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Abstract: In this paper, we consider a vertically positioned cylindrical filtering element. Filtering
occurs in the radial direction, therefore, the direction of the velocities of the liquid and suspended
particles coincide with this radial direction. The flow can be considered to be one-dimensional and
radially axisymmetric. To describe such a filtering process, the axisymmetric Stefan problem will
be formulated. The radial mass balance formalism and Darcy’s law are utilized to obtain a basic
equation for cake filtration. The boundary condition at the moving surface is derived and the cake
filtration is formulated in a Stefan problem. Equations are derived that describe the dynamics of
cake growth in the cake filtration, and they are numerically solved. The influence of different model
parameters on the compression and fluid pressure across the cake and the growth of its thickness
are studied.

Keywords: cake characteristics; cake filtration; concentration; permeability; porosity; compression
pressure

1. Introduction

Filtration is the process of separating heterogeneous systems using a porous septum,
which delays some phases of these systems and passes others. These processes include
the separation of the suspension into a clean liquid and sediment. The separation of the
suspension in which solid particles are suspended is carried out using a filter. Suspension
separation processes are found in chemical, petrochemical, oil refining, coal, food, and
other industries [1–11].

The most important characteristic of suspensions affecting the type and intensity of
filtration is the concentration of the solid phase, which is expressed in fractions of volume
or mass. Depending on the concentration of the solid phase in the suspension, the types of
filtration are distinguished [1–3]: with the formation of a precipitate, it is intermediate, and
with the clogging of the pores of the precipitate, it is gradual, as well as with a complete
clogging of the pores of the filter partition. Solids contained in the suspension are retained
on the surface of the septum and form a layer of sediment.

Filtering with the formation of a cake is based on the fundamental equations of the
mechanics of multicomponent media and the theory of filtration consolidation, taking into
account the influence of hydrodynamic and rheological factors on the laws of the filtering
process [5,6].

In the theory of filtering, the main averaged characteristics are the filtering velocity
and the pressure. The process of suspension flow in a porous medium is described by
Darcy’s law. In [12–15], the averaged equations for the mechanics of two-phase flows were
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given, and filtering equations were obtained. In [1,4], dynamic equations were obtained via
a statistical averaging of the equations for the mechanics of two-phase flows, taking into
account the inertial effects during filtering. The differential filtering equations in [7,12–17]
were obtained on the basis of the equations for the mechanics of two-phase flows and soil
mechanics, taking into account the change in the filtration parameters over the thickness of
the sediment and over time.

Since in the process of filtering, the sediment–suspension interface is mobile, the mod-
els are usually reduced to Stefan problems [1,4,7], the numerical solution of which, as is
known, has a number of specific features [18–24].

When filtering the clarification of a suspension, one of the main technical elements are
the filters, the design and technical characteristics of which can be different [1,4]. In this case,
particles of the suspension either linger on the surface of the filter, forming a precipitate
called a cake, or penetrate the filter, lingering in the pores. In accordance with this, filtering
is distinguished by the formation of a cake and filtering with clogged pores [1,2,4]. The filter
element often has a cylindrical shape, through which a suspension is supplied through the
inner- or outer-side surface.

In this paper, the axisymmetric problem of suspension filtration is considered, taking
into account the consolidation of the cake. We use here a geometric schematization of the
filter, as seen in [5]. To compose a mathematical model, we use the methodology developed
in [1–3]. Thus, for the first time, filtration equations are derived in a radially symmetric
case, taking into account the consolidation of the cake. A suspension filtering problem
through a radial filter with a given pressure at the interface between the suspension and
the cake is set. The problem is solved numerically using the finite difference method. Since
the Stefan problem is obtained for the growth of the cake thickness, a special method of
“catching the front” is applied to determine it. The pressure fields in the liquid and solid
phases of the cake, the relative permeability of the cake, the concentration of the solid
particles in the cake, and the thickness of the cake, as well as other filtering characteristics,
are determined. The influence of the parameters on the dependencies of the cake solid
concentration and the permeability of the pressure in the solid phases on the filtration
characteristics are studied.

