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Optimal Multicasting in Millimeter Wave 5G
NR with Multi-beam Directional Antennas

Nadezhda Chukhno, Olga Chukhno, Dmitri Moltchanov, Antonella Molinaro,
Yuliya Gaidamaka, Konstantin Samouylov, Yevgeni Koucheryavy, and Giuseppe Araniti

Abstract—The support of multicast communications in the fifth-generation (5G) New Radio (NR) system poses unique
challenges to system designers. Particularly, the highly directional antennas do not allow to serve all the user equipment devices
(UEs) that belong to the same multicast session in a single transmission. However, the capability of modern antenna arrays to
utilize multiple beams simultaneously, with potentially varying half-power beamwidth, adds a new degree of freedom to the UE
scheduling. This work addresses the challenge of optimal multicasting in 5G millimeter wave (mmWave) systems by presenting
a globally optimal solution for multi-beam antenna operation. The optimization problem is formulated as a special case of multi-
period variable cost and size bin packing problem that allows to not impose any constraints on the number of the beams and
their configurations. We also propose heuristic solutions having polynomial time complexity. Our results show that for small cell
radii of up to 100 meters, a single beam is always utilized. For higher cell coverage and practical ranges of the number of users
(5-50), the optimal number of beams is upper bounded by 3.

Index Terms—5G, New Radio, Millimeter Wave, Multicast, Multi-beam antennas, Optimization, Heuristic Algorithms.

F

1 INTRODUCTION

The growth in demand for mobile multimedia ser-
vices poses considerable challenges in providing re-
liable service quality, with the support of a large
number of users competing for limited radio resources
in cellular networks [1]. The New Radio (NR) tech-
nology is expected to be the primary enabler of the
fifth-generation (5G) cellular system’s air interface.
While the basic functionality of NR has already been
specified in 3GPP Rel. 15 [2] and Rel. 16 [3], several
advanced functionalities are still not defined. One of
these critical functionalities is multicasting that has
been planned for 3GPP Rel. 17 onwards [4], [5].

Multicasting is a prominent technique applied to
improve bandwidth efficiency compared to unicast
transmission [6], [7]. In the multicast regime, a base
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station (BS) can transmit the packet to many users
simultaneously using the same band and modulation
and coding scheme (MCS). In the microwave spec-
trum with typically omnidirectional transmissions,
multicast is a natural scheme to implement. However,
in highly directional systems, i.e., the millimeter wave
(mmWave) band communications considered for NR,
the use of extremely directional radiation patterns at
the BS’s antennas poses some challenges to the multi-
cast operation design, which still remain unsolved or
even unaddressed [8], [9].

In exchange for the promised extraordinary rates
at the air interface, mmWave NR systems bring the
following hurdles [10]. First of all, the use of highly
directional antenna radiation patterns does not allow
to serve simultaneously, in a single transmission, all
the user equipment devices (UEs), which belong to
the same multicast session and are located in very
large regions [11]. Indeed, the signal-to-interference-
plus-noise ratio (SINR) decreases with larger beams.
Secondly, NR is expected to work with consider-
ably larger antenna arrays, hence increasing the de-
sign complexity with respect to relatively simple mi-
crowave antenna configurations [12]. These issues
are further exacerbated by the adverse properties
of mmWave propagation, including severe free-space
attenuation [13] and vulnerability to blockage [14].
Finally, the capability of modern antenna arrays to uti-
lize multiple beams at the same time with potentially
varying half-power beamwidth (HPBW) adds further
degrees of freedom to multicast group formation and
scheduling, significantly complicating their design.
However, when multiple beams are available, the
width of numerous beams to be swept simultaneously
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has to be properly selected, under the total transmis-
sion power constraint per antenna. This means that
compared to single-beam systems, power has to be
split among beams in a sophisticated manner.

The question of efficient multicasting in wireless
systems has been addressed recently, see Section 2
for review. Particularly, optimal solutions for single-
beam antenna design have been proposed so far
in [15]. Furthermore, there are a number of heuristic
solutions for single-beam antennas [16], [17]. While
several heuristics for multi-beam NR antenna designs
have also been proposed [18]–[20], no globally opti-
mal solution is available. Without a globally optimal
solution, it is impossible to fully benchmark existing
solutions and develop enhancements.

This paper fills the above-mentioned gap by pre-
senting a globally optimal solution for multi-beam
antenna operation by explicitly considering mmWave
specifics, including directional multi-beam antennas,
signal propagation, and blockage. The optimization
problem is first reduced to the special case of multi-
period variable cost and size bin packing problem
(BPP) having well-known numerical solution algo-
rithms, such that one may not place any constraints
on the number of the beams and their HPBWs. To
account for multi-beam specifics, we select the opti-
mization criterion to be the ratio of the amount of
occupied resources to the overall resources in the
system. We then proceed to formulate heuristic algo-
rithms capable of approaching the globally optimal
solution. We also benchmark heuristics proposed so
far in the literature against the developed optimal
solution.

The main contributions of our study are:
• the optimal solution for multi-beam mmWave BS

operation minimizing the amount of resources
required to serve UEs based on multi-period
variable cost and size bin packing problem;

• the heuristic algorithms characterized by poly-
nomial complexity and allowing to achieve close
approximations of the optimal solution;

• assessment of the maximal deployment density
of NR BSs required to satisfy a given intensity of
multicast UEs.

The rest of the paper is organized as follows. Re-
lated work is covered in Section 2. Section 3 details the
system model utilized in our work. The optimization
problem is formulated in Section 4, where we also
introduce heuristic algorithms. Illustrative results and
algorithms’ performance comparison are delivered in
Section 5. Conclusions are drawn in the last section.

2 BACKGROUND AND RELATED WORK

In this section, we review related work. We start
addressing the current state of multicast support in
3GPP NR systems. Then, we proceed by outlining the
solutions proposed so far for single-beam antennas.

We conclude this section by exposing the gaps related
to advanced multi-beam antenna design.

2.1 NR Multicasting
Multicasting in NR systems is expected to entirely re-
use the physical layer of unicast NR to increase the
possibility of accelerated commercial application of
multicast communications [4]. The 3GPP has defined
two modes of Multimedia Broadcast/Multicast Ser-
vice (MBMS) operation: the broadcast and multicast
modes. The multicast mode enables unidirectional
point-to-multipoint (PMP) transmission of multime-
dia data from a single source to a group of users in a
multicast area. In multicast mode, the network defines
a relevant multicast zone and can selectively transmit
data to those cells in the area that contain members
of the multicast group [21].

A multicast service may involve one or more suc-
cessive multicast sessions. Such service might, for
example, consist of a single ongoing session (e.g., a
multimedia stream) or may involve several intermit-
tent multicast sessions over an extended period (e.g.,
messages). Unlike the broadcast mode, the multicast
service can only be received by users subscribed to
the specific service and joined the multicast group
associated with this service. The subscription may
be managed by the Public Land Mobile Network
(PLMN) operator, the user, or a third party.

In the two recent 3GPP NR releases, Rel-15 and Rel-
16, no support for broadcast/multicast NR function-
ality is provided. The architectural enhancements to
the 5G system to support multicast functionality are
presented in 3GPP Rel. 17 [4]. The high-level archi-
tecture for the 5G Multicast-Broadcast Service (MBS)
considers only NR as radio access technology (RAT) in
the new-generation radio access network (NG-RAN).
The physical layer is limited to the current Rel-15
numerologies, physical channels (PDCCH/PDSCH),
and waveforms. As general guidelines, the overall
impact of multicast support in NR should be kept
limited, and the UE complexity should be minimized
(for instance, one should avoid exposure to the de-
vice’s hardware) to facilitate implementation and de-
ployment functions. Moreover, flexible allocation of
resources between unicast and broadcast/multicast
services should be possible.

The sequence to establish and deliver an MBS ses-
sion is the following [4]: (i) optional delivery of 5G
MBS service information from the service layer to
the 5G Core network (CN); (ii) UEs participate in
receiving the MBS flow by requesting to join an MBS
session; (iii) establishment of MBS flow transport;
this step may happen before step (ii) for individual
UEs joining an ongoing MBS session; (iv) MBS data
delivery to UEs; (v) UEs stop receiving MBS flow; (vi)
MBS transport is released.

