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Support Reconstruction of Dielectric and Metallic
Targets via the Contraction Integral Equation
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Abstract— A new method for support reconstruction is pro-
posed based on the contraction integral equation, a smart
rewriting of the scattering equations introduced to alleviate the
nonlinearity of the inverse scattering problem. Within such a
model, in the case of strong and/or metallic targets, or by
a suitable choice of a hyperparameter, the inherent auxiliary
function encoding the target properties is expected to assume
values close to one inside the target and zero outside. Hence,
its retrieval, which is achieved herein using a contrast source
inversion method, allows the reconstruction of the support of the
obstacle at hand. The achievable performance is tested against
simulated and experimental data, including nonconvex dielectric
and metallic targets. The cases of multifrequency inversion and
dispersive targets are also addressed.

Index Terms— Dielectric and metallic targets, inverse problem,
inverse scattering problem, microwave imaging, support recon-
struction.

I. INTRODUCTION
N INVERSE scattering problems, one of the main diffi-
culties to be addressed is the nonlinearity [1], [2], [3],
which arises from mutual interactions (and self-interactions)
among the different parts of the same target. A generalized
solution to inverse scattering problems is usually looked for
by minimizing a suitable cost function. However, due to the
nonlinearity of the underlying problem, this cost function is
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nonquadratic, so may have many local minima, which are
“false solutions” to the problem [4].

Many strategies have been introduced in the literature
to defeat nonlinearity. Among them, linearized or anyway
approximated models [5], [6], [7] and qualitative methods [8],
[9], [10] allow for straightforward implementation and require
a limited amount of computer memory and computational
time. On the other side, they suffer from several limitations
induced by the adopted approximate model or by the inherent
physical meaning, respectively. Some examples of approxi-
mate methods are Born [5], Rytov [6], and the quadratic
model [7], while the most popular method for qualitative sup-
port reconstruction is the linear sampling method (LSM) [9].

On the other hand, a possible key to accurate recon-
structions is to conveniently rewrite the Lippman—Schwinger
basic equation in such a way as to reduce the “degree of
nonlinearity” of the relevant inverse scattering problem. Unlike
linearized and approximated methods, this strategy does not
involve any approximation of the scattering model [11]. Some
examples of smart rewriting of the relevant equations are
the very recent “Y0” model [12] and the family of integral
formulations known as the “new integral equation” (NIE) or
even as the “contraction integral equation” (CIE)! [13], [14],
[15], [16], [17]. All of them, as well as the Strong Permittivity
Fluctuation Theory [18], rely on auxiliary functions embed-
ding the target properties and the related use of new integral
operators modeling the self and mutual interactions.

A comparison and possible hybridizations of some of the
above models have been discussed in [11]. In particular,
herein the “degree of nonlinearity” [19] of the CIE model has
been shown to be low (with respect to other more traditional
formulations) in the case of “strong” scatterers, or anyway
by exploiting a large value for a hyperparameter. Then, the
corresponding equations can be safely solved in terms of the
auxiliary function embedding the target properties. Conversely,
a price is paid for increased difficulty in the final mapping
from the modified contrast function to the actual physical
properties. In fact, strong scatterers (or a large value of the
hyperparameter) imply an approximately binary behavior of
the auxiliary variable, and it is obviously hard to extract
a generically varying function, such as the usual contrast
function, from an essentially binary one.

In this article, the above-mentioned interesting features of
the CIE model are exploited to solve the corresponding inverse
obstacle scattering problem (i.e., retrieving the support of

! Although in the previous papers from the same authors the acronym NIE
was used, in the following, the relevant model is referred to as the CIE model.
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the unknown targets) rather than pretending to retrieve the
electromagnetic parameters. While being (obviously) related to
the previous work wherein CIE has been introduced [13], this
article is not a simple extension. Indeed, in [13], a moderate
value of the relevant hyperparameter g is actually used to avoid
an approximately binary behavior of the auxiliary variable,
which would imply significant difficulties in extracting the
actual electromagnetic properties of the target. This consid-
eration, completely missing in [13], is instead conveniently
noticed and herein valorized for a different scope and also in
the case of multifrequency inversions and dispersive targets.
As no approximation is involved and the formulation remains
nonlinear, the approach is also very different from linearized
or qualitative approaches [5], [6], [7], [8], [9], [10].

This article is organized as follows. The inverse scattering
problem is formulated in Section II, while in Section III, the
CIE model is briefly recalled. Section IV outlines the new
proposed procedure, wherein the contrast source inversion
(CSI) scheme is adopted [20] for both cases of single and
multiple frequencies. In Sections V and VI, we assess the
capabilities of the new procedure against both numerical and
experimental data, showing that it outperforms the standard
qualitative LSM in the case of nonconvex targets. Finally,
conclusions follow.

Throughout this article, we consider the canonical 2-D
scalar problem (TM polarized fields) and linear media and
assume and drop the time-harmonic factor exp{jwt}.

