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Abstract

In this paper we present a construction of interpolatory Hermite mul-
tiwavelets for functions that take values in nonlinear geometries such
as Riemannian manifolds or Lie groups. We rely on the strong connec-
tion between wavelets and subdivision schemes to define a prediction-
correction approach based on Hermite subdivision schemes that operate
on manifold-valued data. The main result concerns the decay of the
wavelet coefficients: We show that our manifold-valued construction
essentially admits the same coefficient decay as linear Hermite wavelets,
which also generalizes results on manifold-valued scalar wavelets.
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1 Introduction

Wavelets are one of the most important tools for the analysis of signals and
images, as they allow to study local properties of functions at different reso-
lutions. In the last decades a lot of different types of one or multidimensional
wavelets as well as their properties have been studied; see [9, 29] for an
overview.

Over the last few years there has been a growing interest in the analysis
of manifold-valued data, such as data lying in Riemannian manifolds or Lie
groups. Many of such data may typically be collected from a variety of digital
sensors and include, as examples, time series of orientations or rigid motions,
measurements of deformations/strains in material science, color image data
relying on representations different from RGB, distance or covariance matrices,
etc. Wavelets tailored to manifold-valued data turn out to be very promising
tools to process (for example for compression or denoising reasons) or interpret
this type of data. A (non-ehaustive) list of possible applications can be found
in [39].

The literature on wavelet transforms for functions that take values in non-
linear geometries is not as exhaustive as in the linear case. In the manifold
setting, the aim is to construct processes which are intrinsic to the underly-
ing geometry, for example by preserving invariances with respect to certain
transformation groups.

The idea of formalizing a wavelet framework for geometric data goes back to
[39], and has led to a series of results concerning convergence and smoothness
of subdivision schemes, starting with the work of [42, 43], the coefficient decay
for interpolatory wavelets [18], and the definability and stability of multiscale
transforms [16, 19].

In this paper, we aim at extending this line of research by defining and
analyzing multiwavelets for manifold-valued data. Linear multiwavelets are a
generalization of classical (scalar) wavelets and are obtained by allowing several
functions in the construction of multiresolution analyses. They are based on a
multi-scaling function that satisfies a vector refinement equation with matrix-
valued rather than scalar coefficients. Multiwavelets can have advantageous
properties, for example, for constructing bases with short support and high
approximation [28].

This paper focuses on multiwavelets of Hermite-type, meaning that the
multi-scaling functions satisfy Hermite conditions [6-8, 38]. Such wavelet
systems find applications in contexts where Hermite data need to be pro-
cessed, typically leading to more accurate representations than in the standard
point-value case.

In particular, starting from an interpolatory Hermite subdivision scheme
reproducing elements in a given space, for example the space of polynomials
or exponential functions, it is always possible to realize a biorthogonal wavelet
system, where the associated wavelet operator possesses the property of “can-
celling” those elements [8]. This is the usually required vanishing moment
property assuring good compression capabilities to the wavelet system.
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We use the mentioned tight connection between subdivision schemes and
wavelets to obtain manifold-valued Hermite wavelet schemes, using the con-
struction presented in [32, 33]. Our construction works in a similar way as
presented in [18, 19], with the difference that we incorporate derivative infor-
mation, so the data consist not only of manifold locations, but also of velocity
vectors.

The main result of this paper is a wavelet coefficient decay property of
such manifold-valued wavelets, which mimics the linear case [7] and can be
considered as an extension of [18] to Hermite-type interpolatory wavelets. The
crucial parts of this work are the transfer of the symbol-based theory of [8]
to an operator framework, and the interpretation of the difference of Hermite
points as elements of a fiber of TM & T'M, where T'M is the tangent bundle
of a manifold M.

The paper is organized as follows. In Section 2 and Section 3 we intro-
duce the linear tools necessary to construct Hermite-type wavelets, mainly
focusing on Hermite subdivision schemes. Section 4 introduces linear Her-
mite multiwavelets based on [8]. We reinterpret their constructions in terms
of operators rather than symbols, highlighting the similarities with the scalar
multiscale transforms of [19]. Section 5 introduces our Hermite prediction-
correction scheme for manifold-valued data, which is a direct generalization of
[8] and makes use of natural tools in nonlinear geometries such as the expo-
nential map and the parallel transport operator. In this section we also prove
that the wavelet coefficients at level n decay as 272" for dense enough input
data, showing that manifold-valued Hermite wavelets have similar properties
as their linear counterparts [7].

