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We elucidate grapevine evolution and domestication histories with 3525 cultivated and wild accessions
worldwide. In the Pleistocene, harsh climate drove the separation of wild grape ecotypes caused by
continuous habitat fragmentation. Then, domestication occurred concurrently about 11,000 years ago in
Western Asia and the Caucasus to yield table and wine grapevines. The Western Asia domesticates
dispersed into Europe with early farmers, introgressed with ancient wild western ecotypes, and
subsequently diversified along human migration trails into muscat and unique western wine grape
ancestries by the late Neolithic. Analyses of domestication traits also reveal new insights into selection
for berry palatability, hermaphroditism, muscat flavor, and berry skin color. These data demonstrate the
role of the grapevines in the early inception of agriculture across Eurasia.

T
he cultivated grapevine (Vitis vinifera
ssp. vinifera, hereafter V. vinifera) shares
a close relationship with humans (1).
With unmatched cultivar diversity, this
food source (table and raisin grapes)

and winemaking ingredient (wine grapes)
became an emblem of cultural identity in
major Eurasian civilizations (1–3), leading to
intensive research in ampelography, archae-
obotany, and historical records to reveal its
history (4). Early work asserted that V. vinifera
originated from its wild progenitor Vitis
vinifera ssp. sylvestris (hereafterV. sylvestris)
~8000 years ago during the Neolithic agri-
cultural revolution in theWestern Asia (5, 6).
In recent years, various genetic studies ex-
plored this proposition (6–13), but the crit-
ical details of grapevine domestication were
often inconsistent. Studies argued for the
existence of domestication centers in the
western Mediterranean (13), Caucasus (12, 14),
and Central Asia (12), which in turn cast doubt
on the popular notion of a single past domes-
tication event (10, 11). Three demographic
inferences yielded population split times be-
tween V. vinifera and V. sylvestris to dates

between 15,000 and 400,000 years ago, pre-
dating the historical consensus on domestica-
tion time (7–9). Because early domesticates
spread to other parts of Eurasia through poorly
definedmigration routes in the ensuingmillen-
nia (5), the single-origin theory also confounds
the origin order between table and wine grape-
vines. One view proposes a wine grapevine–
first model, with the two types diverging
~2500 years ago (7, 10, 11). Hybridization with
local V. sylvestris was common in creating ex-
tant European wine grapes (10, 11), but when
these introgression events occurred is unknown.
Several studies suggest that the earliest cul-
tivation of European wine grapes in France
and Iberia postdates 3000 years ago (10, 15).
These discrepancies primarily result from the
inadequate sampling of grapevine accessions
and the limited resolution of genetic data in
previous analyses. Therefore, we report the
genomic variation dataset from a global co-
hort to systematically delineate the structure
of grapevine genetic diversity, explore the
origin of V. vinifera, deduce a putative dis-
persal history, and investigate key domesti-
cation traits and diversification signatures.

Results
We constructed a chromosome-level reference
V. sylvestris genome assembly (VS-1 from
Tunisia) to attain genomic variations, which
shows a higher percentage of anchored chro-
mosomal lengths than PN40024 (fig. S1 and
tables S1 to S9) (16). From the 3304 assem-
bled accessions from a dozen Eurasian germ-
plasm and private collections, we obtained
good-quality Illumina paired-end sequenc-
ing data to an average 20× coverage for 3186
grapevine accessions (2237 V. vinifera and
949 V. sylvestris; tables S10 to S13). The
sample selection preferentially included old,
autochthonous, and economically important
varieties to maximize the spectrum of genetic
diversity. We also included genomic data for
339 previously sequenced accessions (266
V. vinifera and 73 V. sylvestris; table S14) in
the analyses (7, 8, 17), producing the final
cohort of 3525 grapevine accessions (2503
V. vinifera and 1022 V. sylvestris). The align-
ment of the Illumina reads to the VS-1 refer-
ence genome identifies 45,624,306 biallelic
single-nucleotide polymorphisms (SNPs) and
7,314,397 biallelic short Indels [≤40 base pairs
(bp); 73.2% shorter than 5 bp] (16), among
which rare alleles (minor allele frequency≤1%)
accounted for the majority (fig. S2 and tables
S15 to S22).

