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ABSTRACT 34 

Soil erosion modelling applied to burned forests in different global regions can be unreliable due 35 

to a lack of verification data. Here, we evaluated the following three erosion models: (1) Water 36 

Erosion Prediction Project (WEPP), (2) Morgan-Morgan-Finney (MMF) and (3) Universal Soil 37 

Loss Equation-Modified (USLE-M). Using field plots that were either untreated or mulched with 38 

straw, this study involved observations of soil loss at the event scale at a burned pine forest in 39 

Central Eastern Spain. The erosion predictions of the three models were analysed for goodness-40 

of-fit. Optimisation of the MMF model with a new procedure to estimate the C-factor resulted in 41 

a satisfactory erosion prediction capacity in burned plots with or without the mulching treatment. 42 

The WEPP model underestimated erosion in the unburned areas and largely overestimated the 43 

soil loss in burned areas. The accuracy of soil loss estimation by the USLE-M model was also 44 

poor. Calibration of the Curve Numbers and C-factors did not improve the USLE-M model 45 

estimation. Therefore, we conclude that an optimised MMF model was the most accurate way to 46 

estimate soil loss and recommend this approach for in Mediterranean burned forests with or 47 

without post-fire mulching. This study gives land managers insight about the choice of the most 48 

suitable model for erosion predictions in burned forests. 49 



 50 

KEYWORDS: soil loss; post-fire management; calibration; erosion model; plot scale; event 51 

scale. 52 

 53 

1. INTRODUCTION 54 

 55 

Models are essential tools to simulate the complex processes in disturbed soils, and to predict the 56 

soil response to the hydrological input in a cost-effective and time-efficient way (Filianoti et al., 57 

2020). Many models are capable of predicting soil erosion in different climatic and 58 

geomorphological conditions (Bezak et al., 2021; Borrelli et al., 2021). In comparison to the 59 

most complex physically-based algorithms, empirical models are easy and quick to apply at 60 

specific sites, and their prediction capability is often satisfactory (Aksoy & Kavvas, 2005; Lucas-61 

Borja, Bombino, et al., 2020). Many empirical models, such as the USLE (Universal Soil Loss 62 

Equation) equation, have been used as erosion component of many catchment-scale erosion 63 

models (e.g., AnnAGNPS and SWAT models). In contrast, where input parameters can be 64 

directly measured in the field or are available for a specific environment, the physically-based 65 

models theoretically provide more accurate predictions of erosion (Zema, Lucas-Borja, et al., 66 

2020; Zema, Nunes, et al., 2020).  67 

Wildfire is a common natural disturbance in Mediterranean ecosystems, and usually enhances 68 

soil erosion, which may increase ecosystem degradation to unsustainable rates. To limit soil 69 

degradation in the Mediterranean forests, a proper control of erosion is necessary. On this regard, 70 

erosion models, commonly used in agricultural areas (Borrelli et al., 2018; Panagos & 71 

Katsoyiannis, 2019), have been also extended to burned areas (Lopes et al., 2021; Vieira et al., 72 

2014). According to Lopes et al. (2021), published literature on post-fire erosion modelling is not 73 

homogeneously distributed worldwide. While post-fire prediction models are commonly used in 74 

the United States, research is still far from being exhaustive in other regions (Hosseini et al., 75 

2018). In the Mediterranean burned areas, where the hydrological processes are site-specific 76 

(Shakesby, 2011; Wagenbrenner et al., 2021), the available erosion models may find limitations 77 

in their applicability, especially when the soils are subjected to post-fire management. Therefore, 78 

these models require localised optimisation, since these hydrological tools have been developed 79 

in other environmental contexts and are not designed to be applied specifically in burned areas 80 

(Vieira et al., 2018a).  81 

Erosion models include simple empirical models, such as the USLE-family models, to semi-82 

empirical models (e.g., the Morgan–Morgan–Finney model, MMF), physically-based models 83 



(for instance, the Water Erosion Prediction Project, WEPP) or artificial neural networks (Aksoy 84 

& Kavvas, 2005; Merritt et al., 2003; Zema, Lucas-Borja, et al., 2020; Zema, Nunes, et al., 85 

2020). Regarding the USLE-family models, only the RUSLE version has been used in wildfire-86 

affected soils (e.g., Fernández et al., 2010; Karamesouti et al., 2016; Larsen & MacDonald, 87 

2007; Vieira et al., 2018b). To the authors’ best knowledge, the event-scale USLE-family model 88 

(USLE-M) has been applied only by Carrà et al. (2021) in Southern Italy treated with prescribed 89 

fire and fern mulching. Erosion predictions using WEPP were carried out by (Covert et al., 2005; 90 

Fernández & Vega, 2018; Larsen & MacDonald, 2007; Soto & Díaz-Fierros, 1998) in 91 

Mediterranean forests burned by wildfires. The MMF model has been verified in burned areas 92 

with or without post-fire treatments under different Mediterranean climates in North-Western 93 

and Central-Eastern Spain, and in Central Portugal (Fernández et al., 2010; Vieira et al., 2014, 94 

2018b; Zema, Nunes, et al., 2020). The latter authors suggested an adaptation of this model to 95 

uses on the event scale in burned forests, mulched or untreated. 96 

This study evaluated the prediction capability of the USLE-M (coupled to the Curve Number 97 

method to estimate the runoff coefficient), MMF and WEPP models in a Mediterranean forest 98 

burned by a wildfire and then treated with soil mulching in comparison to unburned areas. The 99 

investigation was carried out at the plot and event scales throughout one year in a pine stand of 100 

Castilla-La Mancha (Central Eastern Spain). This study is the first application of the USLE-M 101 

and WEPP models to wildfire-affected soils subjected to post-fire mulching in Mediterranean 102 

forests as well as applying the MMF model in a Mediterranean pine forest on untreated or 103 

mulched soils. The erosion prediction capacity of the latter model was successfully evaluated 104 

(Zema, Nunes, et al., 2020), but without a further validation in other sites with similar 105 

environmental characteristics. Moreover, a new procedure to estimate the C-factor based on the 106 

ground cover as input parameter for the MMF model was proposed and evaluated in this 107 

modelling exercise. This study aims at providing insight about the choice of the most suitable 108 

model for erosion predictions in burned forests to land managers and hydrologists. 109 

 110 

2. MATERIALS AND METHODS 111 

 112 

2.1. Study area 113 

 114 

The study area is located between the municipalities of Liétor and Agramón (geographical 115 

coordinates 38°25’19”N, -1°38’15”E, province of Albacete, Castilla-La Mancha, Central Eastern 116 

Spain) (Figure 1a). The elevation ranges between 400 and 700 m above the mean seal level.  117 



The area is framed in a semi-arid climate Mediterranean, BSk according to the Köppen-Geiger 118 

classification (Kottek et al., 2006), where the average annual precipitation and temperature are 119 

320 mm and 16 ºC, respectively. In the first year after the fire, a total precipitation of 400 mm 120 

was recorded. The parental materials that make up this area are limestones, such as dolomites, 121 

marls, and clay. The soils are shallow (depth lower than 0.3 m), with low organic matter content, 122 

the main types being Inceptisols and Aridisols (USDA, 1999). The soil texture of the study area 123 

is presented in Table 1. The vegetation in the area consists of a Pinus halepensis forest with a 124 

shrub and herbaceous companion layers dominated by Macrochloa tenacissima and Salvia 125 

