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RUNNING HEAD: Post-fire restoration of Spanish Black pine    48 

 49 

Implications for Practice 50 

 Post-fire contour felled log debris enhanced initial Pinus nigra Arn. ssp 51 

salzmannii seedling recruitment during the first growing season. 52 

 Pinus nigra Arn. ssp salzmannii seed protection treatment can be favourable for 53 

supporting ecological restoration in pine Forests. 54 

 There is a strong influence of climate in this species’ seedling recruitment since 55 

the highest seedling emergence recorded during this study was under reduced 56 

drought conditions.  57 

Abstract  58 

 59 

Post-fire environmental conditions can heavily influence the natural regeneration of 60 

pine species in Mediterranean forests. Therefore, enhancing post-fire recovery of pine 61 

species is fundamental for effective ecological restoration of Mediterranean forests. In 62 

this study, the effects of a post-fire restoration treatment on the seedling emergence and 63 

survival of Spanish black pine (Pinus nigra Arn. ssp salzmannii) were investigated 64 

under a treatment consisting of manual cut of burnt tree canopies placed on the soil 65 

surface with their tree branches, following contour lines (contour-felled log debris, 66 

CFD) in comparison with a control site at plot scale. Both CFD and control plots were 67 

tested on three slope gradients and two experimental conditions, i.e. protected vs. non-68 
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protected seeds. The initial seedling recruitment of Spanish black pine was improved 69 

by CFD treatment and seed protection, specifically through increased survival of 70 

emergent seedlings by about ten and fifteen times, respectively, compared to control. 71 

Seedling emergence was not significantly different between the treatments or controls; 72 

however, the highest seedling emergence in the study (18.9 ± 14.9%) was recorded 73 

under the least severe drought conditions. The study demonstrates that post-fire CFD 74 

and seed protection treatments in pine forests, can be favourable for supporting 75 

ecological restoration. However, the environmental conditions are important drivers for 76 

the success of these strategies. Since droughts are expected to be more frequent in the 77 

upcoming years, post-fire management strategies that include treatments like CFD and 78 

seed protection can be useful in the ecological restoration of Mediterranean pine forests. 79 

 80 

Keywords: Seedling emergence; seedling survival; wildfire; Mediterranean forest; 81 

post-fire ecological restoration; contour-felled log debris.  82 

 83 

Introduction 84 

 85 

Wildfire is a natural disturbance factor in Mediterranean forests driving several 86 

important ecosystem processes (Pausas & Keeley, 2019; Heydari et al. 2020). However, 87 

changes in climate, such as increased extreme temperatures and longer periods of 88 

drought, are intensifying the effects of fire on forest ecosystems (Boer et al. 2020; Jolly 89 

et al. 2015). In addition to the influence of climate factors, landscape changes caused by 90 

human activities, e.g. increased tree density, have largely altered fire regimes in 91 

Mediterranean regions (Pausas, 2019). These regions has been exposed for millennia 92 

and to the effects of fire, which has modified the landscape and endowed many species 93 
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with adaptive mechanisms that allow them to persist and regenerate after recurrent fires 94 

(Pausas, 2004; Alcaniz et al. 2020). Therefore, despite the adaptation of Mediterranean 95 

forests to fire, excessive frequency and severe events of fire may overcome the 96 

resistance and resilience of plants and soils, resulting in ecosystem degradation 97 

(Mitsopoulos et al. 2019; Moreira et al. 2020). Fire alters vegetation cover and its 98 

biodiversity (Pausas et al. 2014; Heydari et al. 2016; Moya et al. 2019; Moradizadeh et 99 

al. 2020), and can affect the physico-chemical and biological properties of soils, 100 

depending on severity, intensity or recurrence (DeBano 2000; Ginzberg & Steinberger 101 

2004; Certini 2005; Heydari et al. 2012). Direct and indirect effects of fire on soils and 102 

plants can be critical for the functioning of forest ecosystems (Mitsopoulos et al. 2019). 103 

