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ABSTRACT To keep pace with the explosive growth of Artificial Intelligence (AI) and Machine Learning
(ML)-dominated applications, distributed intelligence solutions are gaining momentum, which exploit
cloud facilities, edge nodes and end-devices to increase the overall computational power, meet application
requirements, and optimize performance. Despite the benefits in terms of data privacy and efficient usage
of resources, distributing intelligence throughout the cloud-to-things continuum raises unprecedented chal-
lenges to the network design. DistributedAI/ML components need high-bandwidth, low-latency connectivity
to execute learning and inference tasks, while ensuring high-accuracy and energy-efficiency. This paper aims
to explore the new challenging distributed intelligence scenario by extensively and critically scanning the
main research achievements in the literature. In addition, starting from them, the main building blocks of a
network ecosystem that can enable distributed intelligence are identified and the authors’ views are dissected
to provide guidelines for the design of a ‘‘future network for distributed Intelligence’’.

INDEX TERMS Artificial intelligence, cloud continuum, distributed intelligence, machine learning, net-
work.

I. INTRODUCTION
Fueled by the increasing amount of data, generated by mas-
sively deployed connected devices (up to 29.3 billions by
2023 according to Cisco’s annual report [1]), Artificial Intel-
ligence (AI) algorithms are significantly advancing decision
making in many real-world application domains, ranging
from smart manufacturing [2] to immersive experience [3],
from autonomous driving [4] to healthcare [5].

As a branch of AI, Machine Learning (ML), relies on two
main phases: (i) learning, which trains a model based on
an input dataset, and (ii) inference, which provides knowl-
edge/prediction upon the trained model. The conventional
approach so far was to execute both training and inference
in the cloud, by leveraging the computing capabilities of
high-performing data centers. Nevertheless, the increasing
demand for running training [6] and inference procedures [7]
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is outpacing the increase in computation power of existing
centralized (cloud) infrastructures. Moreover, supporting fre-
quent transmission of huge amount of training data towards
the cloud is a challenging task even for wired links [8].

Such circumstances coupled with the responsiveness,
security and privacy demands of a large set of ML-based
applications, are pushing towards distributed intelligence
solutions, leveraging computing resources spread from the
cloud to the edge, and even extending to the deep edge,
encompassing (resource-constrained) embedded devices [9].
For instance, model training can run in parallel over multi-
ple distributed heterogeneous devices [6], and the execution
of inference models can be sequentially split over multiple
chained nodes [10].

A. RELEVANT CHALLENGES
Distributing AI workloads entails deciding how many com-
puting resources to dedicate and where to allocate them; such
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decisions cannot overlook the status of communication links
and the overall network dynamics. Indeed, (big) amount of
data, e.g., huge raw datasets and (portion of) ML models as
well as small-sized results of inference need to be moved
across the network and possibly transformed to readily con-
struct and distribute knowledge.

Such a new context raises unprecedented challenges to the
network design; in fact, the network behaviour can highly
affect the performance of applications built upon distributed
intelligence.

On the one hand, the network may be a bottleneck, e.g.,
in case of distributed training [19], when the reliability and
the latency of huge data exchanges among learning nodes
over multiple iterations may be undermined by lossy and low-
bandwidth channels. On the other hand, if properly designed,
the network can boost distributed AI performance. Indeed,
entities hosting AI-related components (e.g., data, models)
can be chained to ensure reliable, low-latency and effi-
cient data exchanges. Programmable network nodes on the
path towards end-host applications may perform in-network
Artificial Neural Network (ANN) processing [20], while
reducing the amount of moved data and its latency.

B. CONTRIBUTIONS OF THIS SURVEY
From these considerations, a strongly felt need clearly
emerges to develop future network solutions to better support
distributed intelligence applications.

Nonetheless, so far, studies that relate AI and ML with
next-generation networks mostly consider intelligence as a
key enabler to improve network performance, in a perspec-
tive of ‘‘AI for networks’’, e.g., [21], [22], [23], [24], and
[25]. Reason for this is undoubtedly the expected tremen-
dous complexity of sixth-generation (6G) systems, whichwill
likely be much denser (i.e., in terms of number of access
points, users and devices), more heterogeneous (in terms of
technologies), and will support a variety of fascinating appli-
cations with stricter performance requirements w.r.t. the fifth-
generation (5G) [26]. Thus, solutions utilizing sophisticated
AI/ML techniques are being designed to enable the cognitive
management of network functionalities and to dynamically
and promptly adapt offered services in an automated fashion,
based on changes in user needs, environmental conditions,
and business goals [11].

Only a few recent pioneering works recognized the need
for a shift from a ‘‘network of information’’ to a ‘‘network
of intelligence’’. They promote new communication primi-
tives and network functionalities aimed to meet accuracy and
latency constraints of AI/ML workloads [12], thus matching
the scope of the so-called ‘‘network for AI’’ vision.
To the best of our knowledge, the literature is still miss-

ing a comprehensive analysis of the key design issues for
future networks supporting AI, with special focus on the key
requirements of emerging distributed intelligence solutions.
Recently, some works have been published which address
such topics, among which [11], [12], [13], [14], [15], [16],
[17], [18]. However, as summarized in Table 1, the existing

works either focus on specific network domains, e.g., wire-
less access [16], [18], edge domain [15], or they consider
few communication (transport) protocols [17] and few radio
resource allocation management approaches (i.e., power and
bandwith allocation) [18], or miss a detailed overview of the
state-of-the-art [11], [12], [13], [14].

In particular, taking a cue from the works summarized
in Table 1 and going further, we aim to provide an end-
to-end perspective, by identifying network design principles
that can effectively support distributed intelligence over both
the radio access and core network segments, in agreement
with the vision of fifth generation (5G) and upcoming 6G
systems. Such principles and the relevant scanned literature
solutions span from radio resource allocation and innovative
physical layer techniques, to both evolutionary and disrup-
tive routing and forwarding mechanisms in the core net-
work domain and orchestration and management approaches.
To this aim, a comprehensive survey of the literature about
network-related solutions to support distributed intelligence
is shared along with our visions. We expect our investigation
to fuel research efforts towards the design of a new network
ecosystem aimed both at supporting distributed intelligence
by design and at actively contributing to its widespread
adoption.

C. ORGANIZATION OF THIS SURVEY
The remainder of this work is organized as follows. Section II
scans some representative distributed intelligence solutions.
The relevant network requirements and issues are dissected
in Section III together with some solutions to the above
issues coming from the AI community. Sections IV, V, VI
discuss the technologies we deem relevant as key enablers
of a future end-to-end network supporting distributed intelli-
gence, in the wireless access domain, in the core network and
at the orchestration layer, respectively. Section VII reviews
the latest progress of the industry standardization and projects
on developing network solutions to support the deployment of
distributed intelligence. Then, Section VIII summarizes the
main findings of the surveyed literature, provides guidelines
for future research directions as well as pinpoints additional
open issues. Conclusive remarks are reported in Section IX.

II. DISTRIBUTED INTELLIGENCE: REPRESENTATIVE
IMPLEMENTATIONS
Several options have been devised for distributing training
and inference workloads across multiple devices. In the tar-
geted context, such devices are not limited tomachines within
data centers, but may span the cloud-to-things continuum,
as graphically sketched in Fig. 1. In this section, some of the
most representative solutions, which we deem may impact
the network performance and be affected, in their turn, by the
network performance, are recalled.

A. PARALLEL TRAINING
To speed up training and cope with increasing complexity and
sizes of Deep Neural Network (DNN) models and training
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TABLE 1. Differences between this manuscript and the closest related works.

datasets, full advantage of parallel nodes can be taken by
partitioning the data, the model, or a combination of them [6],
[27]. The data-parallel approach assumes to partition the data
and feed the different portions to a set of distributed nodes,
all implementing the same model. Alternatively, a model-
parallel approach can be applied in which the entire dataset
is used by each node that operates on different parts of the
model, and the final model results from the aggregation of
the various parts.