From the viewpoint of 5G CN, two delivery meth-
ods are defined [4], as illustrated in Fig. 1. In both



3

UE

UE

UE

UE

5G 
RAN

5G
CN

Shared MBS 

Traffic Delivery

Shared Transport

PDU Sessions

Individual MBS
Traffic Delivery

PDU Sessio
ns

R
e
p
lica

tio
n

MBS
Traffic

    PMP 
  or

   PTP
over radio

Fig. 1. Illustration of the delivery methods [4].

cases, 5G CN receives a single copy of MBS data
packets, and then the operation of the two methods
diverges. According to the first so-called 5GC Indi-
vidual MBS traffic delivery method, 5G CN delivers
separate copies of those packets to individual UEs
via per-UE protocol data unit (PDU) sessions. The
second, 5GC Shared MBS traffic delivery method,
which is the focus of our study, assumes that 5G CN
delivers the MBS data packet to a RAN node, which
then multicasts it to one or multiple UEs. If the 5GC
Individual MBS traffic delivery method is supported,
the same received copy of MBS data packets by the
5G CN may be delivered via both 5GC Individual
MBS traffic delivery method for some UE(s) and 5GC
Shared MBS traffic delivery method for other UEs.

From the viewpoint of RAN, the following two
delivery methods are available for the transmission
of MBS packets over the radio access interface, in
the case of shared MBS traffic delivery [4]. According
to the point-to-point (PTP) delivery method, a RAN
node delivers separate copies of the MBS data packet
over the radio to individual UEs. In the case of the
PMP delivery method, a RAN node delivers a single
copy of MBS data packets over the radio to a set of
UEs. Note that a RAN node may use a combination
of PTP/PMP to deliver an MBS packet to UEs.

2.2 Related Studies
2.2.1 Single-Beam Antennas
The problem of multicast group formation and associ-
ated optimal resource utilization in wireless systems
with directional antennas has received considerable
attention so far. In [16], a heuristic group-aware mul-
ticast scheme (GAMS) aimed at system throughput
maximization is proposed for IEEE 802.11ad net-
works. Specifically, multicast beamforming is per-
formed during an association beamforming training
interval in 802.11ad beacon. First, devices are clas-
sified into different multicast groups by combining
only those UEs whose distances are smaller than a

reference value. Second, the beamwidth is obtained
for the multicast group by utilizing the law of cosine
with respect to the coordinates of two edge UEs.
When the beamwidth is found, the optimal data rate
for multicast transmission is determined using single
lobe antennas. To this aim, the farthest UE is found,
and then the optimal data rate according to the MCS
table satisfying the power constraint is determined.

An alternative algorithm for multicast grouping is
presented in [17], wherein the beamwidth is adap-
tively determined based on the users’ locations and
the requested data rates in view of maximizing the
sum rate of devices. This approach assumes an ex-
haustive search. The simulation results show that
the multicast grouping scheme presented in [17] can
improve the overall throughput by 28% to 79% com-
pared with the conventional multicast schemes.

In [15] and more recently in [22], a multicast trans-
mission strategy for mmWave in NR is proposed that
aims to find an optimal trade-off between serving
many users simultaneously, thus reducing the BS’s re-
source consumption (channel usage time) and achiev-
ing high SNR by sweeping narrow beams. Unlike
the aforementioned studies, the unreliable channel
nature is explicitly accounted for, and the number
of packets transmitted within the beam is optimized.
In [15], the authors investigate optimal and subopti-
mal multicast schemes for mmWave communications
with single lobe antenna patterns. Particularly, the
problem has been solved using a Markov Decision
Process. Because of the super-exponential complexity
of the optimal solution, the authors propose a practi-
cal hierarchical optimization strategy.

2.2.2 Multi-Beam Antennas
Compared to single-beam antenna configurations, the
problem of multicast group formation and associated
optimal resource allocation for multi-beam antennas
has received much less attention so far. In [18], a
trade-off between multicasting and beamforming is
investigated by designing greedy algorithms with
performance guarantees that generate and schedule
multi-lobe antenna patterns. To this end, switched
beamforming antennas are utilized, where a set of
pre-determined beams cover the entire azimuth of
360◦. The authors consider both continuous (Shannon
capacity) and discrete rate functions under two power
allocation models, where the power is either equally
split (EQP) or asymmetrically split (ASP) between the
lobes. Both optimal and heuristic solutions are de-
signed for the continuous rate function, while for the
discrete rate case, the greedy solutions (e.g., GRASP2)
are provided. The objective in [18] is to minimize
the total time required for data dissemination to the
multicast users, assuming 100% guarantee of packet
delivery for all the users. In the continuous rate case,
the greedy solution (GREP) provides near-optimal
performance, almost coinciding with the optimal one.
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A similar multicast system with switched beam-
forming antennas is considered in [19]. For the
EQP model, the authors provide a low-complexity,
dynamic-programming-based optimal solution (the
algorithm’s complexity is O(B2), in comparison with
the O(B7) complexity of the optimal solution in [18],
where B is the total number of nonoverlapping single-
lobe beams) for both continuous and discrete rate
functions. Under the ASP model, there exist no op-
timal nor approximate solutions. In the case of dis-
crete rate function, the multicast-beamforming prob-
lem studied in [18] can be converted to a generalized
version of the bin-packing problem. This allows ap-
plying generalized-bin-packing algorithms to obtain
asymptotic polynomial-time approximation schemes.
In [19], an asymptotic approximation solution has
been developed for discrete rate functions. The so-
lution enables drastic improvement over GRASP2
in [18], which handles ASP for the discrete rate case.

Differently from [18], [19], a joint user scheduling
and adaptive beamformer design problem for multi-
lobe antenna pattern to minimize the time of the
data dissemination to the multicast users is addressed
in [20]. The problem is stated to be non-convex and
NP-hard for both discrete and continuous versions.
Thus, obtaining an optimal beamformer with gen-
eral channel vectors is not feasible, even for a small
number of users. For this purpose, the authors pro-
pose efficient algorithms implemented in an adaptive
beamforming system for multicasting (ADAM) and
suitable for a practical system design.

Summarizing the related work, we observe that for
multi-beam antenna systems, there are no optimal
solutions simultaneously providing multicast group
formation and resource allocation for the practical
case of discrete rate function with adaptive beamform-
ing. As a result, the performance of the heuristic so-
lutions proposed for such systems cannot be reliably
benchmarked, providing a numerical assessment of
how close those solutions are to the optimal one.

3 SYSTEM MODEL

In this section, we introduce our system model by
specifying deployment, traffic, resource models, and
radio part parameters. We then present our optimiza-
tion criterion. The notation utilized in the paper is
provided in Table 1.

3.1 Deployment, Traffic, and Resources
We assume a cellular deployment of NR BSs with
the intersite distance of D meters and consider a
randomly chosen sector (referred to as a ”cell”) of an
NR BS having three sectoral antennas, each serving an
area of 120◦, as illustrated in Fig. 2. The height of UEs,
NR BS, and blockers are assumed to be constant and
given by hU , hA, and hB , respectively. We consider
a single multicast session to be provided to K UEs.

O

BS

hA

y

hB

x

 α1
 α2

hU

D

sector
antenna
120°

R

multi-beam system

Fig. 2. Illustration of the deployment scenario.

The geometric locations of UEs are assumed to be
uniformly distributed in the cell area. The bitrate
of the multicast session is assumed to be C Mbps.
Depending on UE locations, the amount of resources
needed to serve UEs might be different and can be
computed using NR MCS [24].

The bandwidth available for a sector antenna is
assumed to be W MHz. Following the 3GPP NR

TABLE 1
Notation and parameters used in this work.

