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Abstract
Biochemical methane potential (BMP) tests are the most reliable method for the direct evaluation of the methane yield from 
a specific feedstock in anaerobic digestion. However, these tests are time-consuming (about 1 month) and quite expensive 
(need of no less than two or three replicates). This study evaluates the accuracy of the “first-order kinetic”, “logistic” and 
“Gompertz” models in predicting the BMP values, calibrating the models’ parameters with the data collected in shorter BMP 
tests (i.e., 5, 7, 10, 14 and 21 days) than usually (28 days or more). Moreover, the influence of the number of replicates (i.e., 
two or three) on the model prediction accuracy was also evaluated. A database from 32 BMP tests, previously carried out 
on different substrates, was adopted for these evaluations. The test duration significantly influences the prediction accuracy 
for two models (Gompertz and first-order kinetic), while the number of replicates is less influencing. The ultimate methane 
production is not accurate if the models use parameters from short (less than 10 days) BMP tests. The increase in test dura-
tion to 21 days gives BMP predictions with errors below 10% for Gompertz and logistic models.
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Keywords  Anaerobic digestion · BMP tests · First-order kinetic model · Gompertz model · Logistic model · Replicates

Statement of Novelty

Prediction models are useful tools to estimate the ultimate 
biochemical methane potential (BMP) of a feedstock in 
anaerobic digestion (AD) under optimal conditions. How-
ever, in order to calibrate their parameters, these models 
require preliminary BMP tests, which are expensive (since 
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require replications) and time-consuming (up to 3 months, 
but usually about 1 month is sufficient). To reduce the test 
time and save money, it is important to evaluate whether 
it is possible to reduce the test duration and the number of 
replicates. This study proposes a novel “hybrid” approach, 
where the “first order kinetic”, “logistic” and “Gompertz” 
models are applied in predicting the BMP values, using the 
data collected in short BMP tests (between 5 and 21 days). 
Moreover, the model accuracy is also evaluated under the 
hypothesis of reducing the number of replicates (com-
monly three) to only two. To the authors’ best knowledge, 
no relevant evaluations are available in the literature. This 
is an important approach, since a fast and reliable method 
for BMP prediction is strictly linked to the management of 
full-scale AD plants.

Introduction

Anaerobic digestion (AD) is a biochemical process that 
degrades organic substances thanks to anaerobic microor-
ganisms. The final product of AD is the biogas, a mixture 
of methane (60–70%), carbon dioxide (30–40%) and traces 
of other gases (such as nitrogen, hydrogen, ammonia and 
hydrogen sulphide). The methane produced by the AD (the 
so-called “biomethane”) is a valid alternative to fossil fuels, 
as renewable resource. In addition and, more importantly, 
the biomethane can be produced from biodegradable waste, 
and this enhances the sustainable management of the organic 
fraction of municipal and agro-industrial waste and waste-
water [1]. As well-known, the methane produced from a spe-
cific substrate by AD under optimised environmental condi-
tions is the biochemical methane potential (BMP), generally 
expressed as mL or L of CH4 per gram of volatile solids 
(VS) of biodegradable substrate. The BMP depends on the 
physico-chemical characteristics of the substrate as well as 
on the environmental conditions of the AD process (such 
as the temperature, hydraulic retention time, inoculum to 
substrate ratio, possible presence of inhibitory compounds). 
The BMP evaluation is an essential step to optimise the AD 
[2], as it measures, under optimal conditions, the potential 
biodegradation of the substrate and therefore its methane 
yield. In other words, the BMP determination measures the 
substrate biodegradability, considering that the methane 
production increases with the anaerobic biodegradation. 
Usually, before feeding full-scale AD plants with a specific 
substrate, BMP values are previously determined, in order 
to optimise the environmental conditions (such as tempera-
ture, organic loading rate, size of digester, etc.) and thus 
the methane yield of the converted organic matter. When 
upgraded to full-scale plant, the energy from a substrate is 
evaluated using its calorific value. The latter parameter can 

be compared to the related efficiency of the biological pro-
cess [3], although few studies played attention on this issue.

