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Abstract—Edge computing is aimed to support compute-intensive
data-hungry interactive applications which can hardly run on resource-
constrained consumer devices and may suffer from running in the cloud
due to the long data transfer delay. The edge network nodes’ heteroge-
neous and limited (compared to the cloud) capabilities make the com-
puting task placement a challenge. In this paper, we propose a novel in-
network task placement strategy aimed at minimizing the edge network
resources usage. The proposal specifically accounts for time-limited
reusable computing tasks, i.e., tasks whose output can be cached to
serve requests from different consumers for a certain time. Caching
such results, during their time validity, achieves the twofold benefit of
reducing the service provisioning time and improving the edge resource
utilization, by avoiding redundant computations and data exchange. The
devised strategy is implemented as a network application of a Software-
defined Networking Controller in charge of overseeing the edge domain.
We formulate the optimal task placement through an integer linear
programming problem, and we define an efficient heuristic algorithm
that well approximates the solution achieved through a standard optimal
solver. Achieved results show that the proposal successfully meets
the targeted objectives in a wide variety of simulated scenarios, by
outperforming benchmark solutions.

Index Terms—Edge computing, Software-defined Networking, Com-
pute reuse, Task placement

1 INTRODUCTION

Task offloading to the edge is gaining momentum as a
solution aimed at satisfying the demands of compute-
intensive and latency-sensitive applications, such as Aug-
mented Reality (AR), on-line games, cognitive assistance,
autonomous driving [1]. In the more general case, offloading
a computing task to the edge requires (i) an edge node,
with available processing resources, to be selected as task
executor, (ii) application data to be transferred from the
source(s) to the identified edge node as an input for the
required computation, (iii) a software program, i.e., the
computing function available at the executor to perform the
given data processing. For instance, for an AR application, a
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picture should be provided as input and processed through
a program implementing an object detection task.

The limited edge nodes’ capabilities compared to the
cloud, coupled with the peculiarities of the aforementioned
applications entail a smart and judicious orchestration to de-
cide where placing the execution of computing tasks. This is
much more challenging when edge nodes are not limited to
one or few purpose-built edge servers, rather they encom-
pass multiple network nodes with largely heterogeneous
capabilities, such as the ones composing a campus network,
the points of presence of a Telco provider, or the backhaul
segment of a mobile network. Such a trend is fueled by
recent initiatives pushing in-network computing, like the IETF
Computing in the Network (COIN) Research Group [2], and
by recent research works [3], [4].

Multiple task placement solutions have been proposed
so far in the literature targeting objectives like the reduc-
tion of energy consumption and computation latency, while
meeting delay constraints, and saving network bandwidth
[5], [6], [7]. In addition, recently, caching the program
and/or the output (i.e., the result) of the computing task
at the edge has been recognized as an effective solution to
further reduce the delay experienced by the user, the en-
ergy consumption, and the edge resources (i.e., bandwidth,
processing) utilization [5], [8], [9].

While the majority of the cited works have focused on
caching the program, which is typically reusable [9], [10],
less attention has been devoted on caching the computation
result. However, as evaluated in [11], this operation, referred
to as compute reuse, dramatically reduces the amount of
repeated data transmissions and edge computation and may
result in up to 50x lower task completion times than the
case with no reuse. A variety of applications can benefit
from either partial or full compute reuse at the edge. AR
applications for users attending the same event (e.g., music
concert) or visiting the same place can exploit (part of) the
same computation result. For instance, several visitors in a
museum providing pictures of the same painting, from dif-
ferent angles or with different shades, may request the same
computational task (e.g., the history of that painting) [12].
Just to provide a figure, the Louvre museum attracts about
15K visitors per day, containing more than 380K objects and
displaying 35K works of art. This substantiates the chance
for massive amounts of compute reuse [13]. Mobile gaming
applications like a chess game, for the limited set of First-
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Move Configuration (FMC), can reuse the responses (i.e.,
countermoves) previously computed in front of the same
configurations and moves of the players [5], [11].

In many cases, compute reuse is also characterized by
a temporal validity: results are useful only for a limited time
interval and then, they can be evicted from the cache. For in-
stance, event-based processing [14] can be highly popular in
the sense that it can provide results that are highly requested
(and therefore, reusable) by distinct consumers but only for
a limited time after which the output of the computation
gets meaningless, because the spatio-temporal conditions in
which input data are retrieved change. Multiple vehicles
at an intersection may request the obstacles detected in
the area and can be served by the same executed object
detection task, but only if approaching the intersection in
very close time instants. In the following, we will refer to as
time-limited reusable computing tasks those tasks whose output
is reusable for a certain time.

The main goal of this paper is to devise a novel place-
ment strategy of time-limited reusable computing tasks in a
network edge domain, aimed at minimizing the edge resources
usage, by both reducing the amount of intra-domain traffic
and better exploiting the edge nodes’ computing resources.
In our proposal, without loss of generality, we refer to
a Software-defined Networking (SDN)-based approach to
enforce the conceived centralized task placement strategy.
Such a choice is aligned with the recent literature target-
ing a unified network-edge service provisioning [15], [4] and
ensures the joint optimization of network and computing
edge resources. This work goes beyond the state-of-the-art
and, notably, it provides the following main contributions
laying the foundations of upcoming sixth generation (6G)
networks:

• We consider an SDN-based network edge domain
and formulate an optimization problem for the in-
network placement of time-limited reusable comput-
ing tasks through an Integer Linear Programming
(ILP) problem. The objective is to identify the can-
didate task executors among the SDN edge network
nodes, in order to reduce the amount of intra-domain
traffic while minimizing the edge resource usage and
improving the Quality of Service (QoS) experienced
by end-users, also through the reuse of the output of
the tasks.

• We design, implement and validate a new heuristic
algorithm which provides an approximate solution
to the formulated problem, but in a significantly
shorter time compared to the one achieved through a
standard optimization solver. The formulated place-
ment strategy is also proven to be solvable through
a near-optimal well-established heuristic algorithm
in the literature. Thus, the study overall represents a
valuable contribution for the design of efficient and
cost-effective edge frameworks.

• We evaluate the proposed placement strategy, when
compared to benchmark solutions, under different
load settings in terms of valuable metrics, among
others, the amount of exchanged data for the task
execution, the task computation delay, while assess-
ing the impact of the compute reuse under different

popularity patterns and output time validity settings.

The remainder of this paper is organized as follows.
Section 2 provides background material on reusable com-
puting tasks and SDN-based solutions for task allocation at
the edge. The system model is described in Section 3. The
optimization problem is formulated in Section 4, whereas
the proposed heuristics is reported in Section 5. Section 6
summarizes the main results of the conducted evaluation
study, before concluding in Section 7.

2 BACKGROUND AND MOTIVATIONS

2.1 Reusable computing tasks

State-of-the-art. Related work on edge computing typically
assumes that computing tasks requested from different
clients are distinct from each other and they need to be
executed independently [16]. To improve the performance,
however, the research community has started to consider the
possibility of caching, and therefore reusing, the program,
the input data and/or the computation result.

The benefits of caching the program (sometimes referred
to as service caching [10], [17], [18]) are largely recognized
in the recent literature [9], [10]. Moreover, other works have
considered the possibility of caching both the input data and
the program, e.g., in order to reduce the service latency and
the energy consumption of mobile devices [19].