Initially proposed for data centers with multiple work-
ers, the same approach has been recently borrowed in the
edge computing domain, where several nodes can enforce
the aforementioned parallel tasks [28], [29]. For instance,
in [30], such techniques are applied to Convolutional Neural
Networks (CNNs) models for video surveillance tasks.

B. MODEL SPLITTING
A further distributed framework, that can be applied to both
training and inference, is model splitting, in which differ-
ent (at least two) portions of a complex ML model are
executed sequentially in different processing nodes [31].
The peculiarity of this type of distributed learning is that
each node does not train an instance of the whole model
and model layers are processed sequentially. In the envi-
sioned context, for instance, end-devices may run the initial
computation-friendlymodel layers of theDNN and then, send

the intermediate results to edge nodes and cloud facilities to
feed the remaining computation-heavier layers and produce
the final outputs [10], [32], [33].

The model splitting idea builds upon the fact that the
data size at some intermediate layers of a DNN is signif-
icantly smaller than that of raw input data. Hence, on the
one hand, it is possible to reduce the transmission latency
and the incurred amount of exchanged data compared to
cloud-only DNN implementations. On the other hand, model
splitting oversteps the limitations in terms of computing and
storage capabilities of edge devices, which are usually not
able to fully deploy and run large deep network models (e.g.,
containing up to millions of parameters) [34]. In addition,
model splitting protects user privacy by transmitting partially
processed data rather than transmitting raw data [35].

How to split the model is a critical decision, since it affects
the resulting computational cost and communication over-
head. If not properly selected, it can cause the data amplifica-
tion effect [34], according to which the size of intermediate
output data of the DNN can be larger than that of the input
data.

C. FEDERATED LEARNING
Rather than sending raw data to a remote server, in Federated
Learning (FL) the model is (entirely, unlike in Model Split-
ting) locally trained on their own data by distributed devices,
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FIGURE 1. Representative distributed intelligence solutions deployed across the continuum. End-devices and network nodes included in the
shaded areas are those involved in specific distributed intelligence solutions, i.e., model splitting, knowledge transfer and federated learning.
Some of the network nodes, besides forwarding AI-related data and relevant models, can cache them as well as execute (portions of) them.

referred to as clients. The latter ones then share the relevant
parameters (e.g., NNweights) with a server, which aggregates
the model and pushes it back to the clients. The procedure is
reiterated over several rounds until the desired accuracy level
is achieved [36], [37].

Initially proposed by Google [36], Federated Learning
allows minimizing user privacy leakage, since raw data are
not required for the training at the Federated Learning aggre-
gator. As a further benefit, latency due to data offloading
is reduced compared to a centralized learning approach and
network resources for data exchange saved.

The single point of failure (the single server) is one of
the main weaknesses of the Federated Learning approach.
Indeed, the central aggregator may not always be available
and reliable when the number of edge devices is large, and
especially in some application scenarios, e.g., cooperative
driving and robotics [38]. Hence, decentralized server-less
Federated Learning solutions, also referred to as swarm
learning, are gaining momentum [39], [40], [41]. In such
decentralized solutions, devices interact with their neighbors
through device-to-device (D2D) communications, and con-
sensus mechanisms are needed to ensure the achievement of
a common learning goal.

Finally, coupling Federated and Split Learning may be
contemplated when resource-constrained clients are involved
and training and deployment of the full model is poorly
feasible [42].

D. TRANSFER LEARNING
In particular usage scenarios, e.g., the medical domain [43],
accessing the massive data necessary to train Deep Learning
models is very expensive, or even impossible. In other cases,
data may available in a number of disjoint physical locations,
e.g., those collected from users’ personal devices for the sake
of activity recognition [44] or from smart devices in smart
manufacturing context [45].

By mimicking human behavior in which it is possible
to apply knowledge learned in one domain to solve prob-
lems in a different domain, Transfer Learning enables the
transfer of knowledge and learning between devices [46].
Although not fully equivalent to the distributed approaches
mentioned so far, Transfer Learning also entails the distribu-
tion of data/models among different nodes spanning different
domains.

E. DISTRIBUTED REINFORCEMENT LEARNING
Reinforcement Learning involves a sequential decision-
making procedure, where a learner takes (possibly random-
ized) actions in a stochastic environment over a sequence of
time steps, and aims to maximize the long-term cumulative
rewards received from the interacting environment according
to a given policy.

Although initially conceived for the single-learner tasks,
multiple learners can be foreseen which are coordinated by
a central controller, whenever scalability becomes an issue,
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TABLE 2. Network requirements to support data exchange in representative distributed intelligence (DI) solutions.

e.g., in robotics [47], drones-based [48] and autonomous
vehicles applications [49]. To this aim, the latter one must
exchange information with all learners, by collecting their
rewards and local observations, or, broadcasting the policy
to them [50].

III. NETWORK REQUIREMENTS AND ISSUES FOR
DISTRIBUTED INTELLIGENCE
When considering distributed intelligence spanning different
nodes, achieving high accuracy does not only matter. Indeed,
its achievement also depends on the specific network deploy-
ment and can be affected by the peculiar network require-
ments of each distributed intelligence solution.

A. NETWORK REQUIREMENTS
Whatever the distributed intelligence approach and the moti-
vation to implement it, it is essential to properly connect the
nodes that perform the different tasks in order to streamline
operations. It is possible to opt for systems with a single
central point of aggregation, or based on tree structures,
or even systems leveraging fully distributed nodes, possibly
organized into clusters, without hierarchical relationships.
The different architectural models and their relevant deployed
topology differently impact on: the obtainable accuracy, the
system resilience and security/privacy degree, the overall
computing load of nodes, and, what we are most interested
in, the communication footprint and network performance.

Table 2 reports the network requirements in terms of
communication footprint (bandwidth) and latency to support
specific data exchange (e.g., dataset, entire model, model
weights, etc.) in representative distributed intelligence solu-
tions.

1) BANDWIDTH
Distributed intelligence solutions have been mainly con-
ceived to partition the computing load and/or reduce the com-
munication footprint. Some of the aforecited approaches may
still require to transfer bandwidth-hungry datasets among
different nodes, as in the case of parallel training solu-
tions. However, also when datasets are not exchanged, heavy

models demanding high bandwidth may be transferred, rang-
ing in size from hundreds of MBytes to several GBytes [51],
for instance in the case of Transfer and Federated Learning.

Additionally, model updates may also imply a huge net-
work load, if frequently (e.g., at every iteration) and mas-
sively transmitted (e.g., by multiple nodes), as for Distributed
Reinforcement Learning and Federated Learning solutions.
Each model update may have as many parameters as the
model itself. Natural Language Processing models usually
have hundreds of millions of parameters. For instance, the
well-known GPT-3 model has 175 billion parameters cor-
responding to over 350 GBytes [52]. Training such kind of
models by exchanging the aforementioned amount of data
per each communication round is challenging, especially over
wireless channels.

In case of model splitting, data outputs of intermediate
DNN layers could overwhelm the network and deteriorate the
learning/inference performance due to a wrong choice of the
splitting points.

2) LATENCY
In distributed intelligence solutions, latency is composed of
two main contributions: the communication latency due to
exchanges of data (whatever the type, as per Table 2) over
the network, and the computing latency, due to the execution
of (portions of) training/inference models.

In general, keeping a short latency is more crucial for
inference compared to training operations. Indeed, inference
often needs to be executed in near real-time to provide prompt
reaction to events, e.g., 200 ms to get predictions from ML
models for voice assistants, or below 10 ms when tactile
Internet and autonomous driving operations are considered.