Thus, promoting post-fire recovery of forests is fundamental for an adequate 104 

management and planning of these ecosystems (Grau-Andres et al. 2019; Muñoz-Rojas 105 

& Pereira, 2019). The plants growing during the restoration phase will determine the 106 

future state of the ecosystems affected by fire with a clear control exerted on soil 107 

formation and degradation, and water dynamics (Moreira et al. 2011; Cerdà et al. 2017). 108 

Moreover, the natural self organization of the vegetation creates a more resilient 109 

ecosystem against droughts and floods and also prevents the soil surface to be bare and 110 

vulnerable for erosion (Keesstra et al. 2018). 111 

 112 

In recent years, fire and ecosystem management has evolved along with social needs for 113 

maintaining and protecting ecosystem services, and new approaches need to be 114 

considered in post-fire restoration management (Roces-Diaz et al. 2020). The 115 

effectiveness of the ecological restoration strategies in Mediterranean systems depends 116 

on our understanding of post-fire initial recruitment processes, which can be directly 117 

affected by fire extent, tree mortality and post-fire management (Stevens-Rumann & 118 
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Morgan, 2019). After wildfire, seedling recruitment is a key process driving forest 119 

dynamics in Mediterranean conditions, especially in the context of global change 120 

(Miller et al. 2019; Pausas & Keeley 2014). Some Mediterranean pines species are able 121 

to regenerate through different post-fire strategies, including serotiny (Pinus halepensis 122 

M.), soil seed banks (Pinus pinaster Ait.) or wind seed dispersion into a fire-affected 123 

site (Kozlowski, 2002). For these species, new individuals continue to appear after fire 124 

for several years to allow forest ecosystem recovery and forest stand persistence (Oliver 125 

& Larson, 1996; Albrecht & McCarthy, 2006). However, a negative effect of severe 126 

wildfire has frequently been reported on the natural regeneration of the non-serotinous, 127 

obligate seeder Pinus nigra Arn. ssp salzmannii (Dunal) Franco (Spanish black pine) 128 

(Martín-Alcón & Coll, 2016).  129 

 130 

Spanish black pine (Pinus nigra Arn ssp. Salzmannii) is the most widely distributed 131 

pine species along mountain areas of the Mediterranean Basin (Barbero et al. 1998). 132 

This species, frequently used in afforestation programs (Campo et al. 2019) has been 133 

included by European Union in the endangered habitats listing of natural habitats 134 

requiring specific conservation measures (Resolution 4/1996 in the Convention on the 135 

Conservation of European Wildlife and Natural Habitats), due to the lack of successful 136 

natural regeneration. Some of the challenges associated to the regeneration of Pinus 137 

nigra are irregular masting events, seed predation, drought, and land degradation (Del 138 

Cerro et al. 2009; Tíscar-Oliver and Linares 2014). Post-fire conditions encompass the 139 

absence of tree canopy cover, microclimatic conditions (high temperature and lower 140 

water availability in soils), soil erosion, pre- and post-dispersal seed predation or 141 

herbivores (Del Cerro Barja et al. 2009; Calama et al. 2019). These factors can further 142 
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inhibit natural regeneration of Spanish black pine, which lack mechanisms to overcome 143 

the effects of fire (Rodrigo et al. 2004).  144 

During forest regeneration after fire, the first growing season is of vital importance for 145 

pine survival and growth, since first-year conditions may modulate forest stand 146 

persistence and composition after wildfire (Heydari et al. 2017; Calama et al. 2019). 147 

Although the success of natural forest regeneration depends on the whole tree lifespan, 148 

some stages, such as seedling emergence and survival, are critical for survival due to the 149 

vulnerability of seed and seedlings to biotic and environmental constraints during early 150 

life-stages of the Mediterranean pines (Lucas-Borja et al. 2012; Prévosto et al. 2012). In 151 

Mediterranean areas, drought and soil desiccation are major constraints to seedling 152 

emergence and survival in forest areas, where establishment after seed germination is 153 

severely limited by long and dry summer periods (Herrera, 1992; Haffey et al. 2018; 154 

