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Abstract—In this paper, a new inversion model for two-

dimensional microwave imaging is introduced by means of a 

convenient rewriting of the usual Lippmann–Schwinger integral 

scattering equation. Such model is derived by decomposing the 

Green’s function and the corresponding internal radiation 

operator in two different contributions, one of them easily 

computed from the collected scattered data. In case of lossless 

backgrounds, the resulting model turns out to be more convenient 

than the traditional one, as it exhibits a lower degree of non-

linearity with respect to parameters embedding the unknown 

dielectric characteristics. This interesting property suggests its 

exploitation in the solution of the inverse scattering problem. The 

achievable performance is tested by comparing the proposed 

model with the usual one based on the usual Lippman-Schwinger 

equation in both cases of linearly approximated and full non-linear 

frameworks. Both numerical and experimental data are 

considered. 

 
Index Terms—Born approximation; Contrast Source 

Inversion; Green’s function; inverse scattering; microwave 

imaging; non-linearity; radiating currents. 

 

I. INTRODUCTION 

HE development of effective and accurate techniques for 

the solution of inverse scattering problems [1]-[2] plays a 

pivotal role in very many as well as relevant microwave 

applications, such as biomedical imaging, subsurface 

prospecting and non-destructive testing [3]-[6]. The adopted 

mathematical models for describing the electromagnetic 

scattering phenomena significantly affect the reliability and the 

achievable performance [7]-[9]. As a consequence, a large 

attention has been paid on the analysis and formulation of new 

scattering models able to enlarge applicability and accuracy of 

the adopted inversion techniques. In particular, scattering 

models are of interest such to reduce as much as possible the 

non-linearity of inverse scattering problems, and, hence, 

counteract the false solutions problem [10]. 

With respect to the two-dimensional geometry and scalar 

field case, some analyses have been performed to quantify the 

‘degree of non-linearity’ (DNL) of the relationship between the 

unknown permittivity profile and the scattered field as a 
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measure of the difficulty of inverse scattering problems. In 

particular, the DNL has been evaluated depending on the 

scatterer size as well as on the maximum magnitude of the 

unknown permittivity profile [7]. The larger the permittivity 

and/or the target dimensions, the higher the non-linearity of 

inverse scattering problems. The non-linearity of inverse 

scattering problems can be mathematically explored through 

the ‘state’ equation, that is the Lippmann–Schwinger integral 

equation, which relates the induced current/total field inside the 

investigation domain to the unknown target properties. As such, 

the DNL has been proved to be strictly connected to the norm 

of the radiation operator adopted in the state equation, which 

takes into account multiple scattering effects [7].  

To reduce the non-linearity, in [8] a convenient rewriting of 

the scattering equations has been derived from the traditional 

ones by taking advantage from the peaked behavior of the 

Green’s function in lossy media and without adopting any 

approximation. Such rewriting of the equation modeling the 

scattering phenomena has allowed a reduction of the DNL of 

the problem. The approach has been also proved to be useful in 

case of lossless backgrounds [9].  

In the same spirit, in [11] a family of new integral equations 

has been introduced, which are transformed from the original 

Lippmann–Schwinger integral equation and wherein the model 

in [8],[9] can be seen as a specific case. In such models, issues 

arising from non-linearity are effectively alleviated, and, again, 

no approximation is involved.  

Encouraged from the results in [8],[9],[11], in this paper a 

new mathematical model is introduced to solve inverse 

scattering problems in lossless and homogenous background 

medium which is based on a convenient decomposition of the 

Green’s function and the corresponding internal radiation 

operator. In fact, one of the two resulting integrals turns out to 

be easily computable from the scattered field, as preliminary 

discussed in [12]. Notably, such contribution, by virtue of the 

results in [13], is indeed related to (a part of) the radiating 

currents [14],[15] induced inside the unknown target. Such 

circumstance suggests some connections with the Subspace 

Optimization Method (SOM) [16] and the SOM-related non-

iterative method introduced by X. Chen et al. in [17]. However, 

some differences amongst SOM and the proposed rewriting of 
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the scattering equations exist. For instance, the herein proposed 

model is based on the decomposition of the Green’s function 

appearing in the internal operator and leads to a modification of 

the kernel of the radiation operator appearing in the state 

equation. Opposite to the proposed method, SOM is based on 

the decomposition of the induced currents into the so called 

‘deterministic’ and ‘ambiguous’ parts and keeps unaltered the 

kernel of the radiation operator.  

A Green’s function decomposition is also used in [18], 

wherein a data-driven linearized approach is derived by 

assuming as an auxiliary unknown the field which would be 

scattered from the target under the Born approximation (BA) 

(for the internal field), which is also very different from what 

follows.  

As discussed in the remainder of the paper, the capability to 

evaluate one of the two integrals resulting from the Green’s 

function decomposition allows to get an equation which has 

exactly the same structure as the original Lippman Schwinger 

equations, but with a different and somehow more convenient 

integral operator. In fact, the introduced model can be proved 

to exhibit a lower DNL with respect to parameters embedding 

dielectric characteristics as compared to the traditional 

scattering equations. As a consequence, the use of the proposed 

model implies interesting advantages in term of convergence 

and accuracy of the corresponding inversion procedures. Such 

benefits are proved in this paper in both linear and non-linear 

frameworks. In particular, we introduce a new linear inversion 

method, able to enlarge the range of validity of the classical BA 

[19], as well as a modified version of the well-known contrast 

source inversion (CSI) method [20]. 

The paper is organized as it follows. In Section II, the 

traditional equations modeling inverse scattering problems are 

reported and the concept of degree of non-linearity and its 

relevance are recalled. Section III introduces the new scattering 

model herein proposed. Finally, in Sections IV and V some 

numerical analyses are performed to test the proposed model 

within linear and non-linear frameworks, respectively. In 

particular, both simulated and experimental single frequency 

data are processed. Conclusions follow. Throughout the paper, 

the case of scalar fields and two-dimensional geometry is 

considered and a time harmonic factor 𝑒𝑥𝑝{𝑗𝜔𝑡} is assumed 

and dropped. 