Fixed parameters with default values
Parameter Definition Value
fc Carrier frequency, GHz 28 GHz
W Available bandwidth, MHz 50 MHz
hA Height of NR BS, m 10 m
hU Height of UEs, m 1.5 m
hB Height of blockers, m 1.7 m
µ 5G NR numerology 3
M Number of time slots in 1 ms subframe 8
L Number of beams in the system 1,3,5
Pmax Total available power, W 33 dBm
GA, GU Antenna array gains at NR BS and UE ends, dBi var/5.57 dBi
N0 Power spectral density of noise, dBm/Hz -174 dBm/Hz
NA, NU Number of antenna elements at NR BS and UE var/4 el
MI Interference margin 3 dB [23]
K Number of multicast users 2-30
C Bitrate of multicast session, Mbps 25 Mbps
wPRB Size of PRB, MHz 1.44 MHz
∆ Subcarrier spacing, MHz 0.12 MHz
Sth SINR threshold, dB -9.47 dB
Rb Number of available PRBs 32
R Service (cell) area radius, m 250 m

Intermediate parameters
Parameter Definition
L(y) Path loss in linear scale
LdB(y) Path loss in decibel scale
XA, YA Coordinates of NR BS
XU , YU Coordinates of UEs
D BSs intersite distance, m
y Three-dimensional distance between UE and NR BS, m
y2D Two-dimensional distance between UE and NR BS, m
θ±3db Upper and lower 3-dB points of antenna array, ◦

θm Location of array maximum, ◦

β Antenna array orientation, ◦

Ai, ζ Propagation coefficients
α HPBW of a linear antenna array, rad
pB(y) Distance-dependent blockage probability
S(y) Signal-to-interference-plus-noise ratio, SINR, dB
PA Transmit power, W
sj Spectral efficiency of the worst user in group Gj , bit/s/Hz
Q Number of carriers in a time slot
cj Channel gain-to-noise ratio for beam j
hj Channel gain for beam j
σj Standard deviation of the noise for beam j
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TABLE 2
5G NR numerologies [24].

µ ∆ =
2µ · 15 [kHz]

Bandwidth
per RB [kHz]

TTI [ms] Time slots,
M

0 15 180 1 1
1 30 360 0.5 2
2 60 720 0.25 4
3 120 1440 0.125 8
4 240 2880 0.0625 16

standard [24], the resources are divided in time and
frequency following the orthogonal frequency divi-
sion multiple access (OFDMA) scheme. NR utilizes
the scalable numerology that determines the subcar-
rier spacing, the number of slots in a subframe, the
slot duration, and the cyclic prefix, see Table 2. We
consider mmWave band with carrier frequency of
fc = 28 GHz and corresponding NR numerology
µ = 3 with the physical resource block (PRB) size of
wPRB = 1.44 MHz. The duration of a subframe is 1 ms,
and it consists of exactly M time slots [24]. The num-
ber of carriers in each time slot is Q = dW/1.44e. For
the considered numerology, the number of subcarriers
in each time slot is 12, and the number of time slots,
M is set to 8 [24].

3.2 Propagation and Blockage Models
The SINR at the receiver located at the distance of y
from the NR BS along the propagation path is

S(y) =
PAGAGU

(N0W +MI)L(y)
, (1)

where PA is the NR BS transmit power, GA and GU
are the antenna array gains at the NR BS and the UE
ends, respectively, N0 is the power spectral density
of noise, W is the operating bandwidth, L(y) is the
linear path loss. We capture the interference from the
adjacent NR BSs via interference margin MI in (1).
For a given NR BS deployment density, one may
estimate it by employing stochastic geometry-based
models [25], [26].

Following [27], the path loss measured in dB is

LdB(y) = 32.4 + 21 log10 y + 20 log10 fc, (2)

where fc is the carrier frequency in GHz and y
is the three-dimensional (3D) distance between the
NR BS and the UE. By concentrating on the aver-
aged traffic load and channel conditions, we omit
the consideration of small-scale fading. Nevertheless,
the framework provided in what follows allows uti-
lizing more complex models to capture propagation
conditions. For example, the small-scale fading can
be added to the model by assuming certain fading
phenomena, such as Rayleigh, Rician, Nakagami-m,
or Weibull phenomena [28]. Those fading channels
include multipath scattering effects, time dispersion,
and Doppler shifts that arise from relative motion

between the transmitter and receiver. Note that the
introduction of an additional random variable to the
considered propagation model, i.e., PR = FAyγ ,
where F follows the desired distribution, will affect
the results quantitatively while preserving the same
qualitative trend.

We assume that blockers might temporarily block
the line-of-sight (LoS) path between the UE and the
NR BS. Depending on the current link state (LoS non-
blocked or blocked) and the distance between the NR
BS and the UE, the session employs an appropriate
MCS to maintain reliable data transmission. The atten-
uation due to the human body blockage is assumed
to be 15 dB [29].

The path loss in the form of (2) can be represented
in the linear scale by utilizing the model in the form of
Ayζ , where A and ζ are the propagation coefficients.
Introducing the coefficients (A1, ζ) and (A2, ζ) that
correspond to LoS non-blocked and blocked condi-
tions, we have

A1 = 102 log10 fc+3.24, A2 = 102 log10 fc+4.74, ζ = 2.1. (3)

We note that the considered model can be extended
to a model with building blockages and correspond-
ing LoS/nLoS states. To this purpose, one may in-
troduce the coefficients (A1, ζ1), (A1, ζ2), (A2, ζ1), and
(A2, ζ2) that correspond to LoS non-blocked, nLoS
non-blocked, LoS blocked, and nLoS blocked condi-
tions, respectively with ζ1 = 2.1, ζ2 = 3.19.

The value of SINR at the UE can then be written as

S(y) =
PAGAGU
N0W +MI

[
y−ζ

A1
[1− pB(y)] +

y−ζ

A2
pB(y)

]
, (4)

where pB(y) is the blockage probability at the 3D
distance y [14], which is calculated as

y =
√

(XA −XU )2 + (YA − YU )2 + (hA − hU )2, (5)

where (XA, YA, hA) and (XU , YU , hU ) are the coordi-
nates of the NR BS and the multicast user, respectively.

3.3 Antenna Model
We consider planar antenna arrays at both NR BS and
UEs. Following [30], [31], we assume a cone antenna
model where the radiation pattern is represented as a
conical zone with an angle of α coinciding with the
HPBW of the antenna array, see Fig. 2. Recall that the
HPBW of a linear antenna array, α, is proportional to
the number of elements in the appropriate plane and
is given by [32] as

α = 2|θm − θ3db|, (6)

where θ3db is the angle at which the value of the
radiated power is 3dB below the maximum and θm
is the location of the array maximum. The latter is
given by θm = arccos(−β/π), where β is the phase
excitation difference affecting the physical orientation
of the array. We assume θm = π/2 for β = 0.
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The gain over the HPBW can be found as in [32]:

G =
1

θ+
3db − θ

−
3db

∫ θ+3db

θ−3db

sin(Nπ cos(θ)/2)

sin(π cos(θ)/2)
dθ, (7)

where the upper and the lower 3-dB points are

θ±3db = arccos[−β ± 2.782/(Nπ)], (8)

and N is the number of antenna elements.
Generally, it is cost-efficient to build a transceiver

having fewer digital transceivers than total antennas.
Analog beamforming [33] is a method to reduce the
number of transceivers. Here, multiple active anten-
nas are linked to each transceiver, and a network of
analog phase shifters controls the signal phase on each
antenna. In analog beamforming, each transceiver
creates one beam directed at one user. The number
of transceivers can be configured to be significantly
less than the number of antennas when the number
of simultaneously served users is rather small. Digital
beamforming may be used to enable multiple data
stream precoding on top of analog beamforming to
improve performance [34].

The advantages of digital beamforming include
(i) improved dynamic range, (ii) controlling of mul-
tiple beams, and (iii) better and faster control of
amplitude and phase. Meanwhile, hybrid analog and
digital beamforming is a promising candidate for
large-scale mmWave multiple-input multiple-output
(MIMO) systems because of its ability to significantly
reduce the hardware complexity of the conventional
fully-digital beamforming schemes while being capa-
ble of approaching the performance of fully-digital
methods.

We consider that more than one beam can be
simultaneously generated at NR BS. Each of these
beams might be steered in a different direction, i.e., we
assume hybrid analog-digital or digital beamforming
techniques to enable multibeaming (multiple beams
can be used independently at the same time). Recall
that to enable this functionality, multiple radio fre-
quency (RF) chains, proportional to antenna elements
in use, need to be provided. We also assume that the
HPBW of these beams depends on the number of the
involved antenna elements to form a beam and is
lower bounded by (6). Note that there are multiple
antenna arrays connected to a separate RF chain, and
the HPBW of each beam corresponds to the number of
elements in the corresponding array. The HPBW can
be approximated by using α = 102/N [35]1. We denote
the maximum number of beams by L and the total
power available by Pmax. HPBWs and gains of beams
computed according to 102/N and (7) are provided in
Table 3.