The methane yield of a substrate or a mixed feedstock 
can be estimated using several methods. In addition to the 
BMP tests, other experimental and theoretical methods have 
been proposed [4, 5]. Spectrometry [6] and, in particular, 
near infrared (NIR) spectroscopy predict the enzymati-
cally-digestible organic matter (the organic matter that can 
be digested under anaerobic conditions) and, therefore, the 
methane yield of a biomass through prediction models [5, 
7, 8]. NIR spectrometry applied to several biomasses (such 
as municipal green waste, energy crops [9], municipal solid 
waste [10], household waste [11], plant biomasses [5] and 
straw and manure [12]) gave accurate BMP predictions. 
However, NIR spectral information may be influenced by 
the biomass composition, especially the water content and 
particle size, and this influence reduces the reliability of the 
NIR prediction models [5].

The analysis of the chemical composition of the digested 
substrates is an alternative method to predict the final meth-
ane production, since it is influenced by the biomass chemi-
cal characteristics [5]. Buswell [13, 14] and Tchobanoglous 
equations [15], which are based on the elemental composi-
tion (C, H, O, and N) of the substrate, are among the best 
predictors of the final methane production. These stoichio-
metric equations are extremely accurate in applications to 
easily-biodegradable substrates (e.g., cellulose) [4]. How-
ever, these equations are less or not reliable to predict the 
BMP of slowly-degradable compounds (such as the ligno-
cellulosic biomasses) [16]. Therefore, these equations are 
mainly used to evaluate the biodegradability of a substrate, 
by comparing the methane yield of an experimental BMP 
batch test and the theoretical stoichiometric value derived 
by the formulas.

Other theoretical models, based on the complete charac-
terisation of the substrate, have been developed to evaluate 
the variable level of biodegradability of a given substrate. 
For instance, the BMP of a lignocellulosic substrate can be 
predicted by measuring its lipid, protein and carbohydrate 
contents [17] (e.g., the model proposed by Raposo et al. 
[18]). Catenacci et al. [19] developed BMP prediction mod-
els to measure the sludge bio-methanisation based on its 
chemical composition. These authors found that the soluble 
organic nitrogen is an influential parameter, in addition to 
the organic fraction composition. In contrast, the chemi-
cal oxygen demand (COD) does not give information on 
the content of the biodegradable organic matter, since the 
chemical oxidation does not separate the effects of degrada-
ble and non-degradable organic matter [2]. Angelidaki and 
Sanders [20] used the COD to VS ratio as an indicator of the 
anaerobic bio-degradability of a substrate. Biological oxy-
gen demand (BOD) is generally well correlated to the BMP 
[2], but this parameter is not appropriate for lignocellulosic 
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substrates [21]. Models based on physico-chemical proper-
ties of the substrate could provide reliable predictions of 
BMP, but much effort must be paid to the accurate char-
acterisation of the biomass, because each organic fraction 
shows different microbial accessibility and degradability 
[19]. In addition, the theoretical models hardly simulate the 
problems of the AD process, due to the substrate character-
istics and environmental conditions.

A BMP laboratory test is still considered as the most 
accurate method to evaluate the methane yield of a given 
substrate [22]. This test is simpler compared to full-scale 
applications, and somehow allows the simulation of anaero-
bic digesters on commercial scale [4]. However, the BMP 
tests are expensive (requiring replications to statistically pro-
cess the test results) and time-consuming (up to 3 months, 
with a minimum duration of 1 month) [22, 23].