2. Physical Model

Here, we consider the process of filtering suspensions through a cylindrical filter
(Figure 1). The suspension is fed through the outer surface of the filter, with a radius R,
upon which the cake is formed. The relative contents of the liquid and solid phases are
denoted by ε and εs, ε+ εs = 1. The filtration velocities for the liquid and solid phases are
denoted by q` and qs, respectively.
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3. Mathematical Model

Here, we give the derivation of the filtering equation. We suppose that the filtering
occurs in the radial direction, which means that the direction of the velocities of the liquid
and suspended particles coincide with this radial direction. Therefore, we ignore the
angular flow of the suspension in our adopted scheme (geometry) for the filtering and
consider it as one-dimensional. Multi-dimensional equations arise in non-symmetrical
flows of suspension with the formation of the cake [5]. Thus, the continuity equations of
the fluid and particle phases in a cylindrical coordinate system can be written as [1–5]:

∂ε

∂t
+

1
2πr

∂q`
∂r

= 0, (1)

∂εs

∂t
+

1
2πr

∂qs

∂r
= 0, (2)

where t is time and r is the radial coordinate.
Since ε+ εs = 1, by adding Equations (1) and (2), we obtain:

∂q`
∂r

+
∂qs

∂r
= 0,

where:
q` + qs = qout, (3)

qout, is the instantaneous filtration velocity, independent of the coordinate r.
The Darcy law for axisymmetric filtering is as follows [1,5]:

q` −
ε

εs
qs = −2πr

k
µ

∂p`
∂r

, (4)

where p` is the liquid pressure, µ is the fluid viscosity, and k is the cake permeability.
Upon differentiating Equation (4) by r, we obtain:

∂q`
∂r

= − ∂

∂r

(
2πr

k
µ

∂p`
∂r
− ε

εs
qs

)
. (5)

Assuming that the particle velocity is zero at the boundary of the filter and the cake
( qs|r=R = 0), at each point in the cake, we have:

q` + qs = qout = −
[

2πr
k
µ

∂p`
∂r

]
r=R

=
−p`m
µRm

, (6)

where R is the outer radius of the filter element, p`m is the filtrate pressure at r = R, and
Rm is the medium resistance.

From Equations (4) and (6), we can see:

qs = εs

{
2πr

k
µ

∂p`
∂r
−
[

2πr
k
µ

∂p`
∂r

]
r=R

}
. (7)

By substituting (7) into (5), we obtain:

∂q`
∂r

= − ∂

∂r

(
εs2πr

k
µ

∂p`
∂r

+ (1− εs)

[
2πr

k
µ

∂p`
∂r

]
r=R

)
or

∂q`
∂r

= − ∂

∂r

(
εs2πr

k
µ

∂p`
∂r

)
−
[

2πr
k
µ

∂p`
∂r

]
r=R

∂εs

∂r
.
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Using (1) and (2), we obtain:

∂εs

∂t
= −1

r
∂

∂r

(
εs · r

k
µ

∂p`
∂r

)
− qout

2π
· 1

r
∂εs

∂r
, (8)

where qout =
[
−2πr k

µ
∂p`
∂r

]
r=R

is the instantaneous filtration velocity.
Equation (8) is the basic filtration equation with the formation of a cake in cylindrical

coordinates. It can be solved with corresponding initial and boundary conditions, specified,
in particular, on the moving boundary r = RL(t), which must be determined from the
additional equation.

The properties of the cake are characterized by several parameters [1,3,7,8,12]: the
volume fraction of the particle, the solidosity (particle volume fraction) εs, or the cake
permeability k. These parameters are assumed to only be functions of the cake compressive
stress ps

εs = εs(ps), k = k(ps).

In particular, the following power law expressions may be used [3,7,8,12]:

εs = ε0
s

(
1 +

ps

pA

)β

, (9)

k = k0
(

1 +
ps

pA

)−δ
, (10)

where ε0
s and k0 denote, respectively, the values of εs, k, and α at ps = 0, respectively; pA is

the specific stress and the indicators β, δ, and n = δ− β are constant values.
Neglecting friction forces, the following relationships between p` and ps [3] can

be used:
Type 1 : dp` + dps = 0, (11a)

Type 2 : (1− εs)dp` + dps = 0, (11b)

Type 3 : (1− εs)dp` + εsdps = 0, (11c)

Type 4 : d[(1− εs)p`] + d[εs ps] = 0. (11d)

At the borders of the cake, the following conditions are applied: p` = p0 when
r = RL(t) and p` = ∆pm when r = 0, where ∆pm is the differential pressure through the
filter element.

