuval Elovici. Network flow watermarking: A survey. IEEE Com-

munications Surveys & Tutorials, 19(1):512–530, 2016.

137. Infura Inc. The World’s Most Powerful Blockchain Development Suite.

138. Shweta Iyer, GV Bansod, Praveen Naidu, and Shefali Garg. Implementation and eval-

uation of lightweight ciphers in mqtt environment. In 2018 International conference on

electrical, electronics, communication, computer, and optimization techniques (ICEECCOT),

pages 276–281. IEEE, 2018.

139. Tanja Jaatinen. The relationship between open data initiatives, privacy, and government

transparency: a love triangle? International Data Privacy Law, 6(1):28, 2016.

140. Hiba Jadallah and Zaher Al Aghbari. Spatial cloaking for location-based queries in the

cloud. J. of Ambient Intelligence and Humanized Computing, 10(9):3339–3347, 2019.

141. Priti Jagwani and Saroj Kaushik. Soft computing for scalability in context aware location

based services. Soft Computing, 11(4), 2020.

142. Rob Jansen, Kevin S Bauer, Nicholas Hopper, and Roger Dingledine. Methodically mod-

eling the tor network. In CSET, 2012.

143. Husam Al Jawaheri, Mashael Al Sabah, Yazan Boshmaf, and Aiman Erbad. Deanonymiz-

ing tor hidden service users through bitcoin transactions analysis. Computers & Security,

89:101684, 2020.

144. Zhanglong Ji, Zachary C Lipton, and Charles Elkan. Differential privacy and machine

learning: a survey and review. arXiv preprint arXiv:1412.7584, 2014.

145. Hongbo Jiang, Jie Li, Ping Zhao, Fanzi Zeng, Zhu Xiao, and Arun Iyengar. Location

privacy-preserving mechanisms in location-based services: A comprehensive survey.

ACM Computing Surveys (CSUR), 54(1):1–36, 2021.

146. Aaron Johnson, Rob Jansen, Nicholas Hopper, Aaron Segal, and Paul Syverson. Peerflow:

Secure load balancing in tor. Proc. Priv. Enhancing Technol., 2017(2):74–94, 2017.

147. Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve digital signature

algorithm (ecdsa). International journal of information security, 1(1):36–63, 2001.

148. Mouna Kacimi, Stefano Ortolani, and Bruno Crispo. Anonymous opinion exchange over

untrusted social networks. In Proceedings of the second ACM EuroSys workshop on social

network systems, pages 26–32, 2009.

149. Panos Kalnis, Gabriel Ghinita, Kyriakos Mouratidis, and Dimitris Papadias. Preventing

location-based identity inference in anonymous spatial queries. IEEE transactions on

knowledge and data engineering, 19(12):1719–1733, 2007.

150. Ishan Karunanayake, Nadeem Ahmed, Robert Malaney, Rafiqul Islam, and Sanjay Jha.

Anonymity with tor: A survey on tor attacks. arXiv preprint arXiv:2009.13018, 2020.

151. Wazir Zada Khan, Ejaz Ahmed, Saqib Hakak, Ibrar Yaqoob, and Arif Ahmed. Edge

computing: A survey. Future Generation Computer Systems, 97:219–235, 2019.

References 265

152. Hidetoshi Kido, Yutaka Yanagisawa, and Tetsuji Satoh. Protection of location privacy us-

ing dummies for location-based services. In 21st International Conf. on Data Engineering

Workshops (ICDEW’05), pages 1248–1248. IEEE, 2005.

153. Geonwoo Kim, Seongju Kang, Jiwoo Park, and Kwangsue Chung. An mqtt-based

context-aware autonomous system in onem2m architecture. IEEE Internet of Things Jour-

nal, 6(5):8519–8528, 2019.

154. Jong Wook Kim, Kennedy Edemacu, and Beakcheol Jang. Privacy-preserving mecha-

nisms for location privacy in mobile crowdsensing: A survey. Journal of Network and

Computer Applications, page 103315, 2022.

155. Lea Kissner and Dawn Song. Privacy-preserving set operations. In Annual International

Cryptology Conference, pages 241–257. Springer, 2005.

156. Rob Kitchin. The data revolution: Big data, open data, data infrastructures and their conse-

quences. Sage, 2014.

157. Chelsea H Komlo, Nick Mathewson, and Ian Goldberg. Walking onions: Scaling

anonymity networks while protecting users. In 29th USENIX Security Symposium

(USENIX Security 20), pages 1003–1020, 2020.

158. Panayiotis Kotzanikolaou, George Chatzisofroniou, and Mike Burmester. Broadcast

anonymous routing (bar): scalable real-time anonymous communication. International

Journal of Information Security, 16(3):313–326, 2017.