Much effort has been paid and many studies have been 
conducted so far, in order to develop standard procedures for 
BMP tests [24–35]. In contrast, to the authors’ best knowl-
edge, little research is available on how to reduce the test 
duration as well as the number of replicates. Only Strömberg 
et al. [36] and Ponsá et al. [37] defined mathematical meth-
ods for the prediction of the BMP at an early stage of the 
AD test. Ponsá et al. [37] found a good correlation between 
the methane produced in the early stage of AD and the final 
methane yield of the organic fraction of municipal solid 
waste. In contrast, these authors reported the need of longer 
time (2 weeks or more) to fit well the final production of 
mixed (more heterogeneous) municipal waste. Again Ström-
berg et al. [36], analysing data from more than 100 BMP 
tests on several substrates, reported accurate predictions of 
the final BMP after a 1-week AD test using optimised algo-
rithms. From this short analysis of the-state-of-the-art, it is 
evident that the research question is still open, and therefore 
more investigations are needed to setup quick and accurate 
methods for BMP estimations.

To fill these gaps, this study evaluates the accuracy of the 
“first-order kinetic”, “logistic” and “Gompertz” models in 
predicting the BMP values. The model parameters are cali-
brated using the data of BMP tests that are shorter (i.e., the 
first 5, 7, 10, 14 and 21 days) than usually done (28–30 days 
or more). Moreover, the influence of the number of replicates 
(i.e., two or three) on the model prediction accuracy is also 
evaluated. A database from 32 BMP tests, previously carried 
out on different substrates throughout six years (2015–2021) 
in the same laboratory and under very similar experimental 
conditions, was adopted for the BMP tests of the current 
study. This database has been prepared using AD substrates 
of different origin (such as orange peel waste, bioplastics, 
market waste, anchovy residues, prickly pear cactus), which 
were tested under a variety of conditions (e.g., as mesophilic 
or thermophilic temperature, co-digestion) and or pre-treat-
ments (such as ensiling or chemical conditioning). For most 

of the tests (about 90%), the inoculum was derived from the 
same full-scale mesophilic digested fed with manure and 
agro-waste.

Materials and Methods

Description of Substrates and Inocula

The substrates of the experimental dataset (Fig. 1), whose 
characterisation is reported in Table 1, are by-products or 
waste of the agro-industrial sector as well as municipal 
waste:

•	 Orange peel waste (OPW), the residue of juice produc-
tion;

•	 anchovy sludge (AS), the by-product of fish after oil 
extraction;

•	 Opuntia Ficus-indica (OFI), a cactus commonly known 
as “prickly pear” [17];

•	 Mater-Bi, compostable bags [38].

In more detail, the OPW is the most abundant residue 
from orange industry, and consists of seeds (0–9%), peels 
(60–75%) and membrane residues (23–33%) [39, 40]. OPW 
has a noticeable water content (> 80%) and a very low 
pH (3–5), and contains essential oil, mainly composed of 
D-limonene, in variable concentrations [41, 42]; the latter 
is toxic for the AD biomass [43]. However, OPW use as a 
substrate for AD is one of the most promising valorisation 
patterns [39, 44]. In these BMP tests, OPW was digested 
as a raw (fresh) substrate or ensiled under three conditions 
[45]: (i) natural ensiling, (ii) wet ensiling (water, 20% w/w, 
added to OPW); (iii) dry ensiling (OPW placed over a drain-
age system made of quartz gravel). In one test, after ensil-
ing, OPW was chemically treated by ethanol addition and 
then centrifuged, or simply centrifuged without previous 
ethanol addition [45]. The duration of the ensiling process 
was also analysed: different samples of OPW were ensiled 
for increasingly longer periods (0, 7, 14, 21 and 37 days) 
and then used as AD substrates [46]. To verify the bacteria 
adaptation, BMP tests on ensiled OPW were carried out by 
modifying the substrate to inoculum ratio (0.3 and 1, respec-
tively) [47].

Anchovy sludge derived from fish oil extraction by novel 
process [48] was digested alone or with a co-substrate mim-
icking fruit and vegetable market waste (MW) [49], com-
posed of 49.0% (w/w) of potatoes, 44.4% of apples, and 
6.6% of carrots [48].

