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Abstract: The easy implementation of a nature-based solution (NBS) to address a prompt stabilisation
of burnt areas may be crucial in the Mediterranean forest environment. A plot scale hydrological and
ecological survey was conducted in a pine forest of the Aspromonte Massif (southern Italy) affected
by a high fire severity in summer 2021. The hydrological response to 30 rainfall event groups is
analysed by monitoring nine sloping plots distributed into three plot blocks (forested according to
the pre-fire situation, burnt with randomly directed felled logs and burnt with manually felled logs
redirected along contour lines). The hydrological response of bare soil is mitigated by about 30%
through the combined effects of the NBS and the vegetation cover by pioneer species. Although
the regeneration of Pinus radiata is scarcer in the arranged plots, the spontaneous vegetation, once
gone, prepares better edaphic conditions for the triggering of forest dynamics assured by the auto-
succession of Pinus radiata. In terms of woody mechanical resistance, NBS durability is compatible
with the time required for seedlings to regenerate the forest ecosystem. The results achieved so
far encourage further research on higher slopes and complementary aspects (vegetal and animal
biodiversity, economic factors, etc.).

Keywords: slope stabilisation; Mediterranean ecosystem; forest resilience; self-regeneration; erosion
barriers; nature-based solutions; hydrologic response; wood durability; national law

1. Introduction

Wildfires in the Mediterranean environment have always been a crucial factor for
forest ecosystem protection and regeneration [1–4]. Since the second half of the last century,
concurrently with the depopulation of rural areas and the abandonment of land manage-
ment practices as well as the expansion of the forest–urban interface, the frequency, size
and magnitude of this phenomenon have increased significantly [5,6].

In Europe, in the last few decades, about 65,000 fires per year have affected a forested
area of about 500,000 ha. Over 95% of fires in the Mediterranean basin are caused by
humans, with extreme events increasingly (every 2–3 years) often showing extraordinary
characteristics in terms of size and complexity, as occurred in Italy in 2021 within an area of
more than 10,000 ha in a single episode [7–9].

A high-intensity/-severity wildfire drastically modifies forest structure [10–15], bio-
diversity and species composition [16–18] and alters the physico-chemical properties of
the soil [19–22]; moreover, the drastic reduction in vegetation exacerbates the hydrologi-
cal response and the related risks [23–27]. Therefore, the rapid and extensive change in
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land use by extreme wildfires represents both an ecological and environmental problem,
particularly in the morphologically complex territories of the Mediterranean basin, where
large areas are prone to instability phenomena [28,29]. Furthermore, the protection and
function of the Mediterranean scrub are also compromised when it is affected by fire and is
no longer able to provide its important resources in terms of ecosystem services [30].

As is well known, forest typology, structure and composition can influence the ecosys-
tem exposure to wildfires. For example, reforestation by monospecific species, especially
if not properly managed, represents one of the most vulnerable conditions. Large moun-
tain areas in the Mediterranean basin have been artificially reforested, in particular with
conifers [31], in order to mitigate the hydrogeological instability. In most cases, these forest
stands were abandoned and no silvicultural treatment was applied. Today, they are often
characterised by low levels of ecological functionality and resilience [32]; moreover, the
marked tree density makes the woody mass more vulnerable to wildfires and other external
disturbances, particularly in a global change scenario [33].

The Calabria region (southern Italy) where the present investigation was carried out,
represents an interesting case study, as it combines several critical factors representing one
of the highest levels of vulnerability in the Mediterranean area: the widespread presence of
artificial coniferous forest (about 150,000 hectares of reforestation), a worrying increase in
the phenomenon of forest fires of anthropic origin, a peculiar rainfall regime (intense rain
events typical of the so-called semi-arid Mediterranean climate) and a geo-lithological and
tectonic predisposition to instability.

Restoration of fire-affected forests is a very complex and expensive operation [34,35].
Moreover, in Italy, forest fire regulations drastically limit remediation works with public
funds (Law No. 353/2000). Natural regeneration, on the other hand, takes a very long
time and is not compatible with the immediate need to protect the bare soil [23–27,36]. In
the Mediterranean climatic environment, moreover, the removal of the forest due to fire is
compounded by the disappearance of herbaceous vegetation due to the long dry period,
thus exposing the uncovered soil to erosive processes [5,37–44], especially coinciding with
the first heavy autumn rains [5]. Some authors demonstrated that the reduction in tree
cover caused by fires increases runoff and sediment production from 1 to 4 orders of
magnitude [5,45–51].

Therefore, a non-invasive and compliant naturalistic technique should be advisable
both to stabilise slopes and accelerate the start of natural regeneration to restore the protec-
tive function of the forest as soon as possible [36]. For this reason, the use of nature-based
solutions appears appropriate to restore physical, biological and ecological processes val-
orising an integral approach to the ecosystem restoration. Nature-based solutions may be
low-cost, minimise the procedures for their implementation and maintenance and do not
have environmental impact [52–54]. These aspects make the nature-based solution suitable
and easy to implement even in the case of legal restrictions. In short, the “bioengineer-
ing techniques” that utilise inert natural material (e.g., stones and wood) to favour the
short-term establishment of the living biological component (e.g., vegetation) are further
enriched in meaning as they provide ecosystem services. In this perspective, many investi-
gations have shown the effectiveness of the log erosion barriers (LEBs) in the Mediterranean
environment [5,6,21,37–44,55–57].

However, most studies, by focusing mainly on only one aspect (e.g., soil erosion
or vegetation response separately), highlight the need for in-depth multidisciplinary ap-
proaches aimed at investigating the effects of measures on the whole ecosystem in order to
understand the dynamics that govern ecological functionality and resilience in terms of
the self-regeneration capacity. A first attempt was undertaken by Bombino et al. [58] in the
Aspromonte Massif (southern Calabria), demonstrating a significant reduction in runoff
and sediment yield by using in situ collapsed burnt trees, manually redirected along the
contour lines immediately after the extreme event; the hydrologic study is also integrated
with some preliminary observations on the regeneration capacity of the forest.
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In relation to the above, in order to integrate and extend over time the preliminary
hydrological observation carried out in the Aspromonte Massif and, on the other hand, to
extend the investigation to the other relevant ecological and technical aspects, the present
work pursues the following aims:

- to confirm the effectiveness of the in situ use of collapsed burnt logs manually redi-
rected to reduce the slope and the hydrological response, in order to quickly counteract
the triggering of erosion phenomena (short-term effect);

- to assess, more than 2 years after its implementation, the effects of the naturalistic
measure on the self-regenerative dynamics of the forest ecosystem, in order to restore
the maximum ecological and protective functionality of the woodland over time
(long-term effect);

- to evaluate the durability of the wood barriers also for their implementation in the
bioengineering field, in order to test how long the structural function of the measure
can be prolonged before the forest becomes established;

- to deepen the regulatory aspects concerning the practicability of the remediation
measure.