Core accessions differentiate by eight distinct
genetic ancestries

Clones, mutants, synonyms, and homonyms
are common phenomena in grapevine germ-
plasm and collections (18). Using the identity-
by-state sharing pattern estimators, we found
1534 accessions sharing the genetic profile
with at least one other in the cohort, total-
ing 498 distinct genotypes (fig. S3 and table
S23) (16). We kept one accession for each
distinct genotype, corrected misidentified
accessions, and excluded interspecific hy-
brids for a core cohort of 2448 grapevines
(1604 V. vinifera and 844 V. sylvestris; fig.
S3), which remain representative of themajor
viticultural regions (19) in the world (Fig. 1A
and fig. S3).
Principal component analysis (PCA) showed

that V. sylvestris and V. vinifera separately
spread out along the first two axes (total vari-
ance explained: PC1 7.56% and PC2 1.71%),
with both displaying a crude Western Asia to
Western Europe gradient (Fig. 1B and figs. S4
and S5). The PC3 axis (1.26% variance) sepa-
rates V. vinifera individuals according to their
utilization, agreeing with the main table and
wine grapevine clades in the maximum likeli-
hood phylogenetic tree and reticulate phylo-
genetic network (figs. S6 and S7). TheV. vinifera
accessions show a weak isolation-by-distance
correlation (Fig. 1C), suggesting adisconnection
between the viticultural geographic pattern
and the genetic structures in the grapevine
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(20). This observation could be due to the
extensive exchange of superior cultivars across
regions and the subsequent interbreeding
throughout history.
Given the poor resolution of viticultural re-

gions in defining grapevine diversity, we lever-
aged genetic ancestry information from an
unsupervised ADMIXTURE analysis to cate-
gorize core accessions (Fig. 1D and fig. S8) (16).
At K = 2, all V. vinifera accessions contain a
majority east (red) ancestry that matches the
ancestry of the V. sylvestris accessions in the
East Mediterranean region. At K = 8, hierar-
chical clustering of ancestry components iden-
tifies four V. sylvestris groups from distinct
geographic regions: Western Asia (Syl-E1,
84.3% K2), the Caucasus (Syl-E2, 72.7% K6),
Central Europe (Syl-W1, 94.7% K1), and the
Iberian Peninsula (Syl-W2, 69.8% K8; Fig. 1, D
to F). V. sylvestris accessions collected from
other regions show admixed genetic struc-
tures (16). For cultivated grapevines (CGs),
six genetic ancestries could designate six
distinctive groups (CG1 to CG6), all covering
a broad range of viticultural regions (Fig. 1,
D to F) (16). Accessions with pure or close to
pure ancestries (fig. S9) (16) helped to ascribe
names to these groups as Western Asian table
grapevines (CG1, 73.9% K2), Caucasian wine
grapevines (CG2, 66.4% K6), muscat grape-
vines (CG3, 87.7% K5), Balkan wine grapevines
(CG4, 69.9% K4), Iberian wine grapevines
(CG5, 68.8% K7), and Western European
wine grapevines (CG6, 68.4% K3). The ad-
mixed V. vinifera accessions showed dif-
ferent combinations of genetic ancestries
(fig. S9). The four V. sylvestris and six V.
vinifera groups, supported by archetypal
analysis at K = 8 (fig. S10), formed identi-
fiable clusters in the PCA plots (Fig. 1G and
fig. S4) and were thus suitable for population
genomic investigations.

Separation of V. sylvestris ecotypes
in Pleistocene
According to the genetic ancestries and the oc-
cupied ecological niches in the western Eurasia
continent, we designateV. sylvestris accessions
inWesternAsia and theCaucasus as the eastern
ecotype (V. sylvestris eastern ecotype, hereafter
Syl-E) and accessions in Central Europe and
the Iberian Peninsula as the western ecotype
(V. sylvestris western ecotype, hereafter Syl-W)
(Fig. 2A). The large between-ecotype fixation in-
dex values [e.g., Syl-E1 versus Syl-W1, pairwise
population fixation index (FST) = 0.340] and the
small within-ecotype fixation index values (Syl-E1
versus Syl-E2, FST = 0.101; Syl-W1 versus Syl-W2,
FST = 0.072; fig. S11 and table S26) support this
designation. Both nucleotide diversity (p) and
individual heterozygosity show that the west-
ern ecotype (especially Syl-W1) has significantly
reduced variation compared with its eastern
counterpart (fig. S11). Furthermore, the linkage
disequilibrium decay (LD, r2) was much slower
in Syl-W (1.0 to 1.6 Kb at half of maximum r2)
than in Syl-E (400 to 600 bp at half ofmaximum
r2; fig. S12). These data demonstrate that the
eastern ecotype retains more genetic diversity.
Demographic inference with folded SNP