Rosmarinus, and other minor species, such as Pistacia lentiscus, Quercus coccifera, Rhamnus 126 

lycioides, Thymus vulgaris and Cistus clusii.   127 

Unburned
Burned and not treated
Burned and mulched

Soil condition in the experimental plots

0              200            400 mUnburned
Burned and not treated
Burned and mulched

Soil condition in the experimental plots

0              200            400 mUnburned
Burned and not treated
Burned and mulched

Soil condition in the experimental plots

0              200            400 m0              200            400 m

128 
Figure 1 - Geographical location of the study area (A) and of the burned area within the wildfire 129 



perimeter (B) and aerial map of the experimental plots (C) (Agramón, Castilla-La Mancha, 130 

Spain). 131 

 132 



Table 1 – Soil properties and surface cover of the experimental plots (Agramón, Castilla-La Mancha, Spain) after the wildfire in 2020.  133 

 134 

Topographic 

characteristics 
Soil properties 

Soil condition 
Plot  

# Slope 

(%) 
Aspect 

Sand content  

(%) 

Silt content 

(%) 

Clay content 

(%) 

Organic matter 

content (%) 

Soil  

cover (%) 

1 47.8 East 28.7 58.8 14.8 2.40 75.6 

2 47.1 East 24.3 58.1 14.3 2.45 74.3 Unburned 

3 46.9 East 25.9 61.2 13.9 2.10 75.0 

1 40.8 South-East 31.5 55.7 12.2 2.01 30.2 

2 41.4 South  33.6 54.2 13.9 2.20 28.6 
Burned and not 

treated 
3 41.5 South-East 29.9 56.5 12.2 2.17 31.2 

1 40.1 South-East 33.4 49.2 19.2 2.90 44.1 

2 39.8 South-East 29.1 53.2 17.8 2.86 42.3 
Burned and 

mulched 
3 40.9 South-East 28.1 51.6 18.6 2.88 39.7 



2.2. Experimental design 135 

 136 

On 27th July 2020, a wildfire burned approximately 275 ha of forestland in the study area. The 137 

soil burn severity, estimated according to Vega et al. (2013), was high. The tree mortality in the 138 

study area was 100%.   139 

After the wildfire, nine plots, each one of 0.5 ha (width of 25 m and length of 200 m), were 140 

equipped to collect the sediments (Figure 1). The soil slope was between 39.8% and 47.8%, 141 

while the aspect south, east or south-east. The soil texture was homogenous, with contents of 142 

sand, silt and clay in the range 24.3-33.6%, 49.2-61.2% and 12.2-19.2%, and of organic matter 143 

between 2.01% and 2.90% (Table 1). Of the nine plots, three were identified in an unburned area 144 

that was adjacent to the burned forest. Other six plots were selected in the burned area, of which 145 

three were not treated and other three were subjected to post-fire soil mulching one month after 146 

the fire. The mulch material was barley straw, which was manually spread on the plots at a rate 147 

of 0.25 kg/m2 (dry weight) and thickness of 3 cm (Lucas-Borja et al., 2018; Lucas-Borja et al., 148 

2020). This mulch rate was based on a previous study by (Vega et al., 2014), who proposed this 149 

dose to achieve a soil cover of 80% for burned plots installed in Northern Spain. The soil cover 150 

varied from 28.6% (burned and untreated plots) to 75.6% (burned and mulched plots) (Table 1). 151 

At the outlet of each plot, sediment traps were installed since 1st September 2020 until 31st 152 

December 2021 (16 months) and soil loss was measured in this observation period. The 153 

accumulated sediment at each sediment trap was removed after each rainfall event, weighted in 154 

the field, and oven-dried in laboratory to calculate dry weight. A weather station, located in 155 

Liétor (geographical coordinates 38°32'27''N; 1°57'17''W), about 12 km far from the 156 

experimental area, provided the precipitation and temperature records. Rainfall depths were 157 

available at 15-min intervals, while the air temperatures were on a daily scale.  158 

 159 

2.3. Experimental observations of soil erosion 160 

 161 

Throughout the observation period, 13 “erosive” events (rainfall >13 mm) according to 162 

Wischmeier & Smith (1978) were monitored. Of these events, only seven (all with rainfall depth 163 

over 30 mm) produced erosion, while were recorded and used for modelling purposes. In more 164 

detail, the rainfall depth was in the range 43.3 - 115.2 mm, the maximum intensity in 30 minutes 165 

(I30) was between 9.2 and 64.8 mm/h (Table 2 and Figure 2), and the maximum rainfall erosivity 166 

(EI30) was 298 MJ mm/ha h (Figure 2). In the unburned plots, the soil loss was between 0.0005 167 

to 0.0009 tons/ha. The soil loss measured in the burned and not treated plots was in the range 168 



0.96 to 1.63 tons/ha, while the values measured in the burned and mulched plots varied from 169 

0.16 to 0.29 kg/m2 (Table 2).  170 

 171 

Table 2 – Rainfall characteristics and soil loss observations at the experimental site (Agramón, 172 

Castilla-La Mancha, Spain). 173 

 174 

Rainfall Observed soil loss (tons/ha) 

Event date depth  

(mm) 

max 30-min 

intensity (mm/h) 

Unburned 

soil 

Burned and 

not treated soil 

Burned and 

mulched soil 

10 Nov 2020 79.8 33.0 6.85 x 10-4 1.227 0.165 

16 Dec 2020 43.3 17.6 6.38 x 10-4 1.600 0.184 

22 Mar 2021 104.9 9.2 7.91 x 10-4 1.463 0.198 

4 Jun 2021 115.2 17.2 6.13 x 10-4 1.631 0.228 

5 Jul 2021 65.4 44.0 8.93 x 10-4 1.399 0.193 

14 Sep 2021 64.0 64.8 5.41 x 10-4 1.338 0.292 

10 Oct 2021 60.8 38.6 7.31 x 10-4 0.959 0.176 

 175 
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Figure 2 – Rainfall depth and erosivity (EI30) at the experimental site (Agramón, Castilla-La 177 

Mancha, Spain). 178 

 179 

 180 

The hydrological dataset used for model is made of a sample of seven observations of soil loss, 181 

which, however, allows the evaluation of the model’s prediction capacity for two reasons. First, 182 

wildfire opens in the burnt area a so-called “window of disturbance” (Prosser & Williams, 1998; 183 

Zavala et al., 2014), when the soil is bare due to the vegetation burning and many of its physico-184 

chemical properties undergo noticeable changes (Moody et al., 2013; Zema, 2021). Both effects 185 

result in a strong alteration in the hydrological response of severely-burned soils, which however 186 

is only temporary. Although the duration of this window of disturbance may be variable 187 

depending on soil, weather and fire characteristics, the pre-fire conditions generally recover after 188 

one year, which is the duration of the observation period of this study. The measurements of soil 189 

erosion in the experimental area were made in this window of disturbance. Second, in the semi-190 

arid environments (such as the study area), annual erosion is substantially due to few but intense 191 

rainstorms (the so-called “erosive events”, according to Wischmeier & Smith (1978), that is 192 

events with rainfall depth over 13 mm). The events of our dataset are all those events that 193 

overcome this threshold and produced erosion, while the other smaller events were not 194 

considered. 195 



 196 

2.4. Short description of the WEPP, MMF, and USLE-M models 197 

 198 

The "Water Erosion Prediction Project" (WEPP, Flanagan & Nearing, 1995) is a physically-199 

based, distributed parameters, continuous simulation model, which was developed by USDA-200 