2 Preliminaries

In this paper we are concerned with wavelets for functions f : R — M, where
M is a manifold. The main examples of manifolds we consider are surfaces in
R™ and Lie groups. To construct wavelets for manifold-valued functions, we
also include information about the first derivatives f’.

In the linear version of this problem, the data are of the form
(f(z), f'(z))T € R™ x R™ for x € R. To simplify notation, we denote by
V =R™, so that the data lies in V2. Throughout this text, m always denotes
the dimension of V.

Elements in V2 are denoted by bold lower case letters p. We are also
concerned with L(V)?*2, where L(V) is the space of all linear functions V —
V. Elements of L(V)?*?2 are denoted by bold upper case letters A. The space
of all vector-valued sequences Z — V?2 is denoted by #(Z,V?). Elements of
U(Z,V?) are again denoted by bold lower case letters p = (p; :j €Z). We
also consider the matrix-valued sequence space £(Z, L(V)?*?). Elements of this
space are again denoted by bold upper case letters A = (A, : j € Z).
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We use infinity-norms on V, V2 L(V) and L(V)?*2:

|p‘0<>: . nax |pi|7 peV =R",
1=1,....m
(2)| = malplctolay. (7)) eve
la|o = max |a(p)|e, acL(V),
PEV,|pleo=1

o0 s
1,j=0, ajg a

ag a
|A‘ = maxl|aij|oo’ A= < 00 01) GL(V)2X2~
Based on these infinity-norms, we introduce norms on ¢(Z,V?) and
UZ, L(V)**?):

[Pl = sup|p;lec (1)
JEZ

[Alloc = sup |Aj]c.
JEZ

The space consisting only of bounded sequences with respect to the
norms (1) are denoted by (o (Z,V?) and lo(Z, L(V)?*?). We further con-
sider £o(Z, L(V)?*?), which is the space of finitely supported sequences in
UZ, L(V)?*?).

By C(R,V) we denote the space of continuous functions R — V, while
Cu(R, V) denotes the space of uniformly continuous and bounded functions.
We further consider the space of continuously differentiable functions C*(R, V')
and the space CL(R, V) of functions f € CY(R, V) with f' € C,(R,V).

The decomposition and reconstruction of data using filter banks is closely
related to wavelets and subdivision schemes. A detailed discussion of the con-
nection of filter banks and wavelets, especially in the setting of biorthogonal
wavelets that we analyze, can be found in [40, 41].

We consider filters or masks A™ € ¢4(Z, L(V)2*2), n € N, of the form

ol gln]
Al — 00 @01 2)
al gl )’
0 @11

where ag%},a%],am],a[ﬁ] € ((Z,R). The entries of A™ in eq. (2) are to be
understood as a([]%] - I, etc., where I denotes the identity matrix. Through
this form of A["], results for Hermite subdivision schemes with V' = R can
be directly applied to our setup. An important mask is the delta sequence
0=(0;:j€Z)given by 6o =1I and §; = 0 for j € Z\{0}.

Let p € £(Z,V?) and j € Z. Given a mask A™, the associated reconstruc-
tion or subdivision operator of level n, Sam : U(Z,V?) — ((Z,V?), is given
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by
p)j = Z A] 2k Pk> (3)
kEZ
while the decomposition or wavelet operator D 41 is given by

(D am ZAZ 2D
iE€EZ

We also need the shift operator L : ((Z,V?) — ((Z,V?) defined as

(Lp)i = Diy1- (4)

The reconstruction and decomposition operators satisfy the following well-
known properties:

Sam L = EQSA[n] and D m L2 = LD pim) (5)

3 Linear Hermite subdivision schemes

Consider a sequence of finitely supported masks (A["] :n > 0). A linear
Hermite subdivision scheme S(A™ : n > 0) is the iterative procedure of
constructing sequences pl™ from an initial sequence pl% via the rule

Dn+1p[n+1] — SA[W] an[n]’ neN. (6)

Here D denotes the D = diag (1,1/2) € L(V)?*2, where a constant C' is to
be understood as C - I. Since we associate pl” with pairs of function and
derivative each evaluated on the grid 27"Z, the matrix D and its powers arise
because of the chain rule.

