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Abstract: We studied a simple motion differential game of two pursuers and one evader in R2. The
control functions of players are subjected to the Grönwall-type constraints. If the state of the evader
coincides with the state of a pursuer, then the game is considered complete. The pursuers attempt to
complete the game as earlier as possible. The evader attempts to avoid being captured or delays the
capture time. We found an equation for the optimal pursuit time and construct the optimal strategies
of players.

Keywords: differential game; Grönwall constraints; pursuers; evader; optimal pursuit time; optimal
strategy
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1. Introduction

Differential games with many players have received a great deal of attention in the
literature (see, for more, [1–11]). Most of the literature considers differential games when
the pursuers move faster than the evaders to complete the game. The paper [2] is devoted
to the simultaneous multiple capturing of rigidly coordinated evaders by several pursuers.
Moreover, there has been increasing interest in studying differential games with faster
evaders (see, for example [12,13]).

Differential games of optimal approaches are difficult branches of differential games. The
main problems for such differential games involve finding the value functions, to construct
the optimal strategies of players. In the case of one pursuer and one evader, Isaacs [14]
successfully applied the main equation of differential games—the Hamilton–Jacobi–Isaacs
equation—to concrete differential games (to obtain the value function), although the existence
and uniqueness of the solutions of the equation were not theoretically established yet.

Subbotin [15] established that the main equation of a differential game may not have
a solution or may have infinitely many solutions. In this regard, Subbotin [15] obtained
necessary and sufficient conditions for a function (to be the value function of the game)
by introducing the notions of u-stability and v-stability. However, this condition contains
two nonlinear partial derivative inequalities, and solving these inequalities is very difficult.
Therefore, various methods were used by the researchers to find the value function for a
differential game.

For example, in [16], the value function was guessed, and then it was shown that it
satisfied the conditions of u-stability and v-stability [15]. Petrosyan [17] effectively used the
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method of the pursuit center to solve optimal pursuit problems. To prove the optimality of
strategies, in the paper by Ibragimov [18], the solution of a differential game in half space
was used. Another was proposed by Jang and Tomlin [19].

The algorithm proposed in [8] for the multiplayer differential game, which is based
on the Apollonius circle, allows the pursuers to optimize the allocation of resources and
ensures the capture of the evader for the minimum time.

The paper by Samatov et al. [20] deals with a differential game of optimal pursuit of
one pursuer and one evader with the Grönwall-type constraints on the controls for players.
In that paper, the optimal strategies of players were constructed and an optimal pursuit
time was found.

In the present paper, we consider a differential game of the optimal pursuit of two
pursuers and one evader when the control functions of players were subjected to Grönwall-
type constraints. We found the optimal pursuit time in terms of reachability sets and
constructed optimal strategies of players. To prove the main theorem, we considered an
auxiliary differential game in a half-plane.

2. Statement of Problem

Let the dynamics of two pursuers (x1, x2) and one evader (y) be described in R2 by
the following differential equations:

ẋi = ui, xi(0) = xi0, i = 1, 2,
ẏ = v, y(0) = y0,

(1)

where xi, y, xi0, y0 ∈ R2, ui, and v stand for the control parameters of the i-th pursuer xi,
i = 1, 2, and the evader y, respectively.

Definition 1. Measurable functions ui(t) = (ui1(t), ui2(t)) and v(t) = (v1(t), v2(t)), t ≥ 0
that satisfy the following constraints

|ui(t)|2 ≤ ρi
2 + 2k

t∫
0

|ui(s)|2ds, t ≥ 0, (2)

|v(t)|2 ≤ σ2 + 2k
t∫

0

|v(s)|2ds, t ≥ 0, (3)

are called admissible controls of the pursuers (xi, i = 1, 2) and evader (y), respectively, where ρ1, ρ2,
σ, and k are the given positive numbers.

We let U1, U2, and V denote the set of all admissible controls of the pursuers (x1, x2)
and evader (y), respectively.

The trajectories of the pursuers and the evader corresponding to admissible controls
ui(·) ∈ Ui and v(·) ∈ V are defined by the following equations

xi(t) = xi0 +

t∫
0

ui(s)ds, i = 1, 2, y(t) = y0 +

t∫
0

v(s)ds,

respectively. We need the following statement.