2. Materials and Methods

The logical path in the survey approach is illustrated in Figure 1. According to the aims
of the work and in order to verify the effectiveness of the measure, the various actions have
both short- and long-term implications, as separated by the dotted line. The activities for
which preliminary results have already been obtained (one year after the event, 2022) are
shown in the grey boxes; in the present work, they have been further monitored covering
an additional year of observation in continuity with the methodologies already available.
The new investigations planned to give an integrated and multidisciplinary approach to
the investigation are, instead, highlighted by the yellow boxes.
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Overall, the activity involved the following steps:

- description of the study area and characterisation of the extreme wildfire event that
occurred in 2021 in the Aspromonte Massif;

- description and characterisation of the experimental site;
- collection and elaboration of data concerning (i) forest regeneration, (ii) hydrological

response (runoff and sediment yields) and (iii) biotechnical and worksite aspects.

2.1. Characterisation of Extreme Wildfire Event That Occurred in 2021 in the Aspromonte Massif

In the present study, the term “extreme wildfire” refers to an event with high severity,
affecting the highest forest plane and causing 80–100% of the crowns to be scorched [59,60].
Calabria is a peninsula-shaped region located at the southernmost part of Italy, with 90%
of territory being mountainous or hilly. The territory, due to its peculiar geo-lithological,
morphological and climatic characteristics, is among the most vulnerable and unstable in
the Mediterranean basin [58,61–63]. From the climatic point of view, the mountainous areas,
located a short distance from the sea, have a typical climate with frequent snow during
the winter. The coastal areas have a Mediterranean climate: the Tyrrhenian coast (along
the west) is mainly exposed to the winds of the Mistral (North–West) and is cooler and
rainier than the Ionian one (east coast), which is mainly exposed to the winds of Scirocco
(South–East) and Gregale (North–East).

To the south of Calabria rises the Aspromonte Massif, much of which falls within
the protected area of the National Park. A large area of Aspromonte National Park (ANP)
was affected by a huge fire season in August 2021: in approximately 10 days more than
five thousand hectares of forest was burnt. In the area where our experimental plots are
located (see next paragraph Section 2.2), a high fire severity has been recorded, with crown
scorch from 80% to 100% (Scheme 1a) [58,64]. More details about severity mapping in
Aspromonte Massif area can be found in an already published paper by one of the authors
of this manuscript [65]. The area under study had never been affected by severe fires,
although in the surrounding mountain zones (also in the Roccaforte del Greco district),
only in 2012, an event of equal severity to that of 2021 burnt approximately 1000 hectares
of forest (always an artificial pine forest). Unfortunately, in the last decades, severe fires in
Aspromonte Massif are becoming more and more frequent, with a recurrence of 5–7 years.
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Scheme 1. Representative photos of (a) the Aspromonte areas affected by the wildfires of summer
2021 and (b) the high density of Pinus radiata forest in Aspromonte.

Within the present investigation, the following methodology was used to map and
quantify the surface affected by fire event. Satellite images and spectral indices were used
for this purpose. Among the different available spectral indices, the Normalised Burn Ratio
(NBR) [66] is widely recognised as effective in discriminating burnt areas [67–70]. Considering
that fire events were concentrated in the first ten days of August 2021, we examined the
fire events, through the code editor environment of the Google Earth Engine (GEE) cloud
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computational platform [71], one cloud-free Sentinel-2 satellite image before (i.e., 8 July
2021) and one after (16 September 2021). For each image, still in GEE environment, we
calculated the NBR index as follow (Equation (1)):

(NIRρ842 − SWIRρ2190)/(NIRρ842 + SWIRρ2190) (1)

The two NBR indices maps, obtained for the pre-fire and post-fire images, were
finally downloaded and imported in the free open-source software QGIS where the burnt
areas were highlighted subtracting pre-fire NBR values from the post-fire ones. The burnt
areas obtained were finally polygonised, obtaining a vector layer representing all the
areas affected by the fire events occurring inside the Aspromonte National Park area for
the investigated period. Moreover, in correspondence with the burnt areas in which the
experimental plots were placed (see next paragraph Section 2.2), the vegetation regrowth
was calculated using the difference in NBR values from images immediately post-fire and
after one and two years. Regrowth maps were made following the classification proposed
by Key and Benson [64,72].

The obtained vector layer with the burnt areas was overlaid with the protection zones
of the National Park (defined by the Italian National Law no. 394 of the 6 December 1991)
and with the layer reporting the real vegetation information.

In particular, a total surface of 5589.27 ha was damaged by fire (Figure 2): 1319.81 ha
within the so-called “A zone”, representing natural reserve areas; 1658.45 ha and 1961.73 ha
for the lower protection zones B and C, respectively. Among the others, the fire mostly
damaged natural pine forests of endemic black pines (886.46 ha; Pinus nigra J.F.Arnold
subsp. laricio Palib. ex Maire). The mountain area, moreover, was subjected to several
reforestation operations over the last 70 years; therefore, it is also characterised by a
high density of artificial forest of Pinus nigra to which is added the Pinus radiata D. Don
(800–1000 per ha with a height ranging from 14 to 20 m and crown diameters from 4 to
7.5 m), non-native species that have, however, become dominant (photo 1b) [58].
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Figure 2. Mapping of burnt areas (a) within the perimeter of the Aspromonte National Park and
(b) in relation to protection zones according to the following zoning nomenclature: A—Strict na-
ture reserve, no human activities allowed except for scientific research; B—General reserve, only
traditional occupations are allowed, and tourism is overseen by the park; C—Planning of tourism
and agro–silvo–pastoral systems authorised by the park; Cs—Special planning authorised by the
park; D—Development areas, includes built-up areas, potentially sustainable activities; Ds—Special
development areas.
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2.2. Description and Characterisation of the Experimental Site

The experimental site is located in Roccaforte del Greco (970 m a.s.l., 38◦03′ N; 15◦54′ E,
Figure 3) characterised by hot Mediterranean climate and semi-arid conditions [73], with
mean temperatures of 5 ◦C in January and 23 ◦C in August, a mean annual rainfall depth
of 1036 mm and monthly rainfall ranging between 13.7 mm in July and 153 mm in Decem-
ber [58].
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Figure 3. The study area located in Calabria, southern Italy.