Schemes of the form eq. (6) are often called level-dependent as opposed to
stationary. In stationary subdivision Al = A is satisfied for a fixed mask A,
i.e. the mask does not depend on the iteration level n.

In this paper we are mostly concerned with interpolatory schemes: A

scheme satisfying eq. (6) is called interpolatory if p["+1] = pgn] forj € Z,n € N.

This property relates to the sequence of masks (A["] n € N) satisfying
A[Qj] Dé;,j € Z,n € N. In terms of operators the interpolation property
can be written as DsS g1 = D.

A Hermite subdivision scheme is called C'-convergent if for every initial
data pl% € £ (Z,V?) there exists a function ® = [®]}_, : R — V2 such that
the sequence p!" satisfies

lim sup |p - P <2Jn> loo =0,

n—oo JGZ
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and where ®y € CL(R, V) with & = ®;. We further assume that there exists
at least one sequence pl° e 0(Z,V?) such that the resulting limiting function
satisfies ® # 0. Results on the convergence of linear Hermite subdivision
schemes can be found, for example, in [11, 12, 14, 20, 22, 30] for the stationary
case, in [3, 27] in the level-dependent case, and in [4, 21, 34, 35] for smoothness
of high order.

When applying a C'-convergent scheme to the delta sequence as initial
data it converges to the so-called basic limit function

oy P
F={ 0o )
(I)Oq)1

see [12] for the case of Hermite schemes. If we consider C!-convergent schemes
starting at level /, i.e. S(A["M] :n > 0) for £ > 0 applied to the delta sequence,
we obtain a sequence of basic limit functions F with F = F. The basic
limit functions at different levels are connected via a refinement equation,
which allows to use them for the construction of multiresolution analyses [7, 8].

Closely related to the convergence of subdivision schemes and the refine-
ment property is the property of reproducing certain spaces [2, 3, 26, 30].
Here we consider Hermite subdivision schemes that reproduce at least a 2-
dimensional space of polynomials and/or exponentials. Since reproduction of
constants is a necessary condition for convergence, the space to be reproduced
should either contain

span{l,z} or span{l,e’}, (7)

where A € C\ {0}. Some examples of Hermite schemes reproducing such spaces
can be found in [2, 4, 5, 26, 27]. In the following, we write W to mean either
one of the spaces in (7).

The reproduction property can be formulated in terms of the spectral
condition [2, 13, 30] or sum rules [22]:

Definition 1 A subdivision operator S 4in) satisfies the W-spectral condition, where
W is either one of the spaces in (7), if

S pln) Dnv&n] = D”Jrl'ugzl-"_l]7 fewW, neN.
(n]

where vy is the vector-valued sequences

m _ ( F(27"3) ;
'vf;j_ (f/(z—nj))v ]€Z~
defined by a function f € W.
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4 Linear wavelets from interpolatory Hermite
subdivision schemes

In [8] multiwavelets are constructed from linear Hermite subdivision schemes
and [7] provides an estimate on the wavelet coefficient decay. These papers rely
on the symbol of the matrix mask, i.e., the matrix-valued Laurent polynomials

=Y Atk zec, (8)

kEZ

and A € 04(Z, L(V)2%2). To generalize the results of [7, 8] to the manifold-
valued case we rewrite the necessary constructions in terms of operators rather

than symbols.
We consider sets of level-dependent filters {A["], B ["], E[n], B ,n € N},
~[n]

where A" and B " are the filters associated to the decomposition of data
and A" as well as BI™ denote filters associated to the reconstruction.

[n]

Definition 2 Given a set of level-dependent filters {A[”],B["],A[n]7 EM, n € N}
we say that they form a biorthogonal system if the following conditions are satisfied:
D(A[n])TSA["] = D(E[n])TSB[V,L] =id,

D xKimyrSgin) =D Spm =0,

(Aln]) (Bl»))T

for alln € N.

The biorthogonal system conditions of Definition 2 are exactly the biorthog-
onal system conditions formulated in terms of symbols in [8], as proved in the
following Proposition.

Proposition 1 The biorthogonal system conditions of Definition 2 are exvactly the
biorthogonal system conditions formulated in terms of symbols in [8].