1. The table with comparison of direct HPBW calculation accord-
ing to (6) and its approximation can be found in [36].

TABLE 3
Parameters induced by 5G NR BS antenna arrays.

Array HPBW,◦ [35] Gain, dBi Gain, linear

64x4 1.59 17.59 57.51
32x4 3.18 14.58 28.76
16x4 6.37 11.57 14.38
8x4 12.75 8.57 7.20
4x4 25.5 5.57 3.61
2x4 51 2.643 1.84
1x4 102 2.58 1

3.4 Optimization Criterion

Contrary to other studies that mainly examine the
problem of multicast rate maximization, to optimize
the mmWave NR resource utilization with multi-beam
directional antennas, we consider the ratio of occu-
pied resources to the overall set of available resources,
ρ, as the optimization criterion. The rationale beyond
this choice is that in the context of network design,
resource consumption is one of the most crucial as-
pects for future systems [37]. We emphasize that in the
case of a single RF chain, when the transmission can
be performed over one beam at a time, the problem
can be formulated as minimization of the amount
of PRBs utilized. However, PRBs minimization might
not provide actual resource minimization for a system
with multiple antennas since the power has to be split
among the beams. In this case, the increase in the
number of beams adds new resources to the system.
However, these resources might not be fully utilized
due to maximum emitted power constraints.

As a result of the optimization, the following two
metrics must be simultaneously determined: (i) ρ – the
ratio of the occupied to available resources, (ii) Lopt
– the optimal number of beams in the multi-beam
system. By solving the optimization problem, we also
determine the intersite distance D and, thus, η – the
minimum NR BS deployment density required for
multicast service provisioning.

We note that in real deployments, both multicast
and unicast sessions may coexist in the system. In this
paper, we omit unicast connections in the optimiza-
tion problem and also limit our attention to a single
multicast session. The rationale for choosing exactly
one multicast session for this work is twofold. First,
we would like to study the accuracy of the proposed
heuristic algorithms without ”external disturbances”
that are always present in the system serving the
mixture of traffic types and multiple competing mul-
ticast sessions. Secondly, to model the system with
both unicast and multicast traffic, one needs to take
additional assumptions as multicast traffic is known
to occupy resources of the system more aggressively
and eventually, under high multicast load conditions
may fully occupy the system resources as we have
shown in [8]. Nevertheless, the approach proposed
in this paper can be extended to capture multiple
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multicast sessions and the presence of unicast sessions
as well.

For the extension of the model with the unicast
traffic, one may need to introduce priorities between
unicast and multicast traffic, such as unicast maxi-
mization, equal sharing, and equal competition, or as
proposed in [38]. Note that the chosen prioritization
scheme heavily depends on the operator. Assuming
that multicast traffic is prioritized, the task reduces to
optimizing multiple multicast sessions (e.g., according
to the designed framework) and then allocating the
remaining resources for unicast sessions according to
some algorithms. Alternatively, if unicast is priori-
tized, the situation is reversed. Note that in both cases,
the solution may not exist due to the lack of resources.

4 OPTIMIZATION FRAMEWORK

In this section, we first introduce our optimization
framework. We start by commenting on the class of
the considered problem. Then, we formalize the prob-
lem of optimal resource allocation of UEs in a multi-
beam environment as a bin packing formalism [39].
Finally, we introduce our heuristic algorithms.

4.1 Preliminaries

We formalize the multi-beam operation optimization
problem as a special class of BPP, one of the most
studied combinatorial optimization problems. Gener-
ally, in BPP, a set of items of various sizes has to be
either packed into a minimum number of identical
bins, filled in the most time-efficient way, or packed
so that the items are distributed evenly. A new variant
of BPP, the variable-sized bin packing problem, which
aims to minimize the cost of assigning the items
to the particular bins, is considered in [39]. More
precisely, the authors present a BPP setting wherein
the cost of assigning an item to a bin is explicitly
accounted for and may, or may not, depend solely on
the item’s volume. In our work, we consider multicast
users’ groups as the items, whereas directional beams
represent the bins. We aim to minimize the cost of
assigning users to multicast groups covered by the
directional beams.

General BPPs, wherein a given set of items with
various sizes has to be packed into the fewest number
of unit capacity bins, belong to the NP-hard problem
(NP-complete for the decision version). Accordingly,
we propose efficient heuristic algorithms to solve the
problem at hand in Subsection 4.3.

We also note that the generic formalism in [39]
aims to minimize the cost of selecting the bins and
the costs of assigning the items specific bins, which
may depend on other criteria than the volumes of
the items. These provide additional possibilities to
account for other different system properties, but we
leave them out of the scope of this paper.

4.2 Formalization of Optimization Task
We consider the 5G NR BS sectoral coverage served
by an antenna array system having L ≥ 1 beams and
K users, denoted by set K = {1, ...,K}. We assume an
OFDMA scheme, i.e., M designates the time horizon’s
length, the number of time slots in the time horizon
(one subframe), with the index t ∈ T , T = {1, . . . ,M}
of each time slot. We consider K users that utilize
antenna arrays featuring multiple elements forming
directional radiation patterns. The maximum number
of PRBs available in the system is MLRb, where M
is the maximum number of time slots in the time
horizon, L is the number of beams per antenna at each
time slot t, and Rb is the available number of resource
blocks in the system for the beam at time slot t. The
potential maximum number of groups served within
the time horizon is restricted by ML.

As one may deduce, there are 2K − 1 options to
assign K users to multicast groups [15], i.e., Kj rep-
resents the set of users forming group j, j ∈ J ,J =
{1, . . . , 2K − 1}, and |Kj | is the number of users in
group j. For example, for K = 3 users, these feasible
options are K1={1},K2={2},K3={3},K4={1, 2},K5=
{1, 3},K6={2, 3},K7={1, 2, 3}. We can combine these
groups to form the so-called ”suits”, i.e., subsets Gk
in such a manner that each Gk covers all the users
without their repetition, k = 1, 2, ..., |Ω|, where Ω is
the set of all such suits. Therefore, suits Gk satisfy the
following conditions:⋃

j∈Gk

Kj = K, (9)

Kj1
⋂
Kj2 = ∅, j1 6= j2, ∀j1, j2 ∈ Gk, (10)

meaning that each multicast user has to be served
individually in a separate group. Thus, for K = 3,
set Ω includes suit G1 = {1, 2, 3}, covering K groups
with one user in each, i.e., G1 ∼ K1

⋃
K2

⋃
K3, which

corresponds to the unicast transmissions. Another
extreme is to serve a user by only one group. This
corresponds to the suit G5 = {7}, which is included
in set Ω and containts all the users, i.e., G5 ∼ K7. We
emphasize that the directionality of the beam, which
covers each multicast group, is already included in
the definition of Kj . Namely, the set of users in the
group j defines distance Lj from the BS to the farthest
user and HPBW αj .

For L = 1, all the groups included in suit Gk are
served consistently by one beam. For L > 1, we define
subsuits Glk as the subset of groups from Gk, which
is planned for beam l by the scheduler, Glk ⊆ Gk,
l = 1, 2, ..., L. Therefore, suits Glk satisfy the following
conditions:

Gk =

L⋃
l=1

Glk, (11)

Gl1k
⋂
Gl2k = ∅, l1 6= l2, ∀l1, l2 ∈ {1, 2, ..., L}. (12)
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To model the optimization problem of serving users
by a suit of groups (served by directional beams),
we take a binary indicator, gtj ∈ {0, 1}, to denote
the group assignment decision variable. Let gtj = 1 if
group j is served at time slot t, and gtj = 0 otherwise.
Then, we have a vector-indicator, gt = (gt1, . . . , g

t
|J |),

of groups that are served at time slot t.
We assume the following constraint on the maxi-

mum number of groups to be served (or beams to be
swept) in the system at each time slot t:∑

j∈Gk

gtj ≤ L,∀t ∈ T , (13)

meaning that at time slot t at most L beams can be
simultaneously swept (or groups that can be served).