II. STATEMENT OF THE PROBLEM 

A. The classical scattering model 

Let us consider one or more unknown dielectric scatterers in 

the investigated domain D. Let  denote their support and ε𝑏(𝑟) 

and ε𝑥(𝑟) the complex permittivities of the background 

medium and the unknown targets, respectively, with 𝑟 = (𝑥, 𝑦). 

Let us probe D with some transmitting antennas located at 𝑟𝑡  𝜖 Γ 

outside D. The classical model describing the scattering 

phenomenon for the generic incident direction 𝑣 corresponding 

to a 𝑟𝑡 position is composed by two integral equations, the data 

 
1 The background medium is assumed to be homogeneous and lossless. 
2 ‖𝐴𝑖𝑋‖ < 1 is a sufficient condition for writing the series (3). 

and state equations, that are respectively given by [1]: 

 

𝐸𝑠
𝑣(𝑟𝑚) = ∫𝐺𝑏(𝑟𝑚, 𝑟

′)

D

𝜒(𝑟′)𝐸𝑡
𝑣(𝑟′)𝑑𝑟′ = 𝐴𝑒[𝑊

𝑣(𝑟)] 

(1) 

and 

 

𝑊𝑣(𝑟) = 𝜒(𝑟)𝐸𝑖
𝑣(𝑟)

+ 𝜒(𝑟) ∫𝐺𝑏(𝑟, 𝑟
′)

D

𝜒(𝑟′)𝐸𝑡
𝑣(𝑟′)𝑑𝑟′

= 𝜒(𝑟)𝐸𝑖
𝑣(𝑟) + 𝜒(𝑟)𝐴𝑖[𝑊

𝑣(𝑟)] 

(2) 

where 𝜒(𝑟) =
ε𝑥(𝑟)

ε𝑏(𝑟)
− 1 is the contrast function which encodes 

the electromagnetic properties of the unknown objects, 

𝐸𝑠
𝑣(𝑟𝑚) is the scattered field measured by different receivers 

located at 𝑟𝑚  𝜖 Γ outside D. 𝑊𝑣 = 𝜒𝐸𝑡
𝑣, 𝐸𝑡

𝑣 and 𝐸𝑖
𝑣 are, 

respectively, the so called contrast sources, the total and 

incident electric fields in D. 𝐴𝑒  and 𝐴𝑖  are short notations of the 

external and internal radiation operators, respectively. Finally, 

𝐺𝑏(𝑟, 𝑟
′) = −

𝑗

4
𝑘𝑏

2𝐻0
2(𝑘𝑏|𝑟 − 𝑟

′|) is the Green’s function 

pertaining to the background medium1, being 𝐻0
2 the zero order 

and second kind Hankel function and 𝑘𝑏 = 𝜔√𝜇𝑏𝜀𝑏 the 

wavenumber in the host medium.  

The equation (2) is the Lippman Schwinger equation and 

relates the contrast source/total field inside D to the contrast 

function 𝜒 [1]. For the sake of brevity as well as for 

emphasizing the differences with the one proposed in the 

following, let us identify the model (1)-(2) as the H0 model. 

 

B. A measure of the ‘degree of non-linearity’ 

In order to establish the complexity and difficulty of the 

inverse scattering problem at hand, a key role is played by the 

norm of the operator 𝐴𝑖𝑋 involved in the state equation (2), 

(wherein 𝑋(∙) is the diagonal operator that gives the product 𝜒 

times (∙)). If the 𝑙2-norm ‖𝐴𝑖𝑋‖ is lower than 1, the inverse 

operator (𝐼 − 𝐴𝑖𝑋)
−1, which relates the total field to the 

incident one, can be expanded in a Neumann series2 as follows 

[7]: 

 

(𝐼 − 𝐴𝑖𝑋)
−1 = 𝐼 + 𝐴𝑖𝑋 + (𝐴𝑖𝑋)

2 +⋯+ (𝐴𝑖𝑋)
𝑛 +⋯ 

(3) 

wherein 𝐼 is the identity operator. From the above series, one 

can infer that the overall DNL of a given scattering problem 

increases with the norm of the operator 𝐴𝑖𝑋. In fact, one can 

foresee what is the minimum number of terms required to 

achieve a given approximation accuracy [7]-[9]. For example, 

if ‖𝐴𝑖𝑋‖ ≪ 1, one can just consider the first term and a linear 

relationship holds true between data and unknowns [19]. On the 

other hand, by truncating the series at the second term, the 

scattered field can be expressed as a quadratic function of the 
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contrast [21]. If ‖𝐴𝑖𝑋‖ < 1, for every given accuracy, a 

polynomial relationship holds true between data and unknowns 

of the inverse problem, and the order of the polynomial depends 

on how large is ‖𝐴𝑖𝑋‖. If ‖𝐴𝑖𝑋‖ > 1, a non-polynomial 

relationship instead holds true between data and unknowns. As 

a consequence of the above, the larger ‖𝐴𝑖𝑋‖, the larger the 

DNL and the overall difficulty of the problem [7]-[9]. In fact, 

the cost functional, whose global minimum defines the solution 

of the inverse problem, is a polynomial with a doubled order 

with respect to the one defined from the series in (3). Hence, the 

value of ‖𝐴𝑖𝑋‖ also gives a quantitative information on the 

possible number of local minima (corresponding to so called 

‘false’ solutions [10]) of the cost functional at hand.  

Then, understanding the factors affecting ‖𝐴𝑖𝑋‖ is 

fundamental in order to keep under control the occurrence of 

false solutions. In this respect, note that, by applying the 

Schwarz’s inequality, an upper bound to ‖𝐴𝑖𝑋‖ can be obtained 

as:  

 

‖𝐴𝑖𝑋‖ < ‖𝑋‖‖𝐴𝑖‖ 

(4) 

In such a way, the role played by the integral operator 𝐴𝑖 , which 

only depends on the kernel and on the domain of the integral 

operator, is separated by the one played by the contrast function 

𝜒, which accounts for the properties of the unknown targets. 

Hence, for a fixed contrast function the non-linearity of the 

problem depends on the properties of the integral operator 

appearing in the state equation.  