Fernández-García et al. 2019). 155 

 156 

To support the natural regeneration of Spanish Black pine and other similar pine species 157 

after wildfires, different post-fire management strategies may be effective (Castro et al. 158 

2011). Some of the most frequent restoration strategies include (i) felling and laying 159 

burned trees on the ground along the slope contour to block overland flow and sediment 160 

delivery (log erosion barriers), (ii) cutting the main branches and leaving all the biomass 161 

in situ without mastication for the same purpose (contour-felled log debris, hereinafter 162 

indicated as CFD) (Napper, 2006; Robichaud, 2000; Shakesby, 2011) or straw mulching 163 

application to slope surface in order to improve microclimatic soil conditions (Bautista 164 

et al. 2009; Prats et al. 2012; Lucas-Borja et al. 2020). These techniques for hillslope 165 

stabilization aim to avoid soil degradation by increasing fertility and reducing runoff, 166 

and erosion rates (Gómez-Sanchez et al. 2019). Furthermore, these methods can help 167 
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restoring the ecosystem structure and function by minimising losses in soil carbon and 168 

nutrient contents (Shakesby 2011; Fontúrbel et al. 2016).  169 

Recent research has also evidenced their potential for increasing seedling density and 170 

height in Pinus halepensis and Pinus pinaster forest stands after wildfire (Lucas-Borja 171 

et al. 2020).  172 

Despite the potential of these techniques for post-fire restoration of forest ecosystems, 173 

studies that investigate their effects on natural regeneration of Mediterranean pines, 174 

including Spanish black pine, after wildfires are still scarce (Lucas-Borja et al. 2020). 175 

Specifically, the impacts of these techniques on soil cover, seed predation and 176 

microclimate conditions need to be assessed, to fully evaluate the relative and 177 

cumulative effects of fire and post-fire management processes. Overall, there are 178 

substantial gaps in identifying the most effective approaches to apply these post-fire 179 

strategies. Arguably, a critical knowledge gap in this vein is the effect of post-fire 180 

strategies on initial seedling recruitment of pines–one of the most important and fragile 181 

Mediterranean species (Gomez-Sánchez et al. 2019). 182 

 183 

In this study, seedling emergence and survival of Spanish black pine are investigated in 184 

CFD plots in comparison with a non-treated forest during the first three growing 185 

seasons (2010, 2011 and 2012) following a severe wildfire. Both the treated and control 186 

plots were monitored in three different slopes, e.g. low, medium and high gradient, and 187 

two experimental conditions, e.g. protected vs. non-protected seeds. Due to the masting 188 

condition (the synchronous production of large seed crops within a population every six 189 

years) of Spanish black pine, a sowing experiment was used to ensure seed availability 190 

of Spanish black pine for this experiment. The working hypothesis of this study is that 191 

seedling emergence and survival of Spanish black pine will be higher in CFD plots in 192 

Commento [YYY1]: Porqué 
hemos quitado esta parte que 
me parecìa interesante? 
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combination with seed protection, due to the better microclimatic conditions (higher 193 

water content and lower temperature of soil) and more limited seed predation compared 194 

to the control forest.  195 

 196 

Methods 197 

 198 

Study site 199 

 200 

The study area was located in the Cuenca Mountain (Castilla-La Mancha, central-201 

eastern Spain). Spanish black pine is naturally distributed in this area between 1000 and 202 

1500 m above sea level and dominates the forest stand composition (Del Cerro Barja et 203 

al. 2009).  204 

Spanish black pine forests in the Cuenca Mountains have traditionally been managed 205 

using the shelterwood system, with a shelter-period of 20-25 years and a rotation period 206 

of 100-125 years. This method consists of a uniform opening of the canopy for 207 

regeneration purposes without site preparation (Lucas-Borja et al. 2011).  A natural 208 

forest of Spanish black pine, which was affected by a high-severity wildfire in July 209 