frequency spectra reveals an ancient population
bottleneck in Syl-E ~400,000 to 800,000 years
ago and in Syl-W ~150,000 to 400,000 years ago
(Fig. 2B and fig. S13). This Pleistocene period,
characterized by changing climate cycles (21, 22),
also witnessed the deduced population split
(median time ~200,000 to 400,000 years ago)
between the two ecotypes (Fig. 2C). The slow
descent of the split line suggests that the
geographic isolation process was gradual (fig.
S13). At ~56,000 years ago, the population split
between Syl-E1 and Syl-E2 occurred during
the last glacial cycle (11,700 to 115,000 years
ago), when the global climate trended toward
dryer and colder conditions (23). Close to the

time of the Last Glacial Maximum (LGM;
~21,000 years ago), V. sylvestris subgroups
experienced a second population bottleneck
(~40,000 years ago), with effective population
sizes (Ne) reaching a minimum of 10,000 to
40,000 (Fig. 2B and fig. S13). After this result,
ecological niche modeling predicts that the
areas with suitable environmental conditions
for Syl-E and Syl-W (suitability > 0.75) remained
connected at the Pleistocene Last Interglacial
(~130,000 years ago) (fig. S14) but became
entirely separated at the LGM (Fig. 2D). The
post-bottleneckNe rebound was steeper in the
Syl-W accessions, but the numbers decreased
to lower levels in recent times (Fig. 2B and fig.
S13). This result agrees with the reduced ge-
netic diversity in Syl-W and the abrupt pop-
ulation split between Syl-W1 and Syl-W2 at
~2500 years ago.

Dual origin of V. vinifera at the advent
of agriculture

The wet climate in the Early Holocene (11,700
to 8300 years ago) (24) facilitated the expan-
sion of suitable habitats for Syl-E, resulting in
a large geographic span from Central Asia
to the Iberian Peninsula (Fig. 2D). This ex-
pansion supports the eastern origin and sub-
sequent continental dispersal of V. vinifera.
Because CG1 shares the main ancestral com-
ponent with Syl-E1 and CG2 with Syl-E2 (Fig. 1,
D and F), the possibility of two domestication
events becomes evident. Indeed, both CG1 and
CG2maintain the highest genetic diversity and
manifest the quickest LD decay among all CG
groups (figs. S11 and S12). Furthermore, they are
less differentiated from their corresponding
wild ecotypes (Fig. 3A and fig. S11). The Akaike
information criterion (AIC)–basedphylogenetic
selection also prefers a dual origin treemodel
(fig. S15), which agrees with the outgroup f3 sta-
tistics biplots that CG1 and CG2 are genetically
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closer to Syl-E1 and Syl-E2, respectively (Fig.
3B, fig. S15, and table S27). The population
split lines of CG1/Syl-E2 and CG2/Syl-E1 pairs
resemble that of Syl-E1/Syl-E2 and differ from
those of CG1/Syl-E1 and CG2/Syl-E2 pairs (Fig.
3C and fig. S16). These data collectively support
a dual origin of V. vinifera and reject the
popular theory of a single primary domestica-
tion center (10, 11). Both CG1/Syl-E1 and CG2/
Syl-E2 population pairs separated quickly
(Fig. 3C), which is compatible with a clean-
split scenario. We estimate the median popu-
lation split time to be ~11,000 years ago (95%
confidence interval: ~10,500 to 12,500 years ago)

for both pairs, suggesting that the domestica-
tion events took place concurrently around the
advent of agriculture. Because CG1 and CG2
separately represent table andwine grapevine
ancient genetic backgrounds (K2 and K6;
fig. S9), the dual origin rejects the assump-
tion that wine grapevines predate table grape-
vines (7, 10, 11).

Dispersal of grapevine domesticates along
human migration routes

The geographic distributions of CG1 and CG2
cultivars across Eurasia and North Africa cor-
respond to vastly different human migration

routes for the two grapevine groups (Fig. 3D).
The CG2 cultivars were mainly confined to
both sides of the Caucasus Mountains, with a
limited dispersal into the Carpathian Basin
by the northern Black Sea. This result con-
trasts with previous models implying that CG2
played a central role in the formation of wine
grapevines in Europe (3). Instead, CG2 repre-
sents a local domestication effort that had a
minor impact on grapevine diversification. By
comparison, the dispersal of CG1 in four direc-
tions spanned Eurasia and North Africa. First,
the eastward expansion through Central Asia
into India and China follows the Inner Asian
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Fig. 2. Population history of V. sylvestris ecotypes. (A) Geographic isolation
and population separation of V. sylvestris ecotypes. Pie charts show mean
ancestry proportion at K = 8. Same color scheme as in Fig. 1B is used. (B)
Demographic histories of V. sylvestris populations deduced from Stairway Plot 2.

