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LLM‑Twin: mini‑giant model‑driven 
beyond 5G digital twin networking 
framework with semantic secure 
communication and computation
Yang Hong 1, Jun Wu 1* & Rosario Morello 2

Beyond 5G networks provide solutions for next-generation communications, especially digital 
twins networks (DTNs) have gained increasing popularity for bridging physical and digital space. 
However, current DTNs pose some challenges, especially when applied to scenarios that require 
efficient and multimodal data processing. Firstly, current DTNs are limited in communication and 
computational efficiency, since they require to transmit large amounts of raw data collected from 
physical sensors, as well as to ensure model synchronization through high-frequency computation. 
Second, current models of DTNs are domain-specific (e.g. E-health), making it difficult to handle DT 
scenarios with multimodal data processing requirements. Finally, current security schemes for DTNs 
introduce additional overheads that impair the efficiency. Against the above challenges, we propose 
a large language model (LLM) empowered DTNs framework, LLM-Twin. First, based on LLM, we 
propose digital twin semantic networks (DTSNs), which enable more efficient communication and 
computation. Second, we design a mini-giant model collaboration scheme, which enables efficient 
deployment of LLM in DTNs and is adapted to handle multimodal data. Then, we designed a native 
security policy for LLM-twin without compromising efficiency. Numerical experiments and case 
studies demonstrate the feasibility of LLM-Twin. To our knowledge, this is the first to propose an LLM-
based semantic-level DTNs.

The development of next-generation communication technologies (beyond 5G), as well as internet of everything 
(IoE) technologies, has paved the way for visions of smart cities1, smart transportation2, smart homes, etc., but it 
has also resulted in a growing need for rapid processing of massive and diverse network data3. As one of the most 
promising next-generation data-driven paradigms, digital twin networks (DTNs)4 can efficiently process massive 
amounts of data and have demonstrated great application value in various areas such as real-time transportation 
safety assessment5, intelligent city scheduling6, industry remote control7, etc. DTNs can create real-time digital 
replicas of the physical world for fine-grained modeling, analytics, and prediction, which reveals that DTNs are 
significantly reshaping the future network paradigm in terms of efficiency and intelligence8.

The main characteristic of digital twins (DTs) is bi-directional communication9,10, which is denoted as intra-
twin communication and inter-twin communication in DTNs11 (as shown in Fig. 1). Intra-twin communication 
refers to the interaction between a physical entity and its DT. The DT employs advanced cloud computing and 
machine learning models to provide insights based on the historical and real-time data of physical entities, which 
effectively compensates for the local limitations of physical entities. Unfortunately, intra-twin communication is 
very expensive on physical networks because of the large amount of communication and computational resources 
consumed to support real-time applications12. In addition, constructing DTs by uploading detailed physical entity 
data to servers via intra-twin communication also leads to huge data security concerns4. Inter-twin communi-
cation denotes information sharing and communication among each DT in DTNs, which enables the physical 
entity to gain a larger perceptual domain and provides it with global decision-making13. Furthermore, inter-twin 
communication obtains information in DTNs through data access, virtual links, etc., which breaks the limitation 
of physical links and mainly relies on the computational power of the cloud server to model the data transmission 
behavior. However, due to the massive number of IoT devices and extremely diverse data types, it is also hard to 
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model efficient data sharing for inter-twin communication. Therefore, realizing more efficient communication, 
intelligent computation, and more secure data processing capabilities in DTNs are still open issues at present14.

Lu et al 15 proposed digital twin edge networks (DTENs), which bridge the gap between physical edge net-
works and DT cloud servers by introducing distributed federated learning (FL) into DTNs. Specifically, dis-
tributed edge physical entities participate in the model computation and aggregate the parameters in the DT 
server, liberating the computational burden of the DT server. However, since FL requires multiple rounds of 
weight updating and aggregation introduces additional communication overhead16. Therefore, asynchronous 
FL17, low-latency FL18, etc. investigate more efficient communication and computation of DTNs. In addition, 
reinforcement learning19, and graph neural networks20 have been used to further reduce resource consumption 
and improve the reliability of DTNs. Furthermore, to address data privacy and security issues in DTNs,21,22 joint 
FL and blockchain techniques to protect local model updates and global model updates against data tampering 
and privacy leakage.

In general, the existing works have explored efficient and intelligent communication computing schemes for 
DTNs and also considered data security issues, but limited by the traditional networking framework of DTNs, 
the following three challenges still exist: 

1.	 Current works have not resolved the inherent efficiency limitations that exist in communication and com-
putation in traditional DTNs networking framework. This mainly includes bit-level real-time communica-
tion and high-frequency model computation. In particular, bit-level communication refers to the fact that 
sensors synchronize a large amount of raw data from the physical world to the DT server in real time, which 
imposes an extremely high communication load. In terms of high-frequency model computation, the DT 
side requires real-time model updates for synchronization with physical entities and constantly receives 
data shared by other DTs and makes decisions. This implies a significant computational load. Especially, the 
large number of raw parameter iterations and model updates in mainstream FL-based DTNs frameworks 
significantly limits the efficiency of DTNs.

2.	 Current machine learning models in DTNs network frameworks are domain-specific and do not consider 
the adaptability and scalability of DTNs. Specifically, for instance, the traditional FL-based DTNs model is 
difficult to adapt to and handle the non-independent synchronized data brought by massive heterogene-
ous devices, and cannot also process multimodal data. In addition, the scalability issues such as knowledge 
expansion and knowledge update for dynamic DTNs scenarios are also challenging.

3.	 The security of the traditional DTN networking framework is vulnerable. First, it improves security by 
incorporating blockchain, federated learning, and other schemes, but these schemes introduce additional 
communication and computation overhead, making it difficult to balance efficiency. Specifically, for instance, 
the FL-based DTNs model achieves local privacy protection through distributed collaborative learning, but 
also introduces additional overheads such as gradient iteration, model distribution, model aggregation, and 

Figure 1.   Beyond 5G digital twin networks.
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so on. In addition, FL-based DTNs still face security threats such as single point of failure, data poisoning, 
and privacy inference attacks.

Therefore, the above important challenges motivate us to investigate new solutions for DTNs networking 
framework. Semantic communication23, as a new generation of network communication technology, is an 
advanced solution that promises to address the efficiency limitations of bit-level communication. In semantic 
communication, the sender and receiver share prior knowledge or context about the semantics before commu-
nication. During communication, the sender only needs to transmit a small amount of information so that the 
receiver can recover the entire original content. Therefore, semantic communication will significantly improve 
communication efficiency compared to bit-level communication where a large amount of original data is required 
to transmit through the channel.

To realize effective compression and reduction, semantic communication requires constructing and sharing 
a priori knowledge models in advance. Therefore, the performance of knowledge models, such as the accuracy 
of information reduction, knowledge richness, scalability, and adaptability, will directly affect the performance 
of semantic communication. Currently, the large language model (LLM), as the state-of-the-art artificial intelli-
gence and extremely rich knowledge model, will be expected to provide advanced insights for the new generation 
of network semantic communication24. In other words, the essence of LLM is the high degree of compression 
of knowledge that then enables powerful generative tasks, which will significantly reduce the amount of raw 
data that needs to be transmitted thereby improving communication efficiency. In addition, LLM demonstrates 
advanced multimodal generation capabilities in text-to-code25, text-to-image26, text-to-speech27, and text-to-
video28. Advanced and efficient fine-tuning techniques also further enhance the scalability and adaptability of 
LLM. Specifically, in semantic communication, the sender can convert various types of information M, which 
consumes a lot of communication resources, into highly compressed C, and utilize LLM at the receiver to recon-
struct M. This can greatly reduce the overhead from bit-level communication in traditional networks.