2009, was selected as the experimental site at 1416 m a.s.l. (“Las Majadas” site, 210 

40°15′58″N; 1°56′08″W). The mean annual rainfall in the study area is 950 mm (115 211 

mm during summer) and the mean annual temperature is 9.6 °C. Air temperature 212 

typically ranges from −4.5 °C (mean minimum temperature of the coldest month) to 213 

28.3 °C (mean maximum temperature of the hottest month). The mean three-month 214 

drought-period temperature (June, July and August) is 15.7 °C. Calcareous soils are 215 

dominant in the Cuenca Mountains; the prevalent soil types of the experimental site are 216 

classified as Typical Xerorthent, according to Soil Survey Staff (1999). The ground 217 

Commento [YYY2]: Aqui 
pondria una o dos frases sobre 
“degradation to forests with 
Spanish pine” que pide el AE. 
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vegetation is mainly composed by herbaceous (Eryngium campestre L., Geranium 218 

selvaticum L., Festuca rubra L. and Cirsium acaule L.) and small shrub (mainly 219 

Thymus bracteatus L.) species.  220 

 221 

After the wildfire of summer 2009 and before sowing, soil in the experimental plots was 222 

covered by woody debris (55%), stones (20%), resprouting plant species (5%), while 223 

the remaining area (20%) was bare (data source: Cuenca Mountain forest services, field 224 

survey of February 2009). Daily air temperature and precipitation were recorded 225 

throughout the entire study period, using a meteorological station (model 226 

METEODATA 1256C) near the experimental site; these data were compared to the 3-227 

decadal (1980-2010) historical records provided by AEMET (Spanish Meteorological 228 

Agency). Annual water budget was estimated by the standardized precipitation-229 

evapotranspiration index (SPEI, Vicente Serrano et al. 2010), based on the sum of 230 

monthly differences between precipitation (P) and potential evapo-transpiration (PET). 231 

 232 

Experimental layout 233 

 234 

Two months after the wildfire, between September 2009 and December 2009, a post-235 

fire management treatment was applied in the study area. The treatment consisted of the 236 

manual cut of burnt trees, leaving tree canopies on the soil surface following contour 237 

lines (contour-felled log debris, hereinafter CFD). Trunks were manually piled (groups 238 

of about 10-20 logs) and the woody debris was left in situ without mastication. A split-239 

plot design was carried out with three factors:  240 

 241 
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1) slope (determined by using a Suunto clinometer, model PM-5/360 PC), e.g. low 242 

(1-2%, hereinafter L), medium (3-15%, M) and high (15-35%, H) gradient.  243 

2) treatment, e.g. CFD (woody debris cover) and control, the latter with bare soil, 244 

that is without woody debris cover (hereinafter C)  245 

3) seed protection, e.g. protected (P) vs. non-protected seeds (NP). Seed protection 246 

described below. 247 

 248 

In January 2010, nine representative areas of about 7 ha were selected in the study site 249 

(3 slopes × 3 replicates). Sixteen 4 × 4 m permanent plots were set up at each of the 250 

nine areas. The plots were randomly distributed within each forest area, with a 251 

minimum distance apart of 300 m and included four treatments: (i) CFD and seed 252 

protection; (ii)  CFD without seed protection; (iii) no treatment with CFD and seed 253 

protection ; and (iv) no treatment with CFD and no seed protection (control condition). 254 

Each plot consisted of four sowing points. At each sowing point, 20 Pinus nigra Arn. 255 

ssp salzmanni seeds were sown (1 cm deep) at the beginning of March of 2010, 2011 256 

and 2012. All seeds were located inside each quadrat with high precision, using a wire 257 

mesh to avoid overestimations due to naturally dispersed seeds. Protected sowing points 258 

were protected imposing a wire trap of one cm2 mesh size, to exclude seed predation 259 

and seedling herbivory from birds and rodents. Overall, per each on the three 260 

monitoring years (2010, 2011 and 2012), three samples of 288 discrete locations were 261 

collected, i.e. 3 slopes x 3 replicates x 4 treatments x 4 sowing points, for a total of 864 262 

samples. Seedling emergence was surveyed once a year at the end of March. Seeds were 263 

considered emerged when the cotyledons were visible. Seedling survival was monitored 264 

once a year quantified by counting and labelling all live seedlings within each sub-plot 265 