159. Hugo Krawczyk, Mihir Bellare, and Ran Canetti. Hmac: Keyed-hashing for message

authentication, 1997.

160. John Krumm. A survey of computational location privacy. Personal and Ubiquitous Com-

puting, 13(6):391–399, 2009.

161. Li Kuang, Yin Wang, Xiaosen Zheng, Lan Huang, and Yu Sheng. Using location seman-

tics to realize personalized road network location privacy protection. EURASIP Journal

on Wireless Communications and Networking, 2020(1):1, 2020.

162. Christiane Kuhn, Martin Beck, and Thorsten Strufe. Breaking and (partially) fixing prov-

ably secure onion routing. In 2020 IEEE Symp. on Security and Privacy (SP), pages 168–

185. IEEE, 2020.

163. Budi Kurniawan. Java for the web with servlets, jsp, and ejb, 2002.

164. Jung-Hyok Kwon, Hwi-Ho Lee, Yongseok Lim, and Eui-Jik Kim. Dominant channel

occupancy for wi-fi backscatter uplink in industrial internet of things. Applied Sciences,

6(12):427, 2016.

165. Stevens Le Blond, David Choffnes, Wenxuan Zhou, Peter Druschel, Hitesh Ballani, and

Paul Francis. Towards efficient traffic-analysis resistant anonymity networks. ACM SIG-

COMM Computer Communication Review, 43(4):303–314, 2013.

166. Jaeheung Lee, Seokhyun Kim, Yookun Cho, Yoojin Chung, and Yongsu Park. A hierar-

chical clustering-based spatial cloaking algorithm for location-based services. Journal of

Internet Technology, 13(4):645–654, 2012.

167. Brian N Levine, Michael K Reiter, Chenxi Wang, and Matthew Wright. Timing attacks

in low-latency mix systems. In International Conference on Financial Cryptography, pages

251–265. Springer, 2004.

266 References

168. Bingdong Li, Esra Erdin, Mehmet Hadi Gunes, George Bebis, and Todd Shipley. An

overview of anonymity technology usage. Computer Communications, 36(12):1269–1283,

2013.

169. Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. t-closeness: Privacy beyond

k-anonymity and l-diversity. In 2007 IEEE 23rd international conference on data engineer-

ing, pages 106–115. IEEE, 2006.

170. Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. t-closeness: Privacy beyond

k-anonymity and l-diversity. In 2007 IEEE 23rd international conference on data engineer-

ing, pages 106–115. IEEE, 2007.

171. Bin Liang, Mark A Gregory, and Shuo Li. Multi-access edge computing fundamentals,

services, enablers and challenges: A complete survey. Journal of Network and Computer

Applications, page 103308, 2021.

172. Teh-Lu Liao, Hong-Ru Lin, Pei-Yen Wan, and Jun-Juh Yan. Improved attribute-based

encryption using chaos synchronization and its application to mqtt security. Applied

Sciences, 9(20):4454, 2019.

173. Bingyu Liu, Shangyu Xie, Yuanzhou Yang, Rujia Wang, and Yuan Hong. Privacy pre-

serving divisible double auction with a hybridized tee-blockchain system. Cybersecurity,

4(1):1–14, 2021.

174. Bo Liu, Wanlei Zhou, Tianqing Zhu, Longxiang Gao, and Yong Xiang. Location privacy

and its applications: A systematic study. IEEE access, 6:17606–17624, 2018.

175. Edoardo Longo, Alessandro EC Redondi, Matteo Cesana, and Pietro Manzoni. Border: a

benchmarking framework for distributed mqtt brokers. IEEE Internet of Things Journal,

2022.

176. Anna Lysyanskaya, Ronald L Rivest, Amit Sahai, and Stefan Wolf. Pseudonym systems.

In International Workshop on Selected Areas in Cryptography, pages 184–199. Springer,

1999.

177. Ruiqu Ma and Patrick TI Lam. Investigating the barriers faced by stakeholders in open

data development: A study on hong kong as a “smart city”. Cities, 92:36–46, 2019.

178. Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakrishnan

Venkitasubramaniam. l-diversity: Privacy beyond k-anonymity. ACM Transactions on

Knowledge Discovery from Data (TKDD), 1(1):3–es, 2007.

179. Emmanouil Magkos, Panayiotis Kotzanikolaou, Spyros Sioutas, and Konstantinos

Oikonomou. A distributed privacy-preserving scheme for location-based queries. In

2010 IEEE International Symposium on" A World of Wireless, Mobile and Multimedia Net-

works"(WoWMoM), pages 1–6. IEEE, 2010.

180. Azees Maria, Arun Sekar Rajasekaran, Fadi Al-Turjman, Chadi Altrjman, and Leonardo

Mostarda. Baiv: An efficient blockchain-based anonymous authentication and integrity

preservation scheme for secure communication in vanets. Electronics, 11(3):488, 2022.