At the same time, however, there are multiple cases
where computation results are fully or partially reusable.
Caching outputs of computing tasks in order to reduce
redundant computations is referred to as computation content
caching in [9] and as compute reuse in [12], [20]. For in-
stance, a processed gaming scene may be requested (almost)
synchronously by individual players in case of a mobile
online game [21]. Of course, caching the result and reusing
it would reduce both the computation load on the edge
nodes and the service provisioning latency experienced by
the players. Also, distinct clients in close proximity may
issue requests exhibiting spatio-temporal locality, e.g., in AR
applications, visitors/passengers in the same area within a
museum/airport, may request, nearly simultaneously, the
same processed AR output or part of it [5]. In such cases,
compute reuse is viable because of input similarity, which
stems from the same contextual information being captured,
such as landmarks, road signs [22].

Compute reuse may be particularly helpful for edge
nodes with limited capabilities, which may save precious
resources otherwise wasted to redundantly execute particu-
larly compute-intensive tasks, like Deep Neural Network
(DNN) inference [23]. In this context, the work in [21]
considers a multi-user single-edge server environment and
presents an energy-efficient task offloading scheme with
compute reuse subject to deadline constraints. Conversely,
the work in [11] presents an empirical approach to motivate
the need for compute reuse across clients and stakeholders.
By implementing three common edge computing appli-
cations, namely matrix multiplication, face detection and
chess, the authors quantify the gain of edge computing sys-
tems with compute reuse, versus those that do not apply this
feature. They find that, thanks to the reuse, task completion
times and CPU usage are significantly reduced.
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From a networking perspective, in presence of a dis-
tributed edge computing infrastructure, a big challenge of
compute reuse is to recognize distinct requests for the same
task and forward them to the same edge node that cached
the result. This also implies the definition of specific mecha-
nisms that uniquely name and describe the computing tasks
[3]. As recognized in [8], these aspects can be addressed by
Information Centric Networking (ICN) paradigms, which
directly name contents and computations at the network
layer and implement routing-by-name mechanisms, instead
of traditional IP-based forwarding. In [12], the authors
present ICedge, a first network-based framework that lever-
ages ICN to offer name-based compute reuse abstractions
in a fully distributed manner. The focus is on the definition
of standard naming conventions and name-based forward-
ing rules, without considering the optimal orchestration of
tasks.

Contribution. Without loss of generality, it is worth
observing that the output of a reusable computing task
can have a limited time validity, ranging from hundreds of
milliseconds, up to minutes or even days, after which it
becomes useless. This is a common feature for tasks that take
as input time-varying data, like environmental parameters
or context-aware information tracked either by a Google
Lens app of a tourist walking around a city or a surveillance
camera in a building. In the case of a multi-player mobile
gaming application, different players may need to visualize
the same scene rendered by the server. The output can
be computed once and cached to serve requests coming
close to each other in time. The output becomes useless
after the maximum tolerable latency for a player (ranging
from to 100ms up to 1s, according to the type of interactive
game) expires [24]. The number of players that can reuse the
same output varies according to the type of game and the
maximum number of players that can be hosted on the same
server, from tens to hundreds, up to thousands for massive
multi-player games [25].

On the other hand, in case of a chess game, responses to
an already computed FMC can be reused for a significantly
longer time for different players [11]. Similarly, the request
for the history of a famous landmark issued by a Google
Lens app may satisfy multiple consumers over a long time
period [22].

The time validity can vary over time for the same kind
of task. For example, in peak periods, the time validity of
the output of a road safety-related task is short, whereas in
off-peak periods, since the environment changes slowly, the
time validity may be longer.

However, to the best of our knowledge and mainly due
to the infancy of the topic, the impact of the time validity of
the computation result on the achieved performance has not
been yet investigated, which motivates our work to properly
account for it in the edge placement decision of reusable
tasks.

2.2 SDN-driven Edge Computing
Basics. SDN revolutionizes the networking realm by decou-
pling the control plane from the data plane and moving it
to a logically centralized entity, the Controller. On top of it,
network applications (e.g., routing, load balancing) are ab-
stracted from the underlying network nodes, which become

simple forwarding elements. Thanks to the network-wide
view kept at the Controller about link status and network
nodes under its control, the implementation of sophisticated
mechanisms for traffic control and resource management
can be facilitated. This is possible through the injection of
proper rules in the flow table of nodes overseen by the
Controller.

State-of-the-art. Recently, SDN has been also considered
as key enabler for task orchestration in edge computing
scenarios [15].

A task offloading strategy in a software-defined ultra-
dense cellular network is presented in [26], where base
stations are augmented with edge computing capabilities.
By considering the network status from a global perspec-
tive, an SDN Controller instructs the mobile devices about
whether offloading a task or executing it locally and, in
the former case, to which base station, so to minimize the
task completion time. With similar purposes, an SDN edge
framework for task allocation is proposed in [27] that targets
vehicular networks. There, the SDN Controller tracks the
status (i.e., how much memory and CPU is available) of
distributed edge servers and collects the task information
from vehicles. According to this information, the Controller
instructs the vehicles to compute tasks locally or offload
them to a nearby edge server. In the same scenario, the
work in [28] leverages a vehicle mobility analyzer at the
Controller to predict the communication time between the
vehicle and the nearby edge servers. A greedy algorithm is
then proposed to offload the task to the best edge server, i.e.,
the one that maximizes the success probability of total task
execution within a completion time limit.

In [29], the focus is on computing tasks requiring mul-
tiple input data from heterogeneous end devices in an
edge mesh scenario, i.e., a wirelessly-connected collabora-
tive edge network. The authors consider traffic congestion
and network bandwidth consumption when transmitting
the input data and study the task allocation problem to
jointly schedule tasks and network flows with the objective
of minimizing the service completion time. A multistage
greedy adjustment algorithm, implemented at the SDN
Controller, is proposed to support the placement of tasks
according to the bandwidth of the flows.

In [30] an SDN-based framework is proposed to opti-
mally place edge clouds on access points and to schedule
computing tasks by ensuring the minimum total energy
consumption without violating the tasks delay constraints.

In [7], we formulated a preliminary optimization prob-
lem for the SDN-driven placement of delay-constrained
computing tasks with the aim of minimizing the data ex-
changed in the edge domain.

Contribution. Despite the differences in terms of tar-
geted optimization objectives, the scanned works share with
the proposal the idea of leveraging SDN for the centralized
decision of task allocation to distributed edge nodes. How-
ever, unlike our work, they do not consider the possibility
of compute reuse.

As theoretically argued in [3], SDN could oversee the
forwarding of requests toward edge nodes that can reuse
the results of previously executed tasks. To the best of
our knowledge, a preliminary work considering this aspect
in a software-defined edge infrastructure is in [4]. There,
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the integration between the ICN and SDN paradigms is
proposed to support the compute reuse. SDN is in charge
of managing routing and task allocation, with the target
of ensuring the overall shortest service provisioning time,
while the native in-network caching capability of ICN is
used for easily caching computation results. The possible
limited time validity of the tasks is however not considered.