Natural Resources Conservation Service in late ‘1980s. The model is used to predict the spatial 201 

and temporal distribution of net soil loss and deposition for a wide range of time periods and 202 

spatial scales. The WEPP hillslope version (Foster & Lane, 1987) was used in this study to 203 

predict soil erosion along a single slope profile. More details about the equations governing the 204 

erosion simulations by the WEPP model and the input parameters are reported in Flanagan & 205 

Nearing (1995) and Foster & Lane (1987).  206 

The "Morgan-Morgan-Finney" model (MMF, Morgan, 2001; Morgan et al., 1984) was 207 

developed in early ‘1980s. The model was revised in 2001 by the same authors, in order to 208 

improve the accuracy of erosion predictions and to propose guidelines for the optimal choice of 209 

the input parameters. The equations for calculating the hydrological variables are reported in the 210 

original papers by Morgan (2001) and Morgan et al. (1984).  211 

The “Universal Soil Loss Equation” (USLE) was first developed in USA (Wischmeier & Smith, 212 

1978), in order to predict soil loss in small agricultural catchments. The mean annual soil loss is 213 

calculated as the product of six input parameters (the so-called “USLE-factors”), linked to 214 

climate, soil cover and properties, topography, and human activities (R, K, L, S, C and P). In 215 

1998, Kinnell & Risse (1998) proposed the USLE-M model (USLE modified), which assumes 216 

that the sediment concentration in the runoff is governed by the event rainfall erosivity index (Re, 217 

Wischmeier & Smith, 1978) per unit quantity of rain (Pe, mm). The equations to calculate the 218 

soil loss Y and the input factors are reported in the study by Kinnell & Risse (1998). 219 

 220 

2.5. Model implementation 221 

 222 

2.5.1. General information 223 

 224 

The climate data needed by the models was collected at the weather station of Liétor. Three 225 

treatments were simulated: (i) unburned soil (control); (ii) burned and not treated soil; and (iii) 226 

burned and mulched soil. 227 



 228 

2.5.2. WEPP model 229 

 230 

The climate data needed as input by WEPP were the storm depth (mm), duration (h) and 231 

maximum intensity (mm/h), and the percent duration to peak intensity. These values were 232 

derived from rainfall records at the gauging station of Liétor for each modelled event.   233 

A concave profile with three slopes was assumed for each plot. The value of the soil albedo 234 

parameter was calculated by Baumer’s equation and set to 0.23 (Flanagan & Nearing, 1995). 235 

According to the guidelines in the WEPP manual, an initial saturation level of 75% was assumed 236 

(Table 1SM). 237 

Three conditions were input according to the WEPP management files into the software 238 

interface: (i) "shrub perennial" for the unburned plots; (ii) "25% ground cover - high severity" 239 

for the burned and not treated plots; (iii) "fallow initial condition - wheat residues" for the burned 240 

and mulched soils. For the three management conditions, some input parameters of the model’s 241 

default database were updated to the experimental conditions.  242 

 243 

2.5.3. MMF model  244 

 245 

MMF was run at the event scale and parameterised using the default input data (hereafter 246 

“default model”) or adjusted values for post-fire conditions (“calibrated model”) and for each 247 

event. For runs using the default model, the values of the input parameters suggested in the 248 

original studies of Morgan et al. (1984) and Morgan (2001) were adopted. For the erosion 249 

predictions using the calibrated model, MMF was run simulating the post-fire conditions, 250 

according to the adaptations suggested by Fernández et al. (2010), Vieira et al. (2014) and Zema, 251 

Nunes, et al. (2020), where more details can be found. To summarise, the input parameters 252 

needed by MMF were measured in-field or derived from the guidelines of Morgan (2001), 253 

Morgan et al. (1984) and Morgan & Duzant (2008) with the corrections according to Vieira et al. 254 

(2014) and Nunes et al. (2016), or estimated from the literature (Doorenbos & Kassam, 1979; 255 

Fernández et al., 2010; Vieira et al., 2014; Wischmeier & Smith, 1978; Zema, Nunes, et al., 256 

2020).  257 



 258 

2.5.4. USLE-M model  259 

 260 

The USLE-M model was initially run with default parameters, estimated from the model 261 

guidelines. In this study, the runoff coefficient of the USLE-M equation was calculated as the 262 

ratio between the runoff volume, and the rainfall depth (both in mm), while the erosivity factor 263 

was estimated as the product of the kinetic energy and the maximum intensity in 30 minutes for 264 

each rainfall, following  265 

Due to the lack of measured runoff volumes, needed by the USLE-M model, the runoff volume 266 

was estimated by the Soil Conservation Service-Curve Number (SCS-CN) method (SCS, 1985) 267 

(as explained below). In more detail, the rainfall depth of each modelled storm event was 268 

estimated by aggregating the sub-hourly records collected at the rain gauging station. The 269 

Antecedent Moisture Content (AMC) was estimated by aggregating the 5-day rainfall depths 270 

prior to each event. The soil hydrological group was identified as “B” (“soils having a 271 

moderate infiltration rate when thoroughly wet"). The default values of CN were assumed 272 

following the standard procedure by the USDA Soil Conservation Service (SCS, 1985). 273 

The K-factor was calculated according to the procedure proposed by Kinnel et al. (1998), on its 274 

turn based on the nomograph of Wischmeier & Smith (1978). The C-factor was calculated using 275 

the empirical equation based on canopy cover and aboveground biomass proposed by Bombino 276 

et al. (2002). The P-factor was always set to one.  277 

 278 

2.6. Model calibration 279 

 280 

2.6.1. WEPP model 281 

 282 

Since WEPP is a physically-based model with input parameters that should be measured in the 283 

field (Aksoy & Kavvas, 2005; Merritt et al., 2003), the model was not deliberately calibrated in 284 

this study. This choice also allows a model performance assessment in data-poor environments, 285 

that is in the case that no data for calibration/validation is available. 286 

 287 

2.6.2. MMF model 288 

 289 

The MMF model, commonly used for erosion predictions at the yearly or multi-yearly scale, was 290 

implemented at the event scale. Since Zema, Nunes, et al. (2020) have tested the model 291 



prediction capacity after rainfall events in burned forest soils for Mediterranean conditions, we 292 

adopted these adaptations for the MMF calibration were (Tables 3 and 2SM): (i) input of 293 

seasonal values of the moisture content at field capacity (MS), corrected by changes in soil water 294 

repellency (SWR) (except for unburned plots), ratio between the actual (Et) to potential (E0) 295 

evapo-transpiration (Et/E0), and ground cover (GC), according to Vieira et al. (2014); (ii) model 296 

running at the event scale rather to simulate seasonal or annual soil loss, since, in the 297 

Mediterranean climate, soil erosion is mainly determined by few but intense rainfall events (e.g., 298 

Fortugno et al., 2017); (iii) setup of the MS input parameter to 0.28 for sandy loam soils 299 