Lemma 1 ([21]). If, for the positive numbers ρ and k,

|ω(t)|2 ≤ ρ2 + 2k
t∫

0

|ω(s)|2ds,
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then |ω(t)| ≤ ρekt, where ω(t), t ≥ 0, are measurable functions.

By Lemma 1, for the admissible controls ui(·) ∈ U and v(·) ∈ V, we have

|ui(t)| ≤ ρiekt, |v(t)| ≤ σekt, t ≥ 0. (4)

It should be noted that (4) does not imply (2) and (3). It is not difficult to verify that if

|ui(t)| = ρiekt, |v(t)| = σekt, t ≥ 0, (5)

then Equations (2) and (3) are satisfied, respectively.
Next, we give definitions for the optimal strategies of players and optimal pursuit time.

2.1. Guaranteed Pursuit Time

Let H(x, r) (respectively, S(x, r)) denote the ball (sphere) of radius r, centered at x, and
let O be the origin.

Definition 2. We call the function

Ui(xi0, y0, t, v), Ui : R2 ×R2 × [0, ∞)× H(O, σekt)→ H(O, ρiekt), i ∈ {1, 2},

strategy of the pursuer xi, if for any v(·) ∈ V and for ui = Ui(xi0, y0, t, v(t)), the initial value
problem (1) has a unique solution (xi(t), y(t)), and

|Ui(xi0, y0, t, v(t))|2 ≤ ρ2
i + 2k

t∫
0

|Ui(xi0, y0, s, v(s))|2ds, t ≥ 0,

In other words, the pursuer xi uses information about the initial states xi0, y0, and the
value of the control parameter v(t) at the current time t.

Definition 3. We say that the strategies Ui = Ui(xi0, y0, t, v(t)), i = 1, 2, ensure the completion
of the game for the time T(U1, U2) if, for any v(·) ∈ V, we have xi(τ) = y(τ) for some i ∈ {1, 2}
and τ ∈ [0, T(U1, U2)], where (x1(t), x2(t), y(t)) is the solution of the initial value problem (1)
with ui = Ui(xi0, y0, t, v(t)), i = 1, 2.

We call the number T(U1, U2) a guaranteed pursuit time corresponding to the strate-
gies U1, U2. It should be noted that any time T′, T′ ≥ T(U1, U2) is also a guaranteed pursuit
time corresponding to the same strategies U1, U2. Let T∗(U1, U2) denote the greatest lower
bound of the numbers T(U1, U2) corresponding to the strategies U1, U2.

The pursuers attempt to minimize T∗(U1, U2) by choosing their strategies U1, U2, and
the evader attempts to maximize T∗(U1, U2) by choosing v(·) ∈ V. If, for some strategies
U10, U20 of pursuers, inf

U1,U2
T∗(U1, U2) = T∗(U10, U20), then U10, U20 are called optimal

strategies of pursuers and the number T∗(U10, U20) is called a guaranteed pursuit time in
the game.

2.2. Guaranteed Evasion Time

Definition 4. A continuous function

V(x10, x20, y0, t, x1, x2, y), V : R2 ×R2 ×R2 × [0, ∞)×R2 ×R2 ×R2 → H(O, σekt)

is called a strategy of the evader if, for any ui(·) ∈ Ui, i = 1, 2, and for v = V(x10, x20, y0, t, x1, x2, y),
the initial value problem (1) has a unique solution (x1(t), x2(t), y(t)) and along this solution

|V(x10, x20, y0, t, x1(t), x2(t), y(t))|2 ≤ σ2 + 2k
t∫

0

|V(x10, x20, y0, s, x1(s), x2(s), y(s))|2ds, t ≥ 0.
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Definition 5. We say that strategy V guarantees the evasion on the interval of time [0, T(V)) if,
for any ui(·) ∈ Ui, i = 1, 2, we have xi(t) 6= y(t), for all i = 1, 2 and t ∈ [0, T(V)). We let T∗(V)
denote the least upper bound of the numbers T(V) corresponding to strategy V. Moreover, we call
the number T∗(V) a guaranteed evasion time corresponding to the strategy V.