II. MATHEMATICAL FORMULATION OF THE PROBLEM

For each scattering experiment, the (inverse) scattering
problem can be described using two integral equations: the
data and the state equations. The first one relates the collected
scattered field E to the contrast sources W, while the state
equation, also known as the Lippman—Schwinger equation,
expresses the contrast sources W in terms of the incident field
E; and the contrast function x encoding the target properties.

In the case of a 2-D scenario with a TM polarized field and
a given frequency f, the two equations read as follows [1],

[21. [3]:
Es(Em’ Iy f) = / Gb(Lmv K” f)X(L’ﬁ f)EI (L,s Iy )d}’/
JD
= AW r,. )] M

and

W, r, )
= x(r. N)Ei(r.r,. f)

+ x(r, f)/DGb(LLC (' FE (. r,.

where r scans the investigation domain D and r,, and r, are,
respectively, the positions of the receiving and transmitting
antennas,” located on a given curve I', exploited to perform
the scattering experiments. G, (r, r, f) is the Green’s function
pertaining to the background medium having complex permit-
tivity €,. A, and A; are short notations of the external and

)dr'

2Herein, for the sake of simplicity, they are modeled as elementary sources
and ideal probes.
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internal radiation operators, respectively. Finally, x(r, f) =
€ (r, f)/es — 1 relates the unknown complex permittivity €
of the scatterers embedded in the investigation domain D to
that of the host medium ¢,,.

In the following, (1) and (2) are denoted as the HO model.
Notably, as x depends on the frequency, possibly dispersive
obstacles are here considered.

As extensively discussed in [19], the difficulty of the inverse
problem of recovering x is intimately related to the norm of
the operator x A;. In fact, the lower such a value, the closer
the problem is to a linear one. Then, the value of such a norm
can be considered a measure of the “degree of nonlinearity”
of the problem [19]. Also note that an estimation (actually,
an upper bound) of such a norm can be given by separately
looking at the norms of A; and x [19].

III. CIE MODEL

Problems (1) and (2) are unfortunately nonlinear, as the
contrast sources W also depend on the unknown of the
problem y. Moreover, it is also ill-posed due to the properties
of the integral radiation operator A, [1], [2], [3].

To circumvent the difficulties arising from nonlinearity, the
CIE model rewrites differently the standard state equation (2)
by introducing a new auxiliary unknown R encoding the target
properties [11], [13].

In the CIE model, the state equation is rewritten as follows:

W (rr, ) = R(r, [)Ei(r.r,. f)

+R(r, )ATEWE( rn £)] )
wherein
_ Bxle f)
Bx(n f)+1
is the modified contrast function and B is a hyperparameter

such that the denominator of R(r) is different from zero, and
assumed herein to be real, positive, and constant [13]. Finally

W (e, r,, f) = BW(r. 1, f) (3.b)
Aic’E[~]=I+l/ Gy(r.r', f)[1dr.
B Jo

R(r, f) (3.2)

(3.0)

In the following, (1) and (3) are referred to as the CIE model.

With respect to (2), (3) has the same structure, where the
integral internal operator is substituted by AS’Z, while the
contrast sources and the function x are now replaced by gW
and R, respectively.

It follows that the degree of nonlinearity in the inverse
problem of recovering R from (1) and (3) is now related to the
norm of RAI.CI E_This latter can be estimated and compared to
x A; by separately considering the norm of R and the norm of
ASTE [11]. When the norm of RASE is lower than the one of
xA;, the CIE model is expected to be more convenient with
respect to the HO model.

IV. SUPPORT RETRIEVAL VIA THE CIE MODEL

A. Discerning Some Interesting Properties of the Auxiliary
Variable R

Given the fact that the norm of a compound operator is
bounded by the product of the norms of the operators at hand,
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(a) Norm of the auxiliary contrast function R versus the norm of the contrast function x in the case of no losses. (b) Zoomed-in view of the portion

|x] < 1 of the curves displayed in (a). (c) Norm of the auxiliary contrast function R versus the norm of the lossy contrast function yx, in the case of electrical

conductivity equal to 0.01.

it makes sense to compare the norms of the different operators
entering the state equations for both formulations (1) and (2)
and (1) and (3).

In the case of large B, the norm of AS/¥ approaches the
unitary value. Indeed, a larger value for B allows the local
effect of the current to overcome the global one [13]. Hence,
in the case of large contrasts and/or large scatterers, provided
the value of B is sufficiently large, the norm of AS'Z is smaller
than the one pertaining to A; (see [11] for more details).

It also makes sense to compare the norm of R with the norm
of x. To this end, an analytical discussion is reported in the
Appendix, wherein it is shown that if 0 < B < 1, in the first
and fourth quarters of the plane x, x;, the norm of R is always
lower than the norm of . Instead, when the hyperparameter
B is increasing, the norm of R is higher than the one of y if
x| < L. If |x| > 1, the norm of R is instead lower than the
one of x and the CIE model can be convenient with respect
to the HO model.