(Morgan, 2001) with the correction suggested by the “SM-SWR” modelling approach of Vieira 300 

et al. (2014) and Nunes et al. (2016), to take into account the effect of soil water repellency on 301 

soil wetting (from 0.8 for extreme repellency to 1.1 under wettable conditions (Vieira et al., 302 

2014); (iv) modification of effective hydrological depth (EHD) suggested by Hosseini et al. 303 

(2018) and Vieira et al. (2014), considering two soil layers, of which the deeper layer was not or 304 

scarcely influenced by the fire effects (50% of the original depth), while the topsoil was affected 305 

by the high burn severity and the post-fire treatment.  306 

The C-factor is one of the few empirical factors of the model, which, for this reason, was 307 

calibrated. This factor was estimated differently from the previous study by Zema, Nunes, et al. 308 

(2020), in order to take into account its seasonal variability, due to growth of the herbaceous 309 

vegetation by regeneration in burned areas, and by seasonal natural cycle in unburned plots. 310 

More specifically, the following equations were adopted for estimating the C-factor: 311 

 312 

FCCCcorr             (1) 313 

 314 

1
GC

GCGC

1
FC






          (2) 315 

 316 

where Ccorr and C are the corrected and original C-factors, respectively, FC is the correction 317 

factor, GC is the ground cover (in percent on the total plot area) at the time of the modelled 318 

event, and GC  is the value of GC averaged throughout the observation period. Of course, FC is 319 

undefined and thus can not be calculated, when the soil is totally bare (in this case GC = 0) 320 

(Table 3 and 2SM). 321 

 322 

 323 



Table 3 – Input parameters of the MMF model to predict soil loss at the experimental site 324 

(Agramón, Castilla-La Mancha, Spain). 325 

 326 

Soil condition 

Min Max Min Max Min Max 

Unburned 
Burned and Not 

Treated 

Burned and 

Mulched 

Factor 

Uncalibrated model 

MS 0.2 0.2 0.4 0.4 0.4 0.4 

EHD 0.1 0.1 0.1 0.1 0.1 0.1 

A 0 0 0 0 0.3 0.3 

Et/E0 1 1 0.1 0.1 0.9 0.9 

C 0.003 0 1 1 0 0 

CC 0.7 0.7 0 0 1 1 

GC 0.4 0.6 0 0 1 1 

PH 0 0 0 0 0.5 0.5 

  Calibrated model 

MS 0.35 0.35 0.28 0.28 0.28 0.28 

EHD 0.2 0.2 0.09 0.09 0.12 0.12 

A 0 0 0 0 0.06 0.06 

Et/E0 0.80 0.70 0.05 0.05 0.50 0.45 

C 0.135 0.156 0.120 0.558 0.029 0.034 

CC 0.7 0.7 0. 0 0.05 0.05 

GC 0.45 0.39 0.19 0.07 0.56 0.47 

PH 0.5 0.5 0 0 0.6 0.6 

Notes: MS = moisture content at field capacity; EHD = effective hydrological depth; A = vegetation cover; Et/E0 = 327 

ratio of actual and potential evapotranspiration; C = cover management factor; CC = percent canopy cover; GC = 328 

ground cover; PH = plant height to the ground surface. 329 

 330 

2.6.3. USLE-M model 331 

 332 

For USLE-M calibration, the most sensitive input parameters (CN for the SCS-CN model and 333 

the C-factor for the USLE-M) were chosen (Carra et al., 2021). First, constant CNs and C-factors 334 

for all the modelled events were input, then these parameters were increased for the first two 335 



rainfall events for the burned catchments, in order to simulate the variable hydrological response 336 

of soils throughout the observation period. This choice agrees with several studies (e.g., Carra et 337 

al., 2021; Cawson et al., 2012; Lucas-Borja, Bombino, et al., 2020; Vieira et al., 2015). To avoid 338 

separate calibration of two factors, the effects of the mulching practice were included in the C-339 

factor, and the P-factor was set to one (Table 4 and 3SM).  340 

For MMF and USLE-M models, the calibration was carried out manually by a trial-and-error 341 

procedure until the maximum coefficient of efficiency (see section 2.6) and the minimum error 342 

between the mean values of the observations and simulations of soil loss were achieved. Due to 343 

the lack of runoff observations, only the erosive sub-model of MMF was optimised. However, 344 

the MMF adjustments of the hydrological sub-model previously proposed by Zema, Nunes, et al. 345 

(2020), who found good runoff estimations after sub-model optimisation under the same 346 

environmental conditions, were embedded in the optimised model.  347 



Table 4 – Input parameters of the USLE-M model to predict soil loss at the experimental site (Agramón, Castilla-La Mancha, Spain).  348 

 349 

Soil conditions 

Unburned Burned and not treated Burned and mulched 
Model 

Input 

parameter 
Measuring unit 

Default Calibrated Default Calibrated Default Calibrated 

SCS-CN CN - 39 7 90 (79) 13 65 (39) 8 

USLE-M C-factor - 0.0001 0.0002 0.006 0.526 0.0002 0.085 

Notes: CN = curve number; C-factor = cover management factor; the values related to the first two modelled events are reported in brackets. 350 



 351 

2.7. Model evaluation 352 

 353 

The erosion predictions by the three models were analysed for “goodness-of-fit” with the 354 

corresponding observations adopting qualitative and quantitative procedures. The qualitative 355 

approach consisted of the visual comparison of the observed and the corresponding soil loss in 356 

scatterplots. The quantitative procedure used the indicators that are commonly adopted in the 357 

literature (e.g., Willmott, 1982; Legates and McCabe, 1999; Loague and Green, 1991; Zema et 358 

al., 2017; 2018). More specifically, we used: (i) the main statistics (i.e., the maximum, minimum, 359 

mean and standard deviation of both the observed and simulated values); (ii) the coefficient of 360 

determination (r2); (iii) the coefficient of efficiency (NSE, Nash & Sutcliffe, 1970); (iv) the Root 361 

Mean Square Error (RMSE); and (v) the percent bias (PBIAS). The equations to calculate these 362 

indicators are reported in the studies by Krause et al. (2005), Moriasi et al. (2007), Van Liew & 363 

Garbrecht (2003) and Zema et al. (2012). The acceptance or optimal values are as follows (i) r2 is 364 

in the range 0 (no agreement between observed and predicted data) to 1 (perfect agreement),  365 

being acceptable when over 0.5 (Santhi et al., 2001; Van Liew et al., 2003; Vieira et al., 2018b); 366 

(ii) NSE varies between −∞ and 1, and the model accuracy is "good" if E ≥ 0.75, "satisfactory" if 367 

0.36 ≤ E ≤ 0.75 and "unsatisfactory" if E ≤ 0.36 (Van Liew et al., 2003); (iii) RMSE is optimal 368 

when it approaches to 0 (Fernández et al., 2010), and the predictions are “good”, when RMSE is 369 

lower than half the observed standard deviation (Singh et al., 2005); (iv) PBIAS, which is also 370 

reported as "coefficient of residual mass", is positive, when a model underestimates the 371 

observation, and negative in the case of overestimation (Gupta et al., 1999); a model with 372 

CRM/PBIAS below 55% is considered fair for erosion predictions (Moriasi et al., 2007).  373 