181. Sergio Mascetti, Claudio Bettini, Dario Freni, X Sean Wang, and Sushil Jajodia. Privacy-

aware proximity based services. In 2009 Tenth International Conference on Mobile Data

Management: Systems, Services and Middleware, pages 31–40. IEEE, 2009.

References 267

182. Suja P Mathews and Raju R Gondkar. Protocol recommendation for message encryption

in mqtt. In 2019 International Conference on Data Science and Communication (IconDSC),

pages 1–5. IEEE, 2019.

183. Gianluigi Me and Liberato Pesticcio. Tor black markets: economics, characterization and

investigation technique. In Cyber Criminology, pages 119–140. Springer, 2018.

184. Diego Mendez Mena, Ioannis Papapanagiotou, and Baijian Yang. Internet of things:

Survey on security. Information Security Journal: A Global Perspective, 27(3):162–182,

2018.

185. Fredy Mendoza-Cardenas, Rai Stiv Leon-Aguilar, and Jose Luis Quiroz-Arroyo. Cp-abe

encryption over mqtt for an iot system with raspberry pi. In 2022 56th Annual Conference

on Information Sciences and Systems (CISS), pages 236–239. IEEE, 2022.

186. MetaMask. A crypto wallet & gateway to blockchain apps.

187. Michael Michaelides, Cigdem Sengul, and Paul Patras. An experimental evaluation of

mqtt authentication and authorization in iot. In Proceedings of the 15th ACM Workshop

on Wireless Network Testbeds, Experimental evaluation & CHaracterization, pages 69–76,

2022.

188. Silvia Mirri, Catia Prandi, Paola Salomoni, Franco Callegati, and Aldo Campi. On com-

bining crowdsourcing, sensing and open data for an accessible smart city. In 2014 Eighth

international conference on next generation mobile apps, services and technologies, pages

294–299. IEEE, 2014.

189. Mohamed F Mokbel, Chi-Yin Chow, and Walid G Aref. The new casper: Query process-

ing for location services without compromising privacy. In Proc. of the 32nd international

conf. on Very large data bases, pages 763–774, 2006.

190. Antonio Montieri, Domenico Ciuonzo, Giuseppe Aceto, and Antonio Pescape.

Anonymity services tor, i2p, jondonym: classifying in the dark (web). IEEE Transactions

on Dependable and Secure Computing, 17(3):662–675, 2018.

191. Malte Möser, Kyle Soska, Ethan Heilman, Kevin Lee, Henry Heffan, Shashvat Srivastava,

Kyle Hogan, Jason Hennessey, Andrew Miller, Arvind Narayanan, et al. An empirical

analysis of traceability in the monero blockchain. arXiv preprint arXiv:1704.04299, 2017.

192. Vaia Moustaka, Athena Vakali, and Leonidas G Anthopoulos. A systematic review for

smart city data analytics. ACM Computing Surveys (cSuR), 51(5):1–41, 2018.

193. Steven J Murdoch and George Danezis. Low-cost traffic analysis of tor. In 2005 IEEE

Symposium on Security and Privacy (S&P’05), pages 183–195. IEEE, 2005.

194. Peter Murray-Rust. Open data in science. Nature Precedings, pages 1–1, 2008.

195. Suntherasvaran Murthy, Asmidar Abu Bakar, Fiza Abdul Rahim, and Ramona Ramli. A

comparative study of data anonymization techniques. In 2019 IEEE 5th Intl Conference

on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance

and Smart Computing,(HPSC) and IEEE Intl Conference on Intelligent Data and Security

(IDS), pages 306–309. IEEE, 2019.

196. Fátima Trindade Neves, Miguel de Castro Neto, and Manuela Aparicio. The impacts of

open data initiatives on smart cities: A framework for evaluation and monitoring. Cities,

106:102860, 2020.

268 References

197. Navid Nikaein, Mahesh K Marina, Saravana Manickam, Alex Dawson, Raymond Knopp,

and Christian Bonnet. Openairinterface: A flexible platform for 5g research. ACM SIG-

COMM Computer Communication Review, 44(5):33–38, 2014.

198. Aimaschana Niruntasukrat, Chavee Issariyapat, Panita Pongpaibool, Koonlachat

Meesublak, Pramrudee Aiumsupucgul, and Anun Panya. Authorization mechanism for

mqtt-based internet of things. In 2016 IEEE International Conference on Communications

Workshops (ICC), pages 290–295. IEEE, 2016.

199. Helen Nissenbaum. The meaning of anonymity in an information age. The Information

Society, 15(2):141–144, 1999.