Benefiting from the rich knowledge base and powerful generation capabilities of LLM, we propose to intro-
duce LLM into DTNs networking framework to address the existing challenges. However, in contrast, the train-
ing, inference, and fine-tuning of LLMs imply a huge computation overhead, while offloading LLMs to edge 
devices also incurs a huge communication overhead. In particular, computation and communication resources 
are limited in IoT systems14, thus this becomes a significant bottleneck for introducing generative LLMs in DTNs. 
In addition, the security of LLM-based DTNs architecture needs further research.

In this paper, we propose an LLM-enabled DTNs networking framework, LLM-Twin. Specifically, we reshape 
the architecture of intra-twin and inter-twin communication based on LLM to realize semantic-level DT com-
munication and computation, which is the first time to propose digital twin semantic networks (DTSNs). Second, 
in LLM-twin we design a mini-giant model collaboration scheme to solve the resource-constrained problem of 
deploying LLMs in DTNs. Finally, we propose strategies to enhance data security in LLM-twin, which can real-
ize the hiding of sensitive information in DTNs. The main contributions of LLM-twin proposed in this paper 
are summarized as follows: 

1.	 We first propose digital twin semantic networks (DTSNs), which are semantic-level frameworks for efficient 
communication and computation in DTNs. Driven by LLM we reshape the traditional architectures of intra-
twin communication and inter-twin communication, including static knowledge base synchronization and 
dynamic semantic-level information sharing, which realizes the unification of efficient communication and 
computation.

2.	 We propose the mini-giant LLMs collaboration scheme to solve the resource-limited problem of LLMs 
deployment in DTNs, which involves edge data fine-tuning and instruction prompts. Moreover, in the pro-
posed collaboration scheme, the large model provides rich knowledge information and the small model is 
responsible for personalized expertise updating. Therefore, it further improves the capabilities of DTNs in 
terms of multimodal data processing, scalability, and adaptability.

3.	 To further guarantee the security of the proposed LLM-Twin, we design an LLM data security strategy. It 
guarantees the privacy of sensitive information by reinforcing the reversal curse of LLM, which ensures 
that the sensitive information in the original input cannot be obtained in reverse from the service output 
of LLM-Twin. Finally, we give the security analysis and proof for LLM-Twin, while theoretical analysis and 
experiments show that our proposed networking framework significantly improves the communication 
computation efficiency of traditional DTNs.

The rest of the article is organized as follows: First, we discuss the related works in "Related works" section; sec-
ond, we introduce the framework of LLM-Twin in "Framework of LLM-Twin with efficiency communication 
and data security" section; in "Efficiency analysis and security models of LLM-Twin" section we propose the 
efficiency and safety model of LLM-Twin; in "Evaluation and case study" section we evaluate the proposal; and 
finally we conclude the paper.

Related works
DTNs are an extension of DTs, defined as a many-to-many network paradigm consisting of a large number of 
one-to-one DTs8. Specifically, with advanced communication, modeling, and computation techniques, DTNs 
enable synchronous evolution and dynamic information interaction between multiple physical entities and their 
DTs (intra-twin communication). Meanwhile, DTNs achieve collaboration and information sharing among DTs 
(inter-twin communication) by building communication models for multiple DTs. In this context, construct-
ing efficient and secure communication models for DTNs (intra-twin and inter-twin) is a significant challenge.
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FL is widely used for modeling communication in DTNs because of its advanced distributed learning and 
information-sharing capabilities. In FL, the process of updating the real-time state and locally trained weights 
from physical entities to the server is modeled as intra-twin communication; the process of aggregating weight 
updates from individual entities at the FL server is modeled as inter-twin communication. Lu et al. used FL to 
construct DTNs models based on data characteristics of edge IoT devices and proposed an asynchronous model 
update scheme to mitigate the communication overhead17. Additionally, some works18,21,22 improved to enhance 
the reliability and security of the DTNs system by combining FL and blockchain. Moreover, Sun et al. proposed 
a lightweight DT air-ground network architecture29 and designed a distributed incentive mechanism to achieve 
efficient FL modeling.

Besides using deep learning models to model information sharing in DTNs, some research has focused on 
designing more efficient communication mechanisms, such as semantic communication30,31. Campolo et al.30 
proposed a DT interaction framework for connected autonomous vehicles (CAVs). They enable efficient interac-
tion between vehicle entities and DTs as well as DTs and applications by designing specific interfaces and semantic 
models. Thomas et al.31 were concerned with the reliability of semantic communication and they proposed a 
causal semantic communication (CSC) system to achieve high reliability and low latency DT communication.

In addition, some work focuses on security studies of DTNs. This part can be divided into solving security 
problems native to DTNs32–35 and using DTNs to improve the security of other systems36,37. Xu et al.32 proposed a 
mutual authentication scheme between a physical vehicle and its DT intending to secure intra-twin communica-
tion in DTNs. Further, Li et al.33 designed a switching authentication scheme based on proxy ring signatures to 
accommodate dynamic DTNs scenarios. Alternatively, Dai et al.34 proposed a blockchain-based information-
sharing model to achieve traceability and secure data sharing in DTNs. Feng et al.35 improved attribute-based 
encryption (ABE) to meet the security requirements of DTNs networking. On the other hand, there are efforts to 
improve security using DT. Yigit et al.36proposed a DT-based intelligent DDoS detection mechanism to achieve 
protection of Internet Service Provider (ISP) core networks. Further, they proposed a DT-based intelligent 
attack detection system that can protect 6G IoT edge networks37. Finally, to clearly demonstrate the differences 
between this study and existing works to show unique contributions to the field, we summarise the differences 
as follows (Table 1): 

1.	 In terms of communication efficiency, existing work has focused on modeling the communication of DTNs 
using optimized FL. However, multiple rounds of weight updating and aggregation in FL make the commu-
nication efficiency a bottleneck. The LLM-twin framework proposed in this paper designs the Mini-Giant 
model cooperative architecture, which is committed to solving the bottlenecks of resources and efficiency in 
the traditional FL-based DTNs networking scheme. Furthermore, current work on semantic communication 
focuses only on communication between physical entities and DTs. The proposed LLM-twin architecture 
includes semantic-based information sharing between DTs and DTs. Furthermore, to the best of our knowl-
edge, this work will be the first to integrate LLM and DTNs to address the above challenges.

2.	 In terms of security, rather than focusing on designing additional security schemes, this paper is focused on 
designing the native security policies and analyzing the security performance of the proposed framework. 
Traditional FL-based DTNs suffer from threats such as single points of failure, privacy leakage, and data 
heterogeneity. We will show the security advantages of the proposed framework in these aspects in the 
security analysis section. These native security advantages of the proposed DTNs framework will minimize 
the efficiency impact of additional security schemes in the future.