 374 

3. RESULTS  375 

 376 

3.1. WEPP model 377 

 378 

The WEPP model gave poor predictions of soil loss under all the modelled soil conditions, as 379 

shown by the large scattering of "observations vs. predictions" pairs around the line of perfect 380 

agreement (Figure 3). This low prediction accuracy is confirmed by the poor values of the 381 

evaluation indicators. In more detail, the difference between the mean observed and predicted 382 

soil loss was from 1237% (burned plots) to +23233% (burned and mulched soils). The 383 

coefficient of determination was very low (from 0.01 in burned and not treated plots to 0.35 in 384 



unburned soils), and the NSE values were even negative (< -12815). Moreover, while the soil 385 

loss was largely underestimated in all soil conditions (see the negative PBIAS). The RMSE was 386 

from 80% (unburned soils) to several orders of magnitudes (burned plots with or without 387 

mulching) higher compared to half the standard deviation of the observed values, and thus 388 

unsatisfactory (Table 5). 389 
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Figure 3 – Scatterplots of observed vs. predict soil loss using the WEPP model at the 393 

experimental site (Agramón, Castilla La Mancha, Spain). 394 

 395 



Table 5 – Indexes used to evaluate the erosion prediction capacity of the WEPP, MMF and USLE-M models at the experimental site (Agramón, 396 

Castilla-La Mancha, Spain).  397 

 398 

Mean 

(tons/ha) 

Minimum 

(tons/ha) 

Maximum 

(tons/ha) 

Standard 

deviation 

(tons/ha) 

r2 E 
RMSE 

(tons/ha) 
PBIAS 

WEPP model 

Soil loss 

Unburned soil 

Observed 0.001 0.001 0.001 0.000 

Predicted 0.506 0.000 1.835 0.669 
0.35 -53764953 0.80 -722 

  Burned and not treated soil 

Observed  1.374 0.959 1.631 0.231 

Predicted 18.368 0.000 47.612 18.682 
0.00 -12815 24.2 -12.4 

  Burned and mulched soil 

Observed  0.205 0.165 0.292 0.043 

Predicted 47.882 0.000 132.530 50.364 
0.24 -2764390 66.7 -232 

Uncalibrated MMF model 
  

Unburned soil 

Observed  0.001 0.001 0.001 0.000 

Predicted 0.017 0.003 0.040 0.014 
0.00 -35648 0.00 -23.05 

  Burned and not treated soil 

Observed  1.374 0.959 1.631 0.231 0.16 -1922 0.94 -5.52 



Predicted 8.964 2.516 18.931 6.060 

  Burned and mulched soil 

Observed  0.205 0.165 0.292 0.043 

Predicted 0.000 0.000 0.000 0.000 
0.01 -26.18 0.02 1.00 

Calibrated MMF model 
  

Unburned soil 

Observed  0.001 0.001 0.001 0.000 

Predicted 0.017 0.003 0.040 0.014 
0.01 -84.6 0.00 -0.13 

  Burned and not treated soil 

Observed  1.374 0.959 1.631 0.231 

Predicted 8.964 2.516 18.931 6.060 
0.94 0.75 0.01 0.06 

  Burned and mulched soil 

Observed  0.205 0.165 0.292 0.043 

Predicted 0.000 0.000 0.000 0.000 
0.86 0.43 0.00 -0.13 

Uncalibrated USLE-M model 
  

Unburned soil 

Observed  0.001 0.001 0.001 0.000 

Predicted 0.000 0.000 0.000 0.000 
0.08 -27.4 0.00 0.80 

  Burned and not treated soil 

Observed  1.374 0.959 1.631 0.231 

Predicted 0.015 0.001 0.030 0.011 
0.00 -40.3 1.38 0.99 

  Burned and mulched soil 



Observed  0.205 0.165 0.292 0.043 

Predicted 0.000 0.000 0.001 0.000 
0.02 -26.1 0.21 1.00 

Calibrated USLE-M model 
  

Unburned soil 

Observed  0.001 0.001 0.001 0.000 

Predicted 0.000 0.000 0.001 0.000 
0.08 -15.8 0.00 0.42 

  Burned and not treated soil 

Observed  1.374 0.959 1.631 0.231 

Predicted 1.038 0.040 1.881 0.749 
0.03 -11.8 0.77 0.24 

  Burned and mulched soil 

Observed  0.205 0.165 0.292 0.043 

Predicted 0.154 0.000 0.338 0.152 
0.28 -10.3 0.13 0.25 

Notes: r2 = coefficient of determination; NSE = coefficient of efficiency of Nash and Sutcliffe; RMSE = 399 

Root Mean Square Error; PBIAS = Coefficient of Residual Mass. 400 



 401 

3.2. MMF model 402 

 403 

As noticed for WEPP, also the MMF model running with default parameters generally showed a 404 

large inaccuracy in predicting the soil loss. This is visually shown in the relevant scatterplot 405 

under all the soil conditions (Figure 4a) and confirmed by the poor evaluation indicators. The 406 

differences between the mean, maximum and minimum values of the predictions and 407 

observations were very large (> 100% for the mean, minimum, and maximum values). The 408 

values of r2 were very low (< 0.16), and negative NSE were achieved (< -26.2). These values, 409 

coupled to the very large RMSEs (> 0.02 tons/ha), show the inaccuracy of the default MMF 410 

model in predicting the erosion under all the modelled soil conditions (Table 5). This poor 411 

prediction capacity is due to the large over-estimation (in unburned, PBIAS = -23.1, and burned 412 

plots, PBIAS = -5.52) or under-estimation (in burned and mulched soils, PBIAS of 1) of the 413 

observations. 414 

Due to these unsatisfactory performances, MMF was optimised as reported in the section 2.5.2. 415 

The model adaptations to the post-fire conditions greatly improved the erosion prediction 416 

capacity of MMF, except in the unburned soils. Under this condition, the values of r2 were close 417 

to zero, and NSE was largely negative (-84.6). The differences between the predictions and the 418 

corresponding observations were low for the mean values (-12.6%), but high for the other 419 

statistics (> 92.5%), although the model tendency to over-prediction was low (PBIAS = -0.13). 420 

In burned conditions, the large scattering of the "observations vs. predictions" pairs, which was 421 

large in the unburned soils, was reduced, and these pairs were close to the line of perfect 422 

agreement (Figure 4b). The improvement of the model performance is confirmed by the 423 

quantitative analysis. More specifically, the differences between the mean observed and 424 

predicted soil loss were from 5.1% (burned and not treated soils) to 12.9% (burned and mulched 425 

plots), while the maximum values differed by 1.41% (burned and not treated soils) to 6% 426 

(unburned plots). The r2 values were between 0.86 (burned and mulched soils) and 0.94 (burned 427 

and not treated conditions), and the RMSE values were lower than half the observed standard 428 

deviations (except under burned and mulched soil conditions). The soil loss prediction capacity 429 

can be considered good in the unburned, and burned and not treated soil conditions (NSE = 430 

0.75), and satisfactory for the burned and mulched plots (NSE = 0.43). The large over- or under-431 

estimation, previously noticed for the default model, disappeared, and the observed soil loss was 432 

only slightly under-predicted in burned and not treated soils (PBIAS of 0.06) or over-predicted 433 

(burned and mulched plots, PBIAS = -0.13) by the optimised MMF model (Table 5).        434 
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 442 