Proof The biorthogonal system conditions in terms of symbols of [8, Eq. (6)] are:

(A" () A () + A" (—2) Al (—2) = 21,
(A“”)ﬁ(z) ") + (A" (2Bl (—2) = 0,
(B! )‘%) ")+ (B (Al (<) = 0,
B")H(2) B (2) + (B (~2) B (—2) = 21

where (A[n])u(z) = (AT (271) (see the definition of the symbol (8)). We show

that the first condition is the same as our first operator condition (Definition 2); the
rest can be proved analogously.



Springer Nature 2021 BTEX template

8 Hermite multiwavelets for manifold-valued data

We compute the symbol from the first equation'
— N (AT i 410 —i glnl(_ i
2172(14 e A +Z )TrA (=2)
i,j
(1+ (—1>”ﬂ><A[”]>iTA§”]zJ*l
i,5

=Y (X0 + nhH@A™ a2k

k %

This implies
[n] T 4[n] 2] ifk=0,
1+ (-1 A =
;( DM@ AL, = 0 ifk#0.
In particular

AT Al 0
Z( )i i+k {0 if £ # 0 and k is even. )

i
Now the equation using operators is
(PamnyrSame)j = Z(A[n])lej(SA[n] c)i = Z(K[n])ﬁzjflﬁgk%

i€Z i,k
T
=2 (A A en = 30 (AT ALy e
k T
Applying (9) we see that
(D(&inyrSame)j = ¢j-

Remark 1 From the biorthogonal filter conditions (Definition 2), it follows that
if Al satisfies the W -spectral condition (Definition 1) then E[n] satisfies the W -
vanishing moment condition, i.e. elements of W are canceled in the decomposition
1
of data: D(E[n])TD"JrlvEZ?—; I—o for feW.
Indeed, if f € W, then
(n] _ +1, [n+1] 1,1 (n]

SpqmD"vl = D" v = Dgyr D" v = Dy rSam D vl = 0.

See [8] for more details on the relation between spectral and vanishing moment
conditions.

For a given level-dependent  biorthogonal wavelet system

{A[”], B, ;l[n], B [n], n € N} we rewrite the discrete wavelet transform for-
mula, for the decomposition and the reconstruction, in terms of the respective
operators:

Definition 3 Let N € N and !V ¢ UZ,V?). For n = N —1,...,0, the
decomposition scheme reads as
] - D(K[n])TC[n+1]7

d" = D gy re .
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Repeated application of the decomposition scheme leads to coarse data cl’!
and wavelet coefficients d[o], ey d™V 1. One can reconstruct the data ¢l via
the reconstruction scheme:

Definition 4 Let N € N and ¢, d, ... . dN "1 e ¢z,V?). Forn=0,...,N—1,
the reconstruction scheme reads as:

C[7L+1] = SA[n]c[n] + SB[n]d[n].

The reconstruction of e[, n =1,..., N, is called perfect reconstruction, if
S Al D(A["])T + SB[n]D(E[n])T =id. (10)

for all n.
Using the biorthogonality conditions (Definition 2), we may write the
decomposition scheme in the following way (compare [19, p.3, eq. (5)]):

c[n] = ’D(A[wl])Tc[n+1] )

d" =D g1 (C[n+11 — S c["]>

= D(ﬁ[n])T (id —S A D(A[n])T)c["'i’l]. (11)

4.1 Prediction-correction scheme

For the construction of non-linear multiresolution analyses, we restrict our-
selves to a special case of biorthogonal wavelet systems, namely prediction-
correction schemes. These schemes are typically associated with an interpola-
tory subdivision operator S 4 (predictor), i.e. an operator satisfying

'D5$A[n] =D.

To obtain the other operators, we use the prediction-correction scheme as
defined in [8, Eq. (25)] in terms of symbols:

B (z)=z1, AM(z) =D, BIM(z) = 2D 1AM (—2), (12)
again with notation (AM#(z) .= (AlPHT (1),

Lemma 1 The prediction-correction scheme defined in (12) can be written in terms
of operators in the following way:

1. Sgm = /:*185,
2. Dzimyr = D7'Ds.

5. Dgiyr = DD gyl (1 =SaeDziyr ) = Dol (id =S pmD™'Dy )
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Remark 2 From Lemma 1 it is apparent that the prediction-correction construction
of [8] is a Hermite version of [19, Example 1.1.].