Lines indicate medians with 75% and 95% confidence intervals. (C) Population
split times among ecotypes with MSMC2. Red bars indicate medians with 95%
confidence intervals. (D) Ecological niche modeling of the suitable habitats for V.
sylvestris ecotypes. The color scale shows suitability score.

Fig. 1. Genetic diversity of global core V. sylvestris and V. vinifera
accessions. (A) Geographical locations of the 2448 core grapevine
accessions. (B) PCA according to major viticultural regions. Large square/
circle highlights median position. Star shows VS-1 position. (C) Isolation-
by-distance test of V. sylvestris and V. vinifera accessions. Linear regression

with 95% confidence interval is shown. (D) ADMIXTURE clustering of the
accessions. (E) Geographic locations of the accessions in each group.
Gray represents minor locations. (F) Average proportion of major genetic
ancestries in grapevine groups. (G) PC2 versus PC3 projection according to
grapevine group.

RESEARCH | RESEARCH ARTICLES

EMBARGOED UNTIL 2PM U.S. EASTERN TIME ON THE THURSDAY BEFORE THIS DATE:



Mountain Corridor, a path that also witnessed
the exchange of other crops (i.e., wheat, barley,
and millet) between the West and the East
(25). Second, the northbound expansion could
mirror the early cultural contact of West-
ern Asia over the Zagros mountains with the
Caucasus (26, 27). Third, the northwest ex-
pansion through Anatolia into the Balkans
bespeaks the spread of farming into Europe
(28, 29). Finally, a westward expansion moved
across the North African coastline to reach
Morocco (30). Even though grapevine domes-

ticates followed the trails of past humanmigra-
tion, the timing and dispersal details require
paleogenomic data for delineation.

Shared and unique domestication signatures in
CG1 and CG2 grapevines

Given the dual origin scenario, we investigated
domestication signatures in both Syl-E1/CG1
and Syl-E2/CG2 group pairs by selecting geno-
mic regions that display increased nucleotide
diversity differences and population differen-
tiation (both top 5%; Fig. 3D). This method

yields 1140 domestication selective sweep genes
in 132 regions for CG1 and 887 genes in 137
regions for CG2 (table S28), among which only
189 genes in 31 regions exist in both groups
(table S29).Most shared signals are on chromo-
somes 2 and 17, confirming previous find-
ings that the selection on flower sexualmorphs
(sex determination region, SDR), berry skin
color (VvMybA gene cluster), and berry de-
velopment (SDH gene cluster) were of great
importance during grapevine domestication
(8, 11). In addition, our analysis identifies
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shared domestication genes that possibly
underlie grapevine growth (e.g., NPF), phys-
iology (e.g., FER4), fruit set (e.g., the GA2OX
gene cluster), and resistance to biotic/abiotic
stress (e.g., FER4, the PPR gene cluster, and
the RNF181 gene cluster) [see (16) for gene
descriptions].
As expected for dual domestications, most

selective sweep signatures in CG1 and CG2 are
unique and target distinctive chromosomal re-
gions (Fig. 3E). Even though CG1 and CG2 cor-
respondingly represent table andwine grapevines,
many unique signatures seem to suggest a con-
vergent selection mechanism targeting different
aspects of common domestication traits. An
obvious example is the improvement of berry
palatability through the reduction of alkaloid
biosynthesis (the MecgoR gene cluster in CG1
and the TR2 and SSL gene clusters in CG2) and
the enhancement of carbohydrate metabolism
(SWEET17 in CG1 and PFKFB1 in CG2). Other
examples include perceived berry desirability
(the BEAT gene cluster for floral scent in CG1
and the UFGT gene cluster for berry color in

CG2) and response to environmental stresses
(UPL6 in CG1 and WAK in CG2). These find-
ings suggest that the initial cultivation of CG1
and CG2may have been to serve early humans’
caloric and micronutrient needs. The selection
of genetic features suitable for winemaking in
CG2 couldhave been serendipitous, and theprac-
tice of winemaking with CG2 (e.g., 8000 years
ago) (14) possibly postdates grapevine domes-
tication. Because gene annotation depends
onhomology-based inference, it shouldbenoted
that many genes mentioned here need further
verification in grapevines.