The model does not restrict the scheduler’s beam
assignment, however, a suit service time should not
exceed the time horizon:∑

j∈Glk

∑
t∈T

gtj ≤M, ∀l = 1, ..., L, ∀k = 1, ..., |Ω|. (14)

Let Pj be the transmit power of beam that serves
group j, i.e., Pj ≤ Pmax,∀j ∈ J , whereas αj and Lj
are, respectively, the width and length of the beam
determined by the number of Nj antenna elements
used to form the radiation pattern of an antenna, αj =
f(Nj). We assume that αj = 102/Nj [35], GA, GU are
in linear scale, and then, the required Pj for each beam
to serve the user located at distance Lj from the BS is

Pj =
A1A2Sth(N0W +MI)

GAGUL
ζ
j [A2(1− pB(Lj)) +A1pB(Lj)]

, (15)

where Sth is the SINR threshold corresponding to a
chosen NR MCS, whereas GA depends on αj .

Further, in our optimization problem, we have
to ensure the following constraint to be held on
the transmit power budget per antenna that serves
group j: ∑

j∈Gk

gtjPj ≤ Pmax,∀t ∈ T . (16)

The SINR at UE can be written as (4). We assume
that the session requires a constant bit rate C. Techni-
cally, to determine the amount of resources required
from NR BS to serve a session with bit rate C, we have
to know the channel quality indicator (CQI) and MCS
values as well as SINR to spectral efficiency mapping.
As these parameters are usually vendor-specific, in
our study, we use MCS mappings from [40].

Then, cost aj is represented in terms of the number
of PRBs for the assigned beam for group j, such as
aj = f(Pj , Nj , C), where C is the required session bit
rate and Pj is the transmit power. That is,

aj =
C

sjwPRB
, (17)

where sj is a spectral efficiency in bit/s/Hz of the
farthest user in the group j, wPRB is a PRB size.

Note that the scheduler’s time slot assignment is
reflected in vector gj = (g1

j , . . . , g
M
j ) with∑

t∈T
gtj =

⌈
aj
Rb

⌉
, j ∈ J . (18)

We assume that the scheduler assigns a beam to the
group such that the following holds true

aj ≤MRb, j ∈ J . (19)

Finally, in constraints (14) and (19), the following
condition for the maximum available resources in the
system should be satisfied:∑

j∈Gk

aj ≤MLRb, j ∈ J , k = 1, ..., |Ω|. (20)

The goal of the model is to determine the optimal
grouping of multicast users, which minimizes the total
cost of service in terms of the ratio of occupied PRBs
to the total available number of PRBs for the entire
time horizon. We now proceed with specifying the
objective functions for two cases, L ≥ 1 and L = 1.

4.2.1 Multi-Beam Antennas Optimization
In the case L ≥ 1, we have to minimize the ratio of oc-
cupied to available resources. Thus, the optimization
problem takes the following form:

min
k∈1,...,|Ω|

∑
j∈Gk

aj
MLRb

, (21)

s.t. (9), (10), (11), (12), (13), (14), (16), (19), (20).

4.2.2 Single-Beam Antennas Optimization
In the case L = 1, all the transmit power at BS is
allocated to a single beam, Pj = PA, and we can utilize
the optimization problem defined above or use the
conventional resource minimization task [17], i.e.,

min
k∈1,...,|Ω|

∑
j∈Gk

aj , (22)

s.t. (9), (10), (13), (14), (16), (19), (20).

The pseudo-code in Algorithm 1 describes the glob-
ally optimal solution according to (21) for L ≥ 1 and
(22) for L = 1. The algorithm employs our analytical
framework to obtain optimal multicast group forma-
tion and resource allocation in Subsection 4.2.

4.3 Proposed Heuristic Solutions
Algorithm 1 is characterized by exponential complex-
ity. To provide a practical algorithm with reduced
computational requirements, we now proceed with
proposing a heuristic algorithm for the case L ≥ 1.

The proposed algorithm is divided into the follow-
ing two stages: 1) grouping users into subgroups (see
Subsection 4.3.1) and 2) beam assignment and power
allocation (Subsection 4.3.2). The latter stage is also
logically divided into the following steps: (i) selection
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Algorithm 1: Optimal Solution, L ≥ 1

1 Input: (XU (i), YU (i), hU ), i ∈ K
2 Output: Optimally global solution for multicast

grouping
3 Create 2K − 1 multicast groups of users
4 for each group Kj do
5 find the farthest user i and the distance

from BS to this user: y ← max
i∈Kj

yi as (5);

6 find HPBW needed to cover the group Kj
αj = arccos

(
(XU (i)XU (i′)+YU (i)YU (i′)+h2

U

y(i)y(i′)

)
.

αj is chosen according to the angle between
two edge users i and i′

7 find Pj from (15) using Lj = y; . Pj = PA is
fixed for L = 1

8 find the cost aj from (17);
9 end

10 Solve the problem by using (21) with
exhaustive search for L ≥ 1 or (22) for L = 1.

of the multicast groups, which have to be served
at a time slot simultaneously, (ii) water-filling stage
for detecting the maximum power allocation that can
be assigned to all of the beams simultaneously, and
(iii) the subsequent refinement of the allocations for
selected beams. We emphasize that starting from the
second stage, we consider multi-beam transmissions,
which implies that the power-budged constraints (16)
per antenna have to be satisfied. In other words, for
the single-beam antennas, L = 1, only the first stage
is required, whereas in the case of L ≥ 1 additional
steps have to be performed.

4.3.1 Subgroups Formation
At this stage, we create subgroups to serve all users
in the system during a time horizon. This process can
be carried out in two ways as described below.

Option 1.1. To facilitate beam assignment, we ex-
tend the incremental multicast grouping algorithm for
directional mmWave networks originally proposed
in [17] to the case of L > 1. Note that for L = 1,
we execute the method presented in [17] with the
only modification on the optimization function. More
specifically, we determine the number and width of
the beams required to optimize the multicast trans-
mission performance in terms of resource utilization.
The pseudo-code is presented in Algorithm 2. The
output of the algorithm contains the number of mul-
ticast groups, n, required to serve set K, 1 ≤ n ≤ |J |;
the set of multicast groups, SM1 , ...,SMn , that covers all
UEs from K; and required power, PM1 , ..., PMn .

Let us denote the set of users in the multicast ses-
sion as A. Initially, we set A to the set of all multicast
users in the system K (line 3). We also introduce the
3D distance-vector y = (y1, y2, ..., yi, ..., yK), where
each element represents the distance between the NR

BS antenna and user i as per (5), where i is the
index of the user, as well as vector Φ = (φ1, ..., φK)
counting reference angles in the azimuth plane (lines
4-5). Line 7 sets the number of utilized resources to 0.
The algorithm iteratively partitions users of set A into
multiple subgroups, as indicated in line 9. Specifically,
line 10 sets the minimization function to infinity. Here,
the minimization function is assumed to represent the
occupied per user resources for each multicast sub-
group. The algorithm starts with choosing the farthest
user from set A with distance y and its reference angle
φy in the azimuth plane (lines 12-13).

Then, we utilize adaptive beamforming, and one
beam pattern can be selected to transmit with a chosen
MCS depending on the user’s location. Line 15 collects
all users covered by beam with width α steered to-
ward the device of reference angle φy (corresponding
to θm, see Section 3.3) with distance y in the multicast
subgroup Sα. Note that the transmit power for each
beam with width α is calculated according to (15)
substituting Lj with y for L ≥ 1. In the case of L = 1,
the transmit power equals to the maximum available
power PA. Recall that for L > 1 differently from [17],
we consider the minimization ratio of occupied to
available resources as the objective function (line 18).
Here, sα is a spectral efficiency for a beam with width
α and corresponds to sj in (17). Thereby, the algorithm
selects the best α for the chosen user in line 12 and
deletes all the served users from the list (line 29).
When all users are served, the algorithm stops.