200. BEN NIU, Yahong Chen, Zhibo Wang, Boyang Wang, Hui Li, et al. Eclipse: Preserving

differential location privacy against long-term observation attacks. IEEE Transactions on

Mobile Computing, 2020.

201. Ben Niu, Qinghua Li, Xiaoyan Zhu, Guohong Cao, and Hui Li. Achieving k-anonymity

in privacy-aware location-based services. In IEEE INFOCOM 2014-IEEE Conference on

Computer Communications, pages 754–762. IEEE, 2014.

202. Yukun Niu, Lingbo Wei, Chi Zhang, Jianqing Liu, and Yuguang Fang. An anony-

mous and accountable authentication scheme for wi-fi hotspot access with the bitcoin

blockchain. In 2017 IEEE/CIC International Conference on Communications in China

(ICCC), pages 1–6. IEEE, 2017.

203. Mohammad Reza Nosouhi, Shui Yu, Keshav Sood, and Marthie Grobler. Hsdc–net: se-

cure anonymous messaging in online social networks. In 2019 18th IEEE International

Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE

International Conference On Big Data Science And Engineering (TrustCom/BigDataSE),

pages 350–357. IEEE, 2019.

204. Atul Oak and RD Daruwala. Assessment of message queue telemetry and transport

(mqtt) protocol with symmetric encryption. In 2018 First International Conference on

Secure Cyber Computing and Communication (ICSCCC), pages 5–8. IEEE, 2018.

205. Digital Ocean. Digital ocean cloud platform. https://docs.digitalocean.com/, 2022.

206. Jessica Oueis and Emilio Calvanese Strinati. Uplink traffic in future mobile networks:

Pulling the alarm. In International Conference on Cognitive Radio Oriented Wireless Net-

works, pages 583–593. Springer, 2016.

207. Gareth Owen and Nick Savage. Empirical analysis of tor hidden services. IET Informa-

tion Security, 10(3):113–118, 2016.

208. Fatih Özkaynak. Cryptographically secure random number generator with chaotic ad-

ditional input. Nonlinear Dynamics, 78(3):2015–2020, 2014.

209. Gavin O’Gorman and Stephen Blott. Large scale simulation of tor. In Annual Asian

Computing Science Conference, pages 48–54. Springer, 2007.

210. Jacob Palme and Mikael Berglund. Anonymity on the internet. Retrieved August,

15:2009, 2002.

211. Francesco Palmieri. A distributed flow correlation attack to anonymizing overlay net-

works based on wavelet multi-resolution analysis. IEEE Transactions on Dependable and

Secure Computing, 18(5):2271–2284, 2019.

References 269

212. Andriy Panchenko, Fabian Lanze, and Thomas Engel. Improving performance and

anonymity in the tor network. In 2012 IEEE 31st International Performance Computing

and Communications Conference (IPCCC), pages 1–10. IEEE, 2012.

213. Andriy Panchenko, Lexi Pimenidis, and Johannes Renner. Performance analysis of

anonymous communication channels provided by tor. In 2008 Third International Con-

ference on Availability, Reliability and Security, pages 221–228. IEEE, 2008.

214. Alireza Partovi, Wei Zheng, Taeho Jung, and Hai Lin. Ensuring privacy in location-based

services: A model-based approach. arXiv preprint arXiv:2002.10055, 2020.

215. Chintan Patel and Nishant Doshi. A novel mqtt security framework in generic iot model.

Procedia Computer Science, 171:1399–1408, 2020.

216. Tao Peng, Qin Liu, and Guojun Wang. Enhanced location privacy preserving scheme in

location-based services. IEEE Systems Journal, 11(1):219–230, 2014.

217. Giovanni Perrone, Massimo Vecchio, Riccardo Pecori, Raffaele Giaffreda, et al. The day

after mirai: A survey on mqtt security solutions after the largest cyber-attack carried out

through an army of iot devices. In IoTBDS, pages 246–253, 2017.

218. Bruce W Perry. Java servlet & JSP cookbook. “O’Reilly Media, Inc.”, 2004.

219. Andreas Pfitzmann and Marit Hansen. A terminology for talking about pri-

vacy by data minimization: Anonymity, unlinkability, undetectability, unobservability,

pseudonymity, and identity management. Technical report, 2010.

220. Giuseppe Antonio Pierro, Roberto Tonelli, and Michele Marchesi. An organized reposi-

tory of ethereum smart contracts’ source codes and metrics. Future internet, 12(11):197,

2020.

221. Tobias Christian Piller, David Maria Merz, and Abdelmajid Khelil. Mqtt-4est: Rule-

based web editor for semantic-aware topic naming in mqtt. In 2022 IEEE 19th Annual

Consumer Communications & Networking Conference (CCNC), pages 1–8. IEEE, 2022.