(at the end of November). Seeds used in this experiment were previously collected in 266 

Commento [YYY3]: Es 
correcto? 
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spring 2009 from the same experimental area, using 20 regular traps and then stored in 267 

paper bags in a refrigerator at 4 ºC. A germination potential test was performed under 268 

controlled conditions in the laboratory (Lucas-Borja et al. 2011) before sowing, to 269 

check the viability of the collected seeds. Average germination rates were in all cases 270 

about 80%. The emergence rate was calculated as the number of emerged seeds 271 

compared to the total number of sown seeds. The survival rate was obtained as the 272 

percentage of seedlings that survived in the first year of the experiment versus the 273 

number of emerged seeds. 274 

 275 

Statistical analysis 276 

 277 

Prior to the analyses, the variables, emergence and survival rates, were log-transformed 278 

to meet assumptions of normality and homoscedasticity of residuals. The statistical 279 

significance of the experimental treatments was tested using three-way ANOVA with 280 

repeated measures. This was separately applied to seedlings survival and emergence rate 281 

of Spanish black pine (dependent variables) and the slope (low, medium and high 282 

gradient), treatment (CFD vs. control) and seed protection (protected vs. non-protected 283 

seeds) factors (independent variables) for the three monitoring years. The data of 2010, 284 

2011 and 2012 were considered as repeated measures. Statistical analysis of samples 285 

was carried out by the XLSTAT (release 2020.1) software. 286 

 287 

Results  288 

 289 

Precipitation and air temperatures  290 

 291 
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Precipitation over the period 2010-2012 was below the long-term average (except for 292 

December 2010 and April and November 2012), showing the drought condition of the 293 

study area during the monitoring period (Figure 1). The temperature anomaly was less 294 

pronounced, and the mean temperatures in 2010-2012 were similar to the long-term 295 

average (Fig. 2). The SPEI index also showed the dry condition of the study area during 296 

eight months (between March and October) for 2010 (lower), 2011 (intermediate) and 297 

2012 (higher) (Figure 2). 298 

 299 

Seedling emergence    300 

 301 

Seedling emergence after several weeks (from sowing, early March, to measuring, late 302 

March) for Spanish black pine was significantly higher in 2010 (18.9 ± 14.9%) 303 

compared to 2011 (11.2 ± 12.5%) and 2012 (11.2 ± 12.5%) (Table 1). The seedling 304 

emergence rate was significantly and primarily affected by slope as well as by its 305 

interactions with treatment. Conversely, the treatment and seed protection alone, and the 306 

other interactions among the studied factors were not significant (Table S1). The highest 307 

seedling emergence rate (19.0 ± 15.9%) was found in medium-slope for the control 308 

plots without seed protection, while the minimum value (7.8 ± 9.0%) was recorded in 309 

high-slope for the control plots with seed protection). In more detail, the treatment with 310 

CFD produced a lower seedling emergence rate (13.2 ± 13.6%) compared to control 311 

(14.4 ± 12.9%), although not significantly (Figure 3). Conversely, the lower is the plot 312 

slope, the significantly higher is the seedling emergence (15.9 ± 13.7%, high slope, 15.6 313 

± 15.0%, medium slope, 9.9 ± 11.1%, low-slope plot, although the difference between 314 

the two latter is not significant) (Figure 3). Seed protection increased on the average the 315 
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seedling emergence rate (14.1 ± 13.4% vs. 13.5 ± 13.1%), also in this case not 316 

significantly. 317 

 318 

Seedling survival 319 

 320 

Seedling survival of Spanish black pine was significantly higher in 2010 (3.5 ± 14.2%) 321 

and 2012 (2.5 ± 13.5%) compared to 2011 (0.5 ± 6.6%) (Table 1). The seedling survival 322 

was significantly affected by treatment and seed protection, and their interaction. 323 