Wine grapevine diversification in Europe

Because the CG1 early domesticates dispersed
into Europe through Anatolia, a crucial ques-
tion concerns the diversification history of
European wine grapevines in the ensuing
millennia. In particular, the shared areas
of suitable habitats for Syl-E and Syl-W in
the early Holocene (black area in Fig. 2D)
formed an ecological foundation for the
genetic exchange between CG1 and local

refugia Syl-W accessions in the coastal re-
gions of the northern Mediterranean Sea and
the southern Black Sea, the Iberian Peninsula,
and an area corresponding to present-day
western France. It is therefore important
to examine where and how distinct grape-
vine genetic ancestries (CG3 to CG6) formed
with relevance to Syl-W introgression (10, 11).
We have chosen cultivars in each group
with at least 75% major ancestry (and with an
average Syl-W ancestry in each V. vinifera
group <3%) to perform population analyses.
This selection rules out many old varieties
(i.e., ‘Lambrusco’ cultivars deriving about
half of their ancestries from Syl-W; fig. S9),
which likely showcase secondary diversifica-
tion efforts after the distinct ancestries had
been established. The TreeMix analysis finds
one migration edge that points from Syl-W to
a population ancestral to CG3 to CG6 (esti-
mated weight, 0.114; Fig. 4A and fig. S17),
suggesting an ancient introgression event
occurred before the diversification of all
European grapevines. An additional migration
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edge also points from Syl-W to CG6 (estimated
weight, 0.292), which implies an independent
introgression event unique to Western Euro-
pean wine grapevines in the past. Various
combinations of D-statistics testing the gene
flow from Syl-W into CG groups (Z score > 3.0,
adjusted P < 4.17 × 10−5; Fig. 4B and table S31)
support this introgression history. Additional-
ly, gene flow from Syl-W into CG3 to CG6
inferred from Momi2 align with their corre-
sponding divergence from CG1, further sup-
porting the introgression history (Fig. 4C). The
estimated median divergence times date the
creation of muscat grapes (CG3) to 10,500 years
ago, Balkan wine grapes (CG4) to 8070 years
ago, Iberian wine grapes (CG5) to 7740 years ago,

andWestern European wine grapes to 6910 years
ago (Fig. 4D). These stepwise diversification
times agree with the historical migration of
Anatolian farmers into Europe (26, 29, 31, 32),
substantiating the role of viticulture in forming
Neolithic agricultural societies.
The migration edge weights, f4 ratio, and

Momi2 estimates collectively show that an-
cient introgression from Syl-W accounts for
~11.4 to 18.0% of the CG3 to CG6 genomes
(Fig. 4 and table S30). In addition, at least
one other independent introgression event
contributed ~25.0 to 30.0% additional Syl-W
to the CG6 ancestry. We have screened the
introgression tracts in CG3 to CG6 by choos-
ing the genomic windows with the top 1%

df and fdM values (fig. S18). Ten shared re-
gions among the CG3 to CG6 groups con-
tain genes that are putatively involved in
plant immunity (e.g., CYSK), abiotic stress
response (e.g., GBA), and carbohydrate me-
tabolism (e.g., TPS/TPP) (table S31). This
result agrees with the proposal that intro-
gression helps grapevines adapt to new en-
vironments and become more suitable for
winemaking (10, 11).

Genetic analyses of domestication and
diversification traits
Hermaphroditism: origin of H2 haplotype

The transition fromdioecy inV. sylvestris (male,
M/f; female, f/f) tohermaphroditisminV.vinifera
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is the most prominent phenotypic change
during domestication (33). It involves recom-
bination events between M and f around a se-
lective sweep region on chromosome 2 known
as the SDR (Fig. 5A). Previous studies have
identified two major hermaphroditic haplo-
types (H1 and H2) and four hermaphroditic
genotypes (H1/f, H2/f, H1/H1, and H1/H2)
from select cultivars (33), but the recombi-
nation history remains unclear. The analysis
of our grapevine cohort reveals five recombi-
nation sites in the SDR (Fig. 5B), which not
only confirms known genotypes but also iden-
tifies newminor haplotypes (male variant Mv,
female variant fv, H3, H4, and H5) and geno-
types (Mv/f, M/H1, M/H5, H1/fv, H5/f, H4/f,
H2/H2, and H2/H3) in both wild and culti-
vated grapevines (Fig. 5B and table S32).
Among all SDR haplotypes, M and H1 mani-
fest the highest subtype diversity (figs. S19 to
S22). Furthermore, the SDR genotype statistics
reveal a distribution bias of the H2-containing
SDRs in the Iberian (CG5) and Western Euro-
pean (CG6) grapevines (Fig. 5C and fig. S23). To
investigate this observation, we constructed a