222. Aniket Pingley, Nan Zhang, Xinwen Fu, Hyeong-Ah Choi, Suresh Subramaniam, and

Wei Zhao. Protection of query privacy for continuous location based services. In 2011

Proceedings IEEE INFOCOM, pages 1710–1718. IEEE, 2011.

223. Ania M Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser, and George Danezis.

The loopix anonymity system. In 26th {USENIX} Security Symposium ({USENIX} Security

17), pages 1199–1216, 2017.

224. Thomas Prantl, Lukas Iffländer, Stefan Herrnleben, Simon Engel, Samuel Kounev, and

Christian Krupitzer. Performance impact analysis of securing mqtt using tls. In Proceed-

ings of the ACM/SPEC International Conference on Performance Engineering, pages 241–

248, 2021.

225. Stefan Profanter, Ayhun Tekat, Kirill Dorofeev, Markus Rickert, and Alois Knoll. Opc

ua versus ros, dds, and mqtt: performance evaluation of industry 4.0 protocols. In 2019

IEEE International Conference on Industrial Technology (ICIT), pages 955–962. IEEE, 2019.

226. The Tor Project. Tor metrics, 2009–2018.

227. Yanina Protskaya and Luca Veltri. Broker bridging mechanism for providing anonymity

in mqtt. In 2019 10th International Conference on Networks of the Future (NoF), pages

110–113. IEEE, 2019.

270 References

228. V Radha and D Hitha Reddy. A survey on single sign-on techniques. Procedia Technology,

4:134–139, 2012.

229. David Recordon and Drummond Reed. Openid 2.0: a platform for user-centric identity

management. In Proceedings of the second ACM workshop on Digital identity management,

pages 11–16, 2006.

230. Michael K Reiter and Aviel D Rubin. Crowds: Anonymity for web transactions. ACM

transactions on information and system security (TISSEC), 1(1):66–92, 1998.

231. Florentin Rochet and Olivier Pereira. Dropping on the edge: Flexibility and traffic confir-

mation in onion routing protocols. Proc. Priv. Enhancing Technol., 2018(2):27–46, 2018.

232. Marco Romanelli, Konstantinos Chatzikokolakis, and Catuscia Palamidessi. Optimal

obfuscation mechanisms via machine learning. In 2020 IEEE 33rd Computer Security

Foundations Symposium (CSF), pages 153–168. IEEE Computer Society, 2020.

233. Ropsten. Ropsten Testnet Explorer, 2006.

234. Michael Rossberg and Guenter Schaefer. A survey on automatic configuration of virtual

private networks. Computer networks, 55(8):1684–1699, 2011.

235. Ian Roughley. Starting struts 2, 2007.

236. Antonia Russo, Gianluca Lax, Baptiste Dromard, and Menad Mezred. A system to ac-

cess online services with minimal personal information disclosure. Information Systems

Frontiers, pages 1–13, 2021.

237. Ousmane Sadio, Ibrahima Ngom, and Claude Lishou. Lightweight security scheme for

mqtt/mqtt-sn protocol. In 2019 Sixth International Conference on Internet of Things: Sys-

tems, Management and Security (IOTSMS), pages 119–123. IEEE, 2019.

238. Natsuhiko Sakimura, John Bradley, Mike Jones, Breno De Medeiros, and Chuck Morti-

more. Openid connect core 1.0. The OpenID Foundation, page S3, 2014.

239. Juha Salo. Recent attacks on tor. Aalto University, 2010.

240. Pierangela Samarati and Latanya Sweeney. Protecting privacy when disclosing informa-

tion: k-anonymity and its enforcement through generalization and suppression, 1998.

241. Klaus-Dieter Schewe, Roland Kaschek, Claire Matthews, and Catherine Wallace. Mod-

elling web-based banking systems: Story boarding and user profiling. In International

Conference on Conceptual Modeling, pages 427–439. Springer, 2002.

242. M Zubair Shafiq, Lusheng Ji, Alex X Liu, Jeffrey Pang, and Jia Wang. Large-scale mea-

surement and characterization of cellular machine-to-machine traffic. IEEE/ACM trans-

actions on Networking, 21(6):1960–1973, 2013.

243. Tianxiang Shen, Jianyu Jiang, Yunpeng Jiang, Xusheng Chen, Ji Qi, Shixiong Zhao, Feng-

wei Zhang, Xiapu Luo, and Heming Cui. Daenet: making strong anonymity scale in a

fully decentralized network. IEEE Transactions on Dependable and Secure Computing,

2021.

244. SeongHan Shin, Kazukuni Kobara, Chia-Chuan Chuang, and Weicheng Huang. A se-

curity framework for mqtt. In 2016 IEEE Conference on Communications and Network

Security (CNS), pages 432–436. IEEE, 2016.