B. MAIN ISSUES
Compared to centralized solutions, distributed intelligence
solutions exhibit specific issues which need to be addressed.

1) HETEROGENEITY OF DEVICES
Devices to be involved in the distributed training and infer-
ence procedures may span the cloud continuum, hence
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encompassing Internet of Things (IoT) devices as well as
edge/cloud nodes. Heterogeneity may concern the comput-
ing/battery capabilities, as well as the experienced connectiv-
ity conditions. In practical distributed learning setups, some
clients are stragglers and cannot send their updates regularly,
either because: (i) they cannot finish their computation within
a prescribed deadline due to limitations of their computing
capabilities, or (ii) they experience poor and/or intermittent
connectivity.

On the one hand, stragglers may significantly deteriorate
the convergence of distributed learning procedures as the
computed local updates become stale. On the other hand,
if they are not selected to contribute to the training proce-
dures, the model quality could be extremely low, especially
if their number is high [53].

2) MOBILITY OF DEVICES
In several upcoming applications, learning algorithms will
rely on data provided/generated by either terrestrial [54] or
aerial mobile devices [55]. Raw data retrieval under high
mobility conditions may face poor robustness due to fast
fading and may be hindered by short-lived connectivity. The
mobility of clients could become a concern also for Feder-
ated Learning, when model updates need to be iteratively
exchanged over multiple rounds. The issue is less exacerbated
in the case of inference, where time dynamics are typically
smaller. However, it could happen that inference split may be
interrupted during the movement of mobile users from one
edge access point to another [56].

3) LACK OF INTEROPERABILITY
Different distributed AI components should be able to
transparently collaborate to serve the same purpose, in case
of parallelization and serialization of training and infer-
ence workloads. However, unlike in centralized AI deploy-
ments, interoperability is severely hindered by fragmented
and mainly application-specific solutions [57].

A typical approach to achieving the targeted requirements
and solving some of these issues comes from the AI com-
munity and consists in considering the network as a possible
bottleneck and the solution sought is to adapt the distributed
learning techniques to make themwork better despite the lim-
its imposed by the network. Most of the solutions of this type
in the literature try to act on the data, models, and information
managed by learning/inference algorithms in such a way as to
overcome the issues experienced by distributed training and
inference solutions over the continuum.

Model compression techniques, such as pruning and quan-
tization, help reducing the computational complexity of
DNNs [58], [59], to enable their execution even in constrained
devices at the deep edge, while reducing latency and energy
consumption, although at the expenses of a lower accuracy.

More in detail, quantisation strategies provide a low pre-
cision representation of weights, gradients or activations
to reduce the total number of bits transmitted in each

update and thus, reduce the incurred communication footprint
and latency transfer [59]. Sparsification techniques prevent
irrelevant updates from being transmitted by, for example,
removing redundant information and only transmitting the
important values from local estimates. Knowledge distillation
techniques transfer knowledge learnt from a larger model
or ensemble of models, such as output predictions, feature
activations, or correlations between feature maps, to train
a smaller model. Knowledge distillation techniques can be
applied in Federated Learning to send soft-label predictions,
instead of heavier updated models or gradients [60].

The analysis of the aforementioned communication-
efficient techniques is extensively surveyed in the literature,
for instance in [18], [59], [61], and [62]. As stated in [19],
such solutions require changes to applications and may hurt
the accuracy performance of models. For this very reason,
the design of solutions coming from the network community
is advocated as the real game changer to enable distributed
intelligence solutions.

In alignment with such a perspective, one must start
from understanding the actual impact of the aforementioned
requirements and issues on the network design, and con-
sequently move from the current concept of networks that
already support distributed services well towards that of net-
works for distributed AI-driven services, which will surely
characterize future 6G ecosystems.

To this aim, in the following Sections we will discuss
potential network enablers to adequately support distributed
intelligence. For each technical enabler, we briefly discuss
potentials, by scanning relevant representative solutions in
the literature, whenever possible, and then, outline possible
limitations and open issues.

IV. ENABLERS AND SOLUTIONS IN THE RADIO ACCESS
Intense research activities have been recently carried out to
exploit ML for optimizing various procedures in wireless
communication networks (e.g., handover, radio resource allo-
cation) [21], [22]. Less attention instead, has been devoted
to assess the impact of ML techniques in practical wireless
communication systems. For instance, whenever learning is
offloaded to the edge/cloud, the transfer of huge datasets
could easily burden the uplink air interface. The same holds
for model updates sent by mobile devices acting as Federated
Learning clients.

Communication solutions aimed to make the best of
the limited radio resources are strongly needed to enable
effective distributed intelligence in upcoming 6G systems
[16], [88], [89].

However, only very recently efforts have been devoted
to explore how adapting, optimizing, and arranging wire-
less networks can contribute to implementing ML tech-
niques [90]. Some of these solutions are discussed in the
following, by scanning some representative works in the liter-
ature. The solutions analysed in this Section and summarized
in Table 3 refer to the Radio Access Network (RAN) of future
wireless systems.
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TABLE 3. Overview of literature solutions targeting distributed intelligence in the Radio Access Network.
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A. SEMANTIC COMMUNICATIONS
Conventional communication techniques assume data bits
being of equal importance. For learning, instead, some sam-
ples within a training dataset may be more important than
others. Therefore, data can be delivered more efficiently over
wireless links by differentiating the usefulness of training
data samples. In this context, Age of Information [91] is a
further possible metric to consider for assessing information
significance.

Semantic communications appear extremely promising
in such a context, when informative messages need to be
transmitted for training/inference procedures. They refer
to a paradigm shift for the wireless system design from
data-oriented communication (i.e., maximizing communi-
cation rate or reliability based on Shannon theory) to
goal-oriented communications targeting effective task execu-
tion among distributed network nodes [92].

1) STATE-OF-THE-ART
The work in [63] proposes a data-importance aware
user scheduling algorithm for communication-efficient edge
machine learning. A classifier is trained at the edge server
by utilizing the data distributed at multiple edge devices.
The scheduling decision is based on a data importance indi-
cator, which both incorporates the signal-to-noise ratio and
data uncertainty. Likewise, re-transmission is devised in [64],
which selectively re-transmits a data sample based on its
uncertainty, which helps learning. Besides raw data collec-
tion, a similar philosophy can be applied for the acquisition
of learning relevant information in Federated Learning as
in [65]. Similarly, in [66], based on a metric termed the Age
of Update, a scheduling policy is proposed to improve the
Federated Learning efficiency that jointly accounts for the
staleness of the received parameters and the instantaneous
channel qualities.

2) LESSONS LEARNT AND ROAD AHEAD
Some of the aforementioned solutions, although promising
to reduce the bandwidth pressure over wireless links and
to improve accuracy and latency performance, entail further
advancements towardsmore sophisticated and powerful wire-
less transceivers. Semantic extraction is necessary to under-
stand what information is of interest before transmitting it;
this, in turn, may require AI models.

B. NON-ORTHOGONAL MULTIPLE ACCCESS
The conventional orthogonal multi-access (OMA) schemes
are inefficient to handle massive learners competing for radio
resources, as in the case of Federated Learning. The required
radio resources linearly scale with the number of edge devices
that participate in the learning process. On the contrary,
Non-Orthogonal Multiple Access (NOMA) allows multiple
devices to transmit simultaneously on the same channel,
so that the data rate is increased and the communication

latency is reduced [93]. This is crucial to make training
convergence faster and to improve communication efficiency.