putative recombination history for all known
SDR haplotypes (Fig. 5D), which showed that a
first recombination event between the paren-
tal M and f haplotypes created Mv (site 4), fv
(site 3), H1 (site 2), and H4 (site 1). On this
basis, H1 experienced a second recombination
event with f to produce H3 (site 5) and H5
(site 4), whereas H4 recombined again with f
at site 5 to bring aboutH2. Because three Syl-E
V. sylvestris (IS164, IS167, and IS180) and 11
V. vinifera accessions in the cohort contain
H4 (Fig. 4G), a likely scenario supports a west-
ward dispersal of H4 after human selection to
reach the Iberian Peninsula [e.g., in extant old
Iberian cultivar ‘Malvasia Fina’ (PO153)], where
H2 originated from H4 through secondary
recombination and later became dominant
during the diversification of Iberian andWest-
ern European cultivars.

Muscat flavor: Trait selection may reduce
grapevine fitness

Muscat grapevine is unique for its floral aromas,
which result from a hard-to-define concoction
of monoterpenoids in the fruit (34). Given the

broad geographic distribution (fig. S24) and
ancient history of muscat grapevines, it is not
easy to pinpoint the center of origin. However,
Momi2 estimate predicts a population split
from CG1 at ~10,564 years ago (Fig. 4C), sug-
gesting an origination site within the bound-
ary of Western Asia. This scenario agrees with
the relatively low FST values and sizeable gene
flow with CG1 (Fig. 4 and fig. S11). The CG3
group also shows low genetic diversity and
high LD extent comparedwith the others (figs.
S11 and S12). One possible reason is the grad-
ual loss of ancient CG3 cultivars inAnatolia and
the surrounding regions throughout history
(fig. S24). Even though the muscat aroma is a
complex trait, genome-wide association anal-
ysis based on a binary differentiation reveals
18 SNP signatures on chromosomes 5 and 18
(fig. S24 and table S33). This set includes a
nonsynonymous SNP Chr5:19419686 in the
VvDXS gene linked to the trait (34). Examina-
tion of the genotype at this locus shows that
108 of the 134 muscat grapevines (including
‘Muscat Hamburg,’ ‘Königin der Weingärten,’
and ‘Muscat of Alexandria,’which are commonly
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used as parental cultivars) are heterozygous
(G/T), and only eight individuals are homo-
zygous (T/T) for the alternative SNP (exact
test for Hardy-Weinberg equilibrium, D =
20.68, P = 2.01 × 10−13). Additionally, most
grapevines without muscat aroma are homo-
zygous for the reference SNP (G/G; 1451 of
1468; exact test for Hardy-Weinberg equilib-
rium, D = 0.049, P = 1.00). This result sug-
gests that selection on this allele might have
put a constraint on grapevine fecundity, there-
by preventing the alternative SNP from reach-
ing fixation.

Berry skin color: New genes associated
with white grapes

The emergence of white grapes from their red-
berried congeners is an essential domestica-
tion episode in viticulture history. The color
change results from a reduction of anthocyanin
synthesis in berry skin cells, where the expres-
sion of proposed master regulators such as
VvMybA decreased significantly in select culti-
vars because of a Gret1 retrotransposon (35),
nonconservative exonicmutations (36), or large
deletions in the locus (37).Weperformedgenome-
wide association analysis on this large grape-
vine cohort (fig. S25, A and B) and identified
multiple significant SNPs across the genome
(fig. S25C). The most prominent peak spans a
broad genomic region from 3.51 to 16.05 Mb on
chromosome 2, overlapping the VvMybA locus.
Among all significant exonic SNPs in this region
(table S34), nonsynonymous SNPs with the
smallestP values localize to two uncharacterized
genes outside the VvMybA locus (fig. S25D),
the putative protein functions of which are
acylaminoacyl-peptidase (Vvsyl02G000229) and
lysine-specific demethylase (Vvsyl02G001064).
These SNPs are overwhelmingly homozygous
for the reference allele in white grapes and are
heterozygous in red grapes (fig. S25E). We
validated the SNPs in red-berried V. sylvestris
accessions to account for possible false pos-
itives and confirmed their genotypes as being
predominantly heterozygous (fig. S25E and
table S34). By comparison, significant exonic
SNPs in VvMybA genes [including Chr2:5116947
G/T reported previously in (36)] show shared
genotypes between white grapes and the
V. sylvestris accessions (fig. S25E). It is unclear
how Vvsyl02G000229 and Vvsyl02G001064
might regulate anthocyanin synthesis, but
these results demonstrate that exonic muta-
tions in the two genes are better predictors
of berry skin colors. Furthermore, the heter-
ozygous SNP states in V. sylvestris accessions
suggest that the white berry alleles existed in
natural wild populations before grapevine
domestication.