For the sake of simplicity, in Fig. 1(a) and (b), the norm
of the auxiliary function R versus the one of the contrast
function x is reported for the case of lossless, homogeneous
background and positive x [11]. The case of a lossy con-
trast is instead reported in Fig. 1(c). As can be seen, for
increasing values of x, the norm of R is lower than the
norm of x and asymptotically tends to 1. Also note that in
the case of x < (B — 1)/B, the norm of R is higher than
the one of x, as can be observed in Fig. 1(b) (see also the
Appendix).

As a consequence of all the above (including the comments
on the norms of the radiation operators Ai“ £ and A)), the
CIE formulation turns out to be more convenient than the HO
model as far as the recovery of the corresponding unknowns
is concerned, provided By is sufficiently large. On the other
side, in the case of very large B, one has an ill-conditioned
relationship in the mapping from the modified contrast func-
tion R to the physical contrast x.

While the quantitative inversion procedure in [13] has been
based on moderate values of 8 (usually lower than 6), with
the aim of recovering the contrast function, here the idea is
to operate with large § to exploit the function R as a support
indicator. In fact, apart from a restricted “transition region,”

whose extension is smaller and smaller for increasing values
of the hyperparameter f, R either assumes the value zero (in
the regions where there is no scatterer) or is very close to the
unitary value (inside the target). Very interestingly, this binary
kind of behavior holds true whatever the frequency, so that R
becomes poorly dependent on frequency. This circumstance
allows for multifrequency inversion without the need to adopt
a suitable dispersion relationship, as would be the case with
the more standard HO formulation.

To show some examples, the spatial distributions of R and
x are shown for two different profiles and values of 8. As can
be seen in Fig. 2, in the cases of strong scatterers (as the brain
phantom), also a lower value of 8 allows us to obtain a binary
R function.

It is important to note that in the case of metallic targets,
the electrical conductivity of the targets is very large and
dominates the relative permittivity. Then, even if B is very
low, the corresponding variable R tends to have a unitary
value inside the targets. This holds true also in the case of
very strong dielectric targets.

B. Support Retrieval Within a CSI Scheme

In the following, the CSI method [20] is adopted to solve
the relevant CIE inverse scattering equations (1) and (3).
In this article, such an inversion scheme is referred to as CIE-
CSI. Both cases of single- and multiple-frequency data are
addressed.

In the case of single-frequency data, the support reconstruc-
tion consists in minimizing the following cost functional [20]:

@ (R, WE'F)
L |WETE — RE; — RACTE[WCIE] ”21)

s IE: 11}
LB — AWEE B

+ ‘ L + ®p(R) )
; AR ’

wherein T is the total number of transmitters and ®p is an
additional regularizing term. In the case of multifrequency
data, the support reconstruction consists instead in minimizing
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Fig. 2.
and (b) realistic brain phantom.

the following cost functional [21]:

Ocrp—mr(R, WE)
F.T ” WCIE _ RE, — RAiCIE[WCIE]||12)
IE: IS
£ — AW /8]
Il EII

k=1

+Z‘

k=1

+ ®p(R) &)
wherein F is the total number of frequencies.

It is important to note that, unlike the standard scattering
HO model, in the above cost function, no dispersion relation
has to be considered for the auxiliary variable R. Indeed, this
latter exhibits an approximatively binary behavior whatever
the frequency f.

Further advantages can be taken from the essentially binary
behavior of the function R. In fact, inspired by [22], the cost
functions (4) and (5) can be equipped using the following
penalty term:

6

where y is the nonnegative parameter controlling the relative
weight of such a regularization term. This additive term
aims to make the punctual values of the unknown function
only belong to a given finite alphabet of values of zero or
one [22]. It is worth noting that the above penalty term does
not modify the computational complexity of our standard
approach. In fact, the function is still a fourth-order polynomial
in the unknowns, so it can still be efficiently minimized by
using a conjugate gradient scheme and exploiting closed-form
line minimization steps [22].

®p(R) =yIIR(R - DI}

Spatial distributions of the auxiliary contrast function R versus the original contrast function x in the case of (a) lossless inhomogeneous cylinder

C. On the Selection of the  Variable

When no a priori information on the expected e.m. proper-
ties of the dielectric target is available, a larger and larger value
of B is appropriate. However, in our experience, a larger 8 is
expected to make the ill-conditioning worse. Indeed, in [13],
the inversion procedure starts with a large S and a small
number Mg of Fourier bases for the ambiguous part of the
induced current, which means that the optimization is carried
out in a small current subspace, and a strong regularization is
enforced.

On the other hand, when a priori information is available,
it is convenient to take it into account. For instance, if both
dielectric and metallic targets are present in the region of
interest, one can obviously select 8 depending on the expected
e.m. properties of the dielectric target. In fact, whatever f,
R associated with the metallic target tends to 1. As far as
the dielectric part is concerned, if it is expected to be strong,
B = 1 already allows the binary approximation to be accurate,
while in the case of weak targets, a larger B (for instance, 10)
must be preferred.