The experimental site, implemented in September 2021 [58], consists of three plot
blocks representative of the pre-fire conditions (Forested, F), the post-fire conditions with
randomly felled logs (Burnt, B) and with contour-redirected downed logs simulating
the so-called log erosion barriers (Burnt and Rearranged, BR). The pre-fire condition is
represented by a mono-specific artificial reforestation of Pinus radiata D. Don. equal in
age. As already mentioned, the area under study had never been affected by severe
fires in the last 70 years, since the reforestation was carried out; as it has never been
affected by silvicultural interventions, it has a high density (about 70 m2 ha−1). The
average tree height is about 17 m, with an average crown diameter of about 5.3 m. This
situation is representative of a wider mountainous area of the Aspromonte Massif affected
by reforestation since the 1950s, when about 60,000 hectares were reforested (among
others, with Pinus nigra subsp. Laricio and, indeed, Pinus radiata) to mitigate the disastrous
hydrogeological instability that had affected the entire mountainous territory, causing
damage, destruction and loss of life. The set-up and the characteristics of the sub-plots are
summarised in Table 1.

The field surveys were carried out within 17 months, starting one month after the
end of the forest fires and before the autumn rains (September 2021) until January 2023.
Bombino et al. [58] detected in the three plot blocks (through 27 soil samples within 5 cm
topsoil, three per each sub-plot) the main physical–chemical characteristics of the soil:
according to the USDA Soil Texture Classification System, the soil analysed falls into the
category “sandy-loamy”, acid and poor in organic matter, with a high infiltration rate and
a moderate aggregate stability.
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Table 1. Set-up of the plot blocks in Roccaforte del Greco (southern Calabria, Italy).

From the previous work of Bombino et al. [58] Bombino et al., 2023:
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F = forested
B = burnt with randomly felled logs
BR = burnt rearranged with manually redirected downed logs along contour lines.
Down slope: 20 ± 2%
Sub-plot type and measure: Wischmeier and Smith, 22 × 5 m

Delimitation and hydraulic isolation of each sub-plot by aluminium foil inserted into the soil to a depth of 20 cm

Sub-plots B Length of downed logs: 1.5 to 4 m

Sub-plots BR

Length of downed logs: ∼=4 m; average diameter = 33 cm (from 21 to 49 cm)
Downed logs redirected following the contour lines of individual sub-plots and
reallocated at an average downslope distance of 4 m, resulting in partial
fragmentation of the slope path; fixed with wooden stakes. The ratio between the
sub-plot area (110 m2) and the total length of the contour logs was within the
range of 3.9–4.6 m.

Only manual work (for in situ manual
rotation of downed logs, two operators for
few days ha−1) and light equipment
(hammer) were required.
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2.3. Data Collection and Elaboration
2.3.1. Forest Regeneration Aspects

The quantification of natural regeneration of Pinus radiata was carried out one year
after the wildfire (May and June 2022). Each sub-plot was divided into 22 rectangles
of 5 m × 1 m; inside each rectangle, all seedlings born after the fire were counted and
measured, recording their species and height. On the other hand, the vegetation cover
of herbaceous/shrubby species within B and BR plot blocks was monitored over the
time window (2021–2023) and the abundance–dominance index of each species [74] was
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evaluated by grid method [75], in continuity with the previous investigation of Bombino
et al. [58].

2.3.2. Hydrological Aspects

According to the previous methodological approach [58], data on rainfall, runoff and
sediment yields were collected and elaborated.

Rainfall data were recorded at the meteorological station in Roccaforte del Greco (about
3 km away from the experimental site) and summed (except in one case) to overcome the
logistical limitation (distance and impervious mountain environment) that did not make
it possible to follow the hydrological response after each single rainfall event group. The
maximum rainfall intensity (mm h−1) within each event group was calculated. A total of
30 event groups were cumulated (six more than the previous observation, extending the
time window from October 2022 to January 2023, Figure 4).
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Figure 4. Main of rainfall events recorded by the meteorological station located in Roccaforte del
Greco, southern Calabria, Italy.

Runoff volume generated by each of the 30 event groups was collected and measured
inside a tank located at the bottom of each sub-plot as shown in the scheme of Figure 5.
At the same time, sediment dry weight immobilised in the gutter and the wet sediment
concentration of the volume contained in the tank were sampled and treated [58,76], and
finally added to obtain the total amount of sediment yield produced by each sub-plot.
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2.3.3. Biotechnical and Worksite Aspects

In order to evaluate whether the logs ensure their protective effect until the ecosystem
is re-established, the in situ wood durability was evaluated by using two different non-
destructive methods: (i) drilling resistance (DR) measurement by a resistograph© and
(ii) acoustic stress wave techniques by using the microsecond timer device, adopted and
tested to determine the initial state of the in situ felled burnt logs redirected along the
contour lines. From the terminal section of each log, a wooden wheel was taken from which
the density was obtained in the laboratory using the method described by the ISO standard
13061-2:2014.