In this paper, we abstract from the specific networking
solution (IP-based or ICN-based) of edge nodes and, in-
stead, we focus on the definition of the optimal in-network
placement of time-limited reusable computing tasks in a
distributed SDN-based edge infrastructure, with the target
of minimizing the network resource usage, while satisfying
the QoS of end-users. Our focus is to achieve an improved
communication and computing resources utilization of edge
nodes thanks to: (i) the reduction of the amount of data
traversing the edge domain, (ii) the reuse of computation
results of tasks requested from different consumers during
their time validity.

3 SYSTEM MODEL

3.1 Reference scenario and main assumptions
As a reference scenario for our study, we consider an
edge network domain supervised by an SDN Controller,
as illustrated in Fig. 1. The domain is composed of a set,
N , of wired inter-connected edge nodes, which are SDN-
enabled and directly interact with the Controller. Such nodes
may encompass access points, base stations, as well as edge
routers, e.g., as it is common in the backhaul network of
a mobile network operator. Each node i (with i ∈ N )
is equipped with computing capabilities µi, expressed in
terms of CPU cycles per second, and storage capabilities Si,
expressed in terms of kB.

Edge nodes can act as task executors. In addition, com-
puting tasks can be executed in the remote cloud whenever
their placement at the edge is not possible, due to the limited
computing resources of the edge nodes. For the sake of
simplicity, the cloud is represented as a single network node
d with large computing resources.

Some of the SDN nodes act as ingress nodes and provide
access to the domain for a set of (i) data providers, which
generate the input data for the computing tasks, and (ii)
consumers, which request the computing tasks. These latter
can also act as providers when requesting a computation
over a self-generated content. An egress node connects the
edge domain to the remote cloud through a core network
segment.

Routing functions as well as computing task placement
are orchestrated by the SDN Controller. In particular, the
placement of computing tasks is implemented by the SDN
Controller as a new network application, thanks to its native
programmability. The proposal can benefit from the built-in
SDN routines for domain-wide view of the resources. In-
deed, the status of resources can be tracked by the Controller
according to the approach in [4], by exploiting OpenFlow
(OF) messages extension.

Although we consider an SDN-capable Controller, it is
worth remarking that the conceived task placement strategy
can be deployed regardless SDN, and can be applicable in
general centrally-managed architectures. For instance, it can

be deployed either on top of a multi-access edge computing
(MEC) orchestrator, within the ETSI MEC architecture or on
a purpose-built proxy server. The latter one can then interact
with a separated SDN Controller to get network-related pa-
rameters or enforce additional workarounds (native in SDN)
to get routing information, so that the targeted objectives of
minimizing network resource usage and meeting task delay
constraints are achieved.

Fig. 1. Reference scenario.

A computing task, j (with j ∈ M , being M the set
of tasks), can be described by the following tuple: {sj ,
Dmax

j , lj , Tmax
j }. Here, sj is the size of the input data for

computation; Dmax
j is the maximum delay constraint for the

computation of task j; lj is the amount of the computing
resources, in terms of CPU cycles, required to accomplish
task j; and Tmax

j is the time validity of the output of
computing task j (i.e., at the expiration of Tmax

j the output
of the computing task j is considered meaningless and
cannot serve further requests, hence it is removed from the
cache). Since for a given type of computing task, the time
validity may vary according to the spatio-temporal context,
Tmax
j applies to a specific instance of a computing task and

it is not tied to the type of computing task. In particular,
without loss of generality, in our design, Tmax

j reflects
the validity of the input data feeding the computing task,
which is defined directly by data producers. For example,
in a smart building scenario, the environmental parame-
ters periodically collected by the sensors can be processed
and then used by different consumers, e.g., users applica-
tions, Heating, Ventilation and Air Conditioning (HAVC)
systems, energy management systems, etc. Environmental
parameters, e.g., temperature, humidity, have a specific time
validity typically set by the producer, e.g., some minutes.
Therefore the output of a processing task taking as input
those parameters will be valid for the same time frame.
Then, new instances of the same data will be produced and
a new computation needs to be performed. If the task takes
as input data with different validity times, the lowest value
will be considered as reference validity time for the task
output by the executor.

For ease of reference, the key notations used in the paper
are summarized in Table 1.

The following main assumptions hold in this study:

• The accomplishment of a computing task requires
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data to be given as input to a computing program1

which, after the execution, provides an output.
• Computing tasks are atomic in that they cannot be

split in multiple sub-tasks, so each task is allocated
to a single edge node [32].

• The input data for each computing task may need to
be retrieved by multiple providers. For instance, a large
set of data should be collected from multiple sources
to train a DNN. In the case of a face detection service,
several security cameras in a smart city area can send
a video snapshot to the task executor [11]. In the
case of an AR application, users attending the same
event may provide helpful inputs to execute the
computation, while also requesting the offloading.

• The time needed to transmit the result of the com-
putation from the edge to the consumer can be
neglected. Indeed, for many applications, e.g., ob-
ject/face recognition, tracking, the size of the output
of the computation is much smaller than the input
data [33], [34], [35]. For instance, the object detection
inference result over a few MB-large picture can be
in the order of a few hundreds bytes [36].

• The output of a computing task is assumed to have a
limited time validity, after being executed. Requests,
coming after the time validity expires, entail the task
to be executed again over new input data.

• Computing tasks are fully reusable during their time
validity and therefore, once executed, they can serve
requests from different consumers. The arrival task re-
quest rate, which determines the popularity of a task,
can only affect the number of times the computation
output is reused within its time validity, but it does
not affect the time validity itself.

Task requests from consumers are received by the ingress
nodes and forwarded to the Controller, which sets the
routing path towards the edge node(s) selected for the
execution, if available. An edge node can either reply with
a cached output of the computing task, if still valid, or
perform the computation from scratch and send the newly
resulting output. How to perform a lookup operation upon
the issued request depends on the networking paradigm
and other specific implementation details of the edge do-
main. Here, without loss of generality, we consider the use
of an application-level name-based representation of the
computing tasks [4], [37], [38].

When a computation cannot be performed at the edge,
the ingress node is instructed to forward the request to the
cloud.

The centralized approach allowing a more effective task
placement unavoidably incurs an additional delay to the
task accomplishment needed for the task allocation request
to reach the Controller. However, solutions for the most
appropriate Controller placement can be devised to keep ex-
tremely low the ingress node-to-controller delay. Common
values in the literature are in the order of 10 ms [39].

1. Being the focus of our study on compute reuse, we assume that
the programs needed for the execution of the task are available at each
edge node [31]. They can be proactively downloaded from a storage
service available in the domain.

Fig. 2. Time period, T exec
j , between successive executions of task j with

validity time Tmax
j .

3.2 Time validity of the output of the computing task

We assume that the arrival rate of requests for a computing
task j in the edge domain follows a Poisson distribution
with parameter λj . This is a quite common assumption
in the related literature [6], [40], [41], as justified by the
statistics of Google data centers, which show that the arrival
intervals between tasks are exponentially distributed [42],
[43]. Moreover, Poisson distribution represents a reasonable
approximation when the requests are not synchronized and
independent of each other, as it is the case for the considered
scenario. It is worth remarking that the conceived frame-
work still holds provided that the proper mean delays are
considered for a different arrival rate (e.g., generic).