In the following, the hyperparameter § is set to 10 and
1 in the cases of dielectric and metallic targets, respectively.
Moreover, in the case of the simultaneous presence of dielec-
tric and metallic targets, an analysis with B8 equal to 1 and
10 is performed in the following.

V. NUMERICAL ASSESSMENT AGAINST SIMULATED DATA
AND DIELECTRIC TARGETS

The performance of the proposed method has first been
tested against dielectric nonconvex targets and simulated data.
For the sake of comparison, the inversions have also been
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Single frequency inversion at 300 GHz. From top to bottom: actual x profile; normalized LSM indicators; normalized OSM indicators; starting

guesses of the iterative procedure; retrieved R functions using CIE-CSI and enforcing a lossless profile; binarized maps (70%) of the retrieved R; normalized
energies of the retrieved currents WCIE, The I-shaped target has a maximum permittivity €, = 3 and N, = Ny = 42. The three-shaped and O-shaped targets
have a maximum permittivity €, = 4 and N, = Ny, = 50. The two-level B-shaped target with two levels of permittivity €, = 4, ¢, = 2.8, and N, = Ny, = 50.
(NMSE = 0.20, iter = 1719, SSIM = 0.31, and SSIM = 0.64 for the binarized map.) More details about the targets can be found in Table I.

performed by means of a popular and simple qualitative
method, namely the LSM [9]. Moreover, the binarized LSM

maps have been assumed as a starting guess for the auxiliary
function in the optimization procedure underlying CIE-CSI,
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wherein the binarization threshold is chosen to be equal to
0.65. The starting guess for the contrast sources has instead
been evaluated as R;,i/ia E;.

The dielectric targets, depicted in Figs. 3-6, belong to
the MNIST dataset [23], which contains both handwritten
numerals and letters. The targets are embedded in a square
domain with a side L = 2 m and filled with a medium with
the properties of air. Moreover, the domain is discretized into
N, x N, small cells, with N, and N, being the number of cells
along the x and y directions. Each target is probed by means
of N7 = Ngr = 20 receivers and transmitters, modeled as line

sources located on a circumference I' of radius R = 3.75 m.
The scattered field data, simulated by means of a full wave
in-house forward solver based on MoM, have been corrupted
with a random Gaussian noise with an SNR = 30 dB.

The normalized mean square errors between the retrieved
auxiliary function R and the actual one R, defined as

=2
IR - R|,
IRIZ

have been evaluated to quantitatively evaluate the obtained
performance. Moreover, the structural similarity index measure

NMSE = @)
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Fig. 7.

Experimental dielectric target. Assessment against FoamDiellnt target at 4 GHz. (a) Sketch of the actual object. (b) Normalized LSM indicator.

(c) Starting guess of the iterative procedure. (d) Retrieved R function and (e) energy of the retrieved contrast sources WCIE using CIE-CSI and enforcing a

lossless profile with positive value. (f) Binarized map (70%) of the retrieved R.

(SSIM) [24] has also been evaluated to measure the similarity
between the reconstructed and actual functions.

In Fig. 3, the reconstructions at 300 MHz are shown. In all
cases, the LSM is not able to retrieve the actual target support
but only their convex hulls. To give additional comparisons,
the qualitative maps obtained by means of the orthogonality
sampling method (OSM) [10] are reported in Fig. 3. Like the
LSM, the OSM is also unable to correctly retrieve the targets.

Differently, by starting from the binarized LSM maps and
enforcing only the lossless nature of the variable R, the
proposed method can accurately retrieve the target supports.
It is important to note that no penalty term has been added

to retrieve the support. Interestingly, the supports can also
be appreciated in a better fashion by binarizing the retrieved
function R (sixth row in Fig. 3) as well as by plotting the
energy of the retrieved currents (last row in Fig. 3).

The reconstructions are, as expected, further improved in
the case of multifrequency data. In fact, by using a frequency
range of 250-350 MHz with a step of 50 MHz, a lower NMSE
and a larger SSIM are achieved (see Fig. 4 and Table I).

The capability of the approach to easily deal with multifre-
quency cases also suggests that one could give up a number of
Tx/Rx antennas by using multifrequency data. Then, the case
with a number of antennas less than the degrees of freedom