Option 1.2. Another approach for group formation
is based on the optimization function and is as fol-
lows. First, the algorithm selects the farthest user i,
identifies the group Kj from J = {1, ..., 2K − 1}, such
that i ∈ Kj to serve at the smallest value of aj/|Kj |.
The rationale is that by choosing the farthest user from
the multicast group, the algorithm can capture more
users when sweeping the beam. Further, to provide
the solution of less complexity while preserving the
intention to minimize the ratio of occupied to avail-
able resources, we select the beam with the smallest
value of utilized resources per user. Then, we delete
served users from the list and repeat the process for
the remaining users. We emphasize that the groups
containing the served users are also deleted. By doing
this, we significantly reduce the complexity, see Sec-
tion 4.4, while keeping comparable performance with
the optimal solution, as later discussed in Section 5.

4.3.2 Beam assignment and Power Allocation
The pseudo-code of step 2 is provided in Algorithm 3.
In what follows, we elaborate on the rationale and
details of the algorithm.

Let SM denote the set of multicast groups being
selected at the first step of the proposed heuristic. The
algorithm’s goal is to determine the groups, which
will be served simultaneously, and the corresponding
transmit power to minimize the ratio of occupied to
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Algorithm 2: Modified Incremental Multicast
Grouping [17], L ≥ 1

1 Input: (XU (i), YU (i), hU ), i ∈ K
2 Output: n; SM1 , ...,SMn ; PM1 , ..., PMn ;
3 A ← K, K = {1, . . . ,K};
4 y = (y1, ..., yK) as (5);
5 Φ = (φ1, ..., φK); . reference angles
6 n← 0; . subgroups counter
7 asum ← 0; . occupied resources collector
8 SMn ← ∅;
9 while A 6= ∅ or asum < MLRb or n < ML do

10 MINQ ←∞;
11 n← n+ 1;
12 y ← max

i∈A
yi;

13 φy ← φ(y);
14 for α ∈ Ωα = {αmin, ..., αmax} do
15 Sα = {i ∈ A : φy − α/2 ≤ φi ≤ φy + α/2};
16 calculate Pα from (15);
17 if Pα ≤ Pmax then
18 Qα = C

sαwPRB|Sα| ;
19 if MINQ > Qα then
20 MINQ ← Qα;
21 SMn ← Sα;
22 PMn ← Pα;
23 an ← C

sαwPRB
;

24 end
25 else
26 go to line 29;
27 end
28 end
29 A ← A \ SMn ;
30 asum ← asum + an;
31 end
32 return n, SM1 , ...,SMn , PM1 , ..., PMn .

available resources. Thus, the algorithm works until
all groups are deleted from SM (lines 5-22). We also
use D(m) to denote a set of groups to be served at
a time slot m. The algorithm selects the worst (in
the sense of the needed power) group from SM and
adds this group to set D(m) (lines 7-9). If the power
budget constraint allows us to add more groups to set
D(m), the algorithm selects the best group and adds
it to set D(m) (lines 10-19). The number of groups
in D(m) should be less or equal to L. When set
D(m) is determined, the power water-filling algorithm
chooses the power such that the utilized resources are
minimized (line 20).

Option 2.1. Traditional power water-filling. We
now introduce cj = |hj |/σ2

j as a channel gain-to-noise
ratio (GNR), where hj is a channel gain, and σj is
a standard deviation of the noise. In a traditional
water-filling algorithm, the channel with high cj re-
ceives more power, which leads to a higher system
capacity. However, this approach would eventually

Algorithm 3: Heuristic Step 2, L > 1

1 Input: SM1 , ...,SMn ; PM1 , ..., PMn ;
2 Output: m, D(m), P ∗(k)

j , j = 1, ...n, k = 1, ...m;
3 SM ← {SM1 , ...,SMn };
4 m← 0; . time slot counter
5 while SM 6= ∅ do
6 m← m+ 1;
7 kmax ← arg max

j∈SM
Pj ;

8 Psum ← PMkmax
;

9 D(m) ← SMkmax
;

10 if SM \ D(m) 6= 0 then
11 for j = 2 : L do
12 kmin ← arg min

j∈SM\D(m)

Pj ;

13 if Psum + PMkmin
≤ Pmax then

14 D(m) ← D(m) ∪ SMkmin
;

15 else
16 go to line 20;
17 end
18 end
19 end
20 Perform water-filling for D(m) and obtain

P
∗(m)
j from (23)-(25);

21 SM ← SM \ D(m);
22 end
23 return: m, D(k), P ∗(k)

j , j = 1, ...n, k = 1, ...m.

lead to equal power distribution. Note that GNR is
related to the SINR as Sj = PMj cj , Sj = min

i∈D(m)
S(yi),

j = 1, ..., |D(k)|, k = 1, ...,m.
The power allocations of the water-filling approach

are the result of the following optimization task for
the optimal power P ∗(k)

j for group j at time slot k:

(
P
∗(k)
1 , ..., P

∗(k)

|D(k)|

)
← max(

P1,...,P|D(k)|

)
|D(k)|∑
j=1

log(1 + Pjcj),

s.t. Pj ≥ 0,∀j = 1, . . . , |D(k)|,
|D(k)|∑
j=1

Pj = Pmax,

∀k = 1, ...,m, (23)

where |D(k)| is the number of multicast groups that
have to be served simultaneously at time slot k,
|D(k)| ≤ L. Note that the first constraint implies that
the power allocation is non-negative, while the second
constraint limits the power budget of the system. The
sought optimal transmit power P ∗(k)

j is thus

P
∗(k)
j = (1/ξ∗ − 1/cj)

+, (24)

where 1/ξ∗ is the maximum power that can be allo-
cated for each multicast group, x+ = max (x, 0).

The problem in (23) is convex in nature. Since the
maximization of concave function (23) is equivalent
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to minimization of a convex function, we have

ξ∗ ← min
ξ

|D(k)|∑
j=1

log
(

1 + P
∗(k)
j cj

)

−ξ

|D(k)|∑
j=1

P
∗(k)
j − Pmax

 ,∀k = 1, ...,m,

s.t. (24). (25)

Option 2.2. Resource-based filling. Alternatively,
we implement water-filing based on the resource in-
formation. According to this option, the additional
power is allocated to those groups, resulting in the
largest decrease in the amount of utilized resources.

4.4 Complexity Analysis
The complexity of Algorithm 1 (optimal solution) is
exponential since branch-and-bound or branch-and-
cut even with relaxations are performed using the
exhaustive search.

The computational complexity of the heuristic so-
lution in Algorithm 2 is given by O(K|Ωα|), where
K is the complexity due to the “while” cycle over
all K multicast users in the worst case of the unicast
transmission (lines 9-31). This means each user will
be placed in a separate group. For the second com-
ponent, which is inside the “while” cycle, |Ωα| is the
complexity due to the possible beam selection from
the set Ωα (lines 14-28). As a result, in the worst case,
the number of operations is in O(K|Ωα|).

Finally, the computational complexity of Algo-
rithm 3 is O(KL), where K is the complexity due
to the “while” cycle over all n groups (with max K)
in the worst case of the single group transmissions
(lines 5-22). For the second component, which is inside
the “while” cycle, L− 1 is the complexity due to the
possible selection of simultaneous groups (lines 11-
18). As a result, in the worst case, the number of
operations is O(K(L−1)). The traditional water-filling
algorithm has O(2(|D(m)|−1)) complexity [41], where
|D(m)| is the number of multicast groups that have
to be served simultaneously (|D(m)| ≤ L), thus, the
number of operations is in O(L − 1) for the water-
filling. Here, the water-walling is also performed in-
side the “while” cycle, therefore, the complexity of
Algorithm 3 is O(K[(L− 1) + (L− 1)]) = O(KL).

5 NUMERICAL RESULTS

In this section, we evaluate the performance of the
proposed multi-beam antenna optimization strategies.
We first study the special case with a single beam
and assess the accuracy of the algorithms. Then, we
investigate optimal multicast group formation and re-
source allocation for a system with multiple antennas
and evaluate the accuracy of the proposed heuristics.
Here, we also assess the optimal usage of resources
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Fig. 3. Ratio of occupied to available resources as a
function of the cell radius, K = 5, 10 users, C = 25
Mbps, W = 50 MHz.

and the optimal number of antenna beams. Finally,
we determine the maximal deployment density of NR
BSs required to satisfy a given density of multicast
UEs. We comment on the practical use of the proposed
framework in the last part of this section and also
provide results for antenna radiation patterns, propa-
gation and interference models different from those
defined in Section 3. The default system modeling
parameters are summarized in Table 1.