Every time an edge node is selected as executor for a
computing task j, it stores the output of the computation
until the time validity Tmax

j has not expired. If, during such
a time, a request for the same task is received, there is no
need to execute it again (and to retrieve new input data
for it). Instead, if a request from a consumer for the same
task arrives after Tmax

j , the task needs to be executed again
and the new input data retrieved from the source(s). The
probability that a request can be satisfied by a pre-computed
task j is called validity probability of task j and denoted as
pvj .

Hence, if λj is the request arrival rate for task j, this
latter will be actually executed with a rate λexec

j , given by
the following equation:

λexec
j = (1− pvj ) · λj . (1)

We define T exec
j = 1

λexec
j

as the average time interval between
two successive executions of task j, as graphically sketched
in Fig. 2.

Under the hypothesis at hand, T exec
j is larger than Tmax

j ,
therefore, similarly to [44], the validity probability pvj can
be expressed as the ratio between the time validity of the
output of task j over T exec

j :

pvj =
Tmax
j

T exec
j

= Tmax
j · λexec

j . (2)

By combining Eq. (1) and Eq. (2), the probability pvj can be
derived as follows:

pvj =
Tmax
j · λj

1 + Tmax
j · λj

. (3)
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3.3 Computation delay
Typically, in related literature [30], [33], the computation
delay is equal to the time needed for executing the task
and it is derived as the ratio of the computing resources
necessary to a given task and the computing capability of
the candidate node. However, in the most general case, the
computation delay of task j at edge node i includes two
contributions, i.e., the task execution delay at node i and the
task queuing delay, which is the time experienced at the same
node before the task can be executed, in the case other tasks
are already running and nodes resources are fully utilized.
Tasks are executed at each edge node one after another [45],
[46].

In this work, we consider both latency contributions.
As discussed in the previous section, each task j will be

actually executed with an average rate λexec
j . If we denote

Xij as the binary variable:

Xij =

{
1, if the task j is executed by the node i,

0, otherwise
(4)

the overall execution rate at a node i, which is exponen-
tially distributed, can be defined as:∑

j∈M

Xijλ
exec
j , ∀i ∈ N ∪ d. (5)

We assume that the amount of the computing resources per
task, lj , is exponentially distributed with average value l.
Therefore, each edge node can form an M/M/1 queuing
model [47] to process its corresponding computing tasks
[6]. The corresponding service time follows an exponential
distribution, with parameter l

µi
.

Hence, we derive the average computation delay for a
generic task at node i as the average system delay of the
queue (i.e., including the queueing time and the service time
corresponding respectively, to the task queuing delay and
the task execution delay):

Di =
1

µi

l
−

∑
j∈M

Xijλ
exec
j

, ∀i ∈ N ∪ d. (6)

To keep the queue stable, the average arrival rate at
node i,

∑
j∈M Xijλ

exec
j , should be smaller than the average

service rate (i.e., µi

l
−

∑
j∈M Xijλ

exec
j > 0).

4 OPTIMIZATION PROBLEM

Given the system model, the main goals of this paper are (i)
to minimize the network resource usage for data exchange,
by also taking advantage of the reuse of computation results
to additionally improve the utilization of the in-network
computing resources of edge nodes, and also (ii) to meet
the task delay requirements, in order to satisfy the QoS of
the end-users. The first objective, which well reflects the
operator’s perspective, is included in the devised objective
function. The possibility of compute reuse, however, is
limited by the time validity of the output of the computing
task, as discussed in Section 3.2. In particular, the objective
function accounts for heterogeneous tasks in terms of time
validity of the output, through the parameter Tmax

j , which
affects the validity probability pvj .

TABLE 1
Summary of the main notations.

Symbol Description
N set of edge nodes
d cloud node
Ñ set of candidate executors N ∪ d
i generic edge node
µi CPU capabilities of node i (CPU cycles/s)
Si caching capabilities of node i
M set of computing tasks
j generic computing task
Dmax

j maximum delay for task j to be computed
Tmax
j time validity of the output of task j

Kj number of input contents for computing task j
sj size of the overall input data for computing task j
skj

size of each input content ckj
required for computing

task j
lj CPU requirement for task j
Xij binary decision variable: 1 if task j is executed by node

i, 0 otherwise
λj arrival rate of requests for task j
λexec
j actual execution rate of requests for task j

T exec
j average time interval between two successive execu-

tions of task j
Ωmin

i,kj
number of hops separating the potential executor i and
the closest providers for each input content ckj

required
for task j

pvj probability that the output of a computing task j is still
available and valid in the edge domain

Furthermore, the network operator is concerned in guar-
anteeing a delay to the user that is below a given target
that the user can tolerate (Dmax

j ). This is tracked through a
specific constraint in the formulated optimization problem,
as clarified in the following.

Intuitively, to minimize the network resource usage and
save network bandwidth, the most appropriate place for
executing an offloaded task is the edge node in the closest
proximity to the source(s) of the input data. Notwithstand-
ing, the computing resources of edge nodes are limited: by
offloading all computing tasks to the closest edge node(s),
the performance may degrade if the processing workload
is too heavy, both due to the waiting time before serving
the computation request and to the service execution time
itself. Furthermore, inefficiencies can be experienced if such
a placement decision is taken while being oblivious of the
chance of reusing computing tasks. Hence, the formulated
optimization problem specifically accounts for the time va-
lidity of the output of a computing task.

As per our assumption, the input data for each com-
puting task may need to be retrieved by multiple content
sources. Hence, given a computing task j, we assume that
the overall input data (of size sj) is the collection of distinct
input contents of size skj

that are streamed to the executor
from a set of different Kj sources. Therefore, it results
sj =

∑Kj

kj=1 skj
.

Multiple paths may exist between a given content source
and a candidate executor. Without loss of generality, in our
study, we assume that the shortest path, i.e., the one incurring
the minimum number of hops, is selected by the Controller
as the route over which input data are transferred to the
executor. The shortest path is considered for each input
content for a given task.

We denote by Ωmin
i,kj

the minimum number of hops be-
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tween the candidate executor, i, and each content source kj
to be traversed by the input data required for computing
task j.

We express the network resources usage relevant to the
execution of task j as the sum of the product of each
input2 content size (skj

) and the number of hops between
the source of the input content and the candidate executor
(either an edge node or the cloud, hence belonging to
the set N ∪ d, henceforth denoted as Ñ ), timed by the
execution rate λexec

j . The latter parameter, as expressed in
Eq. 1, depends on the validity of probability of task j, and
therefore, indirectly captures the limited time validity of a
cached output.