In order to evaluate the durability of the wood over time, two measurements were
repeated every six months, monitoring the density and velocity of propagation of acoustic
waves in the logs. In particular, the DR test is an indirect way to assess the physical,
mechanical and technological properties of wood [77–81]. The test was conducted in situ
using an IML-Resi PD400 Resistograph (Instrumenta Mechanik Labor GmbH, Wiesloch,
Germany) equipped with a 400 mm long and 3 mm thick steel drill (tip diameter 3 mm
and shaft diameter 1.5 mm) [82]. The test has a high sensitivity for fungal decay and other
wood defects [82,83] and can also be used to predict the density and other elastomechanical
properties of wood [78,81,84–87], which are useful to evaluate the durability of wood.
The Fakopp microsecond timer device (Fakopp Bt. Agfalva, Hungary), instead, uses the
acoustic methodology [88] to evaluate the logs status, generating single-path stress waves
on the trees with a transmission time with a resolution of ±1 µs [82]. These methods
are employed to estimate selected mechanical parameters of material (among others, the
modulus of elasticity) or to detect internal discontinuities in material. The basic parameter
used in non-destructive methods is the velocity of the wave propagation (V), which is
defined by the formula [88]:

V = L/T (2)

where L is the distance covered by the wave (between two points of measurement) and T is
the time needed to cover the distance.

2.3.4. Statistical Analysis

The statistical analyses of data collected were carried out using Jamovi v.2.3.21 (2022).
An analysis of the variance (ANOVA) was performed to determine the effect of the log
arrangement on the natural regeneration by analysing both the number of seedlings and
their height. As the ANOVA indicated, an overall significant effect, the Tukey’s test, was
applied to evaluate the occurrence of significant differences among the pairs. The same
method was used for the analysis of sediment yield and runoff on the effect of vegetation
cover. In addition, the effects of vegetation cover on runoff volume and sediment yield were
assessed by means of an ANCOVA. Sediment yield and runoff were used as dependent
variables applied as fixed factors on the three plots and the two vegetation cover periods,
considering rainfall depth and rainfall intensity as covariates. To determine further details
of the effect caused by vegetation cover on each plot, an ANCOVA post hoc comparison
was carried out using Tukey correction method. Finally, these results were graphed in a box
plot, factorised by plot type, vegetation cover period, rainfall depth and rainfall intensity
according to the following parameters: Plot type (F, B and BR); Vegetation cover periods
were established from September 2021 to June 2022 (phase 1); the second was established
from June 2022 to January 2023 (phase 2). Rainfall depth: 1st category, values between 0
and 35 mm; 2nd category, values between 35 and 70 mm; 3rd category, values greater than
70 mm. Rainfall intensity: 1st category, values between 0 and 10 mm h−1; 2nd category,
values between 10 and 30 mm h−1; 3rd category, values greater than 30 mm h−1.
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3. Results and Discussion
3.1. Assessment of Forest Ecosystem Changes and Dynamics Post-Fire
3.1.1. Pioneer Vegetation

Figure 6 shows the regrowth of vegetation within the investigated area, mapped with
satellite data after one and two years; it highlights a high regrowth dynamic during the
monitoring period. In order to assess in the short term the dynamics of vegetation estab-
lishment post-event, a monitoring of the evolution of pioneer vegetation under different
conditions was carried out for 17 months (Figure 7). The post-fire succession of the sampled
vegetation, as a whole, shows the first step (from September to December 2021) of soil
colonisation by pioneer herbaceous and shrubby species, providing a protective effect
immediately after extreme events. The pattern of spontaneous vegetation growth was
similar in plots B and BR, although a higher intensity was observed in the BR plot (Figure 7).
The succession of pioneer vegetation showed two well-distinguished tendencies. The first
trend, an increase in vegetation, was established after the fire until June 2022, interrupted
only in January and February 2022 by snow cover. The second trend, with a clear decreasing
trend, begins in June 2022 (at rainfall event 22), until the last record obtained (January 2023).
This inflection point provided the breakpoint to establish two time periods of study related
to the effect of vegetation on the processes involved in forest regeneration, which will be
analysed in the following section.
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Later, in the last phase of the study, a characterisation of the vegetation cover of herba-
ceous/shrub species was carried out in order to determine the state of forest regeneration of
the plots under investigation. On the whole, significant post-fire regeneration was detected
in both plots B and BR, emphasising that fire action leads to natural regeneration processes
and that at times, fire acts as an ecological factor regulating natural processes in forest
ecosystems [69–71].

3.1.2. Auto-Regeneration of Pinus Radiata

Pinus radiata seems to regenerate better in the B plot block (with randomly felled logs)
with 1.7 seedlings/m2, while only 0.4 seedlings/m2 were counted in the BR plot block,
with very significant differences (F(3, 6) = 230, 3; p < 0.001); the higher density observed
in B plot blocks (Schemes 2 and 3), however, could create greater competition among new
seedlings resulting in the death of those that fail to establish themselves as they remain
subdued. In the F plot block (used as “control”), no regeneration was observed (Figure 8a),
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indicating that the excessive density of the existing forest not affected by the fire prevented
new plants from appearing. A greater height of the seedlings compared to the BR plot block
(18 cm vs. 15 cm) was detected in B, even if the differences were not statistically significant
(Figure 8b). Finally, a greater hypsometric differentiation of seedlings in the B plot block
was recorded (Figure 9). These results seem to suggest that in the first two years, natural
regeneration in the B plot block (randomly felled logs) is greater than in the BR (redirected
felled logs).
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spreading.
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Scheme 3. Auto-succession process of Pinus radiata (2 years old) within the BR plot block (redirected
felled burnt logs) that emerges once the pioneer vegetation (that suppressed it) is now degraded.
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Overall, a significant post-fire regeneration was detected in the burnt plots (both in B
and BR), highlighting that the action of fire triggers natural regeneration processes. Even
if still preliminary, this evidence confirms the importance of fire as an ecological factor
in the regulation of tree populations in forest ecosystems. A relationship between the
presence of downed logs and the post-fire natural regeneration seems to reinforce what
was already observed [89–91]. The lower regeneration capacity observed in the BR plot
blocks is probably due to the rapid colonisation of herbaceous and shrubby vegetation
occupying areas immediately stabilised after log placement that win the competition to
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gain space and light (Figure 9); this ecological dynamic negatively affected the post-fire
tree regeneration by temporarily interfering with the natural recovery processes.