5.1 Single-Beam Antennas Design

We start with addressing the case of single-beam
antenna systems. A comparison of the ratio of oc-
cupied to available resources for L = 1 obtained
with the developed optimization model and proposed
heuristics, (O.1.1) [17] and (O.1.2), see Section 4.3, is
demonstrated in Fig. 3 as a function of the cell radius,
R, for the session data rates of C = 25 Mbps. As
one may observe, there is almost a perfect match be-
tween the optimal solution and the proposed heuristic
(O.1.2). At the same time, the heuristic (O.1.1) leads
to a noticeably higher ratio of occupied to available
resources, ρ, compared to both the heuristic (O.1.2)
and the optimal solution. The underlying reason is
the group formation algorithm. Specifically, the (O.1.1)
algorithm does not utilize an exhaustive search result-
ing in much lower complexity. However, the resulting
number of groups is usually higher compared to
the exhaustive search algorithm employed in (O.1.2).
Particularly, the algorithm selects the farthest user and
then, for this user, sweeps the beam. As this user can
be located at any place in the cell area, it might not
be possible to cover all the users with a single beam.
Inversely, until R reaches approximately 230 m, the
optimal solution forms a single multicast group for
the case of L = 1.

Analyzing the effect of the cell radius in Fig. 3,
one may learn that for both the considered numbers
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Fig. 4. Ratio of occupied to available resources as a
function of the number of users, R = 250 m, C = 25
Mbps, W = 50, 100, 200 MHz.

of users (i.e., K = 5 and K = 10), an increase in
the cell radius leads to faster growth of the ratio of
occupied to available resources for all solutions for
K = 5 users as compared to the case of K = 10 users.
We also emphasize that the gap between (O.1.1) and
the optimal solution is smaller for the lower values
of K. Specifically, for K = 10 and all the considered
cell radii, the difference between optimal solution and
(O.1.1) heuristic is around 100%, while for K = 5,
it gradually converges to zero as R increases. The
rationale is that both optimal and heuristic solutions
start to select more groups, progressively shifting to
unicast transmissions due to the large distances.

We now proceed with assessment of the effect of the
number of users, K, shown in Fig. 4 for cell radius of
R = 250 m, requested rate of C = 25 Mbps, and three
bandwidths, W = 50, W = 100, and W = 200 MHz.
Note that for values of K higher than 20, we utilize
quadratic extrapolation to construct the curves for the
optimal solution. Analyzing the presented data, one
may notice that the increase in the number of users
leads to a rise in the ρ ratio for all the considered
solutions. Indeed, higher values of K theoretically
lead to either a higher number of groups or a higher
number of users in the group (which may worsen the
multicast group channel condition), thus increasing
the ratio of utilized to available resources. Further,
with the increase in K, the gap between the optimal
and heuristic (O.1.2) solutions becomes larger. The

impact of the increase in the available bandwidth W
is also evident from Fig. 4. One may learn that for
larger bandwidth of W = 200 MHz, the gap between
the optimal and heuristic solutions is lower compared
to W = 100 and W = 50. The rationale is that the data
transmission is much faster with a larger bandwidth.
This, in turn, leads to a lower ratio of occupied to
available resources. Therefore, this is an inherently
quantitative effect as the difference between smaller
values of ρ for a larger bandwidth is lower compared
to the difference for a smaller bandwidth. The gap
between optimal solution and heuristics in terms of
percentage is represented in Table 4.

5.2 Multi-beam Antennas Design

Having studied the performance of the single-beam
systems, we are in the position to proceed with the
performance results of the multi-beam systems. We
start with Fig. 5 presenting the ratio of occupied to
available resources, ρ, for the maximum number of
beams L = 3 and L = 5 as a function of the cell area
radius R. From these illustrations, we observe that the
curves for L = 3, Fig. 5(a), grow much slower with
the increase in the cell radius than for L = 5, Fig. 5(b).
It is important to highlight that at smaller values of
R (e.g., approximately 50-100 m), heuristic (O.1.2) and
optimal solutions combine users into a single group.
This explains the fact that the curves for L = 5
first show better performance and then demonstrate
higher ρ values for all schemes. We also note that the
reason behind the gap between the optimal solution
and (O.1.2) for (O.2.1) and (O.2.2) heuristic options for
L = 5 lies in the selected number of beams per time
slot. More precisely, at R of approximately 150-250 m
optimal solution utilizes one beam and several time
slots, whereas heuristic solutions serve users with
more than one beam within one time slot. Hence, we
may deduce that at large distances, such as 150-240 m,
it is crucial to utilize one beam at a time to minimize ρ.
Note that all the considered strategies utilize unicast
mode to serve multicast users starting from around
R = 250 m.

Analyzing the presented data further, one may also
observe no significant difference between the types
of power water-filling schemes, i.e., options (O.2.1)
and (O.2.2), with the latter slightly outperforming the
former approach. This modest superiority is intuitive

TABLE 4
The gap between optimal solution and heuristics in percentage

%/N 2 5 7 10 12 15 17 20 22 25 27 30
O.1.1., W=50 0.1 3.8 5.9 37.4 11.8 24.8 31.2 28.6 39.9 36 37.7 50.4
O.1.2., W=50 0 0.8 0 1 0 11 14 10.6 26 16 10.1 22
O.1.1., W=100 3.2 10.8 0.6 37.9 31.2 8.7 14.2 15 14.4 17 22 26.2
O.1.2., W=100 0 1.7 3.4 1.2 0.7 0 1.6 3.6 0 0 6.2 12.4
O.1.1., W=200 5.2 0 10.8 1.4 3.8 5.4 10.7 11.6 6.2 9.5 8.5 9.2
O.1.2., W=200 0 0 1.3 0.8 0.1 3.4 12.4 8.1 8.8 6.9 6.9 5
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Fig. 5. Ratio of occupied to available resources as a function of cell radius, K = 10, C = 25 Mbps, W = 50 MHz.
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and stems from the fact that water-filling (O.2.2) is
based on the resource information feature. Similarly
to L = 1, the heuristic option with exhaustive search
(O.1.2) provides the best approximation of the opti-
mal solution. However, as the maximum number of
beams, L, increases, even this approximation starts to
deviate from the optimal solution.

The abovementioned conclusions on the utilized
number of beams are further complemented by Fig. 6,
which demonstrates the optimal number of beams,
Lopt, as a function of the cell area radius. One may
observe that the optimal solution selects only one
beam per time slot until R reaches 230 m and 250 m
for L = 5 and L = 3 beams. Further, as one may
learn from the curves for L = 3, the optimal solution
chooses one beam and several time slots when R is in
the range of 240-250 m, whereas the proposed heuris-
tics (O.1.2) and (O.1.1) sweep two and three beams
per time slot, respectively. Analyzing both Fig. 5 and
Fig. 7, we can conclude that for the practical ranges of
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Fig. 7. The ratio of occupied to available resources as
a function of number of users, R = 250 m, C = 25
Mbps, W = 50 MHz, L = 3.
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cell size and considered number of users, the optimal
solution always utilizes no more than 2-3 beams.

Similarly to the single-beam system, we now evalu-
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ate the impact of the number of users on the optimal
resource allocation. To this aim, Fig. 7 offers the ratio
of occupied to available resources, ρ, for L = 3 as
a function of the number of users in the system. As
one may notice, the observations from Fig. 4 related
to the rise of the gap between the optimal and (O.1.2)
heuristic solutions with the increase in the number
of users are confirmed by Fig. 7. Moreover, one may
deduce by comparing the results of Fig. 4 and Fig. 7
that the heuristic solution (O.1.1) with both water-
filling strategies for L = 3 works less efficiently than
for the case of L = 1.