References 271

245. Fatemeh Shirazi, Milivoj Simeonovski, Muhammad Rizwan Asghar, Michael Backes, and

Claudia Diaz. A survey on routing in anonymous communication protocols. ACM Com-

puting Surveys (CSUR), 51(3):1–39, 2018.

246. Vitaly Shmatikov and Ming-Hsiu Wang. Measuring relationship anonymity in mix net-

works. In Proceedings of the 5th ACM workshop on Privacy in electronic society, pages

59–62, 2006.

247. Robin Snader and Nikita Borisov. A tune-up for tor: Improving security and perfor-

mance in the tor network. In ndss, volume 8, page 127, 2008.

248. Robin Snader and Nikita Borisov. Improving security and performance in the tor net-

work through tunable path selection. IEEE Transactions on Dependable and Secure Com-

puting, 8(5):728–741, 2010.

249. Ridha Soua, Maria Rita Palattella, Andre Stemper, and Thomas Engel. Mqtt-mfa: a mes-

sage filter aggregator to support massive iot traffic over satellite. IEEE Internet of Things

Journal, 2021.

250. Manu Sporny, Dave Longley, Gregg Kellogg, Markus Lanthaler, and Niklas Lindström.

Json-ld 1.0. W3C recommendation, 16:41, 2014.

251. OASIS Standard. Mqtt version 3.1. 1. URL http://docs. oasis-open. org/mqtt/mqtt/v3, 1:29,

2014.

252. Andy Stanford-Clark and Hong Linh Truong. Mqtt for sensor networks (mqtt-sn) pro-

tocol specification. International business machines (IBM) Corporation version, 1(2):1–28,

2013.

253. Wei-Tsung Su, Wei-Cheng Chen, and Chao-Chun Chen. An extensible and transpar-

ent thing-to-thing security enhancement for mqtt protocol in iot environment. In 2019

Global IoT Summit (GIoTS), pages 1–4. IEEE, 2019.

254. Gang Sun, Shuai Cai, Hongfang Yu, Sabita Maharjan, Victor Chang, Xiaojiang Du, and

Mohsen Guizani. Location privacy preservation for mobile users in location-based ser-

vices. IEEE Access, 7:87425–87438, 2019.

255. Gang Sun, Yuxia Xie, Dan Liao, Hongfang Yu, and Victor Chang. User-defined privacy

location-sharing system in mobile online social networks. Journal of Network and Com-

puter Applications, 86:34–45, 2017.

256. Yi Sun, Qian Liu, Xingyuan Chen, and Xuehui Du. An adaptive authenticated data

structure with privacy-preserving for big data stream in cloud. IEEE Transactions on

Information Forensics and Security, 15:3295–3310, 2020.

257. Latanya Sweeney. k-anonymity: A model for protecting privacy. International Journal of

Uncertainty, Fuzziness and Knowledge-Based Systems, 10(05):557–570, 2002.

258. Paul Syverson, Roger Dingledine, and Nick Mathewson. Tor: The second generation

onion router. In Usenix Security, pages 303–320, 2004.

259. Paul Syverson, Gene Tsudik, Michael Reed, and Carl Landwehr. Towards an analysis

of onion routing security. In Designing Privacy Enhancing Technologies, pages 96–114.

Springer, 2001.

260. Tarik Taleb, Konstantinos Samdanis, Badr Mada, Hannu Flinck, Sunny Dutta, and

Dario Sabella. On multi-access edge computing: A survey of the emerging 5g network

272 References

edge cloud architecture and orchestration. IEEE Communications Surveys & Tutorials,

19(3):1657–1681, 2017.

261. Qingfeng Tan, Xuebin Wang, Wei Shi, Jian Tang, and Zhihong Tian. An anonymity vul-

nerability in tor. IEEE/ACM Transactions on Networking, 2022.

262. Isamu Teranishi and Kazue Sako. K-times anonymous authentication with a constant

proving cost. In International Workshop on Public Key Cryptography, pages 525–542.

Springer, 2006.

263. Dinesh Thangavel, Xiaoping Ma, Alvin Valera, Hwee-Xian Tan, and Colin Keng-Yan Tan.

Performance evaluation of mqtt and coap via a common middleware. In 2014 IEEE ninth

international conference on intelligent sensors, sensor networks and information processing

(ISSNIP), pages 1–6. IEEE, 2014.

264. Liang Tong, Yong Li, and Wei Gao. A hierarchical edge cloud architecture for mobile

computing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on

Computer Communications, pages 1–9. IEEE, 2016.

265. Horst Treiblmaier. What is coming across the horizon and how can we handle it? bit-

coin scenarios as a starting point for rigorous and relevant research. Future Internet,

14(6):162, 2022.