1) STATE-OF-THE-ART
The seminal work in [67] proposes NOMA for model update
in Federated Learning. Clients are capable of transmitting
their trained parameters simultaneously, while the base sta-
tion decodes the users’ messages by utilizing Successive
Interference Cancellation (SIC). There, it shown that NOMA
outperforms a traditional time division multiplexing access
approach. The proposal also adaptively compresses gradi-
ent values according to either sparsification or quantization.
A scheduling policy and power allocation scheme using
NOMA is proposed in [68] in order to maximize the weighted
sum data rate under practical constraints during the entire
learning process.

The Compute-then-Transmit NOMA (CT-NOMA) pro-
tocol is introduced and optimized in [69]. According to
CT-NOMA, users terminate concurrently the local model
training and then, after a fixed time, simultaneously transmit
the trained parameters to the central aggregator. The work
in [70] formulates a multi-objective optimization problem
adopted to minimize the convergence round and to maximize
another crucial metric in the NOMA domain, namely the user
access fairness.

In [71] NOMA is applied coupled with wireless power
transfer, which is adopted by the base station to power the
end-devices. An optimization problem is formulated with the
aim of minimizing a system-wise cost that includes the total
energy consumption and the overall latency for the Federated
Learning convergence.

In [72] a group of unmanned aerial vehicles (UAVs) use
their collected data to train their respective local models,
which are then aggregated into a global model. There, NOMA
enables the follower-UAVs to send their local models to the
leader-UAV simultaneously over a same resource block.

2) LESSONS LEARNT AND ROAD AHEAD
Despite the neat advantages of NOMA to improve uplink
transmissions, its concrete implementation is still an open
issue. Existing works mainly consider ideal SIC, which is not
always the case. Moreover, more sophisticated access solu-
tions, such as hybrid NOMA/OMA configurations, which
could possibly enhance the scalability of Federated Learning,
may definitely be a subject matter of future work.

C. AirComp
AirComp [94] has been recently developed as a new air-
interface solution, which merges the concurrent data trans-
mission from multiple devices and performs ‘‘over-the-air’’
data aggregation, by exploiting the inherent waveform super-
position property of a multi-access channel.

1) STATE-OF-THE-ART
In [73] AirComp is proposed for fast model update aggre-
gation. The Federated Learning server directly receives
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the aggregated version of analog modulated local mod-
els/gradients simultaneously transmitted by devices. Such a
scheme allows simultaneous access and hence, can dramat-
ically reduce multi-access latency compared to the OMA
schemes, better scaling with the number of clients, without
significant loss of the learning accuracy. AirComp coupled
with MIMO is applied to split learning in [74].

2) LESSONS LEARNT AND ROAD AHEAD
Accurate channel estimation and strict synchronization of
participating devices, although hard to achieve undermobility
and highly dynamic channel conditions, are mandatory for an
effective AirComp implementation.

Although the AirComp approach can significantly improve
the performance of model aggregation for Federated Learn-
ing, it may still suffer from unfavorable signal propagation
conditions over the wireless links, such as deep fading. Since
all local parameters are uploaded via noisy concurrent trans-
missions, the unfavorable propagation error can prevent from
achieving a high accuracy of the aggregated global model.
Hence, it is typically not deployed in a stand-alone manner,
but instead coupled with other techniques, as discussed in the
following.

D. RECONFIGURABLE INTELLIGENT SURFACES
Thanks to their capability of proactively modifying the wire-
less communication environment, Reconfigurable Intelligent
Surfaces (RISs) have become a prominent technology to
mitigate a wide range of challenges encountered in wireless
networks [95]. More in detail, the large number of low-cost
passive reflecting elements of a RIS can adjust the phase shift
of the incident signal and thus, altering the propagation of
the reflected signal. The signal reflected by the RIS can be
constructively superposed with the signal over the direct link
to boost the received signal power, by compensating for the
power loss over long distances and/or obstructed propagation
paths. Moreover, compared with conventional active relays,
RISs usually do not require dedicated energy supplies for
operation.

1) STATE-OF-THE-ART
RISs have been extensively leveraged to improve the Fed-
erated Learning performance. Battery constraints drive the
design of the proposal in [75] where the total transmit power
minimization of clients is targeted with the assistance of the
RIS, for a sustainable Federated Learning implementation.
RISs can also help counteracting the AirComp limitations in
a Federated Learning context. The work in [76] proposes a
unified framework to jointly optimize RIS configurations and
client selection.

A novel simultaneous access scheme empowered by RIS
is proposed in [77] to develop a smart radio environment and
hence, to boost the performance of model aggregation. In [78]
a RIS is deployed to mitigate the signal magnitude misalign-
ment of AirComp during model aggregation at the server, due

to a unfavorable propagation environment. Similarly, in [79]
multiple geo-distributed RISs are deployed to enhance the
parameter aggregation from IoT devices to the base station
in an efficient manner.

A hybrid learning approach is proposed in [80]. There,
devices with high computing capabilities are selected to learn
locally, whereas the others upload their datasets to the base
station for remote aggregation on behalf of them. To enhance
spectrum efficiency, both the updatedmodels and the raw data
are transmitted concurrently over the simultaneous transmit-
ting and reflecting RIS-assisted multiple access channels.

2) LESSONS LEARNT AND ROAD AHEAD
The RIS design and deployment per se is still a challeng-
ing topic. RISs comprise a large number of reconfigurable
phase shifts to be optimized, as well as of devices’ transmit
beamformers and of the base station’s receive beamformer,
also under imperfect CSI and under fast-varying channel
environments. Deep Reinforcement Learning can be applied
to properly adapt the RIS configuration by learning about the
environment [96].

E. D2D COMMUNICATIONS AND RELAYING
D2D communications have emerged as a promising technol-
ogy for optimizing spectral efficiency in future cellular net-
works [97]. They exploit the proximity of devices for efficient
utilization of available radio resources, improving data rates,
unburdening the network infrastructure and reducing latency
and energy consumption. In addition, devices experiencing
poor connectivity (e.g., those at the edge of the cell) can
forward their transmissions to the base station by establishing
a D2D link with a device in proximity acting as a relay.
In addition, in the envisioned context, resource-constrained
devices can offload training/inference tasks to resource-rich
devices in proximity through D2D communications [35].

1) STATE-OF-THE-ART
In [81] nodes can exchange small data samples with trusted
neighbors, calculate similarities among datasets locally, and
report them to the Federated Learning aggregator, so to
improve the quality of data spread among clients. The authors
in [82] propose a solution aiming to minimize the total
delay for the FL model training, by optimizing the radio
resource allocation for both D2D data sharing and distributed
model training. The work in [83] leverages the cooperation
of devices that perform data operations inside the network
by iterating local computations and mutual interactions via
consensus-based methods. In [38] AirComp is adopted to
facilitate the local model consensus in a D2D communication
manner.

Instead of designing a client selection mechanism for Fed-
erated Learning, or optimizing resource allocation to balance
client participation, the authors in [85] introduce a relaying
mechanism that takes into account the nature of individ-
ual clients’ connectivity to the aggregator and ensures that,
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in case of poor connectivity, their local updates are delivered
to the aggregator with the help of their neighboring clients
acting as relays. A similar approach is foreseen in [87] and
[98], where a relay-assisted over-the-air Federated Learning
scheme is proposed to counteract the communication strag-
gler issue. With similar purposes, the work in [86] proposes
to leverage a UAV as a flying aggregator when no terrestrial
base station is available. There, the authors propose to jointly
design UAV trajectory and device scheduling, in order to
ensure that all devices (also those experiencing poor channel
conditions) have the opportunity to successfully participate
in distributed training.

Collaboration among devices in proximity is also benefi-
cially exploited for inference splitting in [84], where close
devices exchange data via the Web real-time communication
protocol. Similar approaches are surveyed in [99] and refer-
ences therein.