Then, by using (4), a (sufficient) condition for the 

applicability of the series (3), as well as additional information 

about its DNL, can be gained by separately investigating ‖𝑋‖ 

and ‖𝐴𝑖‖. 

III. A NEW SCATTERING MODEL FROM GREEN’S FUNCTION 

DECOMPOSITION  

The Green function is the solution of the wave equation for a 

point source. It is the impulsive response of the system. Indeed, 

if the Green function is known, the solution of the wave 

equation due to a general source can be deduced thanks to the 

linear superposition [22].  

According to [23], the Green’s function is the superposition 

of a homogenous and inhomogeneous components. Both of 

them include propagating waves, while the homogeneous parts 

contain only propagating ones. Moreover, the singularity of the 

Green function is contained completely in the inhomogeneous 

part. 

By exploiting the properties of the Hankel function [24], the 

Green’s function in (1)-(2) can be decomposed in two terms, 

containing respectively the zero order Bessel functions of the 

first kind 𝐽0 and second kind 𝑌0, i.e.:  

 

𝐺𝑏(𝑟, 𝑟
′) = −

𝑗𝑘𝑏
2

4
𝐽0(𝑘𝑏|𝑟 − 𝑟

′|) −
𝑘𝑏

2

4
𝑌0(𝑘𝑏|𝑟 − 𝑟

′|) 

(5) 

The first and second terms represent, respectively, the 

homogenous and inhomogeneous components of the Green’s 

function [23]. The Bessel functions 𝐽0 and 𝑌0 in the above 

equation exhibit different properties both in the spatial and 

spectral domains [24]. For instance, unlike 𝐽0, 𝑌0 exhibits a 

singularity in 𝑟 = 𝑟′. Moreover, 𝐽0 has a spectral content only 

concentrated in the circle of radius 𝑘𝑏. On the other side, the 

inhomogeneous part of the Green function, that is 𝑌0, has 

positive spectral components outside the circle of radius 𝑘𝑏, 

zero on it and negative inside it [23].  

Then, by exploiting the decomposition of the Green’s 

function in homogeneous and inhomogeneous parts, the 

internal radiation operator 𝐴𝑖  can be split into the sum of two 

new integral internal operators 𝐴𝑖
𝐽0  and 𝐴𝑖

𝑌0 , i.e.: 

 

𝐴𝑖[𝑊
𝑣] = −𝑗

𝑘𝑏
2

4
∫ 𝐽0(𝑘𝑏|𝑟 − 𝑟

′|)

D

𝑊𝑣(𝑟′)𝑑𝑟′

−
𝑘𝑏

2

4
∫𝑌0(𝑘𝑏|𝑟 − 𝑟

′|)

D

𝑊𝑣(𝑟′)𝑑𝑟′ = 

= 𝐴𝑖
𝐽0[𝑊𝑣] + 𝐴𝑖

𝑌0 [𝑊𝑣] = −𝑗
𝑘𝑏

2

4
𝐹𝐽0

𝑣 +𝐴𝑖
𝑌0 [𝑊𝑣] 

(6) 

As discussed in the following subsection, the first integral at the 

left hand of the equality (6), which in the following is referred 

as 𝐹𝐽0
𝑣, can be easily computed from the collected scattered 

data.  

 

A. On the meaning and computation of 𝐹𝐽0
𝑣 

The first integral in (6) can be seen as the convolution 

product between the induced contrast source𝑠 and the relevant 

zero order Bessel function 𝐽0. Hence, due to the spectral 

properties of the Bessel function 𝐽0 [23],[24], the first 

convolution product in (6) extracts the spectral component of 

the currents located on the circle of radius 𝑘𝑏 [13]. This is a very 

interesting circumstance as, by virtue of results in 

[14],[15],[25],[26], radiating sources oscillate indeed at those 

frequencies (but for subtleties related to the finiteness of 

sources). As a consequence, the first part of the decomposition 

in (6) can be related to the radiating currents [13]. In particular, 

it can be interpreted as the main contribution of the radiating 

currents (see [13] for more details), i.e. the one lying on the 

circle of radius 𝑘𝑏 in the spectral domain, while the remaining 

part is still present in the second term 𝐴𝑖
𝑌0  [23],[25]. As a 

consequence, 𝐹𝐽0
𝑣 can be understood as the contribution to the 

total field inside D by the main spectral component of the 

radiating currents, which are indeed peaked in the spectral 

domain along the circle of radius 𝑘𝑏 [23],[25].  

It is important to note that some differences exist with respect 

to SOM [16]. Indeed, SOM is based on the decomposition of 

the currents into the so called ‘deterministic’ and ‘ambiguous’ 

parts [16]. In particular, in SOM the CSI method is rewritten by 

taking into account that the deterministic part of the induced 

current is uniquely determined from the data equation, while the 

remaining part is optimized during the minimization of the 

relevant cost functional [16]. The herein proposed model is 
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instead based on the decomposition of the Green’s function 

appearing in the internal operator, which allows to extract a part 

of the radiating currents, that is the ones having a very well-

defined spectral content located on the circle 𝑘 = 𝑘𝑏. 

The natural question then arises on how one can compute 

𝐹𝐽0
𝑣. A first straightforward possibility to compute 𝐹𝐽0

𝑣, (which 

is the one adopted in the following numerical tests), takes 

advantage from the results in [13],[27]. In fact, by virtue of 

equations (5) and (9) in [13], in case of far field measurement 

configuration, the first integral in equation (6) can be easily 

computed from the data as: 

 

∫𝐽0(𝑘𝑏|𝑟 − 𝑟
′|)

D

𝑊𝑣(𝑟′)𝑑𝑟′ = 𝛼∫𝐸𝑠
∞(�̂�𝑚, 𝑣) 𝑒

𝑗𝑘𝑏𝑟∙�̂�𝑚  𝑑�̂�𝑚
Γ

 

(7) 

wherein 𝐸𝑠
∞ is the far-field pattern, 𝛼 is a constant and �̂�𝑚 

identifies the direction of 𝑟𝑚 [13]. The identity (9) simply 

represents the scalar product over the measurement domain Γ 

of the measured far-field pattern with the test function 𝑒−𝑗𝑘𝒓∙�̂�𝒎, 

that is nothing but the Green’s function in far-field zone apart 

from a constant.  