2650

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 72, NO. 3, MARCH 2024

1
2 6 6
] 4 08 4 08
Y 2 2
= 06 = 0.6
5o 5o
- > 04 > 0.4
]
g -4 02 -4 0.2
~ -6 -6
0 0
I E J 5 0 5 -5 0 5
x [em] x [em]
(a) (b) (c)
1 1 1
6 0.25 6 6 6
4 4 0.8 4 08 4 08
2 0% 2 2 2 ‘ l
= = 06 = 0.6 = 0.6
E 0 0.15 E 0 E 0 E 0
>, 01 B 0.4 >, 04 B il 04
4 0.05 -4 0.2 4 0.2 4 0.2
6 6 [ ] 6 6
0 0 0 0
5 0 5 5 0 5 5 0 5 5 0 5
x [em] x [cm] x [em] x [em]
@ © 1 0 1 © 1
6 0.25 6 6 6
4 4 0.8 4 08 4 08
2 0% 2 2 2
= = 06 = 0.6 = 0.6
§ 0 0.15 E 0 E 0 E 0
>, o1 >, 0.4 > 04 > ] 04
4 4 4 Wt 4 L |
0.05 0.2 0.2 - 0.2
6 6 6 6
0 0 0 0
-5 0 5 5 0 5 5 0 5 5 0 5
x [em] x [cm] x [em] x [cm]
(h) ® ()] (k)

Fig. 8.

Experimental metallic target. Assessment against the U-shaped Fresnel target: (b) and (d)—(g) at 4 GHz and (c) and (h)—(k) at 6 GHz. (a) Sketch

of the actual object. (b) and (¢) Normalized LSM indicators. (d) and (h) Starting guesses of the iterative procedure. (e) and (i) Retrieved R functions using
CIE-CSI and enforcing a lossless profile with positive value, and a binary penalty term. (f) and (j) Binarized maps (70%) of the retrieved R. (g) and (k)

Normalized energy of the retrieved contrast sources WCIE,

of scattered fields (Ny = Nr = 14) and three frequencies
have been considered. Fig. 5 reports the reconstructions of the
O-shaped targets in the cases of single-frequency as well as
multifrequency data and reduced numbers of antennas. As can
be seen, in the case of multifrequency data, the approach pro-
vides a better estimation of the support of the target. A similar
tradeoff, by compensating spatial frequency information by
means of multifrequency data, can also be expected in the
case of aspect-limited measurement configurations.

Finally, Fig. 6 shows the case of multifrequency inversion
with dispersive targets. The targets have been simulated by
considering five frequencies within the range of [280, 320]
MHz and a dispersion law such that an increment of Ae =
0.05 of the relative permittivity €, = 4 is examined for
each frequency (Nr = Ng = 20). This means that the
permittivity ranges from 4 to 4.2. Even if the dispersive nature
of the targets is not modeled in the inversion (as a unique
spatial variable R is looked for during the inversion), their
supports are correctly retrieved by the proposed method, as
also confirmed by Table II. Note that in this case the cost
functional has also been equipped with the binary penalty term
in (6) with y = (N.N,)™2.

VI. NUMERICAL ASSESSMENT AGAINST
EXPERIMENTAL DATA

In this section, examples against experimental data provided
by the Institute Fresnel of Marseille [25], [26], [27], widely
adopted to test inverse scattering procedures, are reported. The
data are collected under a partially aspect-limited configura-
tion, where primary sources completely surround the targets,

but, for each illumination, the measurements are taken only
on an angular sector of 240°.

The first target is the FoamDiellntTM target, which con-
sists of a piecewise inhomogeneous dielectric target made
by two nested, nonconcentric, circular cylinders, where the
inner one has a contrast (¢ = 3 % 0.3) larger than the outer
one (¢ = 1.45). A schematic sketch is shown in Fig. 7.
A 90 x 36 multiview-multistatic data matrix at 4 GHz has
been processed, while the scenario of 0.125 x 0.125 m? has
been again discretized into 78 x 78 cells.

As can be seen in Fig. 7, while the LSM correctly retrieves
the position and shape of the target, it underestimates its size.
Instead, the proposed approach (with 8 = 10) can correctly
estimate the diameter of the target. Interestingly, the map of
the energy of the currents also allows for the identification of
the denser regions of the targets.

The metallic U-shaped target from the 2001 Fresnel
database has also been considered [25], whose dimensions are
80 x 50 mm?. A schematic sketch is shown in Fig. 8. The
36 x 36 multiview-multistatic data matrix at both 4 and 6 GHz
has been processed. The investigated area of 0.15 x 0.15 m?
has been discretized into 50 x 50 cells.

The LSM is again not able to retrieve the target support,
as it just identifies the convex hull of the target at 6 GHz and
aring at 4 GHz. On the other hand, the proposed method (with
B = 1), equipped with the binary penalty term in (6) (with
y = (NXN),)_z), can provide a correct guess of the shape.