From (11a)–(11d), we have:
∂p`
∂ps

= f ′, (12)

where:
f ′ = −1, for Type 1, (13a)

f ′ = − 1
1− εs

, for Type 2, (13b)

f ′ = − εs

1− εs
, for Type 3, (13c)

f ′ =
(
1− ε0

s
)

p0 − ps

(1− εs)
2

dεs

dps
− εs

1− εs
, for Type 4. (13d)
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From (8), (9), (10), and (13a), we obtain:

∂εs

∂t
= −1

r
∂

∂r

(
ε0

s · r
k0

µ

(
εs

ε0
s

)−δ/β
f ′

∂ps

∂r

)
− qout

2π
· 1

r
∂εs

∂r
. (14)

The equation for the increasing radius RL(t), which expresses the thickness of the
cylindrical cake, that is, the radius of the boundary between the suspension and the cake,
is given in the following form:

dRL
dt

=
ε0

s

ε0
s − εs0

[
k
µ

∂p`
∂r

]
r=RL−

+
1

2πRL−
qout, (15)

On the surface r = RL− , the stresses of the compressing particles are zero. That is,
εs|RL−

can be taken as equal to the solid content at zero stress ε0
s . On the other hand, εs|RL+

is equal to the concentration of the solids in the suspension εs0
.

If the process begins in a new filter without first pumping the liquid, we can accept
the initial condition:

RL(0) = R. (16)

The filtering process begins with a sudden application of pressure or a set flow rate.
The initial conditions for p` and ps can be taken as zero, i.e.,

p`(0, r) = 0, ps(0, r) = 0. (17)

The boundary conditions for an axisymmetric problem are:

p` = p0, ps = 0, εs = ε0
s when r = RL(t), (18a)

−2πr
k
µ

∂p`
∂r

=
−p`
Rmµ

when r = R. (18b)

When the fluid flow rate is set:

ps = 0, εs = ε0
s when r = RL(t), (19a)

−2πr
k
µ

∂p`
∂r

= −−p`
Rmµ

= const when r = R. (19b)

When the filtering has a variable pressure, we have:

p` = p(t), ps = 0, εs = ε0
s when r = RL(t), (20a)

−2πr
k
µ

∂p`(t)
∂r

= − p`(t)
Rmµ

when r = R. (20b)

In the preset pressure mode, it is possible to calculate the filtrate flow rate at the filter
outlet qout =

[
−2πr k

µ
∂p`
∂r

]
r=R

, as it is a function of time.

4. Numerical Analysis

Using (9)–(10), we can obtain from (8) the equation for ps:

βε0
s

pA

(
1 +

ps

pA

)β−1 ∂ps

∂t
= −ε

0
s k0

µ

1
r

∂

∂r

((
1 +

ps

pA

)β−δ
r

∂p`
∂r

)
+
βε0

s
pA

(
1 +

ps

pA

)β−1 qout

2π
· 1

r
∂p`
∂r

, (21)
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where:

qout = −2πr
k0

µ

(
1 +

ps

pA

)−δ ∂p`
∂r

∣∣∣∣∣
r=R

= 2πr
k0

µ

(
1 +

ps

pA

)−δ ∂ps

∂r

∣∣∣∣∣
r=R

.