Pioneer species are characterised by an annual or biennial biological cycle, so they are
destined to disappear over time. Although in the early stages the presence of ephemeral
vegetation discourages natural tree regeneration, it plays an important protective func-
tion by covering the soil, especially when the first rains occur (as will be highlighted in
Section 3.2). In addition, this pioneer vegetation, in its final phase, fertilises the soil by pro-
viding organic matter and creating better soil conditions that help to increase the resilience
of the whole ecosystem, leaving young seedlings with more stable conditions for their
establishment when the more ephemeral herbaceous and shrubby vegetation gradually
disappears.

It is also confirmed that the post-fire vegetation dynamics do not promote an estab-
lishment of new forestry species, inducing a gradual return to the previous state. These
dynamics, as in other studies [92–95], follow the “initial floristic composition” model,
promoting the species already present before the fire with the self-succession of the Pinus
radiata forest.

3.2. Effects on Runoff and Sediment Yield

Throughout 17 months of recording, the natural succession of the pioneer vegetation
showed two clear patterns of plant development. As a result, changes in hydrological
responses and post-fire erosion processes occurred. According to Table A1, the analysis of
the means for the sediment records shows significant changes (p < 0.05) in each of the three
plots compared individually with respect to the vegetation succession in the two periods
analysed. In contrast, runoff did not show changes in any of the plots (Table A1).

Assessing the combined effect of sediment yield in relation to surface runoff, both
periods of vegetation cover resulted in different erosion rates (Figure 10). The second
period of vegetation cover provided lower sediment values in all plots, which may be due
to inter-species competition leading to a higher density of plant root systems, combined
with an increase in bryophytes and the occurrence of biological soil crusts, which produce
a better soil consolidation in response to erosion [96,97]. Quantitatively, the B plot block
showed the highest values of surface runoff and sediment yields, followed by the BR and
F plot block. Observing the values recorded during the second vegetation cover period,
it emerged that the BR plot block provided the lowest erosion rate in relation to surface
runoff (Figure 10).
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To explore the variation in the analysed plots, an ANCOVA was conducted in which
the change in pioneer vegetation cover was related to sediment yield and surface runoff,
using rainfall depth and intensity as covariates. Concerning sediment, significant changes
(p = 0.015) were observed in the different plots in both periods of the vegetation cover
analysed (Table A2), with ‘rainfall intensity’ as the most relevant covariate (p < 0.001). To
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determine in detail how vegetation affects each plots, a post hoc comparison was carried
out (Table A3). In a within-plot analysis, a significant change was observed in sediment
yields in plots B and BR (p < 0.001) due to the increase in pioneer vegetation, which was
not the case in the control plot (p = 0.802) because the vegetation cover remained similar
throughout the study period. A further finding was the effect of the gradient of rainfall
depth and especially rainfall intensity, where rainfall over 70 mm (value 3) and rainfall
intensity over 10 mm h−1 (values 2 and 3) led to changes in sediment yields across periods
1 and 2 of the pioneer vegetation cover (Figure 11).
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Figure 11. Box plot diagram of the sediment yield values in the study plots. Vegetation cover periods
were established from September 2021 to June 2022 (phase 1), and the second was established from
June 2022 to January 2023 (phase 2). Rainfall depth: 1st category, values between 0 and 35 mm; 2nd
category, values between 35 and 70 mm; 3rd category, values greater than 70 mm. Rainfall intensity:
1st category, values between 0 and 10 mm h−1; 2nd category, values between 10 and 30 mm h−1; 3rd
category, values greater than 30 mm h−1.

During the initial period of the vegetation cover (phase 1), significant changes were
found between plots B and BR compared to the control plot F (p < 0.001), although this
scenario changed as the vegetation cover growth progressed (phase 2); no significant
differences in sediment yield were observed in the plot block F compared to plots B and BR
(p = 0.999 and p = 1.000, respectively). These findings indicate that spontaneous vegetation
growth provided greater protection to the soil and hence from the impact of erosion effects.
The comparison between plots B and BR showed no significant changes over the study
period (Table A3), although lower sediment values were observed due to both the effect of
rainfall intensity and higher rainfall amounts (Figure 11).

Regarding surface runoff, there were no significant changes in sediment yield (p < 0.996)
for all the plots in both periods of the vegetation cover analysed (Table A4). The post hoc
comparison (Table A5) showed no significant changes in the within-plot analysis (p-values
of 0.874 for F plot block, 0.896 for B and 0.845 for BR), where the pioneer vegetation growth
did not significantly alter surface runoff; just higher values of rainfall intensity (value 3)
induced within-plot changes (Figure 12). An inter-plot analysis of surface runoff, in which
rainfall and rainfall intensity both played a significant role as covariates (p < 0.001) in the
ANCOVA model, showed significant changes (Table A4). The surface runoff recorded in
plots B and BR compared to plots F remained different in the two vegetation cover periods
analysed (Table A5), particularly at the highest values of rainfall and intensity (Figure 12).
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Lastly, the comparison of runoff between plots B and BR showed no significant changes
over the study period (Table A4).
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These results suggest that the natural regeneration of the forest in our research is
still at an early stage, which is insufficient to allow infiltration dynamics comparable to
the pre-fire period. According to several research findings, the infiltration excess runoff
threshold increases over long periods of time [98–100]; therefore, it requires years after a
forest fire to minimise surface runoff. Such hydrologic effects emphasise the relevance of
actions to rehabilitate hillside properties to minimise the risks of flash floods and debris
flows arising from the generation of excessive runoff [99,100], as well as water pollution
processes [101].

Overall, the results confirm the previous investigations [49], including by extending
the number of event groups from 24 to 30 (January 2023) (Figure A1); of these, events 7 and
23 remain those with the highest values of maximum rainfall intensity (30.6 mm h−1 and
35.4 mm h−1) and cumulative rainfall depth (294.4 mm and 105.4 mm, respectively).

The analysis of runoff and sediment yield data confirms the strong correlations be-
tween runoff and cumulative rainfall depths, as well as between sediment production and
rainfall intensity; the trend of individual plot blocks is also confirmed (Figure A1).

The direct relationship between runoff and precipitation is also confirmed, highlighting
how the combined effect of redirected burnt logs (due to the partial “breaking effect” of the
slope length in the BR plot block) and pioneer vegetation cover (which, taking advantage
of the higher insolation conditions, very quickly colonised the stabilised areas behind the
barriers (Figure A2)) have a positive influence in terms of runoff and soil erosion mitigation
because of reducing the sediment detachment/transport capacity [78,81,84–87].