Hence, stated in mathematical terms, recalling that we
denoted as Xij the optimization variable, which is equal to
1 if the task j is executed by node i and 0 otherwise, the
optimization problem can be formulated as follows:

min
∑
i∈Ñ

∑
j∈M

Xijλ
exec
j

Kj∑
kj=1

skj
Ωmin

i,kj
(7)

s.t. ∑
i∈Ñ

Xij = 1, ∀j ∈M ; (8)

XijDi ≤ XijD
max
j , ∀i ∈ Ñ ; ∀j ∈M ; (9)

Xij ∈ {0, 1}, ∀i ∈ Ñ , ∀j ∈M. (10)

To better evidence all the factors influencing the problem at
hand, we can rewrite Eq. (7) by expressing λexec through
Eq. (1), thus obtaining:

min
∑
i∈Ñ

∑
j∈M

Xij(1− pvj ) · λj

Kj∑
kj=1

skjΩ
min
i,kj

. (11)

Constraint (8) ensures that tasks are treated as atomic. In
other words, each task is assigned to only one node, exe-
cuted by it in whole and not further split in sub-tasks. Con-
straint (9) imposes that every node must process each task
j within its maximum tolerable computation delay Dmax

j .
Whenever the delay constraint cannot be ensured by edge
nodes, because of their limited resources, computing tasks
will be offloaded to the cloud, which can leverage higher,
virtually unlimited computation capabilities and, hence,
always satisfy constraint (9). We note that this constraint,
due to Eq. (6), is described by nonlinear inequalities. Finally,
the constraint in Eq. (10) reminds that we conveniently
model the computing task placement problem with a binary
integer variable.

The formulated model can be transformed into a 0-1
ILP problem by considering the following argument: for
each pair (i, j), if Xij = 0 then the inequality in Eq. (9)
is automatically verified, whilst if Xij = 1 it is verified for
Di ≤ Dmax

j . This allows to rewrite Eq. (9) as the following
linear inequality:

Dmax
j /Di ≥ Xij , (12)

2. The model could be extended to account for the exchanged output
data, from the executor to the requesting node, if its size is not
negligible compared to that of the input data.

that is Eq. (9) can be substituted by:

Xij ≤ Dmax
j

µi

l
−

∑
j∈M

Xijλ
exec
j

 ,∀i ∈ Ñ ;∀j ∈M.

(13)

5 THE CONCEIVED HEURISTICS

Proposition 1. The formulated task placement problem is NP-
hard.

Proof: Our problem formulated in Eq. (7) is equivalent to
the Generalized Assignment Problem (GAP) [48], which is
a well known NP-hard problem in the combinatorial opti-
mization literature. It consists in finding the best assignment
of items to bins (i.e., computing tasks to edge nodes in
our formulation) while minimizing the overall cost. Bins
have different capacities and each item has a different size
and a different cost according to the bin it is assigned to.
The solution should respect the following constraints: (i)
each item should be assigned to one bin (i.e., a task can
be executed by one node only, Eq. (8)), (ii) bins’ capacities
as well as items’ constraints should not be, respectively
exceeded and neglected (i.e., the CPU load of a node should
not be greater than the threshold required to respect the task
constraint on computing delay, Eq. (13)). □

5.1 Basics
Although the ILP formulated in Eqs. (7)-(10) can obtain the
optimal solution for the task placement problem, it suffers
from high computational complexity as problem instances
increase.

In order to improve time efficiency in finding the task
placement solution, we propose to leverage a heuristic algo-
rithm. The latter one is designed in a centralized way and
executed at the Controller, thus reflecting the SDN approach
our proposal builds upon. Given a set of computing tasks
to be executed, denoted as Mr (with Mr ⊆ M ), the target
of the heuristic algorithm is to allocate each of them in
the nodes which ensure the minimum cost (see Eq. (16))
expressed as the amount of exchanged data to carry on
the processing operations, in alignment with the objective
function in Eq. (7), while meeting the delay constraint in
Eq. (13). We can quantify the amount of data exchanged to
execute task j on node i as:

Data(i, j) = λj(1− pvj )

Kj∑
kj=1

skjΩ
min
i,kj

. (14)

We can further compute the number of operations (in
terms of CPU cycles) required for the execution of a task j,
WL(j), as follows:

WL(j) = (1− pvj ) · lj . (15)

Finally, we define the cost of executing the task j on
node i, c(i, j), as the amount of data exchanged for each
unit of CPU of node i assigned to task j (normalization is
considered to account for heterogeneous task demands and
is perfectly aligned with the common practice adopted to
design heuristics for allocation problems [49]):

c(i, j) =
Data(i, j)

WL(j)
=

λj

∑Kj

kj=1 skjΩ
min
i,kj

lj
. (16)
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5.2 Heuristic algorithm

To approximate the optimal task placement solution, the
proposed heuristic algorithm follows a greedy approach
that is explained below and summarized in Algorithm 1.

The algorithm proceeds iteratively. It starts by consid-
ering the sets of requested tasks and of potential executors
(sorted in ascending order w.r.t. their processing capabilities
in line 1) and calculates the cost of assigning each task
j ∈ Mr to each executor i ∈ Ñ according to Eq. (16).
For each j ∈ Mr, the cost and executor pairs are included
in ascending order into a data structure called list of best
executors for j, BEj (lines 2-8). Basically, the first element of
the list identifies the best executor and the corresponding
cost, the second element identifies the second best executor
and the corresponding cost, etc.

At each iteration, the algorithm selects a node i and
tries to allocate there the tasks that have identified i as best
executor (lines 11-32). In particular, the algorithm creates
a list Ti (line 14) that includes the potential tasks to be
allocated in node i and orders the items in descending
order based on the cost c(i, j) (line 17). More costly tasks
(as per Eq. (16)) are those that foresee the higher amount
of exchanged data, because of the higher input content size
and number of hops they should traverse from the source
to the candidate executor and the more frequent requests. In
particular, the basic idea we pursued is to prioritize serving
the tasks having the higher cost in order to save network
resources, as placing them into another node would result in
a further increase in the overall edge resource usage. Then,
the algorithm checks if the constraint reported in Eq. (13)
is verified (line 21) and, based on this condition, decides if
the selected tasks in Ti can be actually allocated in node
i. In case of a successful outcome, the tasks are purged
from the set Mr ; otherwise other placement options must be
considered according to the information in BEj . The loop
continues until all the tasks are allocated at the edge nodes
or in the cloud.

5.3 Heuristics complexity and approximation bound

If we consider an efficient sorting algorithm like QuickSort,
the complexity of our Algorithm scales linearly with the
number of nodes and is bounded by O(|Mr| · |Ñ | · log |Mr|).

In addition, an approximation bound can be proven for
the devised heuristic algorithm. The formulated problem is
equivalent to the maximization of a submodular function
under a knapsack constraint. We can demonstrate that the
conceived heuristic, according to [50], can achieve (close to)
(1− 1

e )-approximation, which is the best result due to Sviri-
denko [51]. Before demonstrating that the approximation
holds, similarly to [52], we first carry out a transformation
by introducing a new reward function (to be maximized)
for each task, i.e., fr(i, j) = c(d, j)− c(i, j), where c(d, j) is
a constant which denotes the expected cost of a given task
when it is allocated in the cloud (denoted as d).
We can demonstrate that the objective function, fr(i, j) is a
monotone non decreasing submodular function. Monotonic-
ity is trivial because any new placement of a task cannot
decrease the value of the objective function. Indeed, the
following cases can occur:

• The new task has been already executed, the relevant
output is still valid, hence there will be not additional
gain.

• The new task is executed by an edge node; hence,
the additional gain is non negative (the task incurs
a data transfer cost if it needs to be executed since
the input needs to reach the executor and this cost is
lower than c(d, j)).

• The new task is executed in the cloud; hence, the
additional gain is zero.