OFI is a biomass that is potentially worth to be used as 
substrate in AD, since it is an excellent source of ligno-
cellulosic substrate, with a yield of 10–50 Mg of dry mass 
per year and ha [17]. OFI was co-digested alone or with 
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poultry manure and lapillus (unpublished data). Lapillus is 
an unconsolidated volcanic fragment, which consists of fresh 
magma, solid magma from prior eruption or basement rocks 
passed by the eruption.

Compostable bags made of Mater Bi® are designed to 
deliver organic residues to household waste collection sys-
tems. The bags used in the BMP tests were made up of starch 
and its derivatives (over 60%), and a synthetic resin that is 
hydrophilic and biodegradable (for the residual 40%) [38, 
50].

The inoculum for BMP tests under mesophilic conditions 
was a liquid digestate collected before each test, from the 
second stage of a full-scale, two stages, mesophilic (35 °C) 
anaerobic digester fed with cattle and chicken manure, and 
several agro-industry residues (e.g., orange peel waste, 
greenhouse horticulture residues).

Generally, after collection, the inoculum was sieved and 
stored for about a week at 35 °C to reduce the non-spe-
cific biogas production. During the thermophilic tests, the 
inoculum from the same full-scale plant was subjected to 
the same pre-treatment, but it was progressively adapted to 
thermophilic conditions by increasing temperature from 35 
to 55 °C [38].

BMP Tests

The same method, as described below, was followed for the 
BMP tests on the substrates of the experimental dataset. 

The tests were carried out in triplicate in 1-L glass reac-
tors by mixing a proper amount of inoculum and substrate. 
The nutrient solutions were routinely added following the 
procedures set by the Italian norm on BMP tests (UNI 
1601755—Method for the assessment of potential produc-
tion of methane from anaerobic digestion in wet conditions 
[52]) during the tests carried out since the release of the 
same norm (Table 1). The norm requires the use of three 
different nutrient solutions defined as Solution A, B and 
C respectively. Solution A contains specified quantities of 
KH2PO4, Na2HPO4‧12H2O, NH4Cl, distilled water while the 
amount to be used is 5% of the final volume of the mixture 
subjected to BMP test. Solution B contains CaCl2‧2H2O, 
MgCl2‧6H2O, FeCl2‧4H2O, distilled water and the amount 
to be used is 5% of the final volume. Solution C contains 
MnCl2‧4H2O, H3BO3, ZnCl2, CuCl2, Na2MoO4‧2H2O, 
CoCl2‧6H2O, NiCl2‧6H2O, Na2SeO3, distilled water and the 
amount to be used is 1% of the final volume of the blend. 
Blanks (reactors containing only inoculum) were used to 
evaluate the endogenous methane production (that is, the 
production due to the digestion of the inoculum). The biogas 
was periodically measured (on average three times a week) 
and its methane content was estimated by the fluid displace-
ment method [49, 53, 54]. For this estimation, a three-neck 
bottle with an alkaline solution (3 M NaOH) was used, and 
this allows the precipitation of the carbon dioxide in the 
biogas. From one neck of the bottle, the biogas was trans-
ferred to the solution of sodium hydroxide; the pressure in 

Fig. 1   Specific biochemical 
methane potential (BMP) values 
of different substrates in the 
experimental database. sub 
substrate, inoc inoculum)
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the bottle a corresponding volume of the alkaline solution 
displaced through the second neck into a graduated cyl-
inder. Hypothesising that the biogas is only composed of 
methane and carbon dioxide, the methane volume of biogas 
can be considered equal to the volume of the alkaline solu-
tion displaced in the cylinder (as the CO2 was trapped in 
the solution). The test ended when the methane production 
throughout three consecutive days was less than 1% of the 
cumulated volume. The endogenous methane production 
was subtracted to the production of the blend of inoculum 
and substrate (which estimates the “net” methane produc-
tion), and then normalised to standard pressure and tempera-
ture conditions (1 bar and 0 °C, respectively). Finally, the 
cumulative methane production was referred to the weight 
of substrate added (in terms of VS), to obtain the specific 
production (hereafter simply indicated as “BMP” and meas-
ured in L or its submultiple under standard temperature and 
pressure, STP).