Conversely, the effects of slope or the other interactions among factors were not 324 

significant (Table S1). The low-slope and CFD-treated plots with seed protection 325 

showed the highest seedling survival (7.71 ± 21.5%), while seedling survival rate was 326 

zero (i.e., all small pine plants died) for four of the plots: three control plots (bare soil at 327 

all the investigated slopes and without seed protection) and the plot treated with CFD on 328 

high slope without seed protection (Figure 3). The treatment with CFD significantly 329 

increased seedling survival rates compared to the control (3.93 ± 12.7% vs. 0.40 ± 330 

2.67%, respectively) and seed protection significantly increased survival compared to 331 

sites without seed protection (4.06 ± 13.8% vs. 0.27 ± 1.66%) (Figure 3). Conversely, 332 

the seedling survival rate on plots with different slope was very similar and not 333 

significant (2.04 ± 7.09%, high slope, 2.34 ± 9.25%, medium slope, 2.12 ± 6.67%, low-334 

slope plot) (Figure 3). 335 

 336 

Discussion  337 

 338 

The potential of post-fire stabilisation for post-fire restoration of forest ecosystems is 339 

high, but their effects on natural regeneration of Spanish black pine have not been 340 
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studied with particular emphasis on seed predation and hillslope morphology. This 341 

study aiming at evaluating how and to what extent CFD is beneficial to seed emergence 342 

and survival for this species in combination with seed protection and on different 343 

slopes. The results highlight that initial seedling recruitment of Spanish black pine can 344 

be improved by CFD treatment and seed protection. In general, we found that the slope 345 

has a strong influence on seedling emergence, whereas survival is largely controlled by 346 

the seed protection and CFD treatment. 347 

More specifically, the experiment indicates that seedling emergence rates were not 348 

influenced by treatment and, in some years and for all slopes, the control plots showed 349 

higher (although not significant) seedling emergence compared to the CFD treatment. A 350 

possible explanation may be related to the critical role of solar radiation in seedling 351 

emergence of Spanish black pine (Lucas-Borja et al. 2016; Lucas-Borja et al. 2017). In 352 

the plots covered by woody debris, sunlight is restricted in cold late winter/early spring 353 

(out of the experimental conditions), which can result in reduced emergence. Moreover, 354 

despite the generally lower seedling emergence, significantly higher survival rates were 355 

surveyed after the CFD treatment compared to the control for all the treated slopes (low, 356 

medium and high gradient). This result is in accordance with the well-known beneficial 357 

effect of shrubs on the recruitment of seedlings located under their canopies (Emborg, 358 

1998; Heydari et al. 2017). For example, Lucas-Borja et al. (2016) demonstrated that 359 

shrub facilitation has visible effects on seedling emergence of Spanish black pine, but 360 

only in the drier years and under 25-30 m2 ha-1 of basal area. Conversely, in wetter 361 

years, shrub cover does not promote seedling survival and canopy cover is not an 362 

influential factor.  363 

 364 
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In those CFD plots, where seedling emergence was higher compared to control, soil 365 

protection was not sufficient in a drought-stress environment to ensure seed survival in 366 

the year following sown, since almost all seedlings (99.9%) died by the end of the year. 367 

A similar response has been evidenced in previous studies that pointed to bleak 368 

prospects for successful natural regeneration of Spanish black pine in dry years (Lucas-369 

Borja et al. 2016). The differences in seedling emergence and survival detected in this 370 

study as the effect of CFD confirm that the natural regeneration of Spanish black pine 371 

must overcome contrasting conditions, one condition suitable for seedling emergence 372 

(i.e.,  slope conditions) and another condition suitable for survival (i.e., ground cover 373 

and seed protection) (Tiscar Oliver, 2007). 374 

 375 

Pre- and post-dispersal seed predation has severe consequences on plant recruitment, 376 

because predation acts as a substantial obstacle against the natural regeneration of 377 