In the case of f ′ = −1 (Type 13a) from (1), we have:

βε0
s

pA

(
1 +

ps

pA

)β−1 ∂ps

∂t
=
ε0

s k0

µ

1
r

∂

∂r

((
1 +

ps

pA

)β−δ
r

∂ps

∂r

)
+
βε0

s
pA

(
1 +

ps

pA

)β−1 qout

2π
· 1

r
∂ps

∂r
. (22)

We consider the filtering mode with a given pressure, which corresponds to the
conditions in (18). From (18a), we obtain the boundary conditions for ps:

−2π
[

r
k
µ

∂ps

∂r

]
r=R

=
p0 − ps

µRm

∣∣∣∣
r=R

, ps(t, RL(t)) = 0, (23)

We write Equation (22) in the following form:

∂ps

∂t
=

pAk0

βµ

(
1 +

ps

pA

)1−β 1
r

∂

∂r

((
1 +

ps

pA

)β−δ
r

∂ps

∂r

)
+

qout

2π
· 1

r
∂ps

∂r
. (24)

We introduce the following notations:

a(p) =
pAk0

βµ

(
1 +

ps

pA

)1−β
, b(p) =

(
1 +

ps

pA

)β−δ
, c(p) =

ε0
s

ε0
s − εs0

k0

µ

(
1 +

ps

pA

)−δ
,

c0(p) =
k0

µ

(
1 +

ps

pA

)−δ∣∣∣∣∣
r=R

.

Given these notations, Equation (24) can be transformed into the following form:

∂ps

∂t
= a(p)

1
r

∂

∂r

(
b(p)r

k
µ

∂ps

∂r

)
− qout

2π
· 1

r
∂ps

∂r
. (25)

The equation for the moving boundary RL(t), (15), takes the form:

dRL
dt

= c(p)
[

∂p`
∂r

]
r=RL−

+
1

2πRL−
qout, (26)

where qout =
[
−c0(p)2πr ∂p`

∂r

]
r=R

.
To solve the problems in (25) and (26), we use the finite differences method [19,20,23,24].

We introduce a uniform grid using t with the step τ:

ωτ =
{

t| t = tj = jτ, j = 0, 1, . . . , N, τN = T
}

,

and a non-uniform grid with the coordinate r,

ωh = { r| r = ri = ri−1 + hi, i = 1, 2, . . . , N, rN = RL−},

with the variable step h i > 0. We choose the step h i from the interval [ri, ri+1] so that
the moving boundary moves exactly on one step along the time grid. This approach is
known as the method of catching the front in a grid node. We denote the grid function
corresponding to ps by Φj+1

i . We approximate Equation (25) using an implicit difference

scheme that is nonlinear, with respect to the function Φj+1
i
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Φj+1
i −Φj

i
τ =

a
(

Φj
i

)
ri

2
hi+hi+1

{
b(Φj+1

i+1/2)ri+1/2
Φj+1

i+1−Φj+1
i

hi+1
− b(Φj+1

i−1/2)ri−1/2
Φj+1

i −Φj+1
i−1

hi

}
− (qout)

j+1
0

1
2πri

Φj+1
i −Φj+1

i−1
hi

,

i = 1, . . . , N − 1,j = 0, 1, . . . , N − 1, j = 0, 1, . . . , N − 1,

(27)

where:

ri−1/2 =
ri−1+ri

2 , ri+1/2 =
ri+1+ri

2 , a
(

Φj
i

)
= pAk0

βµ

(
1 + Φj

i
pA

)1−β
, (qout)

j+1
0 = −2πr1c0

(
Φj+1

0

)(
Φj+1

1 −Φj+1
0

h0

)
,

b
(

Φj+1
i+1/2

)
= 1

2

[(
1 +

Φj+1
i+1

pA

)β−δ
+

(
1 + Φj+1

i
pA

)β−δ
]

, c0
(

Φj+1
0

)
= k0

µ

(
1 + Φj+1

0
pA

)−δ
.

Using the approximation dRL
dt ≈

hi+1
τ , Equation (26) can be written in the form:

hi+1

τ
= −

[
c
(

Φj
i−1/2

)(Φj+1
i −Φj+1

i−1
hi+1

)]
− 1

2πri
(qout)

j+1
0 , (28)

where:

c
(

Φj
i−1/2

)
=

ε0
s

ε0
s − εs0

k0

2µ

(1 +
Φj

i
pA

)−δ
+

(
1 +

Φj
i−1

pA

)−δ.