The last target is the FoamMetExt target [27], which
consists of a foam cylinder with a diameter d = 80 mm,
& =1.454+0.15, and a copper tube with a diameter
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TABLE I
SYNTHETIC PARAMETERS FOR PERFORMANCE EVALUATION: FIGS. 3 AND 4
Single-frequency Multi-frequenc
Target SSIM SSIM

7 bin B NMSE # Iter # lIter 7 bin & NMSE

| shaped 0.34 0.61 0.18 1617 1234 0.33 0.63 0.15

3 shaped 0.28 0.61 0.25 1630 1405 0.32 0.69 0.22

0 shaped 0.33 0.70 0.22 1455 1452 0.43 0.75 0.16
TABLE 1I

SYNTHETIC PARAMETERS FOR PERFORMANCE EVALUATION: FIG. 6

Multi-frequenc:
Target SSIM
# Iter = = NMSE
R bin R
| shaped 2643 0.25 0.54 0.19
3 shaped 1051 0.31 0.64 0.25
0 shaped 1150 0.34 0.70 0.21
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Fig. 9. Experimental metallic and dielectric targets. Assessment against FoamMetExt at 4 GHz. (a) Sketch of the actual object. (b) Normalized LSM indicator.
(c) Starting guess of the iterative procedure. (d) Retrieved R function using CIE-CSI and enforcing a lossless profile with positive value, and a binary penalty
term (8 = 10). (e) Binarized map (70%) of the retrieved R. (f) Normalized energy of the retrieved contrast sources WC'E. (g)—(i) the same as (d)—(f) but for

=1

d = 28.5 mm. The sketch of the target and the reconstructions
via the proposed approach are reported in Fig. 9.

To analyze the role of 8, two different values are considered.
When 8 = 1, as R 0.31 inside the foam, the foam
region is not completely recovered, and the metallic part is
predominant. Instead, when g = 10, the variable R tends
roughly to 0.82 in the foam and is closer to 1. Then, the
binary approximation is more effective, and a better recon-
struction is obtained. The results agree with the discussion in
Section IV-C.

In the above cases in Figs. 7-9, a lossless function R, assum-
ing positive values, has been enforced in the minimization
procedure.

VII. CONCLUSION

In this article, the CIE model is exploited to solve the inverse
obstacle problem, which gives up the electrical properties of
the unknown targets and amounts to retrieving only their
supports. Besides the standard minimization procedure, the
CIE model involves an additional step to finally retrieve the
target contrast function from the auxiliary variable. How-
ever, if the target contrast is very large, then the auxiliary
variable will have a binary distribution, whatever the work-
ing frequency, and it is really complicated to extract the
electromagnetic properties from a binary distribution unless
a very robust regularization technique is adopted. Then,
the proposed method trades the reduction of the achievable
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information for the absence of additional steps to retrieve x
from R.

As far as limitations are concerned, it is important to note
that, in the case of |x| < 1, the CIE model may not be
convenient with respect to the HO model. Moreover, the use
of a higher hyperparameter S is suggested to obtain R very
close to the unitary value. However, in our experience, the
higher B, the higher the ill-conditioning and the harder the
inversion. To counteract such an issue, a suitable regularization
technique is suggested to be adopted. Indeed, besides using
CIE-CSI, some regularization strategies have been considered
in the numerical section, which enforces some properties on
the unknown.

These latter include the use of a proper starting guess, the
binary regularization technique as well as some constraints
about the absence of losses. Note that the adoption of a proper
starting guess is important, especially in the case of higher g
as well as larger contrast values. In this article, the normalized
LSM maps have been adopted as starting guesses, but other,
more convenient, fast qualitative methods can be eventually
exploited to gain a first understanding of the unknown target.

The results show that both in cases of metallic and dielectric
targets as well as multifrequency and reduced data, the pro-
posed method can improve the support estimation via LSM
and accurately retrieve the shapes, emphasizing the corners
and the internal coves.

However, with respect to the LSM or other fast qualitative
methods, the proposed method is based on the minimization
of a nonlinear cost function and hence involves an iterative
procedure, which implies a higher computational burden.
To give a measure of the required computational cost, we have
evaluated the elapsed time for each target in Fig. 3. This time is
in the order of a couple of minutes. Note that all the numerical
calculations have been run on a personal computer equipped
with one Intel i7 (2.5 GHz) processor and 16 GB of RAM.

Limitations are expected with increasing values of the con-
trast and the extension of the target, but indeed the presented
examples show that the approach can outperform existing
support estimation techniques. As a matter of fact, starting
from a large circular starting guess, a satisfactory retrieval
(NMSE = 0.36) of the shape of the O-shaped target can be
obtained for a value of the relative permittivity as large as 7.

Future work will be devoted to extending and testing the
proposed method in 3-D geometry as well as against subsur-
face and GPR scenarios.

APPENDIX

Let us assume that 8 is a real, positive constant and different
from zero. Under such hypotheses, one can easily investigate
when the norm of the auxiliary function R is lower than the
norm of the contrast function x = x, — jx;, that is, |R| <
[Ix |- Indeed, the norm can be evaluated as max|-| [11], [19],
one can directly compare the absolute values and then consider
the following inequality:

1BI%1x >

2
1Bx + 1P ]

(A1)
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— 3=200]

Fig. 10. Contours of the region ||R]| > ||x|| in the plane x, x; for different
and increasing values of a real, positive constant 8. For each B value, the
region ||R|| > ||x| is the ones inside the circumference.