The evader attempts to maximize the number T∗(V) by choosing the strategy V, and
the pursuers attempt to minimize the number T∗(V) by choosing the controls ui(·) ∈ Ui,
i = 1, 2.

Definition 6. If for some strategy V0 of the evader sup
V

T∗(V) = T∗(V0), then V0 is called the

optimal strategy of the evader, and the number T∗(V0) is called a guaranteed evasion time in the
game. If T∗(U10, U20) = T∗(V0), then this number is called the optimal pursuit time in the game.

Problem 1. Construct the optimal strategies of the pursuers U10, U20, and evader V0, and find the
optimal pursuit time in game (1).

This is an example of a quote.

3. Main Result

Let

Ri(t) = ρi

t∫
0

eksds, i = 1, 2, r(t) = σ

t∫
0

eksds.

It is not difficult to verify that the set of all points reachable by the pursuer xi (respec-
tively, by the evader y) from the point xi0 (y0) at t = 0 to the time t is the ball H(xi0, Ri(t))
(respectively, H(y0, r(t))).

In this section, we prove the following main result of the paper.

Theorem 1. The number

θ = min{t ≥ 0 | H(y0, r(t)) ⊂ H(x10, R1(t)) ∪ H(x20, R2(t))} (6)

is the optimal pursuit time in game (1).

A Differential Game in the Half-Plane

To prove the theorem, we consider an auxiliary differential game of one pursuer x and
one evader y whose dynamics are described by the following equations:

ẋ = u, x(0) = x0 = (x10, x20), |u(t)|2 ≤ ρ2 + 2k
t∫

0
|u(s)|2ds, t ≥ 0,

ẏ = v, y(0) = y0 = (y10, y20), |v(t)|2 ≤ σ2 + 2k
t∫

0
|v(s)|2ds, t ≥ 0.

(7)

It is assumed that ρ > σ. Let R(t) = ρ
t∫

0
eksds and let the circumferences S(x0, R(θ0))

and S(y0, r(θ0)) intersect for some θ0 > 0. We pass a straight line Γ perpendicular to
the vector y0 − x0 through the intersection points of these circumferences (see Figure 1).
We denote the half-plane bounded by Γ and containing the point x0 by X. Note that the
half-plane X may not contain the point y0. The evader must be in the half-plane X at the
time θ0 and the pursuer attempts to realize the equation x(t) = y(t) as early as possible.
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Lemma 2. If the position of the evader is y(θ0) ∈ X, then the strategy

u = v− (v, e)e + e
√
(ρ2 − σ2)e2kt + (v, e)2, e =

y0 − x0

|y0 − x0|
. (8)

of the pursuer guarantees the equation x(τ) = y(τ) at 0 < τ ≤ θ0.

Figure 1. Game mechanism design in the half-plane X.

Proof. Without any loss of generality, we assume that X is the upper-half-plane bounded
by the x-axis. Then, clearly, x10 = y10. It is not difficult to show that

θ0 =
1
k

ln

1 + k

√
x2

20 − y2
20

ρ2 − σ2

.

Moreover, for strategy (8), it can be easily verified that |u(t)|2 =
(
ρ2 − σ2)e2kt + |v(t)|2,

and so

|u(t)|2 ≤ ρ2 + 2k
t∫

0

|u(s)|2ds, t ≥ 0,

meaning that strategy (8) is admissible.
Next, since y0 − x0 is perpendicular to the x-axis, e = y0−x0

|y0−x0|
= (0,−1), and so the

strategy (8) takes the form

u1 = v1, u2 = −
√
(ρ2 − σ2)e2kt + v2

2. (9)

The condition y(θ0) ∈ X can be written as follows

θ0∫
0

v2(s)ds ≥ −y20. (10)

By (9) u1(t) = v1(t), t ≥ 0 and, hence, x1(t) = y1(t), t ≥ 0. Therefore, it suffices to
show that x2(τ) = y2(τ) at some 0 < τ ≤ θ0. To this end, we consider the following vector
function f (t) =

(√
ρ2 − σ2ekt, v2(t)