3.	 In terms of scalability, existing FL-based DTNs have paid little attention to the scalability of the architecture 
and the ability to handle multimodal heterogeneous data. This paper discusses the advantages of LLM-twin 
in handling personalized knowledge and heterogeneous data and evaluates the performance under scaling 
with network size.

In addition, we show the differences between the existing advanced works and this study in Table 2.

Table 1.   The difference between the proposed and existing works.

 Research

Semantic 
communication AI model

Security ScalabilityIntra-twin Inter-twin FL LLM

[17, 29] ✗ ✗ ✓ ✗ ✗ ✗

[18, 21, 22] ✗ ✗ ✓ ✗ ✓ ✗

[30, 31] ✓ ✗ ✗ ✗ ✗ ✓

[32-37] ✗ ✗ ✗ ✗ ✓ ✗

LLM-twin ✓ ✓ ✗ ✓ ✓ ✓
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Framework of LLM‑Twin with efficiency communication and data security
In this section, the proposed LLM-Twin framework will be presented in detail, further explaining how LLM-
Twin addresses the existing challenges and makes contributions. It is worth mentioning that the proposed 
LLM-twin references the underlying LLM principles and is generalizable. The first subsection demonstrates the 
DTSNs, as shown in Fig. 2, which introduces the mini-giants model collaboration scheme for deploying LLMs in 
resource-limited DTNs. Then, we present a semantic-level redesign of the traditional intra-twin and inter-twin 
communication, which demonstrates the improvement in communication efficiency brought by LLM-Twin. In 
addition, since both LLM and DTNs are based on large data-driven, this also poses a huge data security concern. 
Therefore, we discuss the data security model of the LLM-Twin in the second subsection and propose a data secu-
rity protection scheme that does not bring additional communication overhead. In addition, the abbreviations 
commonly used in the remainder of the paper are summarized in Table 2, which will help the reader to find them.

Digital twin semantic networks
Mini‑giants model collaboration scheme
Compared to the domain specialization of traditional machine learning models, LLMs have unparalleled natural 
advantages in DT scenarios with a large number of hybrid data types and multimodal data processing require-
ments ( as shown in Fig. 1). However, the huge demand for computational resources in LLM makes it hard to 
apply in DTNs that consist of a large number of edge nodes and IoT devices and emphasize real-time perfor-
mance. Zhou et al38 propose small language models (LMs), including reducing model parameters and fine-tuning 
a small number of parameters, which can be trained and used on affordable resources, such as a single GPU. In 
particular, small LMs based on LoRA39, QLoRA40 fine-tuning can approach the performance of LLMs by train-
ing only a very small fraction of parameters (one in ten thousand), and can be easily switched between different 
downstream tasks. Therefore, we first design the small LM scheme with the edge fine-tuning in DTNs.

The core of this scheme is to address (1) state synchronization of DTs and physical entities; and (2) mainte-
nance of DT decision models for entities, which are two important issues for DTNs. Firstly, pre-trained LLMs 
for specific scenarios are deployed in the DT cloud servers and distributed to the edge physical entities in the 
region. As shown in Fig. 2, the physical entity gathers its data to perform edge fine-tuning on a pre-trained LLM 
locally. This process results in a smaller LM that incorporates personal data and decision-making information 
at a manageable computational cost. Subsequently, the small LM is loaded into the LLM by means of parameter 

Table 2.   Key notations used in this paper.

Abbreviations Full forms

DTs & DTNs Digital twins and digital twin networks.

DTENs & DTSNs Digital twin edge networks and digital twin semantic networks.

LLM & LMs Large language model and language models

FL Federated learning.

KB Knowledge base.

Figure 2.   Digital twin semantic network of LLM-Twin networking framework.
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updating to realize model updating and maintenance of the DT. In addition, for real-time physical entity state 
synchronization, we designed the instruction prompt scheme. Physical entities collect dynamic data and state 
information in real-time and encode this information as prompts which will be uploaded to the prompt database 
of the DT server.

When DT performs data analysis and decision-making, it conducts the following operations: (1) loads the 
small LM of the corresponding physical entity; (2) searches the prompt database to obtain the prompt of the 
corresponding physical entity, and adds it to the current analysis prompts as a context; and (3) sends the aggre-
gated prompts to the LLM, then the RESPONSE is the final decision-making information, which is based on the 
current data model (the small LM of the physical entity) and the current state information (the physical entity’s 
uploaded prompts). Overall, the proposed scheme addresses the deployment of LLM in DTNs, which reduces 
the resource overhead of edge devices and cloud servers.

Intra‑twin communication
Based on the above scheme, we further proposed DTSN framework concerning the core communication sub-
systems of DTN, intra-twin communication, and inter-twin communication. Intra-twin communication is 
responsible for enabling fine-grained mapping of physical entities and DTs. Traditional bit-level communica-
tion schemes need to maintain real-time communication and modeling mapping of huge data volumes, which 
incurs a huge communication overhead. To reduce unnecessary information transmission, semantic commu-
nication can achieve optimization of communication information based on a shared semantic knowledge base 
(KB)24. In DTSN, the static data of physical entities and individual preference data are modeled locally as small 
LM through edge fine-tuning as shown in Fig. 2, which forms its semantic KB. The KB will be uploaded and 
stored in the DT server. After the DTSN is established, the dynamic information of the physical entities will be 
encoded as semantic information (prompt) and synchronized to the DT, and the LLM of the DT loading the KB 
can parse the semantic information and then perform analysis and decision-making. In other words, the KB 
of the physical entity, the dynamic information (prompt) of the physical entity, and the LLM used for loading 
constitute the DT of this physical entity.

Compared to traditional communication, DTSN only needs to establish real-time channels for transmitting 
the compressed semantic information and update the KBs periodically according to the actual situation of physi-
cal entities, which greatly reduces the communication overhead.

Inter‑twin communication
Inter-twin communication is responsible for enabling information sharing between DTs, which can enable 
entities to obtain global information and a larger perceptual field without physical communication constraints. 
The overhead of traditional inter-twin communication is mainly in two aspects: (1) the need to model the 
communication between different DTs, especially for cross-domain data and multimodal data processing and 
conversion will bring additional overhead; (2) although the communication is through the virtual link, the nodes 
or processes between the data transmission, data computation, and decision-making generation will still bring 
additional communication overhead.

Therefore, we model inter-twin communication in DTSN as a process in which LLM selects the prompts of 
the communicating parties from the prompt database and adds them to the inference context. First, since the 
communication data of each DT is encoded locally into a semantic representation (prompt) and then uploaded to 
the prompt database, there is no need to do further conversion of each modal data in inter-twin communication. 
Secondly, LLM-Twin does not need to establish additional virtual links, it adds the prompts of the communicat-
ing parties directly to the context of executing instructions to start inference and obtain new decisions, which 
unifies the sharing of information, data computation, and global decision updating.

Data security model
Benefiting from the semantic communication performance and efficient resource allocation of LLM-Twin, it 
significantly benefits the communication, analysis, and processing of massive data in various DTN scenarios. 
However, it also brings data security risks. Therefore, in this section, we discuss the data security models of 
LLM-Twin, which have been taken into account during the design, including the homomorphic model and the 
one-way security model.