Detailed BMP tests settings (such as temperature or food 
to microorganisms’ ratio) as well as possible pre-treatment 
types and conditions, are explained in the related reference 
(Table 1).

Modelling

Three well known models [55] (e.g., the first-order kinet-
ics, the modified Gompertz equation and the logistic model) 
have been used for the purposes of this research. Hereafter, 
the first-order kinetics model will be simply indicated as 
“first order” model. The three models are commonly used to 
estimate the kinetic constants of the AD process and predict 
the specific cumulative methane production from BMP tests. 
Their analytical expression is reported in Eqs. (1), (2), and 
(3), respectively:

where:

B0 (or P), B (mLSTP gVS
−1) = asymptotic and daily cumu-

lative methane yields, respectively
k (d−1) = kinetic constant
Rm (mLSTP·gVS

−1·d−1) = maximum methane production 
rate
λ (d) = duration of the lag phase
b = numeric constant of the model (3)
t (d) = hydraulic retention time.

(1)B = B0 × [1 − exp(−k × t)]

(2)B = P × exp{−exp[
Rme

P
(� − t) + 1]}

(3)B =
B
0

1 + b × (−k × t)

P, Rm, λ in Eq. (2), k and B0 in Eq. (1) and B0, b and k in 
Eq. (3) were determined through the Excel tool “Solver” by 
minimizing the sum of square errors between the model and 
the experimental mean values. In our study, B is assumed as 
the model prediction of the observed BMP.

In order to estimate the influence of test duration on the 
model’s prediction accuracy, the BMP was estimated, using 
the data related to the first 5, 10, 14 and 21 days of the BMP 
tests, respectively; this value will be indicated hereafter as 
“BMP at i-th day”. The final BMP value calculated using a 
given model and all the available data (that is, for the total 
duration) was used as reference value (“control”), in order 
to evaluate the model performance.

To compare the model’s accuracy using two or three 
replicates, four combinations of replicates for the test with 
three original replicates (indicated as R1, R2 and R3) were 
prepared (R1-R2, R2-R3 and R1-R3) and the BMP was esti-
mated by each model, using the data related to each couple 
of replicates or three replicates (R1-R2-R3) as reference.

Statistical Analysis

Preliminarily, all the final BMP values estimated by mod-
elling that were higher than the stoichiometric methane 
production for lipids (equal to 1014 mLSTP gVS−1) were 
removed from the experimental dataset. In fact, this yield 
is the maximum value that is theoretically possible for a 
given substrate [20]. Then, a one-way ANOVA was used to 
identify significant differences (p < 0.05) among the three 
models (Gompertz, first order and logistic) and between the 
mean BMP predicted by each model and the corresponding 
reference BMP (control, calculated by the same model but 
using all the data available).

Finally, two-way ANOVA was applied to evaluate the 
statistical significance (at p < 0.05) of the differences in the 
BMP (considered as dependent variables) among the number 
of replicates and test duration (independent factors) as well 
as their interaction.

For both tests, which were applied to each prediction 
model, the data were subjected to normality test or square 
root-transformed whenever necessary, in order to satisfy the 
assumptions of the statistical tests (equality of variance and 
normal distribution).

All the statistical tests were carried out by the XLSTAT 
software (release 2019).