For what concerns submodularity, since the sum of submod-
ular functions is a submodular function, it suffices to prove
that the objective function fr(i, j) is submodular ∀j ∈ M .
Submodular functions capture the concept of diminishing
returns: as the set becomes larger the benefit of adding a
new element to the set will decrease [53]. Intuitively, this
applies to our problem, since as the set of tasks becomes
larger, new tasks are more likely executed to further edge
nodes (the closer ones get saturated) and ultimately, to the
cloud, for which the gain will not increase at all, since input
data need to traverse more hops (the corresponding cost
c(i, j) increases).

5.4 Implementation aspects
In a practical design, the heuristic algorithm is executed
by the Controller that leverages its global view of the
edge domain. As in traditional SDN deployments [54], the
Controller maintains a Network Information Base (NIB),
which records all the information about the edge network
topology together with the nodes’ capabilities. Therefore,
the Controller may estimate the number of hops separating
a generic edge node i from another end-point.
We assume the ingress nodes receive the task request
messages from the different consumers, send them to the
Controller and wait for the configuration of the flow tables.
A request message for a task j ∈Mr includes the attributes
sj , Dmax

j , lj , Tmax
j . By accessing this information and the

NIB content, the Controller calculates, per each j ∈ Mr ,
the correspondent cost of executing it in each edge node
i ∈ Ñ , according to Eq. 16, and executes Algorithm 1.
Based on the obtained output, Xi,j , the Controller fills the
flow tables to set the routing path from the ingress nodes
to the executors and, in parallel, from the executors to
the input data providers. After receiving the task request,
the executors retrieve the input data from the providers,
perform the computation, and finally return the output back
to the consumers.

6 PERFORMANCE EVALUATION

6.1 Main settings
The conducted evaluation study aims to assess the perfor-
mance of the proposed optimal task placement strategy.
In a first campaign, we validate the heuristic algorithm,
comparing it against the results of the solved ILP problem.
The latter one has been computed by using the standard
solver provided through the integration of Matlab® and
IBM CPLEX Optimization Studio tool. Heuristic solutions
are instead derived by using only Matlab®. An additional
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Algorithm 1: The proposed heuristic algorithm

input : Set of candidate executors Ñ ; set of
requested computing task j ∈Mr ;
processing capabilities µi ∀i ∈ Ñ ;

output: Xij ∀i ∈ Ñ , ∀j ∈Mr

1 sort(Ñ , according to µi, increasing);
2 for j ∈Mr do
3 for i ∈ Ñ do
4 calculate c(i, j);
5 insert [i, c(i, j)] in BEj ;
6 end
7 sort(BEj , according to c(i, j), increasing);
8 end
9 while Mr ̸= ∅ do

10 i← 1;
11 while i <= |Ñ | do
12 for j ∈Mr do
13 if the first element of BEj contains i then
14 insert [j, c(i, j)] in Ti

15 end
16 end
17 sort(Ti, according to c(i, j), decreasing);
18 while Ti ̸= ∅ do
19 j ← read(Ti, first element)
20 update Di to include j’s load;
21 if Di < Dmax

j then
22 Xij ← 1;
23 purge j from Mr;
24 end
25 else
26 purge i from BEj ;
27 restore Di by excluding j’s load;
28 end
29 purge j from Ti;
30 end
31 i++;
32 end
33 end
34 return Xij ∀i ∈ Ñ , ∀j ∈Mr

simulation campaign has been conducted to assess the per-
formance of the proposal when compared against bench-
mark placement solutions.

All simulation campaigns have been run on an Intel Core
i7-6700HQ, 2.6 GHz (CPU), 16 GB (RAM), 512 GB (SSD), 1TB
(HDD).

Network topology. Similarly to [4], [55], we reproduce
in Matlab® a medium size network topology with 29 edge
nodes that resembles a metropolitan area network (MAN).
Four upper-layer nodes, interconnected in a full meshed
topology, form a backbone ring and are the roots of three-
layered fat tree topologies. The leaf nodes at the bottom of
each tree topology act as ingress nodes which providers
and consumers are connected to. A border router acts as
the egress node, connecting the backbone ring to the cloud.
Nodes exhibit different computing capabilities (Table 2), in
particular, we assume that the closer the edge node is to the

provider, the lower is its computational capacity [55]. Note
that the formulated model and proposed heuristic algorithm
are general, and can be applied in other network scenarios
with different parameters settings.

Task settings. We consider a catalog of 1000 computing
tasks differing in terms of computation load, maximum
computation delay, time validity of their output. All tasks’
features are summarized in Table 2. Similarly to [56], we
model the popularity of each task j according to the Zipf’s
law, unless differently stated in the text.

Metrics. The following metrics are derived:

• Exchanged data: it measures the network resource
usage in the domain as the overall amount of in-
put data (in bytes) transmitted by providers to the
selected executors multiplied by the number of hops
traversed by such data in the network3.

• Task offloading to the cloud: it measures the percentage
of requested computing tasks that are offloaded to
the cloud.

• Edge computation hit: it measures the fraction of the
outputs of the task computed by the edge nodes
which are reused to serve different requests over the
total number of requested tasks.

• Average queuing delay: it measures the average queu-
ing delay experienced by tasks before their execution
at the selected edge node.

• Average execution delay: it measures the average of the
actual time needed for the execution of the task.

• Average computation delay: it measures the average
computation delay, including both the queuing delay
as well as the execution delay.

The first three metrics reflect the effectiveness of the pro-
posal in minimizing the amount of exchanged data as well
as in improving the utilization of edge resources. Measured
values for the above metrics are averaged over 200 runs and
reported with 95% confidence intervals.

6.2 Heuristics validation

In this section we evaluate the performance of the formu-
lated optimal placement strategy (curves labeled as ILP in
Figures) against our heuristic algorithm (curves labeled as
Alg. in Figures), when varying the rate of computing task
requests from 100 to 500.

We consider a further heuristics (curves labeled as [Co-
hen] in Figures) built upon the approximation algorithm in
[59], which describes a family of heuristics for the GAP,
obtained by applying the local-ratio technique to any algo-
rithm for the single 0-1 knapsack problem. The optimality
bound for it has been theoretically proven in [59]. In par-
ticular, in [59] it is demonstrated how any polynomial time
α-approximation algorithm for the knapsack problem can
be translated into a polynomial time (1 + α)-approximation
algorithm for GAP. The approximation algorithm in [59]
is among the most well-established ones for solving the
GAP, also in the edge computing domain, as witnessed by

3. In case of task offloading to the remote cloud, the number of hops
is set to 14, in agreement with other literature works [57], [58]. The
range of the number of hops between content sources and executors
belonging to the edge domain varies in [1,5].
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TABLE 2
Main simulation settings.