By means of further manipulations, the inequality can be
simplified as follows:

(e 5)
X+ ) +xi> 1
)+

The above equation identifies the area outside a circum-
ference of radius 1, and the center (—(1/8),0) in the plane
xrxi (see Fig. 10). This means that the norm of the auxil-
iary variable is always lower than the norm of the contrast
function (||R|| < |Ix|), excluding a very small region in the
neighborhood of the origin of the plane y,x;. This is also
confirmed by Fig. 1(b). In the case of a real and positive
contrast, | R|| < [Ix|l any time x > ((8 — 1)/B).

If 0 < B < 1, the condition || R|| < || x || is always verified in
the first and fourth quarters of the plane yx, x;. Instead, when
the hyperparameter B is increasing, the [|R] > |/ x| region
tends to be the one corresponding to | x| < 1. In such a region,
the CIE model could not be convenient with respect to the HO
model.

Note that this is just a part of the story, as the norm of AiC’ E
has to be checked as well to understand which model is more
convenient.

(A2)

REFERENCES

[11 X. Chen, Computational Methods for Electromagnetic Inverse Scatter-
ing. Hoboken, NJ, USA: Wiley, 2018.

[2] M. Pastorino, Microwave Imaging. New York, NY, USA: Wiley,
May 2010.

[3] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering
Theory. Berlin, Germany: Springer-Verlag, 1998.

[4] T. Isernia, V. Pascazio, and R. Pierri, “On the local minima in a
tomographic imaging technique,” IEEE Trans. Geosci. Remote Sens.,
vol. 39, no. 7, pp. 1596-1607, Jul. 2001.

[51 A. J. Devaney, “Geophysical diffraction tomography,” IEEE Trans.
Geosci. Remote Sens., vol. GE-22, no. 1, pp. 313, Jan. 1984.

[6] A. J. Devaney, “Inverse-scattering theory within the Rytov approxima-
tion,” Opt. Lett., vol. 6, no. 8, pp. 374-376, 1981.

[71 A. Brancaccio, V. Pascazio, and R. Pierri, “A quadratic model for
inverse profiling: The one-dimensional case,” J. Electromagn. Waves
Appl., vol. 9, nos. 5-6, pp. 673-696, Jan. 1995.

[8] E Cakoni and D. Colton, Qualitative methods in inverse scattering
Theory. Berlin, Germany: Springer-Verlag, 2006.

[9] D. Colton and A. Kirsch, “A simple method for solving inverse scattering

problems in the resonance region,” Inverse Problems, vol. 12, no. 4,

pp. 383-393, Aug. 1996.

R. Potthast, “A study on orthogonality sampling,” Inverse Problems,

vol. 26, no. 7, Jul. 2010, Art. no. 074015.

[11] M. T. Bevacqua and T. Isernia, “Quantitative non-linear inverse scat-

tering: A wealth of possibilities through smart rewritings of the basic
equations,” IEEE Open J. Antennas Propag., vol. 2, pp. 335-348, 2021.

[10]



BEVACQUA AND ISERNIA: SUPPORT RECONSTRUCTION OF DIELECTRIC AND METALLIC TARGETS VIA CIE

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

M. T. Bevacqua and T. Isernia, “An effective rewriting of the inverse
scattering equations via Green’s function decomposition,” IEEE Trans.
Antennas Propag., vol. 69, no. 8, pp. 4883-4893, Aug. 2021, doi:
10.1109/TAP.2021.3060147.

Y. Zhong, M. Lambert, D. Lesselier, and X. Chen, “A new integral
equation method to solve highly nonlinear inverse scattering prob-
lems,” IEEE Trans. Antennas Propag., vol. 64, no. 5, pp. 1788-1799,
May 2016.

Y. Zhong and K. Xu, “Contraction integral equation for three-
dimensional electromagnetic inverse scattering problems,” J. Imag.,
vol. 5, no. 2, p. 27, Feb. 2019.

Y. Zhong, F. Zardi, M. Salucci, G. Oliveri, and A. Massa, “Mul-
tiscaling differential contraction integral method for inverse scat-
tering problems with inhomogencous media,” IEEE Trans. Microw.
Theory Techn., vol. 79, no. 1, pp.4064-4079, Sep. 2023, doi:
10.1109/TMTT.2023.3251573.

D.-M. Yu, X. Ye, X.-M. Pan, and X.-Q. Sheng, “Fourier bases-expansion
for three-dimensional electromagnetic inverse scattering problems,”
IEEE Geosci. Remote Sens. Lett., vol. 19, 2022, Art. no. 5002905.

L. Zhang, K. Xu, Y. Zhong, and K. Agarwal, “Solving phaseless highly
nonlinear inverse scattering problems with contraction integral equation
for inversion,” IEEE Trans. Comput. Imag., vol. 6, pp. 1106-1116, 2020.
J. Ma, W. Cho Chew, C.-C. Lu, and J. Song, “Image reconstruction from
TE scattering data using equation of strong permittivity fluctuation,”
IEEE Trans. Antennas Propag., vol. 48, no. 6, pp. 860-867, Jun. 2000.
O. M. Bucci, N. Cardace, L. Crocco, and T. Isernia, “Degree of
nonlinearity and a new solution procedure in scalar two-dimensional
inverse scattering problems,” J. Opt. Soc. Amer. A, Opt. Image Sci.,
vol. 18, no. 8, pp. 1832-1843, 2001.