Proof of Lemma 1 The first two parts are immediate from the definition of the
symbol.
To see part (3), we first compute (BI™ ]) from its symbol:

B = (-1 *al, b7, (13)
see also [8, p. 14]. Therefore
(D(f:,[n])Tc)i = Z(E[n])zclwr% = Z(_l)l_kA[fﬂkD_lck+2i- (14)
k k

Now compute the other operator, using the first two parts of this lemma and the
interpolation property of Al

(DD(A[H])TL(id —SA[,L]D(AM])T) ) = (DsLe); — (DsLS 41 D' De);
= i1 — (Spm D' Dse)aitt
= C2i+1 — ZA[n%J+1 _I(D(;C)i+j

= C2i41 — ZA 21D eaiyg)

= C2it1 — ZA—2J‘+1D7 eaig) + 0 Ay D a1 — i
: i

= Z kA[n]D C2it1—k

1 k Aln 71
—Z A[ C2it k-

From (14) the result follows. O

Based on Lemma 1, the decomposition scheme (Definition 3) in the
prediction-correction case is given by

cn] D~ 1 [n+1] (15)

[
i Co;
d["] — <C[n+1] — S c[n]) )
¢ Al 2i+1
We note that due to the interpolation property of S4(mi, i.e., since S 4 c[;;] =
[n] c[Q?H] we have (el — 8 4™, =0.
leen a function f € C1(R,V), the discrete data cgn] is interpreted as
samples of the function and its derivative at 7/2™. This means

" = D"v&n]. (16)



Springer Nature 2021 BTEX template

Hermite multiwavelets for manifold-valued data 11

Through this interpretation, we obtain the Hermite wavelet transform of f,
which represents f in terms of the decomposition sequence

clol glol gl (17)
The reconstruction scheme in the prediction correction case is

c[;fl] = chn] (18)

c[gii] = (SA[n] C[n])2i+1 + dgn}.

This can be used to reconstruction the function f from the decomposition
sequence (17).

5 Hermite subdivision and wavelets for
manifold-valued data

5.1 Basic constructions in manifolds

By M we denote a smooth, finite-dimensional manifold which carries a linear
connection'. A linear connection allows to compute derivatives along tangent
directions of vector fields (and more general, tensors), see [31, Chapter IV] for
an introduction. The most important examples of such manifolds are Rieman-
nian manifolds with the Levi-Civita connection [10], and Lie groups with a
Cartan-Schouten connection [1, 37].

As M carries a linear connection we have notions of parallel transport,
geodesics and the exponential map, which we now define.

By T'M we denote the tangent bundle, and by 7T}, M the tangent space at
p € M, which is a linear space. For I = [0,1], let ¢ : I — M be a smooth
curve such that ¢(0) = p and ¢(1) = ¢ with p,q € M. A wvector field along
c is a smooth curve V : I — TM such that V(t) € Tyy)M. Via the linear
connection on M we can differentiate vector fields along c. If in local charts
(using Einstein summation) we have V = v*9;, and ¢ = 29y, then

1) do*
_— = _— td k
i ( 7 +v'x Fﬂ) Ok.-

Here the coefficients F?i are uniquely determined by the underlying linear
connection. If M is a Riemannian manifold, they are called Christoffel symbols.
The vector field V is called parallel along c if

Dy
ZZ 0
dt

1By this we mean a linear connection on the tangent bundle TM — M, which induces a
covariant derivative in the sense of [31, Section 19.11-19.12].
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In charts this is a linear ODE, which implies that for a curve ¢, ¢(0) = p and
v € T, M there exists a unique vector field V along ¢ such that V(0) = v.
Since ¢ is a vector field along ¢, we define a geodesic to be a curve c satisfying

De .

dt
There exists a unique geodesic joining two points p and ¢ (if not too far apart).
In the Riemannian case, geodesics locally minimize length.

The exponential map is defined by exp,(v) := g(1), where g is the unique
geodesic g satisfying ¢g(0) = p and ¢(0) = v.

We mention that the exponential map is always smooth, but in general
not globally defined. Two important examples for which it is globally defined
are complete Riemannian manifolds and matrix groups [23, 36]. Similarly, the
inverse exponential map is generally only smooth if p and q are close together.
Manifold-valued subdivision schemes often rely on the exponential map and
therefore results are usually only valid for “dense enough” input data, see for
example [15, 32, 43-45]. However, there exist convergence results valid for all
input data in specific cases [24, 25, 44]. Dense enough input data is also a
necessary assumption for our results in Section 4.