An approximation of the initial (17) and boundary conditions (23) gives:

Φj+1
i = 0, i = 0, 1, . . . , N, j = 0,

−2πr1c0
(

Φj
0

)
Φj+1

1 −Φj+1
0

h1
=

p0−Φj+1
0

Rm
, j = 0, N,

Φj+1
i = 0, i = N + 1, N + 2, . . ., j = 0, 1, . . . .

(29)

The obtained set of Equation (27) are nonlinear, and so to solve them, we use the
method of simple iteration and rewrite the system of Equation (27) as follows:

(λ+1),
Φ

j+1

i −Φj
i

τ =
a
(

Φj
i

)
ri

2
hi+hi+1

b

(λ),
Φ

j+1

i+1/2

ri+1/2

(λ+1),
Φ

j+1

i+1−
(λ+1),

Φ
j+1

i
hi+1

− b

(λ),
Φ

j+1

i−1/2

ri−1/2

(λ+1),
Φ

j+1

i −
(λ+1),

Φ
j+1

i−1
hi


−
(

(λ)
qout

)j+1

0

1
2πri

(λ+1),
Φ

j+1

i −
(λ+1),

Φ
j+1

i−1
hi

,i = 1, . . . , N − 1, j = 0, 1, . . . , N − 1,

(30)

where:

b

(λ),
Φ

j+1

i+1/2

 =
1
2


1 +

(λ),
Φ

j+1

i+1
pA


β−δ

+

1 +

(λ),
Φ

j+1

i
pA


β−δ,

(
(λ)
qout

)j+1

1
= 2πr1c0

(λ),
Φ

j+1

0


(λ),
Φ

j+1

1 −
(λ),
Φ

j+1

0
h0

,

λ is the number of iterations.
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It can be seen that the system of Equation (30) is now linear with respect to
(λ+1),

Φ
j+1

i ,
which allows us to use the Thomas algorithm. As a condition for stopping the iteration
procedure on this time layer, the following relationship can be used:

max
i

∣∣∣∣∣∣
(λ+1),

Φ
j+1

i −
(λ),
Φ

j+1

i

∣∣∣∣∣∣ ≤ Λ, (31)

where Λ is the exact calculation. If condition (31) is satisfied, then
(λ+1),

Φ
j+1

i = Φj+1
i . As an

initial approach, we can take
(λ=0),

Φ
j+1

i = Φj
i .

Equation (30) leads to the system of linear equations:

(λ)

Ai ·
(λ+1),

Φ
j+1

i−1 −
(λ)

Bi ·
(λ+1),

Φ
j+1

i +
(λ)

Ci ·
(λ+1),

Φ
j+1

i+1 = −
(λ)

Fi , i = 1, N − 1, (32)

where
(λ)

Ai =
a
(

Φj
i

)
ri

2
hi+hi+1

b

(λ),
Φ

j+1

i−1/2


hi

ri−1/2 +

(
(λ)
qout

)j+1

i

1
2πrihi

,
(λ)

Ci =
a
(

Φj
i

)
ri

2
hi+hi+1

b

(λ),
Φ

j+1

i+1/2


hi+1

ri+1/2,

(λ)

Bi =
1
τ +

a
(

Φj
i

)
ri

2
hi+hi+1


b

(λ),
Φ

j+1

i+1/2


hi+1

ri+1/2 +

b

(λ),
Φ

j+1

i−1/2


hi

ri−1/2

+
(

(λ)
qout

)j+1

0

1
2πrihi

,
(λ)

Fi = 1
τ Φj

i .

Equation (28) is used to determine the step hi+1, which can be written in the form:

(hi+1)
2 − τ

2πri
(qout)

j+1
0 hi+1 − τc

(
Φj

i−1/2

)(
Φj+1

i −Φj+1
i−1

)
= 0. (33)

By solving this nonlinear equation for hi+1 for each temporal, the system of linear
algebraic Equation (32) is solved by the Thomas algorithm:

(λ+1),
Φ

j+1

i = ξi+1

(λ+1),
Φ

j+1

i+1 + ηi+1, (34)

where ξi+1 =
(λ)
Ci

(λ)
Bi−

(λ)
Ai ξi

, ηi+1 =
(λ)
Fi +

(λ)
Ai ηi

(λ)
Bi−

(λ)
Ai ξi

.