Parameter Setting
Processing capability (µi) • Leaf nodes: 250 CPU cycles/s

• Intermediate nodes: 500 CPU cy-
cles/s
• Upper-layer nodes: 1000 CPU cy-
cles/s
• Cloud: 20000 CPU cycles/s

Task catalog size 1000
Number of hops • towards an executor in the edge

[1,5]
• towards the cloud [14]

Maximum computation Uniformly distributed in [10, 100] ms
delay (Dmax

j )
Time validity of the out-
put of a task (Tmax

j )
Exponentially distributed with aver-
age Tj

max= 300, 500, 1000 ms
Average task computing
workload (l)

10 CPU cycles

Input data size (sj ) 10 MB
Arrival rate of requests
for task (λj )

Poisson distributed with average 10
requests/s

Task requests distribution • Uniform
• Zipf (α=0.8, 1.2)
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(a) Exchanged data.
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(b) Task offloading to the cloud

Fig. 3. Heuristics validation: effectiveness metrics (α=0.8, Tmax
j = 300

ms).

very recent literature [60], [61]. In our case, the heuristic
algorithm receives as input the cost function (Eq. (16)), the
node capabilities and the task constraints and, after reduc-
ing the GAP by iteratively solving the 0-1 knapsack problem
for each bin, through the standard greedy algorithm [59],
returns the set of tasks assigned to each node.

Results are reported both for the case when reusability
of the output of the computing tasks is considered (curves
labeled as w reuse) and when not (curves labeled as w/o
reuse). It can be observed that both the considered heuris-
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(a) Average queuing delay.
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(b) Average execution delay.
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(c) Average computation delay.

Fig. 4. Heuristics validation: delay metrics (α=0.8, Tmax
j = 300 ms).

tics well approximate the optimal solution. In particular,
our heuristic algorithm is slightly closer to the ILP results
compared to the benchmark.

For the sake of validation, metrics in Figs. 3 and 4 are
considered when fixing the skewness parameter α of the
Zipf distribution equal to 0.8. Fig. 3(a) shows the amount
of exchanged data within the edge domain. Reasonably,
for both compared solutions, the metric increases as the
rate of requests increases, due to the higher amount of
input data that need to be transferred. Furthermore, the
amount of exchanged data traffic is lower by almost one
order of magnitude in case of reuse. Not surprisingly, the
ILP provides the lowest values for the considered metric
of exchanged data. By exploring different solutions, the
ILP is more effective in finding the optimal task placement
solution which ensures to minimize the objective function.

Once loaded, not all edge nodes are able to process the
requested task ensuring the computation delay constraint
in Eq. (13), hence some of the requested tasks are offloaded

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3237765

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



11

100 200 300 400 500

Task request rate [requests/s]

10
0

10
1

10
2

10
3

10
4

A
lg

o
ri
th

m
 c

o
m

p
u

ta
ti
o

n
 t

im
e

 [
m

s
],

 l
o

g
s
c
a

le

Fig. 5. Heuristics Vs. ILP: algorithm computation delay.

to the cloud (Fig. 3(b)). Not surprisingly, this occurs with a
high probability when reuse of the task is not possible, as the
task request rate increases. Moreover, such a percentage is
lower for our heuristics confirming its superiority compared
to the benchmark one. Our algorithm in fact, fills each node
by greedily taking only from the list of tasks (line 16) that
have selected that node as their best executor. Contrarily,
in the considered benchmark, according to [59], each node
is filled by greedily taking from the entire set of tasks to
be allocated, no matter if the considered node represents
the best executor for them. There, non-optimal assignments
may occur at some iterations. They are subsequently fixed
by moving a task initially assigned to a node to another
one which provides a lower cost, as inferred through the
marginal cost computation. This workaround may result
in wasting some resources in the node where the task is
unallocated.

The reduction of the amount of exchanged data traffic in
case of reuse is paid in terms of higher execution delays,
as reported in Fig. 4(b). This is because for some tasks
in case of reuse, less capable edge nodes (instead of the
remote cloud) act more as executors. Contrarily, thanks to
the fact that there is no need to execute some tasks, which
can be reused for a while, the queuing delays (Fig. 4(a)) are
lower. Consequently, computation delay values (Fig. 4(c))
are lower in the case of reuse compared to the case in which
all requests are served with a new task execution.

As a further result, in Fig. 5 we report the time required
to run the heuristic algorithms as well as to solve the
ILP through the standard solver. In both cases, with and
without the reuse of the output, the computation times
of the two heuristics are significantly lower than those
measured for the ILP solution, reasonably confirming their
greater efficiency. They are both well below 20 ms, with
our heuristic algorithm which is slightly faster. Hence, in
the following, we will report results only for it. Moreover,
the proposed heuristics shows even shorter computation
times when reuse is enabled: fewer alternatives need to be
explored compared to the case in which reuse is not enabled
and the task placement solution can be found more quickly.
Hence, in the following, we will refer only to it.

6.3 Our proposal Vs. benchmark placement solutions
Results of the proposed placement strategy are compared
against two benchmark solutions. The first one is represen-
tative of a legacy MEC approach (it is labeled as MEC w

cloud in the plots) according to which tasks are executed
only in purpose-built servers, which are exclusively attached
to the access nodes of the edge domain, and offloaded to
the cloud, whenever delay constraints cannot be met due to
the depletion of their resources. The second one refers to the
case in which all tasks are executed in the remote cloud (it is
labeled as onlyCloud in the plots).

6.3.1 Impact of tasks popularity
The first simulation campaign is conducted to evaluate
the impact of the tasks’ popularity on the achieved per-
formance. We compare results achieved in presence of a
uniform task request distribution (curves labeled as Uniform
in Figures) against the ones achieved for the Zipf distribu-
tion, for skewness parameter α equal to 0.8 and 1.2 (curves
labeled as Zipf in Figures). The campaign is conducted
when varying the rate of requested tasks from 100 to 2000
requests/s.

The higher the popularity of tasks (i.e., the higher α)
the better the performances: a lower amount of data is
exchanged in the domain (Fig. 6(a)), a lower percentage of
tasks is offloaded to the cloud (Fig. 6(b)), a higher computa-
tion hit is experienced (Fig. 6(c)), a lower computation delay
is achieved (Fig. 7). This is because requests concentrate on
a few tasks and once these are executed, their output can
be reused to serve different consumers, with no need to
exchange traffic to retrieve the input data and with a lower
processing burden on edge nodes.

Results further show that a remarkable reduction of the
traffic crossing the edge domain (higher as the popularity
increases) is experienced by our proposal compared to the
MEC w cloud solution. The reduction is up to around 91%,
measured for α = 1.2 and task request rate equal to 2000
requests/s. Limiting the task execution to purpose-built
edge servers is significantly less effective than our proposal,
which distributes tasks across the whole edge domain. Edge
servers attached to the leaf nodes are forced to offload to
the cloud at least around half of the tasks, regardless of the
considered popularity (Fig. 6(b)). The tasks executed locally
experience a long queuing delay, which contributes to a
higher overall computation delay (Fig. 7)4.

Gains in terms of reduced amount of exchanged traffic
compared to the baseline onlyCloud solution are in the order
of 93% measured for α=1.2 and task request rate equal to
2000 requests/s.

In particular, Fig. 6(c) shows that, on average, more than
half of the outputs (up to 85% in the case of α=1.2 and 2000
requests/s) is re-used to address several requests.