)
, t ≥ 0. Then
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x2(θ0)− y2(θ0) = x20 − y20 −
θ0∫

0

√
(ρ2 − σ2)e2ks + v2

2(s)ds−
θ0∫

0

v2(s)ds

= x20 − y20 −
θ0∫

0

| f (s)|ds−
θ0∫

0

v2(s)ds

Since
θ0∫
0
| f (s)|ds ≥

∣∣∣∣∣ θ0∫
0

f (s)ds

∣∣∣∣∣, then

x2(θ0)− y2(θ0) ≤ x20 − y20 −

∣∣∣∣∣∣
θ0∫

0

f (s)ds

∣∣∣∣∣∣−
θ0∫

0

v2(s)ds

= x20 − y20 −

∣∣∣∣∣∣
√ρ2 − σ2

k
(ekθ0 − 1),

θ0∫
0

v2(s)ds

∣∣∣∣∣∣−
θ0∫

0

v2(s)ds

= x20 − y20 −

ρ2 − σ2

k2 (ekθ0 − 1)
2
+

 θ0∫
0

v2(s)ds

2
1/2

−
θ0∫

0

v2(s)ds. (11)

Letting
∫ θ0

0 v2(s)ds = ξ on the right-hand side of the last equation we consider the
following function:

f (ξ) = x20 − y20 −
√

ρ2 − σ2

k2 (ekθ0 − 1)2
+ ξ2 − ξ,

whereby (10) ξ ≥ −y20. For the derivative of f (ξ) we have

f ′(ξ) = − ξ√
ρ2−σ2

k2 (ekθ0 − 1)2
+ ξ2

− 1 < 0.

Hence, the function f (ξ) is decreasing and so it takes its greatest value at ξ =
θ0∫
0

v2(s)ds = −y20. Therefore, using this, we obtain from (11)

x2(θ0)− y2(θ0) ≤ x20 − y20 −
(

ρ2 − σ2

k2

(
ekθ0 − 1

)2
+ y2

20

)1/2

+ y20

= x20 −
(

ρ2 − σ2

k2

(
ekθ0 − 1

)2
+ y2

20

)1/2

= 0

Combining this inequality with x2(0)− y2(0) > 0 and the fact that the x2(t)− y2(t) is
continuous, we conclude that x2(τ)− y2(τ) = 0 at some 0 < τ < θ0.

Recalling that x1(t) = y1(t), t ≥ 0, which implies in particular x1(τ) = y1(τ), we
obtain x(τ) = y(τ). Consequently, θ0 is a guaranteed pursuit time in game (8). The proof
of Lemma 2 is complete.

Next, we prove Theorem 1.
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Proof. We show first that θ is a guaranteed pursuit time in game (1). To this end, we let the
pursuers apply the following strategies:

ui = v− (v, ei)ei + ei

√
(ρ2

i − σ2)e2kt + (v, ei)2, ei =
y0 − xi0
|y0 − xi0|

, i = 1, 2. (12)

It can be easily verified that

|ui(t)|2 ≤ ρ2
i + 2k

t∫
0

|ui(s)|2ds, t ≥ 0, i = 1, 2,

and so strategies (9) are admissible.
For the time θ, we consider the following two cases:

Case 1. H(y0, r(θ)) ⊂ H(xi00, Ri0(θ)) for some i0 ∈ {1, 2} (see Figure 2).

Figure 2. Case 1: H(y0, r(θ)) ⊂ H(x10, R1(θ)).

In this case, strategies (12) guarantee the completion of the pursuit for the time

θ =
1
k

ln
(

1 + k
|xi00 − y0|

ρ− σ

)
.

More precisely, only the pursuer xi0 can complete the game for the time θ. Figure 2
illustrates Case 1, where i0 = 1 and only the first pursuer x1 can complete the game by the
time θ [20].

Case 2. (see Figure 3).