2) LESSONS LEARNT AND ROAD AHEAD
Despite the huge literature leveraging D2D communications
for distributed intelligence solutions, to the best of our knowl-
edge, most of them fail to investigate how D2D communica-
tions can actually be designed to match distributed inference
needs.

Moreover, as for other applications, still the exploita-
tion of direct short-range communications, relaying and task
offloading among devices in proximity entail the definition
of proper incentive mechanisms.

F. SHORT-PACKET COMMUNICATIONS
Control commands and sensor status updates with ultra-
reliable and low-latency communications requirements are
normally conveyed in short packets, in the order of hundreds
of bits. Short-packet communications can be also leveraged
to transfer inference results, which need to be promptly trans-
mitted to feed into the decision-making process.

In short-packet communications, the decoding error prob-
ability at a receiver is not negligible, due to a finite block
length, and to the fact that both the thermal noise and the
channel distortion are not easily averaged. Moreover, the
associated packet control information is not negligible com-
pared to the short payload.

Despite the recent advancements in information theory,
several issues still need to be addressed to make the trans-
mission of short packets efficient and reliable [100] and no
solution still exists specifically meant to address inference
delivery.

G. MULTICASTING
Point-to-multipoint communications are expected to support
distributed intelligence. Multiple devices may, in fact, simul-
taneously need to be queried or to receive data. For instance,
multiple clients are instructed by the Federated Learning
server to locally perform model training, thus becoming
the simultaneous recipients of both initial global model

and updated parameters. Furthermore, multiple devices, e.g.,
surveillance cameras in a smart city, may be the simulta-
neous recipients of updated inference models (e.g., for face
recognition).

Proper network primitives (e.g., multicast) are required
to efficiently and effectively forward data over radio links
towards the nodes involved in the learning/inference process.

So far, broadcast communications are mainly assumed,
with the exception of a few works that specifically mention
multicast interactions, e.g., [101], [102], [103], and [104].
In [101] and [102], a global model is sent in multicast to a
set of Federated Learning clients. There, a basic multicasting
scheme is envisioned according to which the throughput is
assumed to be bounded by that of the client experiencing
the worst channel conditions. No further details are provided
about how the multicast group is formed and maintained,
and how transmissions are actually performed over the radio
interface (e.g., over which channel, with which periodicity).

Efforts should be devoted to practically implement the
above procedures, also in compliance with the Third Genera-
tion Partnership Project (3GPP) 5G Multicast Broadcast Ser-
vices (MBS) specifications in Release 17 and beyond [105].
Moreover, improvements over the basic legacy multicasting
procedures can be envisioned, e.g., through dynamic sub-
grouping [106] applied to the Federated Learning clients,
in order to speed-up the global model delivery.

V. ENABLERS AND SOLUTIONS IN THE CORE NETWORK
Datasets, models, intermediate/final inference results may
need to traverse the continuum, hence entailing a huge traffic
to be routed beyond the wireless edge domain across the core
network, when properly steered across different end-points.

In the following, solutions addressing these issues on top
of existing infrastructures are discussed and summarized in
Table 4. Some of them, widely known in the 5G context,
shall likely be re-engineered to handle distributed intelli-
gence. Others are emerging as key innovations of beyond-
5G systems and we believe that can serve the aforementioned
purpose.

A. SOFTWARE-DEFINED NETWORKING
Routing and forwarding protocols have undergone a deep
transformation in recent years owing to the Software-Defined
Networking (SDN) paradigm [122]. By decoupling the con-
trol plane from the data plane, and moving the former to
a logically centralized entity, the Controller, SDN allows
abstracting network functions (e.g., routing, load balancing)
from the underlying network nodes, which become simple
forwarding elements. Thanks to the network-wide view of
the Controller about link status and network nodes under
its control, sophisticated mechanisms for traffic control and
resource management can be more flexibly deployed.

Huge research efforts have been devoted to improve
SDN performance through ML techniques, as surveyed
e.g., in [123]. However, only recently, interesting research
works have started to address how a programmable control
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TABLE 4. Overview of literature solutions targeting distributed intelligence in the core network.

plane, through the SDN paradigm, can support functionalities
related to distributed intelligence applications. Some of them
are scanned below.

1) STATE-OF-THE-ART
In [107], the authors devise a solution for Federated Learning,
in which the server acts as the auction buyer while the clients
function as sellers. There, the SDN Controller is used to
create an overlay network in which server and clients can
perform auction bidding and product provision. Also, in [108]
the potential of SDN Controllers are exploited to orchestrate
the optimal forwarding graph for several slices in order to
optimize communications associated with Federated Learn-
ing in software-defined IoT networks. Instead, the authors
of [109] address two key aspects of a mobile IoT network,
i.e., security and seamless connectivity for data delivery.
They propose to exploit an SDN-assisted Federated Learning
approach to predict the users’ demands for a particular con-
tent in order to improve content placement decisions. SDN
facilitates privacy in the communication channels between
Federated Learning controllers.

2) LESSONS LEARNT AND ROAD AHEAD
The aforementioned works are among the first examples that
are emerging from the literature, in which SDN Controllers
are designed to support distributed intelligence applications.
There is still much to do, since their role in orchestrating
the overall distributed intelligence implementation is still
marginal. By way of example, two areas are identified in
which studies of this kind show great potential.

The first field of investigation considers the role of an
SDN controller to support a Federated Learning server in
the client selection phase. By leveraging SDN, (i) not only
the memory and computation capabilities of the clients, but
also the delays on the core network path that divides them
from the server can be taken into account during the selection
phase, and (ii) the load conditions on the core network links
can be continuously monitored and dynamically adapted in
the view of an improvement in the entire Federated Learning
performance.

The second area of research considers the capability of
the SDN Controller to set multicast forwarding rules inside
the switches’ forwarding tables. This will facilitate the
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delivery of the same model updates to several clients, when-
ever point-to-multipoint communications encompass wired
links besides the radio interface. Indeed, in recent years, huge
efforts have concentrated on designing multicast supported
controllers, and the related interfaces to program them, for
distributing many types of contents [124]. The full potential
of such techniques to support collective communications for
distributed intelligence solutions still needs to be unveiled.

Another interesting application area is that of in-network
learning, in which an SDNController could dynamically sup-
port ensemble learning implemented via the deployment of
various Weak Learners (WL) within programmable switches.
As known, a WL produces a classifier which is only slightly
more accurate than random classification. The role of the
Controller could be the wise and dynamic routing of data
flows between WLs, in order to optimally distribute the
learning tasks across a programmable data plane of the core
network, see Section V-C.

B. SEMANTIC ROUTING
Making the core network aware of the type of data traffic
exchanged among players of the various distributed intel-
ligent processes could make it more supportive for these
processes. In this respect, the network could differentiate the
handling of packets, exchanged during learning and inference
procedures, based on the nature of the carried content and
the originating applications. In the literature, there are several
solutions to manage packets in a differentiated way. Some of
them are designed to be implemented in small and private
Internet Protocol (IP) domains, others to be used acrossmulti-
ple domains over the Internet. Some require clean-slate solu-
tions, others can be supported via current Internet extensions
or hybrid solutions.

In particular, semantic routing represents a promising
direction to explore for the case of data exchange related
to distributed intelligence applications. It is intended as
the process of routing packets that contain IP addresses
with additional semantics, possibly using that information
to perform policy-based routing or other enhanced routing
functions [125].

Different techniques have been proposed which allow
flexibly modifying the packet treatment behaviour, i.e., the
forwarding decisions. This can be done by either adding
information into IP packet headers to adequately instruct
network nodes, or by modifying addresses or even inter-
preting them differently. Several methods are being studied
to extend the semantics of IP headers [125]. Unfortunately,
to the best of our knowledge, despite the potential advantages
deriving from using this approach to identify and optimally
treat packets related to distributed intelligence applications,
literature on this subject is still lacking, being the semantic
routing technology a brand new topic.