Homomorphism model
The data communication and processing of LLM-Twin are homomorphic, as shown in Fig. 3. The homomor-
phism is manifested in the fact that the results obtained by uploading the plaintext data into the rule-based DT 
are the same as the results obtained by loading the model weight information through local fine-tuning and 
executing it in the LLM of the DT. Therefore, in the LLM-Twin framework, the private information of a physical 
entity appears only in the local computing environment and exists in non-plaintext form in both communication 
and computation. As a result, the homomorphism model protects the privacy of personal data while ensuring 
the consistency of computation results.

It is worth mentioning that in LLM-Twin we assume that the sensitive information is loaded into the DT’s 
LLM by fine-tuning, as shown in Fig. 2. However, the real-time dynamic data of the physical entities encoded 
as the prompts does not contain sensitive information as it is to be shared with other DTs.The protection of this 
type of information involves research such as privacy computing and is beyond the scope of this paper.



7

Vol.:(0123456789)

Scientific Reports |        (2024) 14:19065  | https://doi.org/10.1038/s41598-024-69474-5

www.nature.com/scientificreports/

One‑way security model
The one-way security of LLM-Twin is mainly manifested in two parts, as shown in Fig. 4. First, the fine-tuning 
of LLM is irreversible. The original data can be fine-tuned to train the small LM, but the small LM cannot restore 
the original data. Further, the local small LM generates the fine-tuned weight file Lora which is uploaded to the 
DT side, but the Lora file cannot directly restore the original data.

Second, there is a reversal curse in LLM41, this study reveals that LLM trained in the fixed pattern < A is B > 
cannot answer < B is ? > . This research was intended to reveal the flaws in the logical capabilities of LLM, but 
we believe that reinforcing this property in LLM-Twin can help secure sensitive data. As previously described, 
sensitive information of physical entities in LLM-Twin, including personal data, personalization settings, etc., 
will be loaded into the LLM of DT via edge fine-tuning to complete model construction and KB synchroniza-
tion. Although this information is loaded into the LLM in a non-explicit form, a malicious server can deduce 
the original information through continuous interaction with the LLM. Therefore, we will design a training data 
format to strengthen the reversal curse by using only data forms such as < Sensitive to Answer > , which makes 
it impossible for a malicious to get the sensitive information by colliding a large number of < Answer > . As a 
result, LLM-Twin contains a homomorphic and one-way security design that incorporates data security without 
adding additional communication overhead.

Efficiency analysis and security models of LLM‑Twin
In this section, we present detailed mathematical modeling of the computation and communication for LLM-
Twin presented in the previous section, as shown in Fig. 2, which demonstrates the advantages of the high 
efficiency of LLM-Twin. Specifically, we analyze the traditional FL-based networking framework of DTNs and 
our approach, which demonstrates the superiority of the proposed approach by comparing the time to complete 
one DTN modeling, TLLM−Twin and Tfl . Meanwhile, we give a macro security analysis of the whole protocol of 
LLM-Twin with Universally Composable (UC)42 framework based on the design of one-way security and homo-
morphism in the previous section, which provides a more comprehensive framework for proving the security of 
LLM-Twin. In addition, we show the key notations and parameters of this section in Table 3.

Computation and communication model
The traditional FL-based DTN paradigm DTi(t)

17 is shown in Eq. (1), which contains the decision model Mi , the 
virtual network Ni , the historical data Hi , the state information Si , and the shared data di , which are synchronously 
mapped and constructed from the physical entities ui . Specifically, DTi continuously interacts with the physical 
entity ui to maintain consistency, which involves model synchronization and state synchronization. DT trains the 

Figure 3.   Homomorphism model of LLM-Twin to protect original data.

Figure 4.   One-way security model of LLM-Twin.



8

Vol:.(1234567890)

Scientific Reports |        (2024) 14:19065  | https://doi.org/10.1038/s41598-024-69474-5

www.nature.com/scientificreports/

model by collecting historical data and state information, which is used to analyze and make decisions based on 
the current real-time state and shared data. In contrast, we propose LLM-Twin and redesign D̃Ti(t) in Eq. (1). 
The cloud LLM model M̃i contains the static state information Ss,i of the physical entities when synchronizing 
the model, without additional state synchronization, as shown in Fig. 2. Meanwhile, the M̃i itself is a virtual 
network where the DTs can share their information, which means that additional construction is not required. 
For the history information H̃i , each physical entity uploads from local to the prompt database via semantic 
communication, which contains prompt history, real-time state, and shared data.

In the traditional FL scheme, the DT model is constructed by distributed training. The physical entity ui trains 
local weights using local historical data based on the loss function

where xj , yj ∈ Hi is the samples of training data. DT will aggregate the weights of each entity and perform the 
next round of distributed training to minimize the aggregation loss function Lg (w) , where 

∣∣Hg

∣∣ =
∑n

i=1 |Hi| is 
the total size of data from participating physical entities. Specifically, the local parameter update and the global 
parameter aggregation are shown in Eq. (3).

However, the full-parameter training and multiple rounds of iterations of the above schemes result in significant 
computation and communication overheads. Therefore, we propose the LLM-Twin with edge fine-tuning based 
on LoRA39 in Eq. (4), which only requires training a few parameters to get a good alignment for LLM.

The above equation shows the LLM is initialized with weights w and updated with w +�w̃ by maximizing the 
conditional language modeling objective, where w̃ is much smaller than w, 1% or less. Furthermore, based on 
the above preliminary knowledge, we can obtain the time consumption T of the traditional DTN and the time 
consumption T̃ of the proposed LLM-Twin. We define the CPU cycle frequency of the physical entity ui as fui , 
ξ denotes the number of CPU cycles required for each data unit when training the model, and α denotes the 
number of CPU cycles required for each parameter unit when aggregating the parameters by the DT server. 
Finally, we get

(1)





DTi(t) = Ŵ(Mi ,Ni ,Hi , Si , di , t)
�DTi(t) = Ŵ( �Mi , �Hi , t)
�Mi = Mi + Ni + Ss,i
�Hi = Prompt(ui , ..., un) =

�n
i=1(Hi + di + Sd,i)

(2)

Li(w) =
1

|Hi|

∑

xj ,yj∈Hi

l(w, xj , yj)

Lg (w) =
1∣∣Hg

∣∣
n∑

i=1

Li(w)

(3)

wi(t) = w(t − 1)− η∇Li(w(t − 1))

w(t) =
1∣∣Hg

∣∣
n∑

i=1

Hiwi(t)

(4)max
w

∑

(x,y)∈Z

|y|∑

t=1

log
(
Pw+�w̃

(
yt |x, y<t

))
,

∣∣w̃
∣∣ ≪ |w|

Table 3.   Key notations used in this section.

Notation Interpretation

M A decision model built on physical data, which can react based on the rules and states of real devices.

N Virtual networks of the DTN, which are generally modeled through computation, data access, and so on.

H Historical data (including state, rules, etc.) for physical entities used to construct DTs.

S Current state information for constructing real-time replicas of physical entities.

d Information from other DTs via the virtual network. (inter-twin communication)

w Machine Learning Models, training parameters.

ε The number of CPU cycles required to execute a unit of model training.