The effect of vegetation is appreciable in event group 27, showing a cumulative rainfall
height of 169.2 mm (the other events vary between 20 and 60 mm) and a rainfall intensity
of 9.4 mm h−1; although these values are among the highest in the whole monitored period,
the hydrologic response is quite moderate (Figure A1).
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Runoff volume and sediment yield are always lower in the BR plots than in the B plots.
The average reduction (n = 30) was about 25% (standard deviation of 13%, encompassing
events with differences ranging from 5% in event 1 to values above 200% in events 6, 20, 21
and 22) and 24% (±75%).

As already reported by Bombino et al. [49], the first three events are where the smallest
differences are found. This is because immediately after the wildfire, the first rains find
the soil denuded of vegetation and covered with a layer of ash, which drastically reduces
infiltration capacity [76]. This is confirmed by the hydrological behaviour of the BR and
B plots during the first three events showing high values of runoff and sediment yield
even though the rainfall characteristics (rainfall depth and intensity) are not so critical. A
significant reduction in runoff and sediment yields in the BR plots is seen from the fourth
rainfall event onward.

Monitoring the degree of ground cover by pioneer species showed consistently higher
values (34% on average; n = 60) in the BR plots [102]. The combined effect of redirected
logs and vegetation becomes more evident from the 13th event, where, even with the most
intense rainfall events, a drastic decrease in runoff volume and sediment production is
observed (see, for example, events 17, 19, 23, 24 and 27, Figure A2).

3.3. Durability and Mechanical Properties of In Situ Logs

The average wood density determined in the laboratory was 450 kg/m3. From the
first tests conducted in the field with non-destructive techniques, it emerged that with the
resistograms, it is possible to observe how the internal wood (not damaged by fire) has
a high capacity of drilling resistance (DR) because the wood tissues are perfectly intact
(Figure A3a). The resistograms of the fire-damaged logs in the bark portion (Figure A3b)
and below it (Figure A3c), instead, show (already from the first survey) low DRs that
describe a semi-intact portion of wood texture in the first external centimetres, and the
extent of which depends on the severity of the fire suffered by the log.

What has been obtained is demonstrated by the first log tests carried out with the
Microsecond Timer (December 2021), which show high acoustic wave velocities and,
therefore, an almost intact woody structure (Table A6).

From the first surveys, it can be observed that the damage suffered by the burnt logs
was concentrated only in the external part, i.e., the one exposed to the flames, while the
internal part had healthy or semi-intact tissues. However, as expected, the action of the
biotic and abiotic components of the environment, over the monitored time (17 months),
caused a slow degradation process of the wood (Figure A4). The data collected in subse-
quent monitoring have, in fact, shown a slight and constant reduction in the density and
speed of propagation of sound waves in the logs (Table A6, Figure 13). The propagation
speed of acoustic waves into the wood tissues of the logs monitored showed a decrease of
between 10 and 30% in the speeds recorded in the first survey. This suggests that the wood
of the logs used in this study, despite the natural degradation process of the tissues, is able
to maintain functional capacities for a sufficiently long period to allow the anti-erosive
barrier action of the soil to take place until the start of initial forest recovery after the fire
has passed.

The slow but gradual decay of the woody structure, observed over 17 months (aver-
aging less than 20 percent compared to the first measurement), appears not to affect the
functionality of the logs. The available data suggest that it takes more than 10 years to
reach log decay such that its function is not impaired (indicated by values of stress wave
velocity lower than 400 m/s); however, in the meantime, the ecological dynamics of the
forest will have allowed tree regeneration to establish itself and develop effectively.
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In summary, the diagram shown in Figure 14 illustrates how the proposed nature-
based solution exerts its effectiveness in the short and long terms. Immediately after the
logs are manually re-oriented along the contour lines, there is, as demonstrated, a significant
reduction in runoff and sediment productions and, thus, slope stabilisation. As early as
the first few weeks after placement of the burnt logs, pioneer vegetation (herbaceous and
shrubby species) becomes established in the areas behind the logs and covers large areas in
a short time. At this stage, the combined effect of the re-directed logs and the spontaneous
vegetation ensures the best protection of the soil from erosion especially with the arrival
of the first heavy autumn rains. The significant presence of pioneer vegetation, however,
takes away space and light from the natural seedlings of Pinus radiata, which, as has been
observed, is more scarce in the arranged plots. However, the herbaceous vegetation is likely
to gradually disappear (orange line) because of both seasonal and vital/biological cycles.
Meanwhile, the young forest will begin to have more light and space and be able to take
advantage, in addition, of the previous slope stability conditions created by the measure.
Over time, as the logs gradually degrade (over an estimated 10 years; brown line), natural
regeneration will have become established and developed to the point of self-healing of the
forest dynamics, restoring the ecological functionality of the ecosystem as well as the best
condition of soil protection it can provide (green line).
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4. The Legal Regulatory Framework on Wildfires

In Italy, Art. 10 of the “Law on Forest Fires” No. 353 of 21 November 2000, estab-
lishes, among other aspects, that in wooded areas, whose topsoils have been affected by
fire, “reforestation and environmental engineering activities supported with public finan-
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cial resources are prohibited for five years, unless specifically authorised by the general
directorate competent in matter of the Ministry of the Environment, for state protected
natural areas, or by the competent region, in other cases, for documented situations of
hydrogeological instability and in situations in which an intervention is urgently needed
for the protection of particular environmental and landscape values” [103].

As widely documented in the literature and confirmed by Bombino et al. [58] as
within the present study, the phenomena of hydrogeological instability, which involve the
processes of surface runoff, soil erosion and sediment transport, as well as landslides and
mass movements, are widespread in Italy and are accentuated or triggered by rainfall,
especially of medium–high intensity. These phenomena also concern “state protected
natural areas” and areas with “particular environmental and landscape values”. Forest
fires, by eliminating the protective action of the topsoils exerted by vegetation, tend to
aggravate this scenario, both in situations of already active instability and in potentially
degenerative situations. This aggravation can already occur immediately due to the first
rains that follow the hot season when most forest fires occur in the Mediterranean area. The
exacerbation of hydrogeological instability phenomena resulting from forest fires occurs;
therefore, significant and urgent repair interventions are required [55].