It is our opinion that IP packets originated by any given
distributed intelligence service, if embedded with differen-
tiated semantic information, can bring great benefits to the

service itself. For instance, packets belonging to a given
dataset can be forwarded towards a node, which is equipped
with the right capabilities to run the training procedure upon
them. Similarly, an inference output, which is needed for fast
decision making, can be sent over a low-latency path; instead,
a huge dataset can be carried over a low-congested and high-
bandwidth path. In the case of model splitting, for example,
the instructions contained in the packets’ header could appro-
priately guide intermediate data from one node to the next,
in order to execute different model portions sequentially.

What we believe should be pursued is to create adequate
semantics, specific to flexibly support the traffic associated
with distributed intelligence, and accordingly redirect it to the
optimal endpoint or over the path meeting its service quality
requirements [125].

C. PROGRAMMABLE DATA PLANE
The flexibility addressed in the previous two subsections
calls for data plane programmability. It entails a network
device to expose the low-level packet processing logic to the
control plane, through standardized Applications Program-
ming Interfaces (APIs), to be systematically, rapidly, and
comprehensively reconfigured.We support the idea that good
results could come from a wise joint use of network control
plane virtualization (via SDN) and data plane virtualization
techniques, for example by using switches or Network Inter-
face Cards (NICs) that are programmable, e.g., via the P4
language [126], [127].

Programmable network switches, like other network
devices and NICs, have been identified among the main
enablers for the transition of intelligence into the data
plane [114], [128]. They can play a key role for appli-
cations like real-time flow classification and detection of
network traffic anomalies, thus acting as on-pathNeural Net-
work (NN) accelerators, which avoid additional data transfer
towards purpose-built off-path dedicated hardware.

1) STATE-OF-THE-ART
In this view, there is a wide body of literature starting from
initial works [115], [129], which hypothesized the imple-
mentation of NNs and the execution of in-network inference
within programmable network devices. Most of the works
deal with ML models that run entirely on single network
devices [114], [116]. In [114], the authors introduce a frame-
work for in-network classification, in which they map both
supervised and unsupervised algorithms to a match-action
pipeline, and discuss the applicability of such implementa-
tions.

The obvious risk is overloading the devices themselves and
subtracting resources usually dedicated to packet processing
and forwarding, thus reducing their performance levels. For
this reason, other interesting works are beginning to appear,
such as [117], which proposes distributed in-network intel-
ligence based on distributed NNs, and addresses the chal-
lenges of neuron specification, placement, and chaining in
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switches, by considering smart network telemetry as a use
case. In [118], the focus is on deploying ML trained models
for classification, showing how to express them into the P4
language’s primitives and focusing on in-network classifier
for an Intrusion Detection System as a proof-of-concept.

The work in [119] addresses the network bottleneck issue
due to the heavy exchange of model updates in parallel
training. Distributed workers send their model updates over
the network, where an (integer) aggregation primitive imple-
mented in a programmable data plane switch, sums the
updates and distributes only the resulting value. A P4 program
distributes aggregation across multiple stages of the switch
ingress pipeline. An in-switch aggregation accelerator is also
proposed in [120], but to reduce the gradient aggregation
overhead in Distributed Reinforcement Learning training.

In [121] the authors propose to enhance the data plane
of a 3GPP network with the aim to enable in-transit Deep
Learning inference services over extended User Plane Func-
tions (UPFs). Required extensions of the control plane and
the management plane to support the envisioned data plane
modifications are also discussed, e.g., in terms of interfaces
and service discovery.

2) LESSONS LEARNT AND ROAD AHEAD
Despite the inherent benefits of in-network acceleration,
a particularly relevant open issue is related to the choice of
how to split a trained DNN model so that it can best fit data
plane functions along a forwarding path. This is addressed by
a recent paper [121], which deals with the problem of finding
valid strategies for splitting and distributing DNNs within
programmable network devices in the light of the growing
complexity of large-scale NN models. The research in this
field is in its infancy and efforts in this direction are still
required.

D. INFORMATION-CENTRIC NETWORKING
Departing from the host-centric IP model that is oblivious of
the content of exchanged packets, Named Data Networking
(NDN) [130], one of the most prominent Information-centric
networking (ICN) instantiations [131], conveys semantic-rich
names and attributes in exchanged packets, natively enabling
a more conscious data delivery. NDN also natively imple-
ments in-network caching and, if properly extended [132],
can support in-network processing, thus enabling in-network
intelligence at a wide extent.

Overall, such features make NDN a candidate network-
ing solution to support distributed intelligence workloads.
Clearly, the support of distributed intelligence requires
additional functionalities in the NDN data plane, besides
forwarding.

1) STATE-OF-THE-ART
In [110] it was early argued that through native in-network
caching and name-based forwarding, NDN can facilitate the
orchestration of distributed AI components. The potential
benefits are more extensively discussed in [111].

In-network caching can play a crucial role for both train-
ing and inference phases. Inference results can be cached if
deemed of interest for several end-points, e.g., a given traffic
sign on a driving lane that needs to be detected by multiple
vehicles. Also data for training or intermediate trained results
(e.g., in case of model splitting) can be cached to quickly
recover from packet losses, which may occur over unreliable
and/or congested links.

The authors in [112] propose NDN to improve client dis-
covery and data exchange procedures in Federated Learning.
An expressive and flexible naming scheme allows declar-
ing the capabilities of heterogeneous clients in a uniform
semantic-rich manner. Moreover, it is proven that multicast
data delivery and in-network caching save precious network
resources. This is especially useful when exchanging huge
global models over potentially congested and/or bandwidth-
limited lossy backhaul links. The potential of ICN in Feder-
ated Learning is also investigated in [113], where it is coupled
with the Kafka publish/subscribe framework to support Inter-
net of Vehicles applications.

Finally, ICN can be combined with SDN to realize
a service-centric architecture for in-network intelligence
orchestration, as argued in [14].

2) LESSONS LEARNT AND ROAD AHEAD
Initial attempts to effectively support distributed intelligence
applications by leveraging disruptive technologies to enhance
the IP data plane exist. However, it is well known that
the practical large-scale deployment of disruptive ICN-based
solutions is still far from being a reality [133], unless to
consider greenfield environments.

Moreover, there is much room for further theoretical inves-
tigations. For example, model popularity can be used to
support caching decisions. In this respect, a popular trained
model can be cached into those network nodes that are more
likely to be traversed by input data, and the model placement
can be dynamically updated based on requests [7]. Overall,
novel caching policies should be defined tomatch the delivery
requirements of distributed inference and learning tasks.

VI. END-TO-END ORCHESTRATION AND MANAGEMENT
The design of effective network ecosystems meeting the
requirements of distributed intelligence goes well beyond
the scope of the radio access and core network solutions
scanned in the previous sections, and entails further actions.
Whenever an intelligent application, built upon AI/ML learn-
ing/inference, requests the execution of a workload, its life-
cycle management (i.e., initial configuration, placement,
maintenance, update, delete, etc.) must be performed.

Some instantiations of such solutions are discussed in this
Section and summarized in Table 5.

A. COMPUTING AND COMMUNICATION CO-DESIGN &
ORCHESTRATION
Policies are needed to jointly orchestrate and manage com-
puting, caching, and communication (3C) resources across
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TABLE 5. Overview of literature solutions targeting end-to-end orchestration and management for distributed intelligence.

the cloud-to-things continuum in order to optimize distributed
AI/ML workloads [11], [59].