If ¢(0) = p and ¢(1) = g, then the parallel transport along c is the linear
map Pf(c) : TyM — T,M, v — V(1), where V is the unique parallel vector
field along ¢ with V(0) = v. The map PJ(c) is an isomorphism, and if M is a
Riemannian manifold, it is also an isometry. The parallel transport satisfies

PA(c) o PI"(e) = Pi(0), (19)
where m is a point on c. In this paper we always choose the curve to be the
geodesic joining p and ¢ when we compute the parallel transport. We introduce
the simplified notation

[olq == PY(g)(v),
where v € T, M and g is the geodesic from p to ¢g. Equation (19) now reads
[[v]mlg = [v]g-

5.2 Hermite subdivision schemes for manifold-valued
data and the proximity condition

Following [32], we define a Hermite subdivision operator for manifold-valued
data.

Definition 5 A Hermite subdivision operator on M is a map T : {(Z,TM) —
LZ,TM) such that

1. L2T = TL, where L is the left shift operator (4),
2. T has compact support, i.e. there exists N such that (Tc¢)a; and (T¢)2j4+1
depend only on ¢;_nN,...,cjynN, for all j € Z and c € ((Z,TM).
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Compare this definition with the properties of linear Hermite subdivision
operators (3) and (5).

We use a linear Hermite subdivision operator S, with mask A of the
form (2), to define a manifold-valued analogue T4 satisfying the properties of
Definition 5. This is based on the parallel transport construction of [33].

Choose a base point sequence m € £(Z, M). For ¢ = (p,v)T € {(Z, TM) we
define

(Tac) =¢, (20)
where & = (p,0)T € ¢(Z, TM) is given by

_eXpmJ <Za3 2k expm pk) +a‘j 2k[vk] ) ’

k€EZ

o [Z a;(igk exp;li (pr) + a%l_zk[vk]mj]
keZ 5,
for j € Z.
From the manifold-valued subdivision operator based on a mask A (20),
we can define a manifold-valued subdivision scheme as the iterative process to
construct ¢ € (Z, TM) from cl% € ¢(Z, TM) via

Dn+lc[n+1] — TA["] Dnc[n}, ne N, (21)

where (A" n € N) is a sequence of masks.

Results for manifold-valued subdivision schemes on topics such as con-
vergence, smoothness, and approximation order, are often derived from their
linear counterparts via a proximity condition [15, 17, 32, 33, 43-45]. A com-
parison between a linear and a manifold-valued operator only makes sense in
a chart or an embedding of M. In this paper we use charts and thus assume
that TM C V2.

We now define a proximity condition for Hermite subdivision operators as
in [32], which is also to be understood in charts.

Definition 6 (Proximity condition) Let (SA[n] n € N) be a sequence of linear
Hermite subdivision operators. Let (TA[n] NS N) be its manifold-valued analogue
defined via (20). The prozimity condition is satisfied if there exists a constant C such

that
D Ap
H(SA[M 7TA[n]) <’U) Hoo S O H( v )

In [33, Corollary 1] it is shown that if the base point sequence is chosen as
either m; = p; or as the geodesic midpoint between p; and p;41, and the input
data is bounded, then the proximity condition between S4 and T4 is satisfied.
Therefore, in this paper, we choose the base point sequence as either one of
those sequences.

2
, neN, (pv)! ez, TM),

oo
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5.3 Manifold-valued prediction-correction scheme

We define operations @& and © in manifolds as generalization of +, — in vector
spaces. Indeed, the operations we define are extensions of &,6 defined in
(19, 44] for point-data to Hermite data.

We consider point-vector Hermite data (p,v)* and vector-vector data
(ug,u1)T, which is an element of T, M & T, M, with ¢ € M, hence an element
of a fiber of TM @® T M. We define the addition of such elements as:

0o (o)

)T

)T

Similarly, for point-vector data (p,v)T, (q,u)” we define their difference as

-1
(q) e (p ) - (epr (q)) . (23)

u v [ul, —v
The resulting element lies in the fiber T, M ®T, M. In Lemma 2 below we show

that these operations satisfy similar properties as the operations on point-data
defined in [44].