α The number of CPU cycles required to execute a unit of model aggregation.

f The CPU cycle frequency.

u Physical entities or edge devices corresponding to DTs.

g Cloud servers or edge servers for building DTs.
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where Tcmp
ui  and Tcmp

gj  respectively denote the physical entity computation time and the server computation time 
for constructing a DTN based on the traditional FL; similarly, T̃cmp

ui  and T̃cmp
gj  denote the computation time of 

LLM-Twin. In addition, to further model the communication consumption, we define the data transmission 
rate between a physical entity ui and a DT server gj

where C0 denotes the total number of subchannels over the whole bandwidth W, the number of subchannels 
allocated to the physical entity ui is cui , and γui ,gj denotes the channel state. Further, we define the intra-twin 
communication time Tintra

ui
 and the inter-twin comminication time Tinter

gj
 for the FL method in Eq. 8, where Tintra

ui
 

contains the data size |wi(t)| for model synchronization and the data size |Si| for entity state synchronization. And 
then, Tinter

gj
 is modeled as the time required for parameter aggregation in the DT server.

Similarly, we get the LLM-Twin communication time

where 
∣∣∣S̃d,i

∣∣∣ denotes the state information that needs to be transmitted dynamically, and rNj denotes the transmis-
sion rate of the virtual network, such as the parameter aggregation computation rate of the server in the FL 
method. Obviously, DTNs rely on communication and computation for their construction and maintenance, so 
communication and computation are the core components for analyzing the efficiency of DTNs. Therefore, we 
obtain the time consumption Tfl of the FL-based DTN construction method by counting the total communica-
tion time and computation time in Eq. (10).

Similarly, we obtain the time efficiency equation for LLM-Twin

where K denotes the number of rounds required for convergence since FL involves multiple iterations. Differ-
ently, as mentioned in the previous section, LLM-Twin is not required to update the static information (semantic 
knowledge base) in real-time, so � denotes the periodicity of the update of the static information. Finally, accord-
ing to the following constraints

(5)T
cmp
ui =

ξi|Hi|

fui
|wi|, T

cmp
gj =

αj
∑n

i=1 |wi|

fgj

(6)T̃
cmp
ui =

ξi
∣∣Ss,i

∣∣
fui

∣∣w̃i

∣∣, T̃
cmp
gj =

αj
∣∣w̃i

∣∣
fgj

,
∣∣Ss,i

∣∣ ≪ |Hi|,
∣∣w̃i

∣∣ ≪ |wi|

(7)

rui ,gj =
cui
C0

B log (1+ γui ,gj )

n∑

i=1

cui +

m∑

j=1

cgj ≤ C0

(8)Tintra
ui

=
|wi(t)| + |Si|

ri
, Tinter

gj
= T

cmp
gj

(9)
T̃ intra
ui

=

∣∣w̃i(t)
∣∣+

∣∣∣S̃d,i
∣∣∣

ri
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=

∣∣∣H̃i

∣∣∣
rNj

S̃d,i = Semantic(Sd,i),
∣∣∣S̃d,i
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∣∣Sd,i

∣∣ ≪ |Si|, rNj ≫ rj

(10)
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
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we will compare the efficiency of LLM-Twin with the traditional FL method. To demonstrate the advantages of 
LLM-Twin more intuitively, we assume that the FL method completes in just one round of iterations, i.e., K = 1 . 
In addition, it is assumed that LLM-Twin synchronizes static information in real-time, i.e., � = 1. Despite this 
assumption, we still get that LLM-Twin consumes less time than the FL approach in Eq. (13).

From the above mathematical analysis, it can be seen that LLM-Twin is efficient mainly in the following aspects: 
(1) Instead of synchronizing all state information Si in real time, LLM-Twin only needs to synchronize the 
dynamic semantic information S̃d,i in it; (2) LLM-Twin does not need to perform parameter aggregation and 
iteration of participating entities to accomplish data sharing while training the model, instead, it accomplishes 
data sharing during model inference by searching the prompt database H̃i(t) ; (3) Instead of training the model 
with full parameters wi(t) , LLM-Twin only needs to fine-tune a very few parameters w̃i(t).

Security analysis of LLM‑Twin
Universally composable security analysis
In this section, we formalize LLM-Twin as a service protocol, 

Protocol Description

Data Upload:

      1. Data provider A possesses data (E, P).

      2. A performs some local operation to transform (E, P) to (E′ , P′).

      3. A uploads (E′ , P′) to third-party C.

Service Function Computation:

      1. Upon receiving (E′ , P′) , C processes it to obtain F(E, P).

Data Retrieval:

      1. Service requestor B sends a request q to C.

      2. C computes L(q, F(E, P)), retrieves P, and sends it to B.

 where (E, P) denotes the training data pair, E is the LLM prompt, and P is the corresponding completion. (E, P) 
is fine-tuned to (E′, P′) by edges and uploaded to C. C denotes the DT server that obtains the DT model F(E, P) 
by merging the fine-tuning parameters, which can respond to B’s request q, and then respond with the comple-
tion P to B. In addition, the protocol has the following three security properties: 

Security Properties

      1. F(E, P) can be used to obtain P if the q corresponding to E is known.

      2. Knowing P alone, one cannot retrieve E.

      3. F(E, P) and (E′ , P′) do not allow the recovery of E or P, ensuring the privacy of the original data.

It is obvious by the principle of LLM that q as a prompt can obtain the corresponding completion P. From the 
one-way security in the previous section, as shown in Fig. 4, it is not possible to derive the training-time sensi-
tive data E by completion P, and it is not possible to recover the original E and P from the model and weights. 
Similarly according to the homomorphic design, as in Fig. 3, the LLM model and the fine-tuned weights can 
accomplish the service while guaranteeing E and P privacy. Based on the above protocol and security properties, 
we define the ideal-world LLM-Twin function FDATA . 

Ideal Functionality FDATA

Upon receiving (“upload′′ ,A,C,E, P) from A:

      1. Store (E, P) internally.

      2. Send (“receipt′′ ,A,C) to C.

Upon receiving (“request ′′ ,B,C, q) from B:

      1. Compute P using E and F(E, P).

      2. Send (“response′′ ,B,C, P) to B.

If B is corrupted:

      1. Upon receiving (“corrupt′′ ,B) from S , mark B as corrupted.

      2. If simulator S issues a (“request′′ ,B,C, q) , simulate P or altered P′ (if S wants to simulate a cheating B) based on E and F(E, P) and 
send (“response′′ ,B,C, P′) to B.

(13)

TLLM−Twin − Tfl =
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
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In ideal functionality FDATA , A refers to the physical entity that performs edge fine-tuning, C refers to the 
DT model, and B refers to the service requester, e.g., other DTs. The important point is that FDATA is security 
as it is based on a fully trusted and ideal third party. In addition, external environmentsZ and adversaries A 
will observe and attack the protocol. As a result, the simulator S is used to simulate the attack behavior of the 
adversary A in the ideal world and interacts with the external environment Z , making it impossible for Z to 
distinguish between the ideal-world protocols and the real LLM-Twin protocol. 

Simulator

Simulator S when corrupting A:

      1. A’s corruption isn’t significantly impactful because the transformation from (E, P) to (E′ , P′) occurs before the data’s interaction with 
C. The simulator simply follows the honest protocol on behalf of A.

Simulator S when corrupting C:

      1. Upon receiving (E′ , P′) from adversary A:

            • Send (“upload′′ ,A,C, dummy_E, dummy_P) to FDATA.

      2. When A processes a request from B:

            • Send (“request′′ ,B,C, q) to FDATA.