266. Patrick P Tsang, Man Ho Au, Apu Kapadia, and Sean W Smith. Perea: Towards prac-

tical ttp-free revocation in anonymous authentication. In Proceedings of the 15th ACM

conference on Computer and communications security, pages 333–344, 2008.

267. Patrick P Tsang and Sean W Smith. Ppaa: Peer-to-peer anonymous authentication.

In International Conference on Applied Cryptography and Network Security, pages 55–74.

Springer, 2008.

268. Florian Tschorsch and Björn Scheuermann. Mind the gap: Towards a backpressure-

based transport protocol for the tor network. In 13th {USENIX} Symposium on Networked

Systems Design and Implementation ({NSDI} 16), pages 597–610, 2016.

269. Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Zaharia, and Nickolai Zeldovich. Sta-

dium: A distributed metadata-private messaging system. In Proceedings of the 26th Sym-

posium on Operating Systems Principles, SOSP ’17, page 423–440, New York, NY, USA,

2017. Association for Computing Machinery.

270. European Union. Regulation EU No 910/2014 of the European Parliament and of the

Council, 23 July 2014. http://eur-lex.europa.eu/legal-content/EN/TXT\\/HTML/

?uri=CELEX\%3A32014R0910\&from=EN.

271. European Union. European blockchain services infrastructure (ebsi). https://ec.

europa.eu/cefdigital/wiki/display/CEFDIGITAL/EBSI/, Accessed online 2022.

272. Daniel Uroz and Ricardo J Rodríguez. Characterization and evaluation of iot protocols

for data exfiltration. IEEE Internet of Things Journal, 2022.

273. Jelle Van Den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. Vuvuzela:

Scalable private messaging resistant to traffic analysis. In Proceedings of the 25th Sympo-

sium on Operating Systems Principles, pages 137–152, 2015.

References 273

274. Luis Von Ahn, Andrew Bortz, and Nicholas J Hopper. K-anonymous message transmis-

sion. In Proc. of the 10th ACM conf. on Computer and Communications Security, pages

122–130, 2003.

275. Kathleen A Wallace. Anonymity. Ethics and Information technology, 1(1):21–31, 1999.

276. Gang Wang, Bolun Wang, Tianyi Wang, Ana Nika, Haitao Zheng, and Ben Y Zhao. Whis-

pers in the dark: analysis of an anonymous social network. In Proceedings of the 2014

conference on internet measurement conference, pages 137–150, 2014.

277. Jian Wang. Casper-cloaking implementation in java. https://github.com/iwangjian/

Casper-Cloaking, 2018.

278. Song Wang and X Sean Wang. In-device spatial cloaking for mobile user privacy assisted

by the cloud. In 2010 Eleventh international conference on mobile data management, pages

381–386. IEEE, 2010.

279. Wei Wang, Mehul Motani, and Vikram Srinivasan. Dependent link padding algorithms

for low latency anonymity systems. In Proceedings of the 15th ACM conference on Com-

puter and communications security, pages 323–332, 2008.

280. Wenxi Wang, Weilong Zhang, Zhang Jin, Keyan Sun, Runlin Zou, Chenrong Huang,

and Yuan Tian. A novel location privacy protection scheme with generative adversarial

network. In Yuan Tian, Tinghuai Ma, and Muhammad Khurram Khan, editors, Big Data

and Security, pages 17–27, Singapore, 2020. Springer Singapore.

281. Marius Wernke, Frank Dürr, and Kurt Rothermel. Pshare: Ensuring location privacy

in non-trusted systems through multi-secret sharing. Pervasive and Mobile Computing,

9(3):339–352, 2013.

282. Bev Wilson and Cong Cong. Beyond the supply side: Use and impact of municipal open

data in the us. Telematics and Informatics, 58:101526, 2021.

283. Zongda Wu, Guiling Li, Shigen Shen, Xinze Lian, Enhong Chen, and Guandong Xu.

Constructing dummy query sequences to protect location privacy and query privacy in

location-based services. World Wide Web, pages 1–25, 2020.

284. Yusheng Xia, Rongmao Chen, Jinshu Su, and Hongcheng Zou. Balancing anonymity and

resilience in anonymous communication networks. Computers & Security, page 102106,

2020.

285. Yonghui Xiao and Li Xiong. Protecting locations with differential privacy under tem-

poral correlations. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security, pages 1298–1309, 2015.

286. Liyang Xie, Kaixiang Lin, Shu Wang, Fei Wang, and Jiayu Zhou. Differentially private

generative adversarial network. arXiv preprint arXiv:1802.06739, 2018.

287. Ling Xing, Xiaofan Jia, Jianping Gao, and Honghai Wu. A location privacy protection

algorithm based on double k-anonymity in the social internet of vehicles. IEEE Commu-

nications Letters, 2021.