Figure 4 – Scatterplots of observed vs. predict soil loss using the MMF model (default, a, and 443 

calibrated, b) model at the experimental site (Agramón, Castilla-La Mancha, Spain). 444 

 445 

3.3. USLE model 446 

 447 

The USLE model, running with default input parameters, showed a poor prediction capacity of 448 

erosion under all soil conditions. The visual evaluation highlights a large scattering of data 449 

around the line of perfect agreement (Figure 5a), and also the evaluation indicators confirm this 450 

poor performance. In more detail, the differences in the main statistics between the observations 451 

and the corresponding predictions were large (up to 100% for the mean and maximum values). 452 

The values of r2 did not exceed 0.08 (unburned plots), NSE was always negative (< -26.1), and 453 

RMSE was always unsatisfactory (not lower than 10-fold half the observed standard deviation). 454 

This poor model performance is due to the large under-estimation (for all soil conditions, PBIAS 455 

> 0.80) of the observations (Table 5).  456 

The USLE-M calibration through the setup of the values of CNs and C factors improved the 457 

model performance, although its erosion prediction capacity was still unsatisfactory for all the 458 



modelled soil conditions (Figure 5b). More specifically, the large differences between the main 459 

statistics of the observed and predicted soil loss decreased compared to the default model runs 460 

(errors in the mean values lower than -24.4%). The values of r2 were not higher than 0.28 for the 461 

burned and mulched plots, and close to zero for the other soil conditions. NSE was never 462 

satisfactory, since always negative (< -10.3). The large under-estimation shown by the default 463 

model was reduced by the calibration, and the PBIAS (lower than 0.24) was always significant 464 

(Table 5).  465 
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(b) 473 

Figure 5 – Scatterplots of observed vs. predict soil loss using the USLE-M (default, a, and 474 

calibrated, b) model at the experimental site (Agramón, Castilla-La Mancha, Spain). 475 

 476 

4. Discussion 477 

 478 

4.1. WEPP model 479 

 480 

The WEPP model gave poor predictions of soil loss in both unburned and burned areas (with and without the post-481 
fire treatment). WEPP underestimated the erosion in the unburned plots, while, in contrast, the soil loss was largely 482 
overestimated in burned soils also by several orders of magnitude. The reason of this high inaccuracy could be 483 
many. First, the lack of calibration did not balance errors related to model parameterisation and hydrological 484 
simulations. The WEPP model requires dozens of input parameters that should be measured in the field. Since these 485 
measurements were not available at the experimental site, the modellers were forced to adopt literature values (e.g., 486 
for Ke, Ki, Kr, and τc) with evident low accuracy at reproducing the observed erosion rates. This problem limits the 487 
WEPP applicability in poor-data environments, where the erosion predictions may be generally inaccurate. Second, 488 
low erosion rates, as observed at the experimental site, are generally predicted with unsatisfactory reliability by 489 
WEPP (e.g., Grønsten & Lundekvam, 2006; Konz et al., 2009; Licciardello et al., 2006; Soto & Díaz-Fierros, 1998), 490 
when no runoff is simulated (as in many of our modelled events). This model considers only Hortonian processes 491 
and not runoff due to saturated flow (Soto & Díaz-Fierros, 1998), the latter mechanism being common for low-492 
intensity rainfall (Beven & Kirkby, 1979). Third, the overland erosion being zero, it is evident that WEPP also failed 493 
at simulating the rainsplash erosion, which may be dominant at the experimental site (Díaz et al., 2022; Lucas-Borja 494 



et al., 2022). Fourth, due to the lack of observations about the soil water content at the experimental plots, a constant 495 
initial saturation level was input to the model, while the real values were presumably variable, depending on the 496 
antecedent precipitation, thus affecting the runoff response simulated by the model. Also other authors found a large 497 
inaccuracy of WEPP in erosion predictions under burned conditions, as Soto & Díaz-Fierros (1998) and Fernández 498 
& Vega (2018), who applied WEPP in North-Western Spain, and by (Larsen & MacDonald, 2007), who modelled 499 
erosion in Colorado (USA). The latter authors confirmed that the model tends to over-predict sediment yields under 500 
1 ton/ha-yr. 501 

 502 

4.2. MMF model 503 

 504 

The erosion predictions of the default (uncalibrated) MMF were inaccurate for all modelled soil 505 

conditions, since the model noticeably over- or under-estimated the soil loss observations. We 506 

should remind that MMF has a strong empirical base and was developed using mostly smaller 507 

scale erosion plot data derived from agricultural fields (Vieira et al., 2018b). Therefore, the 508 

extrapolations to other land uses, such as the burned forestlands, have been made using 509 

corrections of the internal algorithms based on an empirical approach. In the burned and mulched 510 

plots, these poor performances were due to the inadequate estimation of the sediment transport 511 

capacity, since the model did not produce soil loss (which, in MMF, is the lower value between 512 

the sediment detachment and the transport capacity). The model, running with a too high default 513 

C-factor, simulated a total shadowing effect of the mulch material against rainfall erosivity, 514 

which resulted in a soil particle detachment equal to zero. This explanation agrees with the 515 

findings of Zema, Nunes, et al. (2020) and Vieira et al. (2014), who also found MMF failures in 516 

reproducing the sediment transport capacity. For the other soil conditions (unburned, and burned 517 

and not treated soils), the reasons of the low prediction capacity are not so clear as for burned 518 

and mulched conditions. A reason may be the inadequate incorporation of the fire effects in the 519 

soil parameters, which are variable over time, while all parameters were left constant throughout 520 

the modelling period. Wildfire, especially when at high severity, such as in our experiment, 521 

noticeably changes some physical properties of soil, and these changes are not easy to be 522 

reproduced in empirical models without recurring to correction factors (e.g., the C factor). Also 523 

Fernández et al. (2010) highlighted the role played by the C and P factors on reliable predictions 524 

of erosion by MMF, which often may lead to poor results, when these parameters are not fully 525 

established in the model input procedure.  526 

This model inaccuracy in reproducing the soil loss in the experimental conditions required 527 

adjustments in MMF. After calibration, the prediction capacity of MMF noticeably improved 528 

compared to the default model, and the soil loss predictions were closer to the corresponding 529 

observations in burned soil (with or without mulching). However, the model prediction capacity 530 

was still poor in unburned plots. This model inability may be due to the null prediction of the 531 



sediment transport capacity, which was too low to convey the sediment detached downstream. In 532 

other words, the soil loss due to rainsplash erosion and particle detachment by overland flow is 533 

simulated by MMF, but the process of sediment entrapment in the flow is not realistically 534 

reproduced. In contrast, the model prediction capacity was acceptable in the mulched plots and 535 

satisfactory in the burned and not treated soils. We ascribed the reasons for this model accuracy 536 

to the adaptations of the model to the burned conditions using the modifications of the internal 537 

algorithms and correction factors reported in methodology. More specifically, the incorporation 538 

of SWR effects, the modification of EHD, both following seasonal patterns, and the temporal 539 

downscaling to rainstorm events were successful to reproduce the variable dynamics of post-fire 540 

hydrology in the experimental soil. In contrast, the input of calibrated C-factors under post-fire 541 

management was less effective at modelling erosion in burned and mulched areas. A slight 542 

tendency to under-estimation or over-estimation of the observed soil loss remained. This model 543 

behaviour has been commonly detected in many MMF applications in burned areas (Fernández 544 

et al., 2010; Hosseini et al., 2018; Vieira et al., 2014, 2018b; Zema, Nunes, et al., 2020). It is 545 

worth to notice that the optimisation of the C-factor, which was weighted by the vegetal cover, 546 

improved the good prediction capacity of erosion under the same environmental conditions 547 

reported by Zema, Nunes, et al. (2020). The need of C-factor tuning is in agreement with several 548 

studies, which have demonstrated how accurate methodologies to estimate the C-factor are the 549 

key to reproduce the fire effects on soils (e.g., Larsen & MacDonald, 2007; Vieira et al., 2014).  550 