The urgency of the interventions is often disregarded by the considerable duration
of the ordinary technical–administrative activities for the detection and processing of the
documentation, as well as by the preparatory evaluation activities for the release of specific
authorisations by the competent authorities, both at the ministerial and regional levels, as
foreseen by Law No. 353/2000, even in the case of the “procedures in the event of extreme
urgency and civil protection” referred to in article 163 of the legislative decree of 18 April
2016 No. 50, bearing the code of public contracts.

From this perspective, it appears of interest to explore the feasibility of effective inter-
vention measures [104] that can actually be carried out promptly, in compliance with the
purposes and constraints of Law No. 353/2000. In this regard, the measure represented
by the simple manual reorientation in situ, along contour lines or in a direction perpen-
dicular to the direction of maximum slope of the terrain, of the logs felled by the fire does
not seem to be included among the activities classifiable as “environmental engineering”
(Council of State, Section 5, 25/02/2020, no. 1391), subject to authorisation and, therefore,
to the duration of the preliminary investigation procedure. In fact, the implementation
of such an intervention, which aims at enhancing the self-regeneration capacity of the
forest [105] without introducing particular “invasive” actions of “disturbance”, does not
involve, without prejudice to the commitment of manpower supported by public financial
resources, which are, moreover, limited. The actions and categories of works falling under
so-called “environmental engineering”, even when configured as “naturalistic engineering”
(involving the construction of a work-site and access roads, excavations and earthworks,
the use of particular construction materials, the construction of structural works and the
use of machines and technologies), are discussed in the regional price lists, which is a
reference tool for the preventive quantification, planning and construction of public works
pursuant to Art. 23 of Legislative Decree No. 50/2016.

Should the nature-based intervention be recognised as useful and effective with respect
to the control of hydrogeological instability and the protection of particular environmental
and landscape values, it might, therefore, not fall within the cases of prohibition provided
for by Law No. 353/2000. The implementation of the naturalistic measure could be
subject to communication (self-certification) to the competent authorities, with a view
to administrative simplification [106] and streamlining of the bureaucratic burden, as
well as to indirectly favor the registration of the wooded areas affected by fire that, and
although required by law, this often appears, indeed, to be disregarded or only partially
accomplished.

On a comparative profile, in Spain, Law No. 43/2003 of November 21 (the so-called
“Ley de Montes”)—the revision of which has been in force since 22 September 2022—in
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article 50 entitled “Maintenance and restoration of the forest character of burnt land”
provides that:

«1. The Autonomous Communities must ensure the conditions for the restoration
of burnt forest land and it is prohibited: (a) The change in intended use of forests for at
least 30 years; (b) Any activity incompatible with the regeneration of the vegetation cover,
during the period determined by the regional legislation. Exceptionally, the autonomous
communities can agree exceptions to these bans provided that, before the forest fire, the
change in use was foreseen: (a) A previously approved planning tool; (b) A planning
instrument awaiting approval, if it has already been the subject of a favorable environ-
mental assessment or, if this is not required, if it has already been subjected to the public
information process; (c) An agroforestry policy guideline that contemplates the extensive
agricultural or zootechnical use of non-forested forests in a state of abandonment.»

Therefore it can be considered that the Spanish legislation is very detailed, encouraging
forestry research, with care to management profiles, also from a commercial point of view
as well as protection and sustainable development. Competencies are divided between the
state level and local communities, which enjoy a certain degree of autonomy, also in terms
of authorisation.

In Greece, the 1975 Constitution Laws No. 86/1969, No. 998/1979 and No. 1650/1986
constitute the basic legal framework of the country for the protection and management of
forest and other wooded land. The forest and other wooded land are protected by Articles
24 and 117 of the Constitution. Law No. 86/1969 codifies almost all the laws that had been
issued since 1928 and has been amended and completed by Law No. 4173/1929. This law
constitutes the Forest Code of the country. Furthermore, in Greece, in the last decades, the
fire problem has been growing mainly due to climate changes, socio-economic changes
in land use and demographic characteristics of the country: the reduction in the rural
population has led to the continuity of horizontal and vertical vegetation, as well as the
accumulation of forest biomass, increasing the probability of fixed fires and making them
more difficult to control. Serious institutional failures further exacerbate the problem. In
addition to the social, environmental and economic impacts of wildfires on the landscape,
including loss of public and private assets and destruction of critical infrastructure, they
pose a significant threat to human health and safety. Efforts are currently underway to
improve the fire management system, including enhancing the level of cooperation between
the agencies involved.

In Turkish legislation, the definitions regarding forest fires are not clear. Some nec-
essary definitions can be found in statutes and regulations. Rehabilitation is one of the
strengths of the current legislation. Reforestation of burnt forestlands is guaranteed un-
der the Turkish Constitution, and the Forest Law includes provisions that support the
issue [107].

5. Final Remarks and Research Perspectives

The preliminary results of the plot–scale experimental investigation, with a multidisci-
plinary approach, carried out immediately after the extreme wildfires in the Aspromonte
Massif (southern Calabria, Italy) in 2021 seem to support the effectiveness of the in situ
contour reorientation of felled logs to enhance forest resilience and reduce erosion. Logs
damaged by fire have clearly demonstrated that they can provide physical protection after
fire if reoriented as this study shows. Of course, it is important to continue to study how
long this protection may endure. This nature-based solution, simply manually realised,
shows positive short- and long-term effects on slope stabilisation and rapid protection of
the bare soil by pioneer species, as well as on forest self-regeneration.

In this study, the post-fire scenarios (bare soil with felled burnt logs randomly dis-
placed and contour redirected) were compared with the pre-fire Pinus radiata asset.

The combined effect of the redirected burnt logs (as erosion barriers) and the sponta-
neous herbaceous/shrubby vegetation (establishing behind the structures just after three
weeks from the treatment) significantly reduce runoff and sediment yields (both by about
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30%) under natural rainfall (about 1500 mm in 17 months). A positive correlation was
found between the pioneer vegetation cover and a reduction in both runoff and sediment
yields in the treated plot blocks.