Going further, we assess the effect of the antenna
array size on the optimal multicast grouping and
resource allocation. To this end, Fig. 8 quantifies the
ratio of occupied to available resources as a function
of a number of users for different antenna arrays and
the best-identified heuristic algorithm (O.1.2). Note
that the smaller the number of antenna elements,
the greater the occupied to available resource ratio,
ρ. This is explained by the antenna directionality,
which increases with the number of antenna elements
forming the radiation pattern of the transmit antenna.
Note that the reduction in the antenna array size does
not affect the system performance for lower cell radius
values R as the BS transmits using one wide beam.

We proceed with Fig. 9, which displays the average
number of users served by a beam per time slot. The
rationale for considering this metric is to assess the
number of transmissions exploited to serve multiple
users for various radii. The presented results confirm
the statement derived from Fig. 5 that starting from
250 m almost all the schemes use the unicast mode
for L = 5 beams. Hence, Fig. 9 provides an insight
into the efficiency of the multicast transmissions in
mmWave networks. More precisely, it reflects situa-
tions, where the system utilizes a lower resource ratio
than that required by the unicast service, where users
are serviced by individual beams (one user per beam).
One may observe that the system with L = 3 beams
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Fig. 11. NR BS intersite distance and deployment
density as a function of session data rate, K = 30, 60,
W = 50, 100 MHz, L = 3.

works better in terms of serving more users within
a beam, which can be explained by the fact that, in
general, the increase in the number of beams leads to
a decrease in the number of users per beam.

Even though in this paper, we mainly concentrate
on resource utilization, now we consider a different
important metric for the system performance evalua-
tion, which is the latency, as demonstrated in Fig. 10.
Consistently with the results presented above, one
may deduce that a single multicast group provides
the best performance in terms of latency and utilized
resources. This performance is achieved due to the
absence of sequential service over multiple beams. By
recalling the results presented in Fig. 6 and Fig. 9,
we also may conclude that for the heuristic O.1.1 at
radii distances of 50-150 m all the considered schemes
occupy exactly one time slot, even if the number of
used beams is more than one. The other considered
strategies exploit one beam only at these distances.
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Fig. 12. NR BS intersite distance and deployment
density as a function of session data rate for different
antenna arrays, K = 60, W = 50 MHz, L = 3.

5.3 Deployment Density Assessment
We finally analyze the minimum NR BS deployment
density required for multicast service delivery. To this
end, in Fig. 11 we demonstrate the maximum intersite
distance between NR BSs and the associated NR BS
deployment density as a function of session bitrate for
K = 30, 60, W = 50, 100 MHz, two heuristic solutions,
(O.1.1) and (O.2.2) and the maximum number of L = 3
beams. Recall that the NR BSs intersite distance in the
case of tri-sector antenna deployment is calculated as
D = 3R [42]. Fig. 11 allows us to obtain insights on
the ideal extent of network densification for different
values of available bandwidth W . One may learn that
the NR BSs deployment density grows linearly with
the number of users, while the system with a larger
bandwidth guarantees lower deployment density.

Finally, we proceed with Fig. 12, where the max-
imum NR BS intersite distance and the NR BS de-
ployment density are illustrated for different antenna
array sizes. We note that a large intersite distance
corresponds to the cells of a bigger size. In more
detail, multicast users have to be served in unicast
fashion at larger distances as only narrow beams can
reach those users. However, the antennas with the
lower number of elements fail to reach the farthest
users, which is confirmed by Fig. 12.

5.4 Notes on the Practical Use of Algorithms
The algorithms presented in the paper need to be
further adapted for use in practical scenarios. First,
recall that to illustrate the behavior of the optimal
solution and benchmark the heuristic algorithms, we
omitted unicast connections in the optimization prob-
lem and limited our attention to a single multicast
session. To extend the model with the unicast traffic,
one has to specify additional service specifics such as
priorities between unicast and multicast traffic, such
as unicast maximization, equal sharing, and equal
competition. These are heavily operator-dependent

but can still be further incorporated into the model
as briefly discussed at the end of Section 3.

Further, the critical parameter of the model is the
choice of the optimization time horizon. Currently,
it is chosen to coincide with the scheduling interval
in NR, which is known to be 1 ms, and the model
assumes that all the traffic demands need to be served
in this interval. However, in practical systems, the
traffic load may vary in time, and schedulers operat-
ing at the packet level may induce complex behavior
such as delaying some packets for the next scheduling
interval. These specifics need to be accounted for
when choosing the time horizon for the proposed
optimization algorithms. More specifically, it has to be
chosen such that the average traffic demand remains
nearly constant in time.

There are additional specifics of the models that
need to be carefully aligned with realistic conditions.
Here, the critical point is that the model assumes
conical beam patterns parameterized with an angle
of α coinciding with the HPBW of the beam. In prac-
tice, especially for multi-beam operation, radiation
patterns are characterized by a more complex struc-
ture that may lead to better or worse performance
of algorithms depending on user locations or beam
directions. Specifically, performance degradation may
happen when beams overlap in space, and some users
may not have sufficient SNR even though the model
states so. Thus, the proposed framework needs to
be supplemented with practical algorithms allowing
users to fallback to unicast service in these conditions.

Furthermore, the proposed framework allows the
utilization of more complex sub-models than those
considered in Section 3. To illustrate it and high-
light the effect of different environmental and system
parameters, Fig. 13 shows the considered metric of
interest as a function of the distance when the impact
of fast fading (we incorporated Rayleigh fading), more
realistic antenna radiation patterns, and explicitly cal-
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culated interference are included. The antenna radia-
tion patterns are now constructed in MATLAB using
Sensor Array Analyzer (uniform rectangular arrays
(URAs), Nx4 and NxN , and uniform linear arrays
(ULAs), Nx1, where N = [4, 8, 16, 32]) that generally
reflect the recommended patterns by 3GPP in TR
36.931), while the interference has been calculated
by using the model from [30]. By analyzing these
results, one may deduce that adding fading to the
propagation model and also capturing interference
and more realistic antenna radiation pattern leads to
the increased requirements in terms of the ratio of oc-
cupied to available resources. The systems with added
fading and interference for both the approximation
and real radiation patterns (i.e., Nx4 URAs) show
almost matching results in the metric of interest (see,
”URA (Nx4), fading” and ”fading” curves in Fig. 13).
In contrast, the system with symmetrical URAs (i.e.,
NxN antenna elements) results in lower values of ρ
due to higher antenna gains. Finally, the linear array
is characterized by the highest ratio of the utilized
to available resources. The rationale is smaller gains
as compared to considered planar arrays due to the
smaller total number of antenna elements (that is,
Nx1).

Summarizing the presented results in Fig. 13, in
general, the qualitative trends remain the same while
the results slightly deviate quantitatively when fad-
ing, interference, and realistic arrays radiation pat-
terns are taken into account. Thus, when applying the
proposed framework, one has to account for specifics
of the deployment and type of utilized equipment that
is entirely feasible within the proposed performance
optimization framework.

6 CONCLUSIONS

The capability of modern antenna arrays to utilize
multiple beams simultaneously with potentially vary-
ing half-power beamwidth and asymmetric power
allocation makes the problem of efficient multicast
transmission in mmWave NR systems an extremely
complex one. In this paper, we solve this problem
by developing an optimal multicast grouping and
resource allocation solution. The approach is based
on a variable-sized bin packing problem and is thus
NP-hard. We have developed several heuristics with
different complexities and approximation accuracies
to provide practical algorithms with reduced compu-
tational requirements.

In our numerical results, we utilize the developed
optimal approach for benchmarking heuristic solu-
tions. We show that a widely used group forma-
tion algorithm originally proposed in [16], [17] may
drastically overestimate the amount of resources. The
proposed exhaustive search group formation is nearly
optimal but computationally intensive for large val-
ues of the number of users. The difference between

the optimal and heuristic solutions increases with
the number of users and the maximum number of
supported beams by the antenna array and decreases
with the amount of available bandwidth. The type
of power allocation among the identified number of
beams does not drastically affect the performance of
the heuristic algorithms. Finally, for practical ranges
of cell sizes and ranges of the number of users (10-50),
the optimal amount of beams is always in the range of
2-3. For small cell radii, a single beam is almost always
utilized, while unicast service is only feasible for
higher ones. This makes the development of heuristic
algorithms easier and levels down the requirements
for practical antenna array implementations.
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