Results and Discussions

Comparing the performance of the models with reference 
to the number of replicates, the Gompertz model gave the 
largest difference (34.3 ± 46.0%) between the mean pre-
dicted BMP compared to the control using two replicates, 
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Fig. 2   Comparison of mean 
modelled BMP values among 
the number of replicates (a) 
and the test duration (b) for the 
three models. Different letters 
indicate significant differences 
either in the number of repli-
cates or the test duration among 
the three models after Tukey’s 
test (p < 0.05)

(a)

(b)

Gompertz First order Logistic
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and this difference decreased to 31.4 ± 40.2% in the tests 
with three replicates. The lowest difference between the 
predicted BMP and the control were found for the logis-
tic model (31.5 ± 85.0%) in the tests with two replicates, 
while, surprisingly, the same model gave the highest error 
(42.7 ± 118.3%) in the tests with three replicates (Fig. 2a 
and Table 2).

It is worth mentioning that, for the first order and logis-
tic models, the variability is significantly larger than the 
standard deviation of the control.

Figures 3 report examples of comparisons between the 
predicted BMP (using 2 or 3 replicates, and different test 
duration) and the control values for a selection of five 
substrates. As previously reported, outliers obtained by 
applying the modelled tests at different time were excluded 
from the study. A high number of outliers (over 74% of 
the available data) were observed applying the first order 
model to the substrate poultry manure in the first 2 weeks 
of the experiment (Fig. 3), indicating a low reliability of 
the predictive model at the first stage of the test for some 
substrate.

The two-way ANOVA shows that the test duration sig-
nificantly influences the estimations of the BMP values pre-
dicted by the Gompertz and first order models, while this 
factor is not significant for the logistic model (Fig. 2b and 
Table 3).

More specifically, the accuracy of the BMP estimations 
on average increases with the test duration for the Gompertz 
and first order models. This is shown by the monotonic 
decrease in the differences among the durations (from 
49.85 ± 21.7% and 40.9 ± 60.7% with test duration of 5 days 
down to 9.6 ± 19.6% for BMP at the 21-th day, respectively). 
Moreover, for the first order and logistic models, the BMP 
estimations are more reliable with the increase in the test 
duration, although the trend is not always monotonic. The 
tests with durations of seven and 10 days are two exceptions 
for the logistic model, since the errors in the estimation are 
higher compared to a shorter test (Fig. 2b and Table 2).

It is worth to notice that tests with duration of 14 days 
give estimations of the mean BMP values with mean errors 
close to 25% and never higher than 30% (28.2 ± 61.5% for 
the Gompertz model, 24.7 ± 71.6% for the first order, and 
22.9 ± 48.3% for the logistic), and this error decreases to only 
9.6 ± 19.6% and 9.4 ± 23.4% for the Gompertz and logistic 

models, respectively. In contrast, the error in the BMP at the 
21-st day using the first order model is 20.1 ± 48.1% (Fig. 2b 
and Table 2). Moreover, the standard deviation of the BMP 
values at the 14-th and 21-st day for the first order model is 
noticeably higher compared to the other models. However, 
these BMP values are statistically similar as the control.

The scatterplots (Figs. 1SM, 2SM, 3SM and 4SM) clearly 
demonstrate how the accuracy of the Gompertz model based 
on a test duration of 21 days is very close to the control.

Table 4 clearly shows that the number of outliers (i.e., 
predicted values higher than 1.014 LSTP gVS−1) is minimum 
for the Gompertz model; for this model only 10–20% of the 
estimated values must be discarded.

The fact that, for the logistic model based on a test dura-
tion of 5 days, about 75% of the predictions was not reliable 
reduces its apparent accuracy for the lowest duration. The 
number of outliers produced by the Gompertz and logistic 
models based on durations of 14 and 21 days is very similar 
and even higher compared to the first order model.