5. Numerical Results

Using (32)–(33), the numerical results can be obtained corresponding to the following
parameter values: pA = 104 Pa, Rm = 1012 1/m2, µ = 10−3 Pa · s, k0 = 10−13 m2, ε0

s = 0.20,
and εs0 = 0.0076. Some results are shown in Figures 2–10. As can be seen from the
presented results, as the filtering process continues, the thickness of the cake increases
and the distribution of the compression pressure and fluid pressure is established over
the entire thickness. In accordance with the assumptions made, the compression pressure
decreases from the filter surface to the boundary of the cake and suspension. The pressure
in the liquid on the surface of the filter has a value of p` = ∆pm and this value increases to
p0 at the common border of the cake and suspension. The graphs in Figures 2 and 3 have
an exact ending determined by the moving front of RL(t).
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Figure 2. The distribution of compression pressure over the thickness of the cake at t = 450 (1);
900 (2); and 1800 (3) s., r = R taken as the origin of the distance, β = 0.13, δ = 0.57, and p0 = 105 Pa.
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Figure 3. The distribution of pressure in the liquid phase p` over the thickness of the cake at
t = 450 (1); 900 (2); and 1800 (3) s., r = R taken as the origin of the distance, β = 0.13, δ = 0.57, and
p0 = 105 Pa.

Figure 4 illustrates the dynamics of the cake thickness `(t) = RL(t)− R. One can see
its monotonous growth. This is a typical feature of cake filtration [1–3,5,6,11,16,17,20]. In all
cases, due to the accumulation of solid particles in the cake on the filter surface despite its
compaction (consolidation), i.e., an increase in the concentration of the solid particles and a
change in its porosity, the growth of the cake thickness occurs. Of course, the dynamics of
this growth are influenced by various factors. Obviously, the compaction of particles in
certain areas of the cake slows down the growth of the cake thickness in comparison to a
uniform distribution of solid particles. However, this issue should be studied on the basis of
a comparison of the solutions to the filtration problems with the formation of the cake, with
and without taking into account its consolidation. It is also clear that, with an increase in
the liquid supply pressure or an increase in its supply rate, a more progressive development
of the cake thickness can be expected. However, in all cases, we obtain monotonically
growing dynamics of the cake thickness. The value of εs monotonically decreases from the
filter surface to the common boundary of the cake and suspension (Figure 5). As the cake
thickness increases over time, one can notice the progress of the distribution profiles εs.
Due to the densification of the cake, the solids content is higher in the region close to the
filter surface. Similarly, it is possible to draw profiles ε, as they have an increasing character
in r, in accordance with the relation ε+ εs = 1.
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Figure 4. Dynamics of the cake thickness on the filter surface, β = 0.13, δ = 0.57, and p0 = 105 Pa.
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Figure 5. Profiles of εs over cake at t = 450 (1); 900 (2); and 1800 (3) s., r = R taken as the starting
point for distance, β = 0.13, δ = 0.57, and p0 = 105 Pa.

For a given value δ, the distribution of the relative permeability in the cake is shown
in Figure 6. As can be seen from the figure, as the cake thickness increases due to the
compaction and repacking of the particles and an increase in the compression pressure,
the permeability decreases, which can be characterized as an increase in its filtration
resistance. This decrease is significant in areas close to the filter surface (small values of r in
Figure 6). In this area, a more intensive consolidation of the cake occurs, i.e., the particle
compaction is higher. This results in a significant reduction in the relative permeability.
At a relatively large r, an almost linear decrease in the relative permeability is observed
from the common boundary of the suspension and cake towards the filter surface. This may
be explained by the slight cake consolidation in these areas. With an increase in the time
and a simultaneous increase in the cake thickness, a decrease in the relative permeability
is observed over the entire thickness, i.e., consolidation occurs at all points of the cake.
In other words, by increasing the time at all the points of the cake, there is an increase in
the hydraulic resistance.