Spanish black pine (Sagra et al. 2017).  In this study, seed protection had a beneficial 378 

and significant effect for early recruitment, since seedling survival rates increased in all 379 

slopes and under CFD treatment. Seed protection is particularly important during non-380 

masting years (characterised by low seed availability for predators), because predation 381 

can completely prevent seed recruitment of Spanish black pine and other Mediterranean 382 

pine species (Lucas-Borja et al. 2012; Moreira et al. 2016). For example, Lucas-Borja et 383 

al (2018b) found that Pinus nigra seed production ranged over time from 2 to 189 seeds 384 

m-2 and from 0 to 17 seeds m-2 in masting and non-masting years, respectively. 385 

However, seed protection did not play a significant effect on seedling emergence rates, 386 

in agreement with previous researches in the Cuenca Mountains (Lucas-Borja et al. 387 

2012) and in other Mediterranean areas (Calama et al. 2019). These studies pointed out 388 

the relative importance of seedling herbivory compared to seed predation. 389 
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 390 

Significant impacts of slope on seedling emergence but not in survival of Spanish black 391 

pine were detected. These differences for seedling emergence were not expected, since 392 

Spanish black pine is well-adapted to steep slopes and calcareous soils (Calama et al. 393 

2019). Nonetheless, since CFD plots generally showed higher seedling survival rates 394 

compared to bare plots, this may indicate that the treatment can help to reduce soil 395 

erosion and nutrient transport down slope, which can affect high and medium slopes. 396 

 397 

With regard to the variability of natural regeneration over time, also in this study the 398 

early seedling recruitment was strongly dependent on the monitoring year. Higher 399 

seedling emergence and survival were recorded in 2010, characterized by the highest 400 

SPEI and lowest drought conditions throughout the experiment. Climate is arguably the 401 

main factor controlling seedling emergence and survival in water-limited environments 402 

(Gómez-Aparicio et al. 2004; Adili et al. 2013; Muñoz-Rojas et al. 2016). This is 403 

evidenced by the contrasting responses for seedling emergence and survival of Spanish 404 

black pine over time reported in different studies, which generally showed the 405 

importance of climate factors, e.g. rainfall and temperature, to drive these responses. 406 

For example, recent studies carried out in Mediterranean arid and semi-arid ecosystems 407 

underlined drought as one of the most important factors limiting early seedling 408 

recruitment (Lloret et al. 2004; Bateman et al. 2018; Lewandrowski et al. 2018; Mirzaei 409 

et al. 2018). Water stress during summer appears to be the leading cause of seedling 410 

mortality in many pine species of the Mediterranean region (Rodríguez-García et al. 411 

2011; Lucas-Borja et al. 2017). Specifically, Spanish black pine requires high water 412 

content and low temperature of soil to regenerate (Lucas-Borja et al. 2011; Calama et al. 413 

2019). The small tree logs and branches area spread over the ground of CFD treatment 414 
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may act as a barrier that reduce drought by lowering solar radiation and soil temperature 415 

and increasing its water content (Castro et al. 2009).   416 

 417 

DZ: COMPARISONS WITH LITERATURE 418 

Seedling emergence rates in this study were on average similar as the lowest values (i.e. 419 

9-20%, low or dense basal areas) reported by Lucas-Borja et al. (2016) in the same 420 

forest (Cuenca Mountains) in dry years and with shrub facilitation. Moreover, in the 421 

same area emerged seedlings between 39 and 76% were detected again by Lucas-Borja 422 

et al. (2016) and again Lucas-Borja et al. (2018a) under medium shrub cover, and soil 423 

preparation (scalping) and seed protection treatments, respectively. In these studies, the 424 

mean rates of seedling survival were higher than those reported in this study (10-20%, 425 