In case of near field data, a straightforward procedure is also 

possible by using the identity (see equations (8) and (16) in 

[27]): 

 

∫𝐽0(𝑘𝑏|𝑟 − 𝑟
′|)

D

𝑊𝑣(𝑟′) 𝑑𝑟′ = ∫𝐸𝑠
𝑣(𝑟𝑚) 𝐾

𝑇𝑀(𝑟𝑚, 𝑟) 𝑑𝑟𝑚
Γ

 

(8) 

wherein (see eq. (15) in [27]): 

 

𝐾𝑇𝑀(𝑟𝑚, 𝑟) =
1

2𝜋|𝑟𝑚|
∑

𝐽𝑛(𝑘𝑏|𝑟|)

𝐻𝑛2(𝑘𝑏|𝑟𝑚|)

+∞

𝑛=−∞

𝑒𝑗𝑛(�̂�−�̂�𝑚) 

(9) 

n is the order of the Bessel and Hankel functions, while Γ is 

assumed to be a closed curve of radius |𝑟𝑚|, wherein the 

measurements antennas are supposed to be located. The identity 

(8) represents the scalar product over the measurement domain 

Γ of the measured data with the conjugate of 𝐾𝑇𝑀. Note that, in 

evaluating this latter by Eq. (9), only the order n belonging to 

the interval [-𝑘𝑏𝑎, +𝑘𝑏𝑎] can be considered, wherein 𝑎 denotes 

the radius of a ball that encloses D [28],[29]. Hence, as long as 

the measurement probes surround the region under test and are 

located on a closed curve, 𝐹𝐽0
𝑣 can be easily computed from the 

collected scattered data according to (7) or (8).  

Finally, in case of aspect limited measurement 

configurations, 𝐹𝐽0
𝑣 can be computed by taking into account 

that the radiating sources 𝑊𝑟𝑎𝑑
𝑣 , that are the part of the sources 

responsible of scattering phenomenon, can be evaluated from 

the data by solving the inverse source problem described by the 

data equation (1). To this end, due to the severe ill-posedness, a 

regularization technique has to be adopted, such as the 

Truncated Singular Value Decomposition (TSVD) or the 

Tikhonov regularization [2]. In applying the desired 

regularization technique, one could also retrieve the spectral 

components of the radiating currents not lying on the circle 𝑘𝑏. 

Then, in order to extract just the spectral component located on 

the circle, which are of interest in evaluating 𝐹𝐽0
𝑣, one can use 

the 𝐽0-filter, that is 𝐴𝑖
𝐽0 [𝑊𝑟𝑎𝑑

𝑣 ]. In fact, as discussed above, the 

spectral properties of 𝐽0 are such to filter out the contributions 

located outside 𝑘 = 𝑘𝑏 . 

 

B. The Y0 model 

By taking into account the above circumstances, the 

Lippman-Schwinger scattering equation in (2) can be 

transformed into: 

 

𝑊𝑣(𝑟) = 𝜒(𝑟)�̂�𝑖
𝑣(𝑟) + 𝜒(𝑟)𝐴𝑖

𝑌0[𝑊𝑣] 

(10) 

wherein �̂�𝑖
𝑣(𝑟) = 𝐸𝑖

𝑣(𝑟) − 𝑗
𝑘𝑏

2

4
𝐹𝐽0

𝑣(𝑟). Together with (1), the 

state equation (10) identifies the new model, referred in the 

remainder of the paper as the Y0 model, wherein the unknowns 

are again the induced sources 𝑊 and the contrast function 𝜒. 

Moreover, the structure of the equation concerning the internal 

fields is identical to the one of H0 model, but the integral 

internal operator 𝐴𝑖  has now been replaced by 𝐴𝑖
𝑌0  and the 

incident field 𝐸𝑖
𝑣 by a new known ‘modified incident’ field �̂�𝑖

𝑣.  

Note that, differently from the CS-EB model, introduced and 

discussed in [8],[9], the geometrical and electromagnetic 

properties of the targets are here still encoded in the contrast 

function 𝜒(𝑟). As a consequence, there is no need to adopt 

further procedures to extract the target features. With respect to 

SOM, our rewriting of the scattering equations leads instead to 

the definition of a new model, which could be eventually 

applied in the framework of different inversion methods. On the 

other hand, SOM does not propose or solve a new scattering 

model. Rather, it proposes and realizes a clever inversion of the 

standard scattering equations relying on a specific CSI 

procedure aided by the extraction of the ‘deterministic’ part of 

the internal currents [16]. 

As equation (10) has exactly the same structure as the 

traditional 2D scalar integral equation (2), one can use the same 

solution strategies usually adopted to solve inverse scattering 

problems, such as linear approximations or CSI based methods.  

 

C. Comparing Y0 and H0 models 

The decomposition of the Green’s function has involved the 

definition of a new integral operator 𝐴𝑖
𝑌0 . A comparison 

between the H0 model (1)-(2) and the herein proposed Y0 

model (1)-(10) can be performed in terms of DNL. 

By virtue of the inequality (4), one can separately analyze the 

roles of the contrast profile and of the relevant integral operator. 

In particular, one can compare the quantities at the right-hand 

side of (4) and of the corresponding inequality which holds true 

for the Y0 model, i.e.,  

 

‖𝐴𝑖
𝑌0𝑋‖ < ‖𝑋‖‖𝐴𝑖

𝑌0‖ 

(11) 
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As the factor ‖𝑋‖ is the same in the two inequalities (4) and 

(11), the DNL of the two formulations can be eventually 

compared by just evaluating ‖𝐴𝑖
𝑌0‖ and ‖𝐴𝑖‖.  