To further shed light into the performance of the pro-
posed task allocation strategy, we measure the average
computation delay metric as a function of the normalized
edge resource usage (NRU), which has been defined as:

NRU =

∑
j∈M λexec

j · lj∑
i∈N µi

. (17)

More precisely, in Eq. (17) the numerator represents the
effective CPU cycles per second required to accomplish
the requested tasks, while the denominator represents the

4. Results are not reported for the cloudOnly solution, since the delay
is negligible thanks to the virtually unlimited capabilities of the cloud.
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(b) Task offloading to the cloud
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(c) Edge computation hit

Fig. 6. Effectiveness metrics when varying tasks popularity (T
max
j =

500 ms).

overall amount of CPU cycles per second provided by edge
nodes. Hence, NRU gives a measure of how the offered
computing load compares with the overall computing re-
sources available in the edge domain. It is worth to be
noted that resources made available by the cloud have been
intentionally excluded from the denominator of Eq. (17).

The simulations have been conducted by considering a
number of requested tasks variable in the range [100, 2000],
when fixing T

max
j = 500ms, while the rest of the parame-

ters have been set according to Table 2. For each simulation,
the average computation delay Vs. the normalized resource
usage has been computed and reported as a scatterplot in
Fig. 8(a). It can be observed that the higher the popularity
(the greater α), the lower the edge resource usage, thanks to
the higher reuse.

Moreover, it can be observed that the scattered points for
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Fig. 7. Average computation delay when varying tasks popularity
(T

max
j = 500 ms).

the MEC w cloud benchmark have a steeper slope compared
to the proposed algorithm as the resource usage increases.
This is because the available computing resources at the
bottom of the edge topology quickly deplete.

As a further metric, to better capture a network operator-
centric perspective, we derive the extra-domain rate (EDR)
when varying the normalized edge resource usage, Fig.
8(b). The metric accounts for the bandwidth needed to
transfer out of the edge domain the input data feeding the
computing tasks to be executed in the cloud. It is derived as
follows:

EDR =
∑
j∈M

Xdjλ
exec
j · Sdj . (18)

The metric linearly increases as the normalized edge re-
source usage increases for the cloudOnly solution and in
a similar manner, although less steeply, for the MEC w
cloud benchmark. It can be observed that the values for this
metric are more than halved when compared to the case in
which all tasks are executed in the cloud, by saving precious
bandwidth resources.

6.3.2 Impact of the output time validity
The second simulation campaign is conducted when vary-
ing the mean time validity of the reusable output of com-
puting tasks (T

max
j = 0.5 s and 1 s) and for the case in which

the compute reuse is not enabled.
The higher the time validity the better the measured

performances, see Figs. 9 and 10, whatever the considered
solution, since the reuse is exploited to a greater extent. Also
under these settings, the traffic exchanged in the domain
by the proposal is significantly reduced compared to the
benchmark solutions (Fig. 9(a)). The gains achieved with a
higher time validity get more remarkable as the rate of task
requests increases. In particular, it is reduced up to 71.2%
and 82.9% compared to the MEC w cloud and onlyCloud
solutions, respectively, for T

max
j equal to 1 s and task

request rate equal to 2000 requests/s. Under such settings,
if reuse is not possible, instead, the edge domain is not able
to handle the load and a high number of tasks is offloaded
to the cloud: more than half of them are offloaded above
1500 requests/s (Fig. 9(b)). The MEC w cloud benchmark
scheme offloads more than 60% of task requests already for
an offered load of 100 requests/s. The higher load in absence
of reuse is also confirmed by the higher computation delay,
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Fig. 10, mainly due to the higher queuing delay contribu-
tion.

7 CONCLUSIONS AND FUTURE WORKS

In this paper we have proposed a novel strategy for the
placement of computing tasks with time-limited reusable
outputs over an SDN-based network edge domain. The
optimal solution is formulated through an ILP problem,
which targets the network resource usage minimization in
the selection of the candidate executors. The latter ones
include both SDN edge nodes and the remote cloud as the
ultimate choice, not to saturate edge nodes and bound the
task computation latency.

A novel heuristic algorithm is proposed which is shown
to implement the decision in an affordable manner. It
provides a placement solution, by well approximating the
optimal one provided by the ILP. This is especially true
when reuse is enabled, which is the setting we are most
interested in. The formulated optimization problem is also
solved, with a similar efficiency in terms of computation
time, through a near-optimal heuristic algorithm derived
from a greedy approach in the literature.

A wide simulation campaign has been conducted to
assess the behaviour of our proposal, when compared with
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Fig. 9. Effectiveness metrics when varying the time validity of the output
(α = 0.8).

other placement strategies, through several valuable met-
rics under different settings in terms of task requests, task
popularity distribution and time validity of the output of
the computation. Results show that the proposal well meets
the task constraints and properly exploits network edge
resources, while offloading only a small amount of tasks
to the remote cloud. Benefits can be particularly appreciated
especially when popular tasks are considered (higher Zipf
skewness parameter) with a higher time validity of the task
output, nonetheless the increasing number of task requests.
Interestingly, the amount of traffic exchanged in the edge
domain by our proposal reduces up to 93% compared to the
baseline onlyCloud solution.

Achieved findings pave the way for enabling the reuse
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Fig. 10. Average computation delay when varying the time validity of the
output (α = 0.8).

of the output of the computing tasks, in order to make the
best of the network edge resources.

However, several issues still lie ahead which entail fur-
ther investigations as detailed in the following.

Objective function. The conceived framework can be
modified to account for the optimization of different objec-
tives, like the network latency experienced in data exchange,
while still benefiting from time-limited compute reuse.

Practical deployment. To enable compute reuse, edge
nodes should be able to recognize distinct requests for the
same task. This is viable either by leveraging (i) appli-
cation layer solutions like Deep Packet Inspection (DPI)
or Proxy-based mechanisms [37], or (ii) the information-
centric Named Data Networking (NDN) architecture, which
leverages names, directly at the network layer, to uniquely
identify contents and also generic tasks/services [38], [62].
A higher overhead is incurred by the former solutions,
compared to the latter one in which a lookup operation in
the NDN tables, during the request forwarding process, is
only needed, which typically introduces a negligible delay
if names are properly encoded [63]. At a practical level,
this would imply the definition of semantic-rich task names,
which consumers, SDN Controllers and candidate task ex-
ecutors should agree upon.

Time validity estimation. In our design we have as-
sumed the time validity of the output of the computing
task to hold for a specific task request instance. It can vary
from a task instance to another. However, under some cir-
cumstances, the actual parameter may be shorter than what
initially set (if the conditions of the environment, e.g., the
input data, suddenly change) and hence, causing the output
of the computing task to be no longer valid. It can be also
longer (if the conditions of the environment, e.g., the input
data, do not change) making the output of the computation
valid for a longer time. Artificial intelligence solutions could
be deployed at the executor to properly predict the validity
time of the computation output. Alternatively, the validity
time could be calculated by the input data source(s), as
we assumed in our design, and announced to the executor
together with some additional cache control directives. For
instance, information like “no-cache” and “must-revalidate”
directives, currently leveraged by the Hyper Text Transfer

Protocol (HTTP) cache control mechanism, could be intro-
duced in our design to specify that task results need to be re-
validated with the input data source(s), respectively, upon
each reuse and at the estimated expiration. Further studies
are needed to appropriately trade-off between the incurred
delay and signalling traffic introduced in the network and
the accuracy of the results.
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