The filtration characteristics were calculated for various values of p0. Some results are
presented in Figure 7. As can be seen from the graphs, an increase in the supply pressure of
the suspension leads to an intensification of the filtering process. The pressure distributions,
p` and ps, with higher values are established, with the similarity of the profiles themselves.
The increase in the cake thickness also intensifies, and one can notice the leading dynamics
of `(t) for a large p0.
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Figure 6. Profiles of k/k0 over cake at t = 450 (1); 900 (2); and 1800 (3) s., r = R taken as the starting
point for distance, β = 0.13, δ = 0.57, and p0 = 105 Pa.
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Figure 7. Profiles of ps (a), p` (b), and the dynamics of the cake thickness (c) at p0 = 1 · 105 (1);
2 · 105 (2); and 3 · 105 (3) Pa., β = 0.13, δ = 0.57.
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The effect of the parameter δ on the filtering characteristics was also studied (Figure 8).
An increase in the value of δ leads to a decrease in the value of k/k0 for the same values of
ps and k0, and this is reflected in the other indicators of filtration. An increase in δ leads
to a decrease in the distribution of ps (Figure 8a). Taking into account the dependence of
ps + p` = p0, p0 = const, this, in turn, leads to an increase in the values of the distribution
p` (Figure 8b). As already mentioned, an increase in the value of δ leads to a decrease in
k/k0, which can be interpreted as an increase in the filtration resistance of the cake. With
an increase in the filtration resistance, an increase occurs in the p` distribution. Therefore,
the increase in p` can be explained by an increase in the filtration resistance of the cake,
with an increase in the parameter δ . At the same time, there is a lag in the dynamics of
`(t), and with relatively large δ, the cake thickness grows slower (Figure 8c). This can also
be explained by an increase in the filtration resistance of the cake. The decrease in k/k0

is due to the compaction of the distribution of solid particles in the cake, which reduces
its thickness.

Symmetry 2023, 15, 1209 13 of 18 
 

 

values of s
p  and 0k , and this is reflected in the other indicators of filtration. An increase 

in   leads to a decrease in the distribution of s
p  (Figure 8a). Taking into account the 

dependence of 0
ppp

s
=+  , const

0
=p , this, in turn, leads to an increase in the values of 

the distribution p   (Figure 8b). As already mentioned, an increase in the value of   

leads to a decrease in 0/ kk , which can be interpreted as an increase in the filtration re-

sistance of the cake. With an increase in the filtration resistance, an increase occurs in the 

p  distribution. Therefore, the increase in p  can be explained by an increase in the fil-

tration resistance of the cake, with an increase in the parameter  . At the same time, there 

is a lag in the dynamics of ( )t , and with relatively large  , the cake thickness grows 

slower (Figure 8c). This can also be explained by an increase in the filtration resistance of 

the cake. The decrease in 0/ kk  is due to the compaction of the distribution of solid parti-

cles in the cake, which reduces its thickness. 

 

 

, m 

, Pa  

1 
2 

3 

a 

s 

, m   

1 

2 

, Pa  

3 

b 

s 

Figure 8. Cont.



Symmetry 2023, 15, 1209 13 of 16Symmetry 2023, 15, 1209 14 of 18 
 

 

 

Figure 8. Profiles of 
s

p   (а), 
p   (b), and the dynamics of the cake thickness (с) at 57.0=  (1); 

14.1  (2); and 0.2  (3), 
5

0
101=p

 
Pa, 13.0= . 

Similar calculations have been performed for the various values of parameter   

(Figure 9). For large values of this parameter, in accordance with (9), large values of s  

can be obtained for the same values of s
p  and 0

s
 . Consequently, this results in lower 

values of  . A decrease in   naturally leads to a decrease in the filtration characteristics 

of the cake. Thus, a similar effect can be expected with an increase in the parameter  . 

The results of the calculation confirm this conclusion. Comparing Figure 7 with Figure 9, 

we can notice the similar character of the change in s
p , p , and ( )t  with an increase in 

values of the parameters   and  . 

 

c , m  

1 

2 3 

, s 

, m 

, Pa 

1 

2 
3 

a 

s 

Figure 8. Profiles of ps (a), p` (b), and the dynamics of the cake thickness (c) at δ = 0.57 (1); 1.14 (2);
and 2.0 (3), p0 = 1 · 105 Pa, β = 0.13.