To this end, a numerical analysis has been performed by 

considering that both operators depend only on the size (and 

shape) of D, whereas the electromagnetic characteristics of the 

(lossless) background medium can be taken into account by 

properly scaling the wavelength. Therefore, by following the 

same reasoning in [9] and by considering a circular domain D 

of radius R, it is possible to build up a plot of the norm of the 

two operators as a function of R/λ𝑏, where λ𝑏 is the wavelength 

in the background medium. 

Figure 1 shows the universal plot of ‖𝐴𝑖‖ and ‖𝐴𝑖
𝑌0‖, 

respectively. As can be seen, both norms are of course 

monotonically increasing functions of R/λ𝑏. Interestingly, one 

can notice that ‖𝐴𝑖
𝑌0‖ is always lower than ‖𝐴𝑖‖. As such, for a 

fixed scattering problem, the new proposed model exhibits a 

lower DNL and, consequently, a lower number of false 

solutions.  

IV. NUMERICAL ASSESSMENT: LINEAR INVERSION 

In order to test the new proposed model, a controlled 

assessment with both simulated and experimental data has been 

carried out by performing inversions within both a linear and 

(full) non-linear frameworks. In this section, a comparison 

between the results obtained by means of the classical BA within 

the H0 model and a new linear approximation derived from Y0 

model has been performed.  

In the standard BA, the inverse scattering problem is 

linearized by assuming the unknown total field D equal to the 

incident field. This hypothesis is fully satisfied only in case of 

weak scatterers, when ‖𝜒𝐴𝑖‖ ≪ 1. 

In the Y0 model, the incident field has been replaced with an 

equivalent one, which includes the contribution of a part of the 

radiating sources 𝐹𝐽0
𝑣. As such, a new linear approximation for 

the total field 𝐸𝑡
𝑣 can be introduced as follow: 

𝐸𝑡
𝑣(𝑟) ≅ 𝐸𝑖

𝑣(𝑟) − 𝑗
𝑘𝑏

2

4
𝐹𝐽0

𝑣(𝑟) 

(12) 

The above approximation is valid when ‖𝜒𝐴𝑖
𝑌0‖ ≪ 1. As shown 

in figure 1, ‖𝐴𝑖
𝑌0‖ is always lower than ‖𝐴𝑖‖, so that a wider 

range of applicability of approximation (12) is expected. By 

substituting this latter in the scattering model, the problem 

becomes linear, but it is still ill-posed, so that it has to be solved 

in a regularized sense. In the following examples, the TSVD 

regularization has been adopted [2].  

In summary, the proposed linear inversion method derived 

from Y0 model, in the following referred as Y0-BA, is 

composed of three different steps: 

 

• evaluation of 𝐹𝐽0
𝑣 from the data 𝐸𝑠

𝑣(𝑟𝑚); 

• evaluation of the approximated total field 𝐸𝑡
𝑣(𝑟) by 

eq. (12); 

• linearization of equation (1) and solution via TSVD 

regularization. 

 

It is important to stress that the computation from the data of 

the term 𝐹𝐽0
𝑣, which is an additional step with respect to the 

classical BA, implies a very low computational burden. Indeed, 

as long as the probes surround the region under test it can be 

computed by means of the scalar product in (7) or in (8), which 

is a simple and fast operation. Alternatively, as already noticed 

in Section III.A, the relevant term 𝐹𝐽0
𝑣 can be also obtained by 

preliminary solving the corresponding linear inverse source 

problem. As such, the computational complexity related to the 

computation of 𝐹𝐽0
𝑣 is negligible, and it adds same 

computational complexity (of the same order as for the original 

scheme) just in case of measurement probes which do not 

surround the region under test.  

 

A. Simulated data 

In the following numerical analysis two different targets, 

embedded in free space, have been considered.  

Firstly, a homogeneous and lossless kite target has been 

positioned inside a square domain of side L = λ𝑏 and, following 

[29], 12 receivers and transmitters have been considered, 

modelled as line sources located on a circumference Γ of radius 

R = 10 λ𝑏. For more details about the geometry of the kite, the 

interested readers are referred to Appendix B. 

The scattered field data, simulated at the frequency of 300 

MHz by means of a full wave forward solver based on the 

method of moments, have been corrupted with a random 

Gaussian noise with a SNR = 30dB. Following [30], a number 

of cells 𝑁𝑐 equal to 60 × 60 has been used in the inversion 

process, while the direct problems had been solved by 

considering a double discretization grid. 

In order to compare the two models and prove the larger 

range of applicability of Y0-BA, different values of the contrast 

function have been considered, in particular, 𝜒=0.3, 𝜒=0.5, 

𝜒=0.7 and 𝜒=1. The contrast profiles reconstructed by means of 

BA and Y0-BA are reported in Figures 2, 3 and 4. In addition, 

the Figures also depict the profiles corresponding to the ideal 

case of known total field, that is, the contrast profile estimated 

 
Figure 1. Universal plot as a function of the electrical size of the region under 

test: ‖𝐴𝑖‖ (blue line) and ‖𝐴𝑖
𝑌0‖ (red line). 
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when (1) is inverted by considering the ideal case of knowing 

the exact total field, rather than the approximated one. While 

such processing is obviously impossible in practice, it provides 

a benchmark, being the best possible result that can be achieved 

from the inversion of the data equation.  

In Table I, the normalized mean square errors (NMSE) 

 
                                      (a)                                                     (b)                                                    (c)                                                    (d) 

 
                                       (e)                                                    (f)                                                     (g)                                                   (h) 

Figure 2. Linear framework. Assessment against numerical data: lossless homogeneous kite target 𝜒=0.3. Real (a) and imaginary (e) parts of the reference profile. 

Real and imaginary parts of the contrast functions retrieved by assuming known the exact total field (b),(f); by adopting Y0-BA (c),(g) and BA (d),(h). 
 

 
                                      (a)                                                     (b)                                                    (c)                                                    (d) 

 
                                       (e)                                                    (f)                                                     (g)                                                   (h) 

Figure 3. Linear framework. Assessment against numerical data: lossless homogeneous kite target 𝜒=0.5. Real (a) and imaginary (e) parts of the reference profile. 

Real and imaginary parts of the contrast functions retrieved by assuming known the exact total field (b),(f); by adopting Y0-BA (c),(g) and BA (d),(h). 