Joint 3C orchestration for distributedMLworkloads unveil
specific challenges compared to more traditional orchestra-
tion problems. On the one hand, the seamless support of end-
to-end distributed pipelines of AI components cannot rely
on the conventional orchestration of the computing infras-
tructure, designed orthogonally to the network architecture.
In fact, if data exchange occurs in myopic manner, then

the network risks becoming the bottleneck for distributed
intelligence. On the other hand, the policies meant to decide
where to place a given intelligence task should not only
minimize data collection latency, computation times and/or
energy consumption, but also provide the targeted accuracy
in training and inference.

In this regard, a key issue is the choice of the proper
model instance to perform a given learning/inference task,
among the multiple ones that may be available throughout the
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continuum. Lighter model versions can be run by constrained
end-devices at the expenses of lower accuracy, while more
sophisticated models can be available at large data centers.

Additionally, according to the deployed distributed intel-
ligence application, the following possible decisions may
need to be taken, e.g., when and where a model (re-)training
procedure shall be triggered; which clients shall be selected
for a Federated Learning task; among which nodes and where
an inference/training model shall be split.

1) STATE-OF-THE-ART
The work in [134] proposes to employ online reinforce-
ment learning to orchestrate Deep Learning services for
multi-users over the end-edge-cloud system, in order to bet-
ter understand the system dynamics. The offloading policy
aims to minimize response time while providing sufficient
accuracy.

In [7] the authors propose the concept of inference delivery
networks, i.e., networks of computing nodes that coordinate
to perform inference tasks. The proposal targets the follow-
ing problems: (i) where placing the models for serving a
certain inference task among a set of nodes, and (ii) how
selecting their size/complexity among the available alterna-
tives, while achieving the best trade-off between latency and
accuracy. Similarly, the work in [135] proposes a framework
allowing to jointly decide (i) which data using for learning,
(ii)which DNN structure employing, and (iii)which physical
nodes, and resources therein, using. The proposal aims at
minimizing the energy consumption while meeting a target
maximum learning time and desired learning quality. Unlike
the work in [7], the latter targets the more challenging and
resource-intensive learning phase, and splits a model across
multiple devices.

The authors in [136] propose a solution, which aims to
jointly accelerate model training time and minimize energy
consumption in resource-constrained IoT devices, through
the proper selection of model splitting points. It accounts
for the time-varying network throughput and the computing
resources of involved devices. Model splitting is also the
focus in [137], where an inference model is partitioned in a
5G infrastructure across the end devices, multiple edge server
and the cloud, in order to minimize the inference latency.

Orchestrating computing and communication resources is
also crucial for Federated Learning. Indeed, client selection
is critical to determine the training time and model accuracy,
and it cannot be performed by overlooking (wireless) channel
conditions and its dynamics and clients’ computing/battery
capabilities. Several client selection schemes have been pro-
posed, e.g., [101] and [145], which consider the aforemen-
tioned criteria. However, tighter coupling is required between
client selection and related resource assignment (e.g., trans-
mission power, radio resource blocks), which should be per-
formed in a joint manner. In [138], a joint client selection and
resource allocation policy is proposed for Federated Learning
under communication limitations and imperfect CSI.

In general, selecting more clients may reduce the overall
training latency. Optimizing the tradeoff betweenmaximizing
the number of clients and minimizing the overall energy
consumption is the target of the study in [139]. There, appro-
priate resources, in terms of CPU frequency and transmission
power, are allocated to the selected clients. An algorithm
is proposed in [140] that jointly selects the best clients
and allocates the right amount of bandwidth at each round,
by considering their data, computing power, and channel
gain. The algorithm can be implemented as an application in
the open radio access network (O-RAN) architecture, to col-
lect information about the data (e.g., the numbers of data and
data classes) as well as the channel gain, and the available
computing power of potential clients.

In [141] the co-existence is considered of multiple Feder-
ated Learning services sharing common wireless resources.
A two-level resource allocation framework is proposed,
which aims to minimize the round length by optimizing
bandwidth allocation among the clients of each Federated
Learning service, and distributing bandwidth resources
among multiple simultaneous services.

2) LESSONS LEARNT AND ROAD AHEAD
Despite the aforementioned works, in the recent literature
the coupling of distributed intelligence orchestration with the
network data plane is still loose. For instance, in case ofmodel
splitting, decisions shall be taken alongwith the configuration
of the proper routing path across the nodes selected to host
the different NN layers. The interplay of orchestration mech-
anisms with SDN routing policies is highly recommended.

A more holistic approach for jointly orchestrating network
and computing resources can build upon network slicing,
with a slice tailored to the specific demands of distributed
AI applications, while sharing the (programmable) network
infrastructure with other services [146].

Another interesting perspective is early discussed in [147].
Understanding the quality of input data (e.g., subject to
anomalies, discrepancies, and noisy components) can be
exploited for selective sensing, in order to reduce the input
data volume to be transferred over the network. There,
in the healthcare context, the potentials of a cross-layered
sense-compute co-optimization are presented to jointly
improve sensing, computation, and communication aspects of
ML-based applications over the end-edge-cloud continuum.

B. VIRTUALIZATION
The aforementioned decisions cannot be taken with-
out collecting sufficient information about capabilities of
end-devices and network nodes, as well as about AI/ML
models. For instance, to enable smart selection of the best
Federated Learning clients [101], [145], candidate devices
can be asked by the aggregator to provide information about
their capabilities as well as the experienced link quality. The
same holds for the identification of the nodes which should
host a partitioned model in case of splitting.
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Virtualization techniques, initially proposed in the Infor-
mation Technology domain, can serve this purpose, being
recently inherited within the IoT context [148] and evolving
towards the broader digital twin concept.

1) STATE-OF-THE-ART
In [142] a virtualization layer hosted at the network edge is
proposed, which is in charge of the semantic description of
AI-embedded IoT devices’ capabilities. The virtual replicas
expose and augment the cognitive capabilities of the corre-
sponding (potentially constrained) physical devices, in order
to feed intelligent IoT applications. Properly customized
data models defined according to the Open Mobile Alliance
(OMA) LightweightMachine-to-Machine (LwM2M) seman-
tics [149] are leveraged to this purpose. The choice falls into
OMA LwM2M being it specifically conceived for resource-
constrained devices. A similar approach is followed in [143]
for the semantic description of the client capabilities in an
edge-based Federated Learning context involving IoT devices
as learners.

The authors in [59] propose the use of digital twins as vir-
tual replica of a distributed training system. They can provide
a platform for real-time analysis to learn the peculiarities of
the system, and target inefficiencies in communication.

The need for joint 3C and learning (3C-L) resource allo-
cation approaches is theoretically discussed in [144], where
a liquid model for 6G is proposed. According to the vision
discussed there, 3C-L resources provided by edge nodes may
be virtualized, also with the support of digital twins, with the
aim of improving resource pooling.

2) LESSONS LEARNT AND ROAD AHEAD
Different players involved in the network design and deploy-
ment for supporting distributed intelligence should achieve
a consensus on the proper data models/semantics to adopt.
Furthermore, although they foster the crucial issue of inter-
operability and enable more judicious orchestration poli-
cies, digital replicas of AI components still may increase
the communication load to keep the state of their physical
counterparts in real-time. Thus, their instantiation and whole
lifecycle management need to be carefully planned.

VII. STANDARDIZATION INITIATIVES AND PROJECTS
Synergies among network-related standardization activities
and AI/ML forums are advocated to accelerate advancements
in both domains.

The International Telecommunications Unit (ITU) Focus
Group on Technologies for Network 2030 (FG-NET2030)
pioneeringly identified the pervasive distribution of AI as a
crucial use case for future networks [150].