Overall, the evaluation of the accuracy and potential 
usage of the BMP predictions using tests with shorter dura-
tion and/or a minimum number of replicates must consider 
the intrinsic difficulty of BMP tests and their uncertainty, 
linked to the complexity of AD biochemistry. This complex-
ity is fully acknowledged by the regulations on the BMP 
tests in view of their practical applications. For example, the 
Italian Norm (UNI 1601755—Method for the assessment of 
potential production of methane from anaerobic digestion in 
wet conditions) tolerates variations of ± 25% in the experi-
mental value of the BMP for microcrystalline cellulose; the 
latter is a very simple and biodegradable substrate, which is 
used as a feasible control for the whole procedure of a BMP 
test. This means that BMP estimates with errors close to this 
tolerance can be generally accepted.

Conclusions

The accuracy of three models (“first order kinetic”, “logis-
tic” and “Gompertz”) in predicting the BMP values has 
been verified, calibrating the model parameters with the 
data collected in BMP tests (i.e., the first 5, 7, 10, 14 and 
21 days) that are shorter than usually done (28 days or 

Table 2   Absolute percent 
variation (mean ± std. dev.) of 
the BMP value predicted by 
each model compared to the 
reference value (n = 32 BMP 
tests)

*For all replicates; ** for all test durations

Model Test duration (days)* Number of replicates**

5 7 10 14 21 2 3

Gompertz 49.8 ± 21.7 46.3 ± 31.3 34.0 ± 56.0 28.2 ± 61.5 9.6 ± 19.6 34.3 ± 46.0 31.4 ± 40.2
First order 40.9 ± 60.7 38.8 ± 66.5 37.7 ± 109.5 24.7 ± 71.6 20.1 ± 48.1 32.3 ± 57.7 32.9 ± 74.1
Logistic 33.3 ± 243.0 62.9 ± 170.7 43.1 ± 133.8 22.9 ± 48.3 9.4 ± 23.4 31.5 ± 85.0 42.7 ± 118.3



2489Waste and Biomass Valorization (2023) 14:2481–2493	

1 3

Fig. 3   Comparison of mean 
modelled BMP values of 
selected substrates (naturally, 
wet and dried ensiled orange 
peel waste; Opuntia ficus indica; 
poultry manure) among the 
number of replicates and the test 
duration for the three models. 
The numbers on the bars are the 
data processed for each BMP 
test modelling
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Fig. 3   (continued)

Table 3   Results of two-way 
ANOVA applied to the BMP 
values calculated using three 
prediction models (Gompertz, 
first order and logistic)

Values in bold are significant at a p-level < 0.05

Factors Degrees of 
freedom

Sum of squares Mean squares F Pr > F

Gompertz
Number of replicates 2 0.411 0.205 4.892 0.008
Test duration (days) 5 4.909 0.982 29.046  < 0.0001
First order
Number of replicates 2 0.111 0.055 0.703 0.496
Test duration (days) 5 4.126 0.825 11.965  < 0.0001
Logistic
Number of replicates 2 0.051 0.026 0.558 0.573
Test duration (days) 5 0.160 0.032 0.704 0.620
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more). Moreover, the influence of the number of replicates 
(i.e., two or three) on the model prediction accuracy was 
also evaluated.

The test duration significantly influences the prediction 
accuracy of Gompertz and first order models. In contrast, 
the number of replicates is only significant for the Gompertz 
model. Performing BMP in triplicates is however highly 
advisable especially when the failure of BMP tests is pos-
sible (e.g., acidification or presence of inhibiting agents).

The BMP model predictions based on tests with the 
shorter durations (less than 10 days) are not accurate, since 
the errors are generally higher than 30%. A dataset of 
14 days reduces these errors to 20–25% for the first order 
and logistic models, and below 30% for Gompertz model.

Overall, this study has demonstrated that two of the evalu-
ated models (i.e., first order and logistic models) provide 
BMP estimations with differences lower than 25% and a 
limited numbers of outliers compared to full-length tests, 
using as model’s input parameters the data collected in tests 
of limited duration (i.e., more than 14 days) compared to 
the commonly adopted time (28 days or even more). The 
increase of this test duration to 21 days gives errors in BMP 
values below 10% (for the Gompertz and logistic models) 
and a further reduction of outliers.
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