 

 
                                      (a)                                                     (b)                                                    (c)                                                      (d) 

 
                                       (e)                                                    (f)                                                     (g)                                                   (h) 

Figure 4. Linear framework. Assessment against numerical data: lossless homogeneous kite target 𝜒=0.7. Real (a) and imaginary (e) parts of the reference profile. 

Real and imaginary parts of the contrast functions retrieved by assuming known the exact total (b),(f); by adopting Y0-BA (c),(g) and BA (d),(h). 
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between the retrieved contrast function �̃� and the actual one 𝜒, 

defined as: 

 

𝑁𝑀𝑆𝐸 =
‖𝜒 − �̃�‖2

‖𝜒‖2
 

(13) 

are reported in order to quantitatively evaluate the obtained 

different performance.  

 Both Figures 2, 3 and 4 and Table I prove that the new 

proposed model is more convenient than the standard one, as 

the corresponding linear approximation has a wider range of 

validity. Indeed, the Y0-BA allows to reach a lower NMSE than 

BA, and provided 𝜒 is not too large, it is also able to exhibit 

performance similar to the ones obtained in the ideal case.  

Then, as second numerical example, the well-known Austria 

profile with relative permittivity equal to 1.4 has been used as 

the ground-truth profile. More details about the geometry of the 

target can be found in Appendix B. The investigation domain 

of side L = 2.66 λ𝑏 and discretized in 𝑁𝑐 = 64 × 64 cells has 

been investigated by means of 26 receivers and transmitters 

located on Γ with radius R = 13.3 λ𝑏. The data have been 

simulated at the working frequency of 400 MHz by considering 

𝑁𝑐 = 128 × 128 cells and corrupted with a SNR=30 dB. The 

results are reported in Figure 5. The mean square errors are, 

respectively, 0.12 when the total field has been assumed exactly 

known, 0.41 and and 0.88 when the new linear approximation 

derived from Y0 model and BA have been adopted, 

respectively. As can be seen, despite the complexity of the 

Austria target, Y0-BA retrieves both the electromagnetic 

properties and shape of the target.  

 

B. Experimental data 

In this subsection, the Fresnel targets, typically adopted to 

benchmark inverse scattering procedures, have been 

considered, in particular:  

 

• the TwinDielTM target [31], consisting of two 

circular dielectric cylinders with radius 1.5 cm and 

relative permittivity 3 ± 0.3;  

• the FoamDielIntTM target [32], which is an 

inhomogeneous object, constituted by two nested 

circular cylinders; an outer one made of foam (radius 

40 mm, relative permittivity 1.45) that hosts another 

circular cylinder made of berylon (radius 15 mm and 

permittivity 3). 

 

The Fresnel data are collected in a partially limited aspect 

measurements configuration. More details about the targets and 

the measurement set-up can be found in [31],[32].  

For the first target, the investigated area of 0.15 ×  0.15 𝑚2 

has been discretized in 64 × 64 cells, the working frequency 

has been selected equal to 4GHz, and a 72 × 36 multiview-

multistatic data matrix has been considered. On the other hand, 

for the FoamDielIntTM target, the investigated area of 

0.2 ×  0.2 𝑚2 has been discretized in 78 × 78 cells and a 

45 × 36 multiview-multistatic data matrix has been processed 

at the working frequency of 3GHz. 

The results are reported in Figure 6. As can be seen, BA is not 

able to quantitatively retrieve the cylinders. As a matter of fact, 

it can only detect them and retrieve their support. On the other 

hand, Y0-BA can accurately retrieve both the geometrical and 

the electromagnetic properties of the considered targets. 

 

 

 Ideal case 𝒀𝟎-𝑩𝑨 𝑩𝑨 

𝝌=0.3 0.13 0.17 0.26 

𝝌=0.5 0.13 0.24 0.44 

𝝌=0.7 0.13 0.3 0.64 

𝝌=1 0.13 0.63 0.96 

 

Table I. Kite target: normalized mean square errors. 

 

V. NUMERICAL ASSESSMENT: NON-LINEAR INVERSION 

Encouraged by the interesting results achieved by means of 

Y0-BA, we have tested the Y0 model within a non-linear 

regime. In particular, the CSI way of thinking [9],[20] has been 

adopted to solve the relevant inverse scattering problem. 

The CSI method tackles the inverse scattering problem in its 

full non-linearity, by contemporarily looking for both the 

contrast χ and the auxiliary unknowns 𝑊𝑣. In particular, the 

problem’s solution is iteratively built by minimizing a cost 

functional, which takes into account both the misfit in the data 

and state equations [9].  

In the proposed Y0 model, the standard state equation has 

been substituted by equation (10). Accordingly, from a 

mathematical point of view, the new CSI method, that in the 

rest of the paper is referred as Y0-CSI, amounts at retrieving the 

unknowns of the problem by minimizing the following cost 

functional: 

 

Φ(𝑊𝑣, 𝜒) =∑
‖𝜒(𝑟)�̂�𝑖

𝑣(𝑟) + 𝜒(𝑟)𝐴𝑖
𝑌0[𝑊𝑣] − 𝑊𝑣(𝑟)‖

2

‖�̂�𝑖
𝑣(𝑟)‖

2

𝑣

+∑
‖𝐸𝑠

𝑣(𝑟𝑚) − 𝐴𝑒[𝑊
𝑣]‖

2

‖𝐸𝑠
𝑣(𝑟𝑚)‖

2

𝑣

 

(13) 

Due to the lower DNL of the model, a faster convergence 

and/or a more accurate solution are expected. In summary, the 

proposed Y0-CSI involves the following three steps:  

 

• evaluation of 𝐹𝐽0
𝑣 from the data 𝐸𝑠

𝑣(𝑟𝑚);  

• redefinition of the internal radiation operator and 

the incident field;  

• minimization of the cost functional in (13) 

according to some optimization procedure.  

 

As stresses in the previous Section, the first step introduces a 
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negligible computational complexity. Indeed, the computation 

of 𝐹𝐽0
𝑣 is performed outside of the adopted iterative procedure. 