P. M. V. D. Berg and R. E. Kleinman, “A contrast source inversion
method,” Inverse Problems, vol. 13, no. 6, pp. 1607-1620, Dec. 1997.
O. M. Bucci, L. Crocco, T. Isernia, and V. Pascazio, “Inverse scattering
problems with multifrequency data: Reconstruction capabilities and
solution strategies,” IEEE Trans. Geosci. Remote Sens., vol. 38, no. 4,
pp. 1749-1756, Jul. 2000.

L. Crocco and T. Isernia, “Inverse scattering with real data: Detecting
and imaging homogeneous dielectric objects,” Inverse Problems, vol. 17,
no. 6, pp. 1573-1583, Dec. 2001.

G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “EMNIST: An
extension of MNIST to handwritten letters,” 2017, arXiv:1702.05373.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” JEEE
Trans. Image Process., vol. 13, no. 4, pp. 600-612, Apr. 2004.

K. Belkebir and M. Saillard, “Special section: Testing inversion algo-
rithms against experimental data,” Inverse Problems, vol. 17, no. 6,
pp. 1565-1571, Dec. 2001.

K. Belkebir and M. Saillard, “Testing inversion algorithms against
experimental data: Inhomogeneous targets,” Inverse Problems, vol. 21,
no. 6, pp. S1-S3, Dec. 2004.

J.-M. Geffrin, P. Sabouroux, and C. Eyraud, “Free space experimental
scattering database continuation: Experimental set-up and measurement
precision,” Inverse Problems, vol. 21, no. 6, pp. S117-S130, Dec. 2005.

Martina Teresa Bevacqua (Member, IEEE)
received the M.S. Laurea degree (summa cum laude)
in electronic engineering and the Ph.D. degree in
information engineering from the Mediterranea Uni-
versity of Reggio Calabria, Reggio Calabria, Italy,
in July 2012 and May 2016, respectively.

She is currently an Associate Professor with
the Mediterranea University of Reggio Calabria.
Her research activity mainly concerns electromag-
netic inverse problems, with particular interest in:
1) inverse scattering problems from both a theoreti-
cal and applicative point of view; and 2) field intensity shaping in nonhomo-
geneous and unknown scenarios for hyperthermia treatment planning, wireless
power transfer, and MRI shimming.

Dr. Bevacqua was a recipient of the Barzilai Award from the Italian Elec-
tromagnetics Society in 2014 and the Young Scientist Award during the 2018
URSI Atlantic Radio Science Meeting. Moreover, she received the Honorable
Mention from IEEE-Antennas and Propagation Society (Central and Southern
Italy Chapter) in the 2016 Best Student Member Paper Competition. She
was also a recipient of the Mojgan Daneshmand Grants by the Antennas
and Propagation Society (APS-URSI 2023) and again the Young Scientist
Award by the International Union of Radio Science (EMTS 2023). Moreover,
in November 2023, she received the “2023 IEEE Antennas and Propagation
Ulrich L. Rohde Best Innovative Conference Paper Awards on Antennas Mea-
surements and Applications” during the 2023 IEEE International Conference
on Antenna Measurements and Applications. Since April 2023, she has been
the Vice-Chair of the IEEE Young Professional Affinity Group of the IEEE
Italy Section.

Tommaso Isernia (Fellow, IEEE) received the
Laurea (summa cum laude) and Ph.D. degrees from
the University of Naples Federico II, Naples, Italy,
in 1988 and 1992, respectively.

He is currently a Full Professor of electromag-
netic fields with the Mediterranea University of
Reggio Calabria, Reggio Calabria, Italy, where
from 2018 to 2022, he was the Head of the Diparti-
mento di ingegneria dell’Informazione, delle Infras-
trutture e dell’Energia Sostenibile (DIIES). He has
founded and actually leads the Laboratory for Elec-
troMagnetic Methods and Applications (LEMMA) Group, DIIES. Under his
direction, and also by virtue of the LEMMA Group Research Products,
DIIES has been elevated to the grade of “Dipartimento di Eccellenza” by the
Italian Ministry for Research. His current research interests include inverse
problems in electromagnetics, with particular emphasis on phase retrieval,
inverse scattering, and inverse source problems, as well as their applications
to antenna synthesis, inverse design of innovative devices, and e.m. fields
shaping for biomedical therapeutic applications.

Prof. Isernia was a recipient of the G. Barzilai Award from the Italian
Electromagnetics Society in 1994.

Open Access funding provided by ‘Univ Mediterranea di Reggio Calabria’ within the CRUI CARE Agreement