Discussion

Our systematic genomic survey of V. sylvestris
and V. vinifera accessions paints a defined pic-

ture of grapevine evolutionary history, which
echoes key events in the history of world climate
changeandhumanmigration (Fig. 6). ThePleisto-
cene erawitnessed the continuous fragmentation
of habitats, the decline of effective popula-
tion size, and the separation of ecotypes for
V. sylvestris. It is highly likely that modern
humans extensively used grapevines as an
energy source from the late Pleistocene, but
the harsh climate was not suited for agricul-
ture (38). As the climatic conditions amelio-
rated at the Pleistocene-Holocene transition,
the grapevine, with its relatively stable peren-
nial yield, unsurprisingly became one of the
earliest candidates for domestication. The
dual events underpin the model that plant
domestication occurs in large, culturally con-
nected areas over a long time (39), but the
domestication time gap remains between ge-
nomic inference and archaeological evidence
(table S35 and figs. S26 and S27) (16). The
diverse SDR haplotypes suggest that an early
goal could be the conscious selection (40) and
propagation of rare, naturally occurring her-
maphroditic individuals from the V. sylvestris
population because they allow mass planta-
tion without male plants. The selection on
phenotype, but not on genotype, also implies
that the different hermaphroditic haplotypes
were subject to strong genetic drift, which is
supported by the high frequency of H1 and
the almost extinct H4 in extant cultivars. The
Mesolithic and Neolithic periods also saw the
early dispersal and diversification of grape-
vines such that unique ancestries emerged in
the Balkans, Iberia, and Western Europe with
the help ofV. sylvestris introgression into CG1.
This event mirrors early farmer migration in
Europe, consolidating the role of viticulture in
forming sedentary societies. A higher level of
cultural exchange characterizes the last stage
since the Bronze Age and the trading of su-
perior grapevine cultivars along trade routes.
This is especially evident in the plethora of
Italian cultivars with three or more genetic
ancestries, but unfortunately poses a chal-
lenge to disentangle the genealogical history
of each grapevine cultivar (20). Finally, genet-
ically reliable wild grapevines from Central
Asia, a region battered by climate change
and social instability for the past few mil-
lennia, are no longer available to test Vavilov’s
theory for a diversity center or a hypothet-
ical turnover of grapevine types caused by
Islam conversion in the region. Paleogenomic
datamay help to resolve these questions in the
future.
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HEMATOPOIESIS

USB1 is a miRNA deadenylase that regulates
hematopoietic development
Ho-Chang Jeong1,2†, Siddharth Shukla3,4†‡, Wilson Chun Fok1,2, Thao Ngoc Huynh3,4,
Luis Francisco Zirnberger Batista1,2*, Roy Parker3,4*

Mutations in the 3′ to 5′ RNA exonuclease USB1 cause hematopoietic failure in poikiloderma with
neutropenia (PN). Although USB1 is known to regulate U6 small nuclear RNA maturation, the molecular
mechanism underlying PN remains undetermined, as pre-mRNA splicing is unaffected in patients.
We generated human embryonic stem cells harboring the PN-associated mutation c.531_delA in USB1
and show that this mutation impairs human hematopoiesis. Dysregulated microRNA (miRNA) levels in
USB1 mutants during blood development contribute to hematopoietic failure, because of a failure
to remove 3′-end adenylated tails added by PAPD5/7. Modulation of miRNA 3′-end adenylation through
genetic or chemical inhibition of PAPD5/7 rescues hematopoiesis in USB1 mutants. This work shows that
USB1 acts as a miRNA deadenylase and suggests PAPD5/7 inhibition as a potential therapy for PN.