As far as the second step, a proper discretization of the new 

scattering equations and in particular of the new internal 

radiation operator is required. As shown in the Appendix A, as 

the integrals of the kernel involved in the radiation operator of 

the Y0 model can be easily computed in a closed form, an FFT 

based inversion codes can be still used [33]. Consequently, no 

price is paid in terms of computational complexity when 

considering the new internal operator.  

In this paper, the optimization of the cost functional in (13) 

is pursued within a conjugate gradient scheme. Moreover, the 

initial guess is given by the back-propagation solution. More 

details can be found in [9],[20]. 

In order to test and assess Y0-CSI, a comparison has been 

performed with the results obtained by means of standard CSI 

method, in the following referred as H0-CSI. In case of 

simulated data, no additional regularization technique has been 

adopted. On the other hand, in case of experimental data, the 

cost functional (13) has been equipped with an additive 

regularization term. In particular, a total variation regularization 

has been considered by adding a penalty term, which aims at 

enforcing a piecewise constant target, i.e: 

 

Φ𝑃(𝜒) =
𝑘2

2
‖𝜂(𝑟)𝒟ℎ[𝜒(𝑟)]‖

2
+
𝑘2

2
‖𝜂(𝑟)𝒟𝑣[𝜒(𝑟)]‖

2
 

(14) 

wherein 𝑘 = 𝑁𝑐
−1, 𝒟ℎ and 𝒟𝑣  represent the partial derivatives 

with respect to the horizontal and vertical coordinates of the 

reference system, respectively. 𝜂(𝑟) is a weight function which 

normalizes 𝒟ℎ[𝜒] at a given iteration with respect to the one 

evaluated at the previous iteration [34].  

Note that the difference in the regularization technique 

adopted dealing with simulated and experimental data is 

essentially due to the fact that the latter represents a more 

challenging case. In fact, the considered Fresnel data are 

collected in a partially limited aspect measurements 

configuration [31],[32]. Moreover, as the database provides the 

incident field only at the receiving locations, the incident fields 

inside the imaging domain have been estimated from these 

latter by means of the interpolation procedure outlined in [35], 

which of course involves some unavoidable model errors. 

 

A. Simulated data 

In the following numerical tests, the same targets as the ones 

in Section IV have been considered.  

For the kite target, the following parameters have been 

considered: a contrast value equal to 1-0.6j, L = 2λ𝑏, 20 

receivers and transmitters, R = 2 λ𝑏, a working frequency of 

300 MHz, SNR = 20dB and 𝑁𝑐 = 60 × 60. As far as the 

Austria profile, a contrast of 1 has been considered with L =
2. 66 λ𝑏, 𝑁𝑐 = 64 × 64, 18 receivers and transmitter, R = 4 λ𝑏, 

SNR=20 and a working frequency of 400 MHz. Note that in 

both cases a doubled grid has been considered in simulating the 

data. 

The results are reported in Figure 7. As far as the kite target 

is concerned, the NMSE are 0.25 and 0.55 when Y0-CSI and 

H0-CSI methods have been adopted, respectively. As can be 

seen, the H0-CSI completely fails in retrieving the permittivity 

of the target and overestimates the imaginary part. On the other 

hand, in case of Austria target, the new CSI method allows one 

to retrieve the properties of the target with a 𝑁𝑀𝑆𝐸 = 0.17. 

Results obtained by means of H0-CSI are not shown as it 

completely fails in retrieving the target (𝑁𝑀𝑆𝐸 = 1). 

Besides the advantages in accuracy (which by themselves 

would be a significant result), the new model also allows a non-

negligible reduction of the numbers of iterations. In order to 

show this remarkable advantage offered by the new model, 

different values of the contrast functions χ have been considered 

for the kite target. By observing Table II, one can conclude that 

a significant amount of iterations is saved, but for the last case 

wherein the standard model actually fails in retrieving the 

unknown target, so that its computational burden is not of 

interest.   

 

B. Experimental data 

In this subsection, the TwinDielTM target at a working 

frequency of 6 GHz has been considered. The region of interest 

of 0.15 ×  0.15 𝑚2 has been discretized in 64 × 64 cells, and 

a 18 × 18 multiview-multistatic data matrix has been 

processed.  

Results, using the Y0-CSI method, are shown in Figure 7(g)-

(h). As can be seen, both the shape and electromagnetic 

properties of the targets are accurately retrieved. On the other 

hand, the H0-CSI method is not able to retrieve the target. As a 

consequence, the retrieved profile is not shown.  

 

 

 
𝒀𝟎 − 𝑪𝑺𝑰 𝑯𝟎− 𝑪𝑺𝑰 

NMSE # iter NMSE # iter 

𝝌=1-0.3j 0.18 1453 0.26 1861 

𝝌=1-0.4j 0.20 1388 0.3 1765 

𝝌=1-0.5j 0.22 1383 0.34 1556 

𝝌=1-0.6j 0.25 1276 0.55 549 
 

Table II. Kite target: convergence analysis. 

 

VI. CONCLUSION 

The mathematical model adopted for the solution of inverse 

scattering problems can significantly condition the reliability 

and achievable performance. In this paper, with reference to 2D 

scalar problem, a new model for the solution of inverse 

scattering problem is introduced and tested against both 

numerical and experimental single frequency data. In particular, 

the new model, referred as Y0 model, is derived from a 

convenient decomposition of the Green’s function and of the 

internal radiation operator. Such decomposition has allowed to 
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rewrite the state equation by extracting a term from the radiation 

operator which is related to the radiating currents and can be 

easily computed from the data. The above decomposition has 

led to a redefinition of the relevant known terms and integral 
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operator.  

The thus obtained model has been argued to have a lower 

degree of non-linearity as compared to the classical scattering 

model by means of a comparison of the norms of the two 

 
                                      (a)                                                     (b)                                                    (c)                                                     (d) 

 
                                       (e)                                                    (f)                                                     (g)                                                    (h) 

Figure 5. Linear framework. Assessment against numerical data: Austria target 𝜒=0.4. Real (a) and imaginary (e) parts of the reference profile. Real and imaginary 

parts of the contrast functions retrieved by assuming known the exact total field (b),(f); by adopting Y0-BA (c),(g) and BA (d),(h). 
 