Similar calculations have been performed for the various values of parameter β
(Figure 9). For large values of this parameter, in accordance with (9), large values of εs can
be obtained for the same values of ps and ε0

s . Consequently, this results in lower values of
ε. A decrease in ε naturally leads to a decrease in the filtration characteristics of the cake.
Thus, a similar effect can be expected with an increase in the parameter δ. The results of
the calculation confirm this conclusion. Comparing Figure 7 with Figure 9, we can notice
the similar character of the change in ps, p`, and `(t) with an increase in values of the
parameters δ and β.

We compared the behavior of `(t) for this radial axisymmetric case and the planar one-
dimensional filtering case, with the same parameters used here, except for the geometric
parameters (Figure 10). In flat vertical filtering, the cross-section of the cake above the filter
does not change. In radial symmetric filtration, the area of the solid particles settling in
the form of a cylindrical surface constantly increases with an increasing `(t). Therefore,
the growth rate of the `(t) must decrease. The calculations performed show that the growth
occurs in this way. After a certain time, the growth rate of the `(t) for the radially symmetric
case slows down compared to the flat case.
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Figure 9. Profiles of ps (a), p` (b), and the dynamics of the cake thickness (c) at β = 0.13 (1); 0.78 (2);
and 1.56 (3), p0 = 1 · 105 Pa, δ = 0.57.
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Figure 10. Dynamics of the cake thickness for the plate and radial symmetric cases, p0 = 1 · 105 Pa,
β = 0.13, and δ = 0.57.

6. Conclusions

In this paper, an axisymmetric filtration problem of a suspension with the formation
of a cake was considered. It was supposed that a cake was formed on the filter surface,
consisting of solid suspension particles. For the equations describing the process, some
problems were formulated and some have been solved numerically.
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The properties of the cake were characterized by the volume fraction of the parti-
cles or the solidosity and cake permeability, which were assumed to be functions of the
cake’s compressive stress. In particular, power law expressions were used to represent
the constitutive relationships for these characteristics. Several values of the parameters in
these relationships were used to calculate the filtration characteristics of the cake. The dis-
tributions of the compression pressure and the fluid pressure over the cake, as well as
the growth of the cake thickness, were determined. The compression pressure decreased
from the filter surface to the boundary of the cake and suspension. In contrast, the liquid
pressure increased from the value ∆pm on the filter surface to the value p0 on the common
boundary of the suspension and the cake. The profiles of both the compression pressure
and the liquid pressure over the cake had exact ends corresponding to the moving front
of the cake. During the filtration process, the thickness of the cake monotonously grew
and its solidosity was higher in the region close to the filter surface. Such behavior of the
solidosity determined the porosity distribution in the cake. As the solidosity increased from
the common boundary of the suspension to the surface of the filter, according to ε+ εs = 1,
the porosity had a decreasing character from the common boundary of the suspension to
the filter surface. Obviously, the decreasing nature of the porosity determined the same
nature of the permeability. The increase in the pressure p0 led to the intensification of the
pressure distributions p` and ps and a greater growth of the cake thickness. The influence
of the parameters δ and β on the filtration characteristics was also analyzed.

An increase in the value of δ led to a decrease in the value of k/k0 for the same values
of ps and k0, and this was reflected in the other characteristics of filtration. The decrease in
k/k0 could be interpreted as an increase in the filtration resistance of the cake. As a result,
the decrease in the distribution of ps and the increase in the distribution of p` occurred.
At the same time, there was a lag in the dynamics of `(t), and with a relatively large δ,
the cake thickness grew slower. This could also be explained by an increase in the filtration
resistance of the cake.

Comparative analyses showed that the behavior of `(t) for the radial axisymmetric
case and planar one-dimensional filtering case, with the same parameters used except for
the geometric parameters, were different. After a certain time, the growth rate of `(t) for
the radially symmetric case slowed down compared to the flat case.

Thus, one can conclude that the radial axisymmetric filtration model developed in this
work can physically and correctly describe the cylindrical filtration involving a cake and
the growth of its thickness.
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