Efforts are underway within the Internet Research Task
Force (IRTF) COmputing in the Network Research Group
(coinrg) to push new network protocol designs to efficiently
federate decentralized computing resources, also to support
emerging AI/ML workloads [151].

The one6G Association outlines distributed federated AI
among the key enabling technologies that constitute the pil-
lars of the evolution towards 6G [152].

Further initiatives are encouraged which recognize the
need for a novel network design to satisfy the AI demands
and to optimize the AI performance, and not the other way
around only. Indeed, the investigation of AI to optimize the
network performance are targeted, for instance, by ITU [153]
and 3GPP [154].

Along with the advocated path, 3GPP prospective work
items for the upcoming 5G Release 18 are aimed to support
AI applications. For instance, the document in [155] covers
use cases and potential requirements for 5G system to support
AI/ML model distribution and transfer (download, upload,
updates, etc.). This is an interesting contribution coming from
a standardization group, but still too germinal.

Dynamic distribution of intelligence is the subjectmatter of
several recent projects funded by the European Commission.
For instance, this is the case of the DAIS [156] and DEDICAT
6G [157] projects. However, a few of them, among which the
AI@EDGE project [158], claims to address network design
for AI.

VIII. MAIN FINDINGS, GUIDELINES AND OPEN ISSUES
A. FINDINGS AND GUIDELINES
The conducted analysis unveils that, despite the infancy of the
distributed intelligence topic, a huge amount of works have
been published in the literature. Starting from it, the following
main considerations can be summarized.

1) RESEARCH SOLUTIONS IN THE RAN DEFINITELY
OUTNUMBER THOSE IN THE CORE NETWORK
It can be observed that the design of solutions specifically
targeting the wireless (edge) domain mainly catalyzed the
interest of the networking community. This trend was some-
how expected, given the wireless channel dynamics and the
resource-constrained nature of end-devices. Moreover, this is
also due to the fact that most of the distributed intelligence
deployments consider a two-layer architecture involving end-
devices and an edge server only. However, in the near future
the compute continuum will become a reality and even net-
work nodes could contribute to (portion of) training and
inference procedures. Hence, additional efforts are required,
on the one hand, to improve distributed intelligence-related
traffic steering, and on the other hand, to allow in-network
NN execution, without penalizing forwarding procedures.

2) COUPLING OF DIFFERENT
COMMUNICATION/NETWORKING TECHNIQUES IS HIGHLY
ADVISED
It can be further stated that to effectively overstep the limita-
tions of wireless communications, different techniques need
to be blended to improve the performance of distributed
intelligence solutions over the RAN. This is the case of
AirComp coupled with either RIS or D2D communications
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FIGURE 2. Key enablers in different network segments (level of maturity for distributed intelligence support: [VL] = very low, [L] = low, [M] =

medium, [H] = high).

and relaying. Synergies between SDN and ICN appear also
extremely promising.

3) NETWORK SOLUTIONS SO FAR MAINLY TARGETED
FEDERATED LEARNING AND, MORE IN GENERAL, LEARNING
PROCEDURES
We noticed that the majority of works focused on the Fed-
erated Learning approach, given the inherent benefits it
promises and, likely, the push from the industries. However,
although less computation- and bandwidth-hungry, also infer-
ence will be massively and frequently requested, and it would
likely be pervasive for the network, likely as IoT was in
the last decade. Hence, inference orchestration and network
optimization solutions for it should be conceived.

4) SEVERAL SOLUTIONS, ALTHOUGH PROMISING, ARE STILL
GERMINAL
Not all the solutions have the samematurity level, as shown in
Fig. 2, where the identified enablers are graphically sketched
to provide an end-to-end perspective of a future network
supporting distributed intelligence.

In the RAN, there is much room for the design of D2D
communication techniques specifically treating distributed
intelligence-related data. The same comment holds for short-
packet, multicast and semantic communications.

Furthermore, robust solutions against mobility of devices
are needed in the RAN segment. For instance, predicting the
mobility of source devices may be crucial to improve data
(i.e., datasets, model updates) collection, making it reliable
also through opportunistic procedures [13].

In the core network segment, we identified semantic rout-
ing as a prominent enabler for distributed intelligence, but to
the best of our knowledge, nowork is available yet.Moreover,
despite the maturity of the SDN paradigm per se, its potential
in dealing with distributed intelligence is still overlooked.

Overall, whatever the network segment, a more conscious
distributed intelligence-related data delivery and network
procedures adaptation (including ‘casting’ primitives) to their
peculiar needs and features would make the difference.

5) CO-DESIGN OF DISTRIBUTED INTELLIGENCE AND
NETWORK OPERATIONS IS MANDATORY
The model splitting point decision, as well as the Federated
Learning client selection cannot disregard the (wireless) net-
work dynamics. The behaviour of radio resource allocation
schemes and routing protocols should be tightly coupled with
the decision concerning the distributed intelligence deploy-
ment to appropriately trade-off among accuracy, latency and
bandwidth performance.

6) REALISTIC AND COMPREHENSIVE EVALUATION
FRAMEWORKS ARE MISSING
A further limitation identified while scanning the literature is
the lack of evaluation platforms which couple accurate and
realistic simulators, focusing on link/network-layer perfor-
mance, with the validation of model quality through realis-
tic datasets. Results are typically achieved separately or by
loosing in accuracy of the achieved results. A few works
target experimental test-beds; although being quite represen-
tative of realistic deployments, they barely scale to up to
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hundreds/thousands of devices, which represent the more
likely case for several distributed intelligence (especially
learning) solutions.

B. ADDITIONAL OPEN ISSUES
For the sake of completeness, some socio-economic aspects
are also worth discussing which deserve further investiga-
tions, although outside the main scope of the manuscript.

1) SECURITY
Distributed AI services further challenge the design of secu-
rity and privacy-preservingmechanisms. Therefore, to ensure
a broad social acceptability of the paradigm, mutual trust-
worthiness among involved entities, proper access control
and authentication schemes for end-users, and secure routing
mechanisms need to be enforced, considering that raw (sensi-
tive) data, model (parameters) and intermediate outputs need
to be exchanged.

2) SUSTAINABILITY
It is important to consider implications related to environmen-
tal sustainability. The overall AI lifecycle should be devised
to be distributed throughout the continuum with an eye to the
carbon footprint reduction [159]. To this aim, for instance,
orchestration should opportunistically deploy AI workloads
where green sources are available, increasingly leveraged by
telco and cloud providers to power their infrastructures.

3) BUSINESS MODELS
As for business-related issues, the provisioning of dis-
tributed AI services on top of existing networks also entails
revising the traditional value chain. Either providers of
AI-based applications may interact with network operators
and cloud/edge providers to offer the aforementioned ser-
vices, or new operators may enter the scene to offer such kind
of distributed and possibly green AI services. Solid business
models should be conceived accordingly, which may provide
new revenue opportunities and stimulate cooperation among
all players in the envisioned ecosystem.

IX. CONCLUSIVE REMARKS
In this paper, we first identified the most representative dis-
tributed intelligence solutions and the main relevant issues,
with special focus on networking aspects. Then, we pro-
vided a comprehensive and end-to-end analysis of the key
enablers, from the RAN to the core, for the design of a
future network supporting distributed intelligence. Despite
the infancy of the topic, several research works can be found
in the literature. This paper focused on classifying the most
representative solutions for each identified enabler, without
having the claim to be exhaustive, but with the aim to provide
a valuable support to newcomers to the topic as well as to
experienced researchers both from the AI and the networking
communities.

Indeed, the intriguing challenges for building future net-
work ecosystems supporting distributed intelligence are

multidisciplinary and span different research areas having
different maturity levels. Hence, synergies among different
communities need to be fostered.
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