 
                                       (a)                                                     (b)                                                    (c)                                                    (d) 

 
                                      (e)                                                     (f)                                                      (g)                                                  (h) 

Figure 6. Linear framework. Assessment against experimental data. TwinDielTM Fresnel target at 4GHz (a)-(d) and FoamDielIntTM Fresnel target at 3GHz (e)-
(h). Real and imaginary parts of contrast functions retrieved by adopting Y0-BA (a),(b) and (e),(f), and BA (c),(d) and (g),(h). 

 

 
                                      (a)                                                     (b)                                                      (c)                                                  (d) 

 
                                      (e)                                                     (f)                                                      (g)                                                  (h) 

Figure 7. Non-linear framework. Assessment against numerical data (a)-(f): kite target (a)-(d) and Austria target (e)-(f). Assessment against experimental data:   
TwinDielTM Fresnel target at 6 GHz (g)-(h). Real (a),(e),(g) and imaginary (b),(f),(h) parts of contrast function retrieved by adopting Y0-CSI. Real (c) and 

imaginary (d) parts of the contrast function retrieved by adopting H0-CSI. 
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relevant integral operators.  

Moreover, a new linear approximation of the total field inside 

the investigation domain has been derived from the new model 

which definitely outperforms the corresponding linear 

approximation of the H0 model (i.e., the Born approximation) 

and exhibit a wider range of applicability. Finally, a modified 

version of CSI method has been proposed starting from the Y0 

model. Due to the lower DNL of the model, faster convergence 

and more reliable solutions are obtained (without increasing the 

computational complexity of the inversion scheme), as 

witnessed by both numerical and experimental data inversions.  

Future work will be focused on analyzing actual perspectives 

of the new model to the more cumbersome case of lossy and/or 

partially known scenario, as well as to the case of three-

dimensional geometries. 

 

APPENDIX A 

The proposed rewriting of the scattering equations is based 

on a different internal operator, which requires a proper 

discretization. This is a fundamental issue to be addressed for 

the numerical solution of the inverse problem at hand.  

To this end, let us divide the investigation domain into 𝑁𝑐 
square cells sufficiently small so that the dielectric constant and 

the electric field intensity are essentially constant over each 

cell. By paralleling results in the reference paper [30], the new 

state equation (10) can be rewritten for each view in term of the 

center of the mth cell:  

 

𝑊𝑚 = 𝜒𝑚�̂�𝑖,𝑚 + 𝜒𝑚∑𝑊𝑛 ∬ −
𝑘𝑏

2

4
𝑌0(𝑘𝑏𝜌)𝑑𝑥′𝑑𝑦′

𝑐𝑒𝑙𝑙 𝑛

𝑁𝑐

𝑛=1

 

(A.1) 

wherein 𝑊𝑚, 𝜒𝑚, �̂�𝑖,𝑚 represent the contrast source, the contrast 

function and the electric incident field intensity at the center of 

the mth cell, 𝜌 = √(𝑥′ − 𝑥𝑛)2 + (𝑦′ − 𝑦𝑛)2 and 

m=1,2,….., 𝑁𝑐. As in [30] for the standard model, the above 

surface integrals can be evaluated in closed form by 

approximating the square cell with a circular one of radius 𝑎. In 

particular, its expression, referred in the following as 𝑔𝑚,𝑛
𝑖 , 

becomes: 

 

𝑔𝑚,𝑛
𝑖 = −

𝑘𝑏
2

4
∬ 𝑌0(𝑘𝑏𝜌)𝑑𝑥

′𝑑𝑦′

𝑐𝑒𝑙𝑙 𝑛

=

{
 
 

 
 −

𝜋𝑎𝑘𝑏
2

𝐽1(𝑘𝑏𝑎)𝑌0(𝑘𝑏𝜌𝑚𝑛)            𝑖𝑓 𝑚 ≠ 𝑛

−
1

2
(𝜋𝑎𝑘𝑏𝑌1(𝑘𝑏𝑎) + 2)                    𝑖𝑓 𝑚 = 𝑛

 

(A.2) 

where 𝐽1 and 𝑌1 are the first order Bessel functions of first and 

second kind, respectively. Then, the discretized state equation 

(A.1) can be rewritten as: 

 

𝑊𝑚 = 𝜒𝑚�̂�𝑖,𝑚 + 𝜒𝑚∑𝑊𝑛  𝑔𝑚,𝑛
𝑖

𝑁

𝑛=1

 

(A.3) 

As 𝑔𝑚,𝑛
𝑖  is a function of the difference of the Cartesian 

coordinates of the mth and nth cells, it can be arranged in a 2D 

sequence and the discretized version of the operator 𝐴𝑖
𝑌0  reduces 

to a truncated 2-D discrete convolution between the sequence 

𝑔𝑚,𝑛
𝑖 , which is as large as twice the dimension of the grid, and 

the 2-D sequence representing the contrast sources [33].  

As a consequence of all the above, also in this case, FFT 

based inversion codes can be used as in [33], and computational 

complexity of each iteration of CSI based method keeps 

unchanged. 

APPENDIX B 

The kite target is described by the following parametric 

equation: 

𝑓(𝑡) = [𝑎 cos 𝑡 + 𝑏 cos 2𝑡 − 𝑑, 𝑐 sin 𝑡] 
(B.1) 

where 𝑡 ∈ [0, 2𝜋], 𝑎 = 0.2750, 𝑏 = 0.1788, 𝑐 = 0.4125 and 

𝑑 = 0.0788. As far as the kite target in Figure 7, its size is 

doubled with respect to the one in Figures 2-4. 

As far as the Austria target, it consists of an annulus and two 

disks embedded in the background medium, that is the air. All 

three scatterers are of same relative permittivity. The two disks 

are of same radius 0.24 m and their centers locate at (-0.33 m, 

0.6m) and (0.33 m, 0.6m). The annulus is centered at (0m, -

0.25m) with inner radius of 0.3 m and outer radius of 0.6 m.  
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