The comparison of our results with other MMF modelling experiences in Mediterranean 551 

conditions shows that the changes suggested by the previous studies (Hosseini et al., 2018; 552 

Vieira et al., 2014, 2018b; Zema, Nunes, et al., 2020), coupled to the C-factor tuning proposed in 553 

this investigation, successfully improved the MMF ability to model soil hydrology under 554 

variable conditions at the event scale. The model efficiency calculated in our study is similar to 555 

the values found by Vieira et al. (2014), who applied MMF in North-Central Portugal, and by 556 

Zema, Nunes, et al. (2020) in Central-Eastern Spain. Lower model efficiency (in the range 0.54-557 

0.74) were reported by Vieira et al. (2014) again in North-Central Portugal, and by Fernández et 558 

al. (2010) and Hosseini et al. (2018) in North-Western Spain and North-Central Portugal, 559 

respectively. However, it should be highlighted that, while our study applied MMF at the event 560 

scale, all the other model experiences were carried out at aggregate temporal scales (from 561 

seasonal to annual periods). Many studies have shown that the erosion models better perform in 562 

predicting the average soil loss rather than erosion rates for specific events (Fernández et al., 563 

2010; Larsen & MacDonald, 2007).  564 

 565 



4.3. USLE model 566 

 567 

The erosion predictions using the USLE-M model, running with default and calibrated input 568 

parameters, were poor. This low performance of the model is common for many erosion models, 569 

which generally over-estimate and under-estimate the lower and higher soil losses, respectively 570 

(Kinnell, 2003; Larsen & MacDonald, 2007; Nearing, 2000). In our opinion, the most important 571 

reason for this inaccuracy was the lack of observed values of the runoff coefficients. Their 572 

estimations required the use of the SCS-CN method in our study leading to a worse performance 573 

of the USLE-M model compared to MMF (which internally simulates surface runoff). The 574 

increases in the CNs of fire-affected areas are suggested by several authors (e.g., Carra et al., 575 

2021; Lucas-Borja, Bombino, et al., 2020; Papathanasiou et al., 2015; Soulis, 2018), in order to 576 

simulate the effects of soil water repellency (left by wildfire) and complete removal of 577 

vegetation (due to burning) on soil hydrological properties in the “window-of-disturbance”.  578 

In accordance with Vieira et al. (2015), another limitation of the USLE-family model is its great 579 

dependence on empirical parameters, such as the C and P-factors, to estimate the soil losses. The 580 

C-factor values, in spite of calibration, were not able to simulate the effect of the vegetation 581 

cover (in unburned and burned but untreated plots) and of the mulch layer against rain splash 582 

erosion and overland flow, thus contributing to the unsatisfactory model performances. Also the 583 

increase in soil erodibility (expressed by the K-factor) due to the wildfire-induced changes in 584 

physical parameters of soil and the lack of parameters simulating the effects of SWR may have 585 

played a significant role in this model inaccuracy (Fernández et al., 2010). We also agree with 586 

the latter authors about the inefficient use of an inadequate kinetic energy equation of rainfall for 587 

the Mediterranean climate by the USLE-family models, which could have affected the 588 

simulation of the real rainfall erosivity in the experimental conditions.  589 

The poor prediction capacity of USLE-M indicates that the literature values that were adopted 590 

for the input parameters were not suitable for simulating erosion in unburned and burned (with or 591 

without mulching) plots. The USLE-M model inaccuracy in reproducing erosion in the unburned 592 

plots agrees with the findings by (Carra et al., 2021), who also achieved poor predictions of soil 593 

losses in unburned pine stands of Southern Italy. Comparisons of our results with other 594 

modelling experiences using USLE-family models in burned forests show satisfactory and 595 

inaccurate erosion predictions in Portugal (Vieira et al., 2018b) and in North-Western Spain 596 

(Fernández et al., 2010 and Fernández & Vega, 2016; 2018) in the short-term using the RUSLE 597 

model. The latter authors demonstrated that neither the model calibration by modifying the soil 598 

erosivity and erodibility, and the C-factors or letting the model account for the high organic 599 



matter content of soil significantly improved the model accuracy. In Greece, (Karamesouti et al., 600 

2016) reported a large overestimation of erosion using RUSLE, due to inadequate C-factors.  601 

 602 

4.4. Comparison of the three models and future research needs 603 

 604 

The use of erosive models to predict soil loss under the three soil conditions gave contrasting 605 

results. A comparison of the erosion prediction capacity shown by the three models showed that 606 

the MMF model performs better and WEPP is the less accurate model in the experimental 607 

conditions. Therefore, MMF is the most accurate model for erosion predictions in the 608 

experimental environment, and furthermore offers simplicity of use low demand of input 609 

parameters. This derives from the availability of input parameters that successfully reproduce the 610 

effects of SWR and the post-fire variability of vegetation cover on the hydrological and erosive 611 

response of burned soils. Therefore, the MMF model appears as a valuable tool to predict both 612 

surface runoff (although this hydrological variable was not directly evaluated in this study) and 613 

soil loss in the Mediterranean burned forests, although being of less common use compared to 614 

the other two models. As such, the model may be used to prioritise the forest areas for post-615 

management actions, in order to control the hydrogeological hazard and the risk of 616 

contamination of downstream water bodies. Furthermore, its process-based nature allows MMF 617 

to easily handle hydrological scenarios outside its calibration range, making the model 618 

particularly suitable for research purposes and scenario analysis (Beven, 2011; Vieira et al., 619 

2014). In contrast, the USLE-M model must be further improved for erosion simulations in 620 

burned conditions, since the suggested values of the CN and C parameters are not able to 621 

reproduce the changes in soil hydrology due to wildfire. The use of the WEPP model is not 622 

advised in data-poor environments, such as the experimental site, since the scarce availability of 623 

input data affects the erosion prediction accuracy. Moreover, the use of MMF and WEPP models 624 

is more convenient compared to USLE-M, since the latter model does not predict surface runoff, 625 

which may be an essential information in areas that are prone to flooding hazard. 626 

Overall, the comparison of these models to the same dataset, as done in this study, represents an 627 

added value (Larsen and MacDonald, 2007; Vieira et al., 2018), since this allows the 628 

determination of the structural uncertainty in modelling predictions (Lopes et al., 2021). This is 629 

in agreement with Alewell et al. (2019) and Batista et al. (2019), who consider that there is no 630 

optimal model for worldwide applications, but the accuracy of the predictions of a model is 631 

mainly due to the quality of the input parameters and the calibration process (Lopes et al., 2021). 632 