Lemma 2 Consider point-vector data a,a and vector-vector data b. Then we have
the following properties:

a®(asa)=a,
(a®b) ©a= b,

with [blp = ([uolp, [ul}p)T when b = (UO»Ul)T

Proof Let a = (p,v)T,a = (p,0)7 and b = (ug,u1)”. Then (23) implies

~ —1/~\ [~ T
aoa=(exp, (p)[0lp—v)".
From (22) we see that the first entry of a ® (@ © a) is p and

a®(aoa)=(p s+ [0l —vlp) = (B [0]p) = a
Similarly, (22) and (23)
(@@ b)©a= ([ulp,v+ [u1]p — v) = ([uo]p, [u1]p) = [b]p.
This concludes the proof. O

Remark 3 If a and b are taken from the same fiber, i.e. v,up,u1 € TpM, then
(a®b)Sa=a.

Based on @, & and (15), (18), we can define a prediction-correction scheme
for manifold-valued Hermite data where the decomposition scheme is

'l = D' (24)



Springer Nature 2021 BTEX template

Hermite multiwavelets for manifold-valued data 15

dEn] = (C[n+1] S TA[n]C[n}) .
2i+1

Similar to (16), given a function f € C1(R, M), the discrete data cL”] is inter-
preted as the function and its derivative at /2", i.e. e[ = D"UBZL]. Eq. (24) is
then used as the decomposition sequence of f and the reconstruction scheme
is defined by

c[;zﬂ} = chn] (25)
cgﬁp = (TA[H]CM)Q‘H &) dgn].

(3

5.4 Coefficient decay for manifold-valued Hermite
wavelets

We now generalize the linear wavelet coefficient decay result of [7] to the
manifold-valued case.

Theorem 1 Let S(A[”] :n >0) be a Cl-convergent interpolatory Hermite subdi-
vision scheme satisfying the W-spectral condition (Definition 1). Moreover assume
that there exists N € N such that supp(A["]) C [=N,N] for all n € N, and that
SUp, N HF[”]HOO < oo. Let M be a manifold (as described in Section 5.1) and let
feCLR,M). We assume that ™ is dense enough. Then the associated manifold-
valued wavelet coefficients d"! (24) satisfy the following property: For R < 1, there
exist m € N and a constant C > 0, depending on W, R, f, N, M and the subdivision
scheme, such that
[d" | <C272", n>m

Proof Recall that in this paper we work in coordinate charts and that all construc-
tions are local. For bounded sequences a, b € £oo(Z, T M) and in some compact subset
of a chart, the operator ©, as defined in (23), satisfies

Ha@ b“oo < C Ha - b”o<>7

for some constant C. This follows from the linearizations exp,, Yo)=q—p+0O(qg—
p||?) and P (u) =u+ O(|lg — pll||u||) for ¢ — p and fixed u, compare [33, Lemma 1].
We assume this bound to hold for all data since the data are required to be dense
enough. Therefore, we have

[d™ oo =™ & Tpm oo < Clle™ ™ = Tyrme™ oo
< C (1 = S g™ oo + 1S gme™ = Tyme™ o) (26)

The first part is bounded by C 272" whenever n > m by the linear wavelet decay
result of [7, Theorem 11]. For the second part, the proximity condition (Definition 6)
implies:

2

A0 in)
OOSH(01>C 00

[ ai el = Tppuel®
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n] _

D"'ugcn]7 the two component of the right side are given by

AON i _ ( AfG/2")

01 27" 12" )
Since f € C}L(R M), f' is bounded and therefore f is Lipschitz. Thus

J Jj+1 J —n
o1 ()| - (57) - (3] = e
H 27L oo 2” 27l oo
and we obtain the bound
2

o I (G

This bound together with the estimate (26) and the linear wavelet coefficient result
[7, Theorem 11] concludes the proof. O

Since cl

<Cc2 7,

6 Conclusions

In this paper we have provided a framework for the construction of Hermite-
type multiwavelets in a manifold setting. In particular we have extended to
such a setting a recent result about the decay of the wavelet coefficients [7].
Our ideas go in the direction of providing efficient representations of Her-
mite manifold-valued data as in a traditional wavelet analysis, for example
for compression or denoising applications. Future research will focus on such
applications and on the generalization of the obtained theoretical results to
the case of higher order derivatives.
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