Compared to the post-fire scenario (randomly downed logs), the regeneration of Pinus
radiata is lower (about four times less) in the arranged plots, because a few days after the
treatment, the ephemeral vegetation quickly tends to occupy all the useful space, especially
behind the logs (due to the slope stabilisation effect). After two years, however, new Pinus
radiata seedlings manage to establish themselves thanks to the progressive degradation of
herbaceous vegetation having an annual and a biennial biological cycle. This vegetation,
once degraded, enriches the soil with organic substance, creating better edaphic and soil
moisture conditions for the growing seedlings.

Despite the fact that the intensity and severity of the wildfire caused the trees to fall
to the ground, the logs in situ used to carry out the nature-based solution are still good in
terms of durability, so they can maintain a high structural and functional capacity over a
longer period of time (presumably up to 10–15 years), i.e., for as long as it takes for the
forest to re-establish its evolutionary and growth dynamics.

This aspect is extremely important as it exploits the effect of the measure in both the
short and long terms, highlighting how burnt logs may be suitable for use in bioengineering
techniques.

The in situ contour manually redirected felled logs is a nature-based solution that is
economically sustainable. Moreover, it seems to comply with the limitation imposed by
Italian Law on forests affected by wildfire. It seems to be well suited for timely intervention
in hydrogeologically vulnerable contexts and for promoting forestry self-regeneration
processes.
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Appendix A

Table A1. Sediment yield and runoff analysis on vegetation cover effect using a one-way ANOVA.

F df1 df2 p

Sediment F 60.016 1 17.2 0.025
Sediment B 218.024 1 27.3 <0.001
Sediment BR 208.164 1 23.3 <0.001
Runoff C 0.4086 1 17.6 0.531
Runoff B 0.0283 1 15.2 0.869
Runoff BR 0.0259 1 15.0 0.874

Table A2. Sediment yield analysis on vegetation cover effect using ANCOVA. Using sediment yield
as the dependent variable applied on fixed factors in plots and vegetation cover periods, where
rainfall depth and rainfall intensity were covariates.

Sum of Squares df Mean Square F p

Plot 2.93 × 106 2 1.47 × 106 6.11 0.003
VegCover 9.27 × 106 1 9.27 × 106 38.62 <0.001
Intensity 3.32 × 106 1 3.32 × 106 13.85 <0.001
Rain 630,274 1 630,274 2.63 0.109
Plot ∗ VegCover 2.13 × 106 2 1.07 × 106 4.45 0.015
Residuals 1.97 × 107 82 240,038

Note: ∗ indicates the combined analysis of the two parameters.

Table A3. ANCOVA post hoc comparison of sediment yield using as fixed factors the plots and
vegetation cover periods applying Tukey correction method.

Comparison

Plot Cover Veg. Plot Cover Veg. Mean Difference SE df t ptukey

F 1 - F 2 258.02 204 82.0 12.668 0.802
B 1 - B 2 1067.12 204 82.0 52.394 <0.001

BR 1 - BR 2 896.82 204 82.0 44.032 <0.001
F 1 - B 1 −895.83 148 82.0 −60.643 <0.001
F 2 - B 2 −86.73 245 82.0 −0.3541 0.999
F 1 - BR 1 −645.80 148 82.0 −43.717 <0.001
F 2 - BR 2 −7.00 245 82.0 −0.0286 1.000
B 1 - BR 1 250.03 148 82.0 16.926 0.541
B 2 - BR 2 79.73 245 82.0 0.3255 0.999

Note. Comparisons are based on estimated marginal means.

Table A4. Runoff analysis on vegetation cover effect using ANCOVA. Using sediment yield as the
dependent variable applied on fixed factors in plots and vegetation cover periods, where rainfall
depth and rainfall intensity were covariates.

Sum of Squares df Mean Square F p

Plot 106.129 2 53.065 27.541 <0.001
VegCover 7.030 1 7.030 3.649 0.060
Rain 180.865 1 180.865 93.872 <0.001
Intensity 30.536 1 30.536 15.849 <0.001
Plot ∗ VegCover 0.015 2 0.007 0.004 0.996
Residuals 157.991 82 1.927

Note: ∗ indicates the combined analysis of the two parameters.
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Table A5. ANCOVA post hoc comparison of runoff using as fixed factors the plots and vegetation
cover periods applying Tukey correction method.

Comparison

Plot Cover Veg. Plot Cover Veg. Mean Difference SE df t ptukey

F 1 - F 2 0.643 0.577 82.0 1.114 0.874
B 1 - B 2 0.610 0.577 82.0 1.058 0.896

BR 1 - BR 2 0.682 0.577 82.0 1.181 0.845
F 1 - B 1 −2.925 0.419 82.0 −6.989 <0.001
F 2 - B 2 −2.957 0.694 82.0 −4.261 <0.001
F 1 - BR 1 −2.034 0.419 82.0 −4.859 <0.001
F 2 - BR 2 −1.995 0.694 82.0 −2.875 0.056
B 1 - BR 1 0.891 0.419 82.0 2.130 0.283
B 2 - BR 2 0.963 0.694 82.0 1.387 0.735

Note. Comparisons are based on estimated marginal means.

Table A6. Stress wave velocities recorded during the surveys on Pinus Radiata species.

ID Log Survey Distance between Sensors
(cm)

Stress Wave Velocity (m/s)
(Standard Deviation)

L1

1 December
2021

29 1014 (1.23)
L2 22 1692 (1.25)
L3 25 1851 (0.96)
L4 22 824 (2.36)
L5 35 1891 (2.89)
L6 49 1884 (0.98)

L1

22 April
2022

29 933 (1.56)
L2 22 1651 (2.66)
L3 25 1677 (1.33)
L4 22 785 (1.98)
L5 35 1794 (1.11)
L6 49 1678 (2.93)

L1

15
November

2022

29 890 (2.14)
L2 22 1509 (1.47)
L3 25 1552 (1.18)
L4 22 748 (1.61)
L5 35 1602 (2.16)
L6 49 1459 (2.92)

L1

10 April
2023

29 861 (1.58)
L2 22 1324 (1.62)
L3 25 1403 (1.39)
L4 22 719 (1.16)
L5 35 1513 (2.54)
L6 49 1308 (1.63)
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