P
oikiloderma with neutropenia (PN) is
an autosomal-recessive bone marrow
failure (BMF) syndrome with marked
clinical overlap with dyskeratosis con-
genita (DC) (1). However, unlike patients

with DC, telomeres are not shortened in pa-
tients suffering from PN, providing a distin-
guishable feature for the correct diagnosis of
PN (2). PN patients harbor homozygous or
compound heterozygous mutations in the hu-
man gene C16orf57, which encodes the con-
served 3′ to 5′ RNA exonuclease U6 biogenesis
1 (USB1) (2–5). USB1 is required for the pro-
cessing of U6 and U6atac small nuclear RNAs
(snRNAs), and some splicing defects are ob-
served when using yeast and zebrafish models
of USB1 deficiency (6–10). However, lympho-
blastoid cells from PN patients do not exhibit
reduced U6 snRNA levels and have normal
pre-mRNA splicing (8). These results establish

USB1-mediated PN as a singular BMF syn-
drome, in which the underlying genetic cause
has been identified but the molecular mecha-
nisms leading to tissue failure are unknown.

USB1 mutant hESCs have impaired
hematopoietic development

To investigate the role of USB1 in a physiolog-
ical context, we utilized CRISPR-Cas9 to create
human embryonic stem cells (hESCs) contain-
ing a frequently occurring c.531_del_A loss-of-
functionmutation in the USB1 gene (hereafter
referred to as USB1 mutant) (fig. S1, A and
B). These USB1 mutant hESCs have normal
karyotype (fig. S1C), have normal growth rate
(fig. S1D), are pluripotent (fig. S1E), and dis-
play normal telomere length (fig. S1F), indicat-
ing that a clinically relevant USB1 mutation is
not deleterious in undifferentiated hESCs.
To elucidate the role of USB1 during hemato-

poiesis, we performed serum-free hematopoietic
differentiations (11–15) to derive hematopoietic
progenitor cells from hESCs (Fig. 1A). Gene
expression analysis confirmed the efficiency
of this protocol, with silencing of pluripotency
markers and efficient formation of hemato-
poietic lineages at the end (day 30) of differen-
tiation (fig. S2A). USB1 mutant cells did not
show any impairment during early stages of
hematopoietic differentiation, including the

formation of mesoderm (day 3; fig. S2B), and
CD34+/CD43− hemogenic endothelium (HE)
populations (day 8; fig. S2C). However, the
formation of CD45+ hematopoietic progeni-
tors (day 16) was decreased in USB1 mutant
cells compared towild-type (WT) cells (fig. S2D),
and hematopoietic colony potential analysis
showed compromised colony formation in
USB1 mutant cells (Fig. 1B). Consistent with a
role of USB1 in regulating hematopoiesis, USB1
mRNA levels increased about threefold in ma-
ture blood cells compared to undifferentiated
hESCs (Fig. 1C). These observations indicate
that loss-of-function mutations in USB1 nega-
tively influence hematopoiesis.
As PN is usually associated with severe non-

cyclic neutropenia (1), we specifically analyzed
the potential of neutrophil formation in WT
and USB1 mutant cells. USB1 mutants had
reduced formation of CD15+/CD66b+ lineages,
indicating abnormal neutrophil development
(Fig. 1D and fig. S2E). The conditional expres-
sion of the WT USB1 protein in USB1 mutants
with the use of a Dox-inducible system (fig.
S2F) rescued the hematopoietic potential of
these cells (Fig. 1E). These results recapitulate
major clinical manifestations of USB1 defici-
ency and establish USB1 as an important reg-
ulator of hematopoiesis.

Mutations in USB1 lead to increased
3' adenylation but do not affect levels
of the U6 snRNA in human stem cells and
hematopoietic progenitors

To determine the mechanism by which USB1
regulates hematopoiesis, we initially exam-
ined if the USB1 mutation affected U6 snRNA.
Northern blot analysis of WT and USB1 mu-
tant cells at undifferentiated (D0) and hema-
topoietic progenitor (D16) stages showed no
reduction in the levels ofU6 andU6atac snRNAs
in USB1 mutants (Fig. 1F and fig. S2, G andH).
However, we observed that U6 and U6atac
snRNA from USB1 mutant cells were slightly
longer compared to WT cells (Fig. 1F), indicat-
ing aberrant posttranscriptional processing of
these snRNAs similar to what is observed in
patient-derived cells (8).
Sequencing the 3′ end of U6 snRNA from

WTandUSB1mutant cells revealed two changes.
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