288. Chugui Xu, Ju Ren, Deyu Zhang, Yaoxue Zhang, Zhan Qin, and Kui Ren. Ganobfuscator:

Mitigating information leakage under gan via differential privacy. IEEE Transactions on

Information Forensics and Security, 14(9):2358–2371, 2019.

274 References

289. Hong Yang and Erik G Larsson. Can massive mimo support uplink intensive applica-

tions? In 2019 IEEE Wireless Communications and Networking Conference (WCNC), pages

1–6. IEEE, 2019.

290. Yin Yang, Zhenjie Zhang, Gerome Miklau, Marianne Winslett, and Xiaokui Xiao. Differ-

ential privacy in data publication and analysis. In Proceedings of the 2012 ACM SIGMOD

International Conference on Management of Data, pages 601–606, 2012.

291. Yawning. obfs4-spec.

292. Ayong Ye, Qiuling Chen, Li Xu, and Wei Wu. The flexible and privacy-preserving prox-

imity detection in mobile social network. Future Generation Computer Systems, 79:271–

283, 2018.

293. ChuanTao Yin, Zhang Xiong, Hui Chen, JingYuan Wang, Daven Cooper, and Bertrand

David. A literature survey on smart cities. Science China Information Sciences, 58(10):1–

18, 2015.

294. Man Lung Yiu, Christian S Jensen, Xuegang Huang, and Hua Lu. Spacetwist: Managing

the trade-offs among location privacy, query performance, and query accuracy in mobile

services. In 2008 IEEE 24th International Conference on Data Engineering, pages 366–375.

IEEE, 2008.

295. Johanna Ylipulli and Aale Luusua. Smart cities with a nordic twist? public sector

digitalization in finnish data-rich cities. Telematics and Informatics, 55:101457, 2020.

https://www.sciencedirect.com/science/article/pii\\/S0736585320301167.

296. Adam L Young and Moti Yung. The drunk motorcyclist protocol for anonymous com-

munication. In 2014 IEEE Conference on Communications and Network Security, pages

157–165. IEEE, 2014.

297. Ruiyun Yu, Zhihong Bai, Leyou Yang, Pengfei Wang, Ann Oguti, and Yonghe Liu. A loca-

tion cloaking algorithm based on combinatorial optimization for location-based services

in 5g networks. IEEE Access, 4:6515–6527, 01 2016.

298. Sameh Zakhary and Abderrahim Benslimane. On location-privacy in opportunistic mo-

bile networks, a survey. Journal of Network and Computer Applications, 103:157–170,

2018.

299. Bassam Zantout, Ramzi Haraty, et al. I2p data communication system. In Proceedings of

ICN, pages 401–409. Citeseer, 2011.

300. Lucy Zhang. Building facebook messenger. https://www.facebook.com/notes/

10158791547142200/. Accessed: 2022-05-04.

301. Shaobo Zhang, Kim-Kwang Raymond Choo, Qin Liu, and Guojun Wang. Enhancing

privacy through uniform grid and caching in location-based services. Future Generation

Computer Systems, 86:881–892, 2018.

302. Shaobo Zhang, Xiong Li, Zhiyuan Tan, Tao Peng, and Guojun Wang. A caching and

spatial k-anonymity driven privacy enhancement scheme in continuous location-based

services. Future Generation Computer Systems, 94:40–50, 2019.

303. Xinyang Zhang, Shouling Ji, and Ting Wang. Differentially private releasing via deep

generative model (technical report). arXiv preprint arXiv:1801.01594, 2018.

References 275

304. Yong-Bing Zhang, Qiu-Yu Zhang, Yan Yan, Yi-Long Jiang, and Mo-Yi Zhang. A k-

anonymous location privacy protection method of polygon based on density distribu-

tion. International Journal of Network Security, 23(1):57–66, 2021.

305. Xu Zheng, Zhipeng Cai, and Yingshu Li. Data linkage in smart internet of things

systems: a consideration from a privacy perspective. IEEE Communications Magazine,

56(9):55–61, 2018.

306. Ge Zhong and Urs Hengartner. A distributed k-anonymity protocol for location privacy.

In 2009 IEEE International Conference on Pervasive Computing and Communications, pages

1–10. IEEE, 2009.

307. Peng Zhou, Xiapu Luo, and Rocky K.C. Chang. Inference attacks against trust-based

onion routing: Trust degree to the rescue. Computers & Security, 39:431–446, 2013.

308. Anneke Zuiderwijk, Marijn Janssen, Kostas Poulis, and Geerten van de Kaa. Open data

for competitive advantage: insights from open data use by companies. In Proceedings

of the 16th Annual International Conference on Digital Government Research, pages 79–88,

2015.