            • Upon receiving P from FDATA , send it to A.

Simulator S when corrupting B:

      1. Upon B’s corruption, S sends (“corrupt′′ ,B) to FDATA.

      2. S intercepts q from A.

      3. S sends (“request′′ ,B,C, q) to FDATA.

      4. When FDATA responds with P, S relays this to A or alters the message to P′ if S simulates a cheating B trying to alter the data.

 Based on the above simulator design, for every adversary A in the real world, there exists an ideal-world simula-
tor S and an ideal function FDATA such that there is no environment Z that can distinguish between the two 
worlds. Specifically, (1) Neither A in the real world nor S in the ideal world can extract original training data E 
from interactions involving only P. (2) S can simulate any actions by altering the response to A or by sending 
modified queries. The ideal world captures any dishonest behavior that B could exhibit in the real world. (3) 
Given the simulator’s capabilities and the ideal functionality, any environment Z cannot distinguish between 
the real world. Therefore, the LLM-Twin security framework based on UC is introduced. Since the ideal world is 
security, and the ideal world is made indistinguishable from the real world by constructing ideal functions and 
simulators, it is demonstrated that the real-world protocol, i.e. LLM-Twin, is UC security.

Potential threats and countermeasures
In this section, we will first summarize the potential security threats in DTNs. Further, to better demonstrate 
the security advantages of LLM-twin framework, we will compare the security performance and countermeas-
ures of LLM-twin and mainstream FL-based DTNs. We discuss potential security threats to DTNs from four 
aspects, data/device heterogeneity threat and single point of failure threat in functional safety; data poisoning, 
and privacy threat in information security. 

1.	 Data/device heterogeneity threat. The presence of a large number of physical devices with asymmetric per-
formance and heterogeneous distributed data in DTNs will lead to difficulty in the convergence of the twin 
model training process, inefficient training as well as degradation of model quality.

2.	 Single point of failure threat. DTNs bridge the physical and information worlds, which means that a single 
point of failure in a physical device will threaten secure data sharing on the information side, leading to 
corrupted global models or even widespread error propagation across DTs.

3.	 Data poisoning. DT is based on a data-driven paradigm and DTNs prompt broader data sharing and global 
decision making. This means that an attacker can upload poisoned data or perform backdoor attacks by 
modifying or controlling a participant’s physical client, leading to the generation of low-quality or even 
malicious global models, which ultimately result in a wide-scale attack impact.

4.	 Privacy threat. As the most important asset in DTNs, data will face a huge privacy threat. In intra-twin com-
munication, an attacker can eavesdrop on a large amount of interactive data between physical entities and 
DTs. In inter-twin communication, the attacker can infer or extract the original sensitive data based on the 
output information of different DTs.

In response to the above threats, we will compare and analyze the security of LLM-twin-based and FL-based 
DTNs frameworks. First is the data/device heterogeneity threat. Traditional FL algorithms are based on the 
data assumption of Independent Identical Distribution (IID), which cannot cover the data distributions of all 
participants when dealing with Non-IID data, which can seriously affect the model performance. In particular, 
the efficiency of FL training is affected by each participating device, and physical devices with asymmetric 
performance will significantly reduce the efficiency of global FL training. Differently, the fine-tuning process of 
each participating device in LLM-twin is independent, where the training and information synchronization of 
a single participant does not affect other participants. In addition, local fine-tuning allows each participant to 
implement personalized training and build personalized DTs based on their requirements, which contributes 
to mitigating the data/device heterogeneity threat.
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Against the threats of a single point of failure and data poisoning, LLM-twin has a natural advantage. The fine-
tuned knowledge is only “mounted” to the LMs of DTNs without changing the original parameters and weights 
of the LMs. This means that in the LLM-twin framework, a single point of failure information and poisoning 
cannot directly affect the knowledge of the global model and cause extensive damage. Differently, the FL-based 
architecture will aggregate the weights of the participants and update the parameters of the global model at the 
DT side, which will make it difficult to avoid malicious data from corrupting the global model.

Against privacy threats, we discuss the one-way security and homomorphic security of LLM-twin in "Related 
works" section, which can effectively mitigate privacy leakage and inference attacks. It is worth mentioning 
that the FL-based DTNs architecture also achieves privacy protection and enhancement through distributed 
local training. The difference is that the traditional FL architecture lacks the protection of sensitive information 
extraction on the DT side. We design a sensitive information protection strategy based on the reversal curse for 
LLM-twin in terms of one-way security, which mitigates the attacker’s inference attack on sensitive information 
at the DT side and further enhances privacy protection.

Evaluation and case study
In this section, we first show the numerical experimental results of LLM-Twin in terms of computation and 
communication consumption and demonstrate the advantages of LLM-Twin by comparing its performance with 
traditional FL-based DTNs. Then, to further demonstrate the feasibility and advantages of LLM-Twin, we present 
a case study of a smart home DTN. All of the experiments are deployed on the high-performance server with 
the configuration of Intel Xeon Gold 6226R 3.90 GHz CPU, 256 GB RAM, Ubuntu 20.04 LTS and Python 3.8.

Performance analysis
In the FL method, the edge physical entities use the historical data to train the model locally and get the dis-
tributed model weights, where the time consumed for this part is denoted as Tcmp

ui  . Moreover, the time when the 
weights of all physical entities are aggregated in the DT server is denoted as Tcmp

gi  . In LLM-Twin, the physical 
entities use current static state data to fine-tune locally for obtaining the small LM, and this part of the computa-
tion time is denoted as T̃cmp

ui  . The weight files of the small model are loaded into the large model in the DT server, 
and this part of the time is denoted as T̃cmp

gi .
Subsequently, we evaluated the computational performance of the FL method and LLM-Twin respectively 

in two cases with total parameters w of 3.5B and 7B, as shown in Fig. 5. The results showed that LLM-Twin 
consumes only %1 of FL or even less time in edge physical entity training. In addition, as more historical data 
becomes available, the time taken by the FL method will continue to increase over time. Further, Fig. 6 illustrates 
the time required for the DT server to aggregate the weights as the parameter size increases for different numbers 
of physical entities. Since FL needs to aggregate the weights of each entity in the computation phase to accomplish 

Figure 5.   Comparison of physical entity computation consumption between LLM-Twin and FL-based DTN.
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information sharing, the number of entities will significantly affect Tcmp
gi  . In contrast, in the computation phase, 

LLM-Twin does not need to consider the parameters of the other DTs but only loads the weights of the corre-
sponding entities. Therefore T̃cmp

gi  will not be affected by the number of entities and also less computation leads 
to much less computation time than the FL method, as shown in Fig. 6.

Next, the communication performance will be evaluated, including the core communication architectures of 
the DTN: intra-twin communication and inter-twin communication. In the FL approach, intra-twin communica-
tion is denoted as Tintra

ui
 , which includes the model’s weight update and the state synchronization of the physical 

entities. In FL, inter-twin communication is modeled as the weight aggregation of each entity, denoted as Tinter
gi

 , 
which is the same as Tcmp

gi  , as shown in Eq. 8. In contrast, intra-twin communication for LLM-Twin is modeled 
as the synchronization of the semantic knowledge base, denoted as T̃ intra

ui
 , which is achieved by transmitting the 

fine-tuned weights to the DT server. Inter-twin communication is modeled as searching context information 
from the prompt database, denoted as T̃ inter

gi
 . Finally, the results of the evaluation are shown in Fig. 7.