Therefore, comparative studies as the current work are essential for land managers and 633 



hydrologists, who must choose the most suitable prediction model for specific environmental 634 

conditions. 635 

 636 

4.5. Future research needs 637 

 638 

The verification of the three models in only one study area represents a limitation of our study, 639 

and this should be considered for future uses in other environmental contexts. More research is 640 

therefore needed to ensure the model transferability to other environmental contexts.  641 

Widening the spatial scale and reducing the temporal scale supports a better understanding of 642 

post-fire impacts from on-site processes (plot or hillslope) to off-site impacts (catchment scale) 643 

(Lopes et al., 2021) on one side as well as the improvements of model predictions at the event 644 

scale. The latter concept is particularly true in those environments, where the hydrological and 645 

erosive response is produced by a low number of small but intense rainfall events (such as in the 646 

semi-arid conditions).  647 

Moreover, there is the need for larger field datasets, which should allow a simultaneous model 648 

calibration and validation, which leads to a more robust prediction capacity of the tested models 649 

for MMF and to the possibility to identify the weakness in the applicability of the other two 650 

models.  651 

Finally, we also suggest enlarging the modelling exercises about erosion in burned areas treated 652 

with post-fire management techniques, considering that the relevant research is not exhaustive 653 

and the number of studies that analyse the post-fire actions through erosion modelling is limited 654 

(Zema 2021).   655 

 656 

5. Conclusions 657 

 658 

In forest soils of Central Eastern Spain, burned by a wildfire and then mulched using straw, the 659 

WEPP model noticeably underestimated the erosion in the unburned areas, while, in contrast, the 660 

soil loss was largely overestimated in the burned soils also by several orders of magnitude. This 661 

large inaccuracy was presumably due to lack of model calibration. The uncalibrated MMF model 662 

noticeably over- or under-estimated the soil loss observations for all modeled soil conditions, 663 

when running with default input parameters. However, the optimisation of this model with a new 664 

procedure to estimate the C-factor, resulted in a satisfactory erosion prediction capacity, in 665 

burned plots with or without the mulching treatment. Calibration failed to improve the MMF 666 

model simulations in unburned soils. The performances of the USLE-M model were poor before 667 



and after calibration CNs and C-factors under all simulated soil management conditions. We 668 

conclude that the most accurate prediction model is MMF to estimate the soil loss in 669 

Mediterranean burned forests with or without post-fire mulching. 670 
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SUPPLEMENTARY MATERIAL 886 

 887 

Table 1SM – Full list of input parameters of the WEPP model to predict soil loss at the experimental site (Agramón, Castilla-La Mancha, Spain).  888 

 889 

Slope Soil 

Management 
Position 

Length 

(m) 

Slope 

(%) 
Albedo 

Initial 

saturation 

level (%) 

Depth 

(mm) 

Sand 

(%) 

Clay 

(%) 

OM 

(%) 

CEC 

(meq/100g) 

Rock 

(%) 

Unburned 

Upper 12.9 68.3 

Middle 103.5 51 Shrub perennial 

Lower 12.9 22.3 

0.23 75 1000 26.3 14.3 2.88 9.9 50 

Burned and not treated 

Upper 13.6 23.7 

Middle 108.8 41 
25% ground cover - 

high severity 
Lower 13.6 21.3 

0.23 75 1000 31.7 12.8 2.13 9.9 50 

Burned and mulched 

Upper 15.4 48.7 

Middle 123.5 40.3 

Fallow initial 

condition - wheat 

residues Lower 15.4 19 

0.23 75 1000 30.2 18.5 2.38 9.9 50 

Notes: OM = organic matter; CEC = cation exchange capacity. 890 



Table 2SM – Full list of input parameters of the MMF model to predict soil loss at the experimental site (Agramón, Castilla-La Mancha, Spain). 891 

 892 

Soil condition 

Min Max Min Max Min Max 

Unburned 
Burned and Not 

Treated 

Burned and 

Mulched 

Factor 

Uncalibrated model 

R 43.3 115.2 43.3 115.2 43.3 115.2 

Rn 1 1 1 1 1 1 

I 10 10 10 10 10 10 

MS 0.2 0.2 0.4 0.4 0.4 0.4 

BD 1.3 1.3 1.3 1.3 1.3 1.3 

EHD 0.1 0.1 0.1 0.1 0.1 0.1 

K 0.9 0.9 0.9 0.9 0.9 0.9 

COH 2.0 2.0 2.0 2.0 2.0 2.0 

S 27 27 22 22 22 22 

A 0 0 0 0 0.3 0.3 

Et/E0 1 1 0.1 0.1 0.9 0.9 

C 0.003 0 1 1 0 0 

CC 0.7 0.7 0 0 1 1 

GC 0.4 0.6 0 0 1 1 

PH 0 0 0 0 0.5 0.5 



  Calibrated model 

R 43.3 115.2 43.3 115.2 43.3 115.2 

Rn 1 1 1 1 1.0 1.0 

I 10 10 10 10 10.0 10.0 

MS 0.35 0.35 0.28 0.28 0.28 0.28 

BD 1.3 1.3 1.3 1.3 1.3 1.3 

EHD 0.2 0.2 0.09 0.09 0.12 0.12 

K 0.9 0.9 0.9 0.9 0.9 0.9 

COH 2 2 2 2 2 2 

S 27 27 22 22 22 22 

A 0.0 0.0 0.0 0.0 0.06 0.06 

Et/E0 0.80 0.70 0.05 0.05 0.50 0.45 

C 0.135 0.156 0.120 0.558 0.029 0.034 

CC 0.7 0.7 0 0 0.05 0.05 

GC 0.45 0.39 0.19 0.07 0.56 0.47 

PH 0.5 0.5 0 0 0.6 0.6 

Notes: R = rainfall depth; Rn = rainy days; I = intensity of erosive rains; MS = moisture content at field capacity; BD = bulk density of the topsoil; EHD = effective hydrological 893 

depth; K = detachability index; COH = cohesion of surface soil; S = slope steepness; A = vegetation cover; Et/E0 = ratio of actual and potential evapotranspiration; C = cover 894 

management factor; CC = percent canopy cover; GC = ground cover; PH = plant height to the ground surface. 895 

 896 

Table 3SM – Full list of input parameters of the USLE-M model to predict soil loss at the experimental site (Agramón, Castilla-La Mancha, Spain).  897 

 898 

Model Input Measuring unit Soil conditions 



Unburned Burned and not treated Burned and mulched parameter 

Default Calibrated Default Calibrated Default Calibrated 

CN - 39 7 90 (79) 13 65 (39) 8 
SCS-CN 

λ - 0.2 

max 0.375 0.694 0.570 
Qr - 

min 0.176 0.409 0.001 

max 302 
Re-factor 

MJ mm/ 

ha h min 7 

LS-factor 60.51 

KUM-factor tons h/MJ mm 0.002 0.001 0.002 

C-factor - 0.0001 0.0002 0.006 0.526 0.0002 0.085 

USLE-M 

P-factor - 1 

Notes: CN = curve number; λ = rainfall depth coefficient; Re-factor = rainfall erosivity factor; KUM-factor = soil erodibility factor; C-factor = cover 899 

management factor; P-factor = conservation practice factor; the values related to the first two modelled events are reported in brackets. 900 

 901 