H(y0, r(θ)) * H(xi0, Ri(θ)), i = 1, 2, H(y0, r(θ)) ⊂ H(x10, R1(θ) ∪ H(x20, R2(θ)). (13)

In Case 2, by the definition of θ, we have the following relation

H(y0, r(t)) 6⊂ H(x10, R1(t)) ∪ H(x20, R2(t)), 0 < t < θ. (14)

We show that θ is a guaranteed pursuit time in game (1). It can be shown that, for
some ȳ ∈ S(y0, r(θ)), we have ȳ ∈ S(x10, R1(θ)) ∩ S(x20, R2(θ)) and ȳ /∈ H(x10, R1(t)) ∪
H(x20, R2(t)), 0 < t < θ. We pass straight lines Γi from the point ȳ perpendicular to vectors
y0 − xi0, i = 1, 2. We denote the half-plane bounded by the straight line Γi that contains the
point xi0 by Xi, i = 1, 2.

One can show similar to Assertion 4 (Appendix, [22]) that H(y0, r(θ)) ⊂ X1 ∪ X2.
Combining this inclusion with the inclusion y(θ) ∈ H(y0, r(θ)), we have either y(θ) ∈ X1
or y(θ) ∈ X2. If y(θ) ∈ X1, then by Lemma 2, we obtain x1(τ1) = y(τ1) at some 0 ≤ τ1 ≤ θ;
if y(θ) ∈ X2, then by Lemma 2 x2(τ2) = y(τ2) at some 0 ≤ τ2 ≤ θ. This observation shows
that θ is a guaranteed pursuit time in game (1).
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Figure 3. Half space X1 bounded by Γ1.

Next, we show that θ is a guaranteed evasion time in game (1) in both Cases 1 and 2.
We let the evader apply the following strategy

v(t) =
ȳ− y0

| ȳ− y0 |
σekt, t ≥ 0, (15)

where ȳ is defined as above in Case 2, and ȳ ∈ S(y0, r(θ)) ∩ S(x10, R1(θ)) in Case 1. Strat-
egy (15) is admissible. Indeed, since

|v(t)| =
∣∣∣∣ ȳ− y0

|ȳ− y0|
σekt

∣∣∣∣ = σekt,

and so it satisfies condition (3). Moreover, since |ȳ− y0| =
θ∫

0
σeksds, we have

y(θ) = y0 +

θ∫
0

v(s)ds = y0 +

θ∫
0

ȳ− y0

|ȳ− y0|
σeksds = y0 + ȳ− y0 = ȳ,

where the evader reaches the point ȳ at the time θ.
What is left is to show that xi(t) 6= y(t) for all 0 ≤ t < θ and i = 1, 2. The following

reasoning works for the definitions of ȳ in both Cases 1 and 2. We assume the contrary,
let xi0(τ) = y(τ) at τ < θ and i0 ∈ {1, 2}. For definiteness, we assume that i0 = 1; that is,
x1(τ) = y(τ). Then using the equation y(θ) = ȳ, we have

|ȳ− x10| ≤ |ȳ− x1(τ)|+ |x1(τ)− x10| = |ȳ− y(τ)|+ ρ1

τ∫
0

eksds

= σ

θ∫
τ

eksds + ρ1

τ∫
0

eksds < ρ1

θ∫
0

eksds = R1(θ).

This means ȳ belongs to the interior of the ball H(x10, R1(θ)), and so ȳ ∈ H(x10, R1(t1))
for some t1 < θ. This contradicts condition (14). Hence, xi(t) 6= y(t) for all 0 ≤ t < θ and
i = 1, 2, meaning that θ is a guaranteed evasion time. Thus, θ is the optimal pursuit time.
The proof of the theorem is complete.
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4. Conclusions

We studied a simple motion differential game of two pursuers and one evader in
R2. The control functions of players are subjected to the Grönwall-type constraints. We
found an equation for the optimal pursuit time and constructed the optimal strategies of
players. The optimal strategies of pursuers are defined by Equation (12) and the optimal
strategy of the evader is defined by (15). The optimal strategy of the evader (15) satisfies
the equation |v(t)| = σekt. Moreover, according to the Grönwall-type constraint (3), we
have |v(t)| ≤ σekt. Therefore, we can say that the evader moves at its maximal speed.
The equation |v(t)| = σekt and (12) imply that |ui(t)| = ρiekt, i = 1, 2, meaning that the
pursuers move with maximal speed as well.
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