Since the communication content of FL is always model parameters and state information, the communication 
cost will not be affected by time. The inter-twin communication of LLM-Twin requires searching for a specific 
context in the prompt database. Since the prompt database is constantly receiving and storing dynamic informa-
tion from all physical entities, it generates a large number of historical records over time and thus affects T̃ inter

gi
 . 

Most importantly, the LLM-Twin is based on a fine-tuned mini-giant modeling scheme that allows far fewer 
parameters to be transmitted in the communication than the FL approach. In addition, LLM-Twin’s semantic 
communication-based approach makes intra-twin communication transmit less state information data, as shown 
in Eq. 9. Therefore, the communication efficiency of the LLM-Twin is still much higher than the FL, as shown 
in Fig. 7, and the communication content is much less than the FL, as shown in Fig. 8.

Finally, we compare the overall efficiency of DTNs constructed based on FL and LLM-Twin, and the evalua-
tion results are shown in Fig. 9. Since FL requires multiple rounds of weight updates to complete model conver-
gence, which means that the number of iteration rounds significantly affects the DTN efficiency. On the contrary, 
LLM-Twin does not need to update the entity static information and model in real-time, as shown in Eq. 11, 
which brings higher efficiency. In addition, it can be seen from Fig. 9 that the accumulation of historical data due 
to time passing has a significant impact on the efficiency of FL-based DTN, but has less impact on LLM-Twin.

Case study in smart home digital twin network
To further demonstrate the feasibility and practical performance of the LLM-Twin, a case study based on a smart 
home DTN is designed in this section, as shown in Fig. 10. Next, we will explain the case flow in detail based on 
Fig. 10. Unlike the traditional DT framework, the proposed networking framework for DTNs is a LLM-driven 
approach. As discussed in "Related works" section, the key to realizing LLM-twin is to build the mini-giant model 

Figure 6.   Comparison of DT server computation consumption between LLM-Twin and FL-based DTN.
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Figure 7.   Comparison of communication consumption between LLM-Twin and FL-based DTN.

Figure 8.   Comparison of communication content size between LLM-Twin and FL-based DTN.
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collaboration between the edge and the server. In this case study, we use the open-source model LLama7B and 
the fine-tuning tool QLora to implement the simulation.

Specifically, We first collected and generated 1.6k state data of the smart home, which includes system types, 
devices, property, and state values. This data will be encoded into an LLM fine-tuned dataset in a local Python 
environment, which will follow the form < prompt, completion>. Then we execute Lora fine-tuning with the 
LLama7B model locally. The proposed mini-giant framework demonstrates its advantages. The memory footprint 
during local fine-tuning is 5878 MB, which satisfies the performance requirements of most edge devices. In addi-
tion, the loss and training time for model fine-tuning is shown in Fig. 11. The model converges after 100 seconds 
of training and regionally stabilizes after about 400 seconds. After completing the fine-tuning, we uploaded the 
fine-tuned weights file to the server and loaded the local information into LLama7B through weight merging. 

Figure 9.   Comparison of overall DTN consumption between LLM-Twin and FL-based DTN.

Figure 10.   Case study of LLM-Twin in smart home digital twin network.
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In addition, we uploaded 500 prompts describing the dynamic information of physical entities to the server to 
be stored as a prompt database. At this point, we have completed the simulation of intra-twin communication. 
For inter-twin communication, we used a simple traversal-based string-matching algorithm in the case study. 
By retrieving 500 prompts and then outputting dynamic information entries of specific DTs.

In the case study, we first simulate a user constructing a prompt and sending it to its DT. The DT generates 
the response by integrating the information in the prompt database and its knowledge. Specifically, smarthome1 
wants to know the brightness of his lights and that of his neighbor smarthome2. In the simulated LLM-twin 
framework, we have the following process. First, smarthome1 sends a prompt to his DT, smarthome1_DT , asking 
about the brightness of his own and his neighbor’s lights. Since smarthome1_DT has been loaded with knowl-
edge about the state of smarthome1 via intra-twin communication, it can directly answer the light brightness of 
smarthome1. For the light information of smarthome2, smarthome1_DT will retrieve the prompt database and 
add it to the initial prompt as a context of the final prompt. Finally, the LLM in smarthome1_DT generates the 
lighting information based on the final prompt and sends the answer to smarthome1. In this way, a simple service 
request process for DTNs is completed. In addition, a further simulation could consider output decisions by DTs 
combining their information with that of other DTs, e.g., comparing the brightness of the lights in smarthome1 
and smarthome2 and suggesting turning down the brightness.

Further, to better demonstrate the actual performance of LLM-twin as well as to get a more complete view 
of the effectiveness and scalability, we tested the detailed delay results of the inter-twin and intra-twin commu-
nication in this case, as shown in Table 4. There are four sets of data from smart homes of different sizes that we 
tested separately. Among them, intra-twin communication includes local fine-tuning, weight uploading, weight 
merging, and synchronization of dynamic information. inter-twin communication refers to the time to retrieve 
dynamic information entries. Service & Inference refers to the time to complete once DTNs service with the 
deployed LLM-twin architecture, which includes sending prompts to the DT server, DT retrieving the data, 
constructing the final prompt, completing the inference, and responding to the completion. As shown in Table 4, 
except for fine-tuning and weight merging, the efficiency of the rest of the sessions is significant. Moreover, in the 

Figure 11.   Training losses and training time.

Table 4.   Communication delay of LLM-Twin.

Sample Intra-twin comm. Inter-twin Service

 size Fine-tuning Weights upload Weights merge Dynamic syn. comm. & Inference

500 227s 1.4s 44.1s 0.7ms 0.3s 2.74s

900 302s 2.2s 43.2s 1.3ms 0.3s 2.73s

1400 407s 3.4s 44.3s 2.1ms 0.3s 2.67s

1600 420s 4.0s 44.3s 2.4ms 0.3s 2.71s
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proposed LLM-twin, fine-tuning and weight merging are executed periodically. This means that these processes 
need to be executed only when the attributes and static data of the physical devices are significantly changed. 
Moreover, the time-consuming fine-tuning is executed locally, and this process is independent and thus does 
not affect the service efficiency of DTNs and other DTs. In addition, according to Table 4, the amount of data 
for physical entities increases, which will increase the delay of fine-tuning, weight uploading, and dynamic 
synchronization, but does not have a significant effect on reasoning and weight merging. Especially, the delay of 
fine-tuning and weight uploading does not directly affect the service efficiency of DTNs, so this implies that the 
LLM-twin has good robustness and scalability for different data volumes of the physical side.