Lucas-Borja et al. 2016, except under medium shrub cover, and 18-35%, Lucas-Borja et 426 

al. 2018a) and similar to those reported by Lucas-Borja et al. (2016), 0.5-4% in scalped, 427 

although these authors found higher values in undisturbed soils. Similar research about 428 

the effect of post‐fire management treatments (e.g. felling most of the trees, cutting the 429 

main branches, and leaving all the biomass in situ without mastication) on the 430 

recruitment of Pinus pinaster at a Mediterranean mountain showed an increase of 431 

47.3% in seedling survival compared to the untreated sites three years after wildfire 432 

(Castro et al. 2011). 433 

 434 

 435 

The absence of seedling survival of Spanish black pine in bare and non-protected soil 436 

has direct implications for forest management, as the increased impacts of wildfires and 437 

climate change will challenge the success of natural regeneration. Time from wildfire 438 

plays a vital role in successful early recruitment of vegetal species, since ash, pH, 439 
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electrical conductivity, organic matter, respiration, and herbal cover of soil may change 440 

over time (Muñoz-Rojas et al. 2016). Moreover, predator abundance may vary over 441 

time after fire (e.g. absence of bird nesting sites), although rodents and birds are known 442 

to rapidly colonize burnt areas (Ordóñez & Retana 2004; Sagra et al. 2017). Gaining a 443 

better understanding of how post-fire management strategies alter initial recruitment of 444 

Spanish black pine is essential for predicting changes in forest stand persistence under 445 

global change scenarios. The information herein obtained could lead to more efficient 446 

forest management practices, to effectively increase health and functions of forest 447 

ecosystem. 448 

Overall, this study demonstrated that the ecological restoration treatment carried out as 449 

post-fire soil management, based on the manual cut of burnt tree canopies and 450 

placement on the soil surface following contour lines, significantly increased (combined 451 

with seed protection) seedling survival on low-slope areas as well as medium and high 452 

slopes, although the treatment was not able to increase seedling emergence after 453 

wildfire compared to bare soil. Therefore, soil treatment with CFD and seed protection 454 

by wire mesh are suggested for a more successful early recruitment of Spanish black 455 

pine. Moreover, it is worthy to note that the highest seedling emergence recorded during 456 

this study was under reduced drought conditions (per SPEI metric), which indicates that 457 

there is a strong influence of climate in this species’ seedling recruitment.  458 

 459 
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TABLES 751 

 752 

Table 1. Seedling emergence and survival rates of Spanish black pine after the wildfire 753 

of 2009 in Cuenca Mountains (Spain). Different letters indicate significant differences 754 

(p < 0.05) after ANOVA with repeated measures  755 

 756 

Seedling emergence rate (%) Seedling survival rate (%) 
Year 

Mean Std Dev Mean Std Dev 

2010 18.9 a 14.9 3.5 a 1.4 

2011 11.2 b 12.5 0.5 c 6.6 

2012 11.2 b 12.5 2.5 b 1.3 
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Figure 1. Annual precipitation (a) and mean monthly temperature (b) (mean and 762 

standard error) for the periods of 1980–2010 and 2010-2012 in Cuenca Mountains 763 

(Spain) 764 
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Figure 2. Standardized Precipitation-Evapotranspiration Index (SPEI), estimated from a 768 

standardized sum of monthly differences between precipitation and potential 769 

evapotranspiration, in Cuenca Mountains (Spain) 770 
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 788 

Figure 3. Interaction plots of treatments (CFD or bare soil, C) and seed protection (non 789 

protected seeds, NP, or protected seeds, P) or slopes (lower charts, low, L, medium, M, 790 

or high, H, gradient) for seedling emergence (a) and survival rates (b) of Spanish black 791 

pine after the wildfire of 2009 in Cuenca Mountains (Spain).; different letters indicate 792 

significant differences (p < 0.05) after ANOVA with repeated measures. Error bars 793 

indicate standard error (variability over time and among slopes in interaction treatment 794 

x seed protection, and variability over time and between seed protection in interactions 795 

treatment x slope).   796 