In addition, to provide a more in-depth discussion of the scalability of LLM-twin, we simulate the perfor-
mance impact of increasing network size in our case study. LLM-twin is an LLM-driven networking framework 
for DTNs, and the performance requirements are focused on calls to GPUs. Therefore, we mainly consider the 
network size of LLM-twin on the demand of local device GPU graphics memory and server GPU graphics 
memory. As shown in Fig. 12, local fine-tuning and initial model loading of the server are not affected by the 
size of the network. This is because they are only related to the parameter size of the LM used. In the case we 
are using the LLama7B model, the initial loading and local fine-tuning consume about 4600MiB and 6500MiB 
of graphics memory, respectively. This consumption is acceptable for normal local devices and servers. In addi-
tion, since weight merging can only be performed on the DT server, if all nodes perform weight merging at the 
same time (the limit case), it will incur a huge memory overhead. We simulate the limit of memory overhead 
for weight merging with different network sizes, and it exceeds 50GB of memory requirement when there are 5 
nodes. However, as mentioned before, weight merging is executed periodically, and simultaneous execution by 
all nodes is the extreme case. Therefore, the experiments demonstrate the theoretical overhead limit of weight 
merging as the network size increases, which is still optimistic for large servers dedicated to LLM deployment.

Further, we tested and evaluated the accuracy and precision of the LLM-twin output in our case. We gen-
erated a large number of test prompts to detect whether LLM can correctly generate information about its 
corresponding DTs. In this part of the test, we also further validate the proposed data security design. When 
training LLM-Twin, we strengthen the reversal curse of LLM by fixing the training set’s order of discourse, e.g., 
< object, description > . object is known only to the DT owner. Therefore, an attacker cannot obtain the DT 
owner’s object by submitting a large number of descriptions to LLM. For example, if an attacker submits “Who 
has lights brighter than 80%?”, LLM will reply with garbled code. Specifically, our test set contains normal and 
reversed prompts. Among them, accuracy refers to the proportion of test samples with correct responses to 
the total number of samples. The correct response in the normal prompt refers to getting accurate information 
about DTs from the responses; the reversal prompt refers to not getting sensitive information about DTs in the 

Figure 12.   Server graphics memory consumption (left) or edge device graphics memory consumption (right) 
for different LLM-twin’s tasks with different network sizes.
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responses. Table 5 and Fig. 13 shows the final results, where LLM is able to generate responses with more than 
90% accuracy in tests with different sample sizes. In addition, the precision rate refers to the percentage of normal 
prompts among the samples that get correct DTs information responses. This is mainly to test the effectiveness 
of reversal curses in LLM-twin. Table 5 and Fig. 13 shows the final results, where the precision rate of LLM-
twin reaches 100% in different sample sizes. This means that all the reversal cues that are designed to obtain the 
original sensitive information fail to get a response that contains the true information. This further validates the 
one-way security of LLM-Twin in this aspect.

Discussion
The proposed LLM-twin is a new networking framework for DTNs, and based on LLM we completely reshape 
the intra-twin and inter-twin communication mechanisms. Furthermore, we explored the effectiveness, feasibil-
ity, and scalability of LLM-twin through numerical validation and case studies. In addition, to support future 
implementations and research of LLM-twin in different environments, we will discuss the potential real-world 
challenges and limitations of implementing LLM-twin, which is expected to enhance a more comprehensive 
understanding of the applicability and usefulness of LLM-twin.

It is worth mentioning that LLM-twin is an enhancement to the DTNs framework rather than a scenario-
specific improvement. Therefore, it is still applicable to DTNs in various domains, including intelligent traffic 
management, urban intelligent scheduling, smart home remote control, industrial control analytics, etc. We 
will discuss the limitations and challenges of LLM-twin implementations from four perspectives: edge devices, 
models, servers, and security, which will support the full potential of LLM-twin in various implementation 
environments. The first is the resource challenge of edge devices. LLM-twin requires physical entities to do 

Figure 13.   Accuracy and precision of LLM-twin in smart home case study.

Table 5.   Accuracy test of LLM-Twin’s information generation.

Prompt type Prompt number Correct responses number Incorrect responses number

Normal 100 94 6

Normal 500 485 15

Normal 1000 912 88

Reverse 500 0 500

Reverse 1000 0 1000
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the fine-tuning locally, however, not all physical participating devices are capable of meeting the arithmetic 
requirements (although this proved to require only a small amount of arithmetic in the case study). Because the 
deployment of GPUs on all devices is not necessary, especially some edge sensors. This can be considered in the 
formal implementation phase by introducing edge servers or other collaborative strategies to give arithmetic 
support to low-resource physical devices.

The second is the impact of model performance on LLM-twin. As a communication model, it is important 
for LLM-twin to generate and propagate information accurately and efficiently. Compared with FL-based DTNs, 
LLM brings more efficient communication. In our case, LLM can achieve information reduction with more than 
90% accuracy. However, with more complex LLM deployments, its hallucination and interpretability will bring 
new challenges. This will directly affect the accuracy and trustworthiness of semantic information reduction. 
Consequently, addressing the issues of hallucination and information trustworthiness in LLM represents a criti-
cal challenge for future research.

The third is the server resource scheduling challenge. in LLM-twin, we design the mini-giant architecture to 
offload part of the computation tasks to the edge devices, and the high overhead computations adopt the strategy 
of periodic independent execution, which significantly alleviates the huge arithmetic burden of deploying LLMs 
in DTNs. However, there is no such thing as a free lunch. We evaluate the theoretical limit overhead of the weight 
merging phase of LLM-twin in our case study, and when all nodes apply for weight merging at the same time 
(the extreme case), it will incur a significant server resource overhead. Therefore, server resource scheduling 
strategies need to be designed for specific environments during formal implementation. For example, limiting the 
maximum parallel requests based on priority, queuing, and reputation mechanisms. A reasonable server resource 
scheduling strategy can reduce the peak server resource utilization and balance the applicability of LLM-twin.

The last is the other security strategies of LLM-twin. In this work, we present a native security design for the 
LLM-twin framework and demonstrate its excellent security properties compared to traditional DTNs frame-
works. For specific scenarios and implementation environments, it may be necessary to incorporate other security 
approaches to further improve the security of LLM-twin, which includes investigating security mechanisms 
such as secure multi-party computation, differential privacy, and so on to fulfill the security requirements of 
specific applications.

Conclusion
Beyond 5G networks bring great advantages for efficient and secure IoT, IoE, etc., especially DTNs that make it 
possible to efficiently process massive amounts of data and perform real-time optimization. However, traditional 
DTN frameworks have natural efficiency limitations, which mainly include the requirement of transmitting 
massive raw data collected from physical sensor devices in real-time as well as maintaining a high frequency of 
DT model computation. To address these challenges, this paper proposes LLM-Twin, a DTN networking frame-
work based on LLM. First, by designing a mini-giant model collaboration framework, we address the resource-
constrained problem faced by deploying LLM in DTN. Furthermore, we propose the DTSN, which designs 
novel intra-twin and inter-twin communication mechanisms for DTNs. Numerical experiments demonstrate 
that DTSN provides significant improvements in communication and computational efficiency compared to the 
traditional FL-based DTN. In addition, we consider the native security of the LLM-Twin architecture. We design 
a security model for LLM-Twin and provide proof of UC security. Further, we compare the potential security 
threats and countermeasures of FL-based DTNs in detail, demonstrating the security advantages of the proposed 
LLM-twin. In addition, to demonstrate the realistic usability and scalability, we designed a smart home case study 
based on the LLM-twin framework. The simulation results show that LLM-twin has acceptable performance in 
terms of communication delay, adaptability to different network sizes, memory bottleneck, and output accuracy.

Further, we discuss future research perspectives and potential challenges in implementing LLM-twin. It 
is worth mentioning that LLM-twin is an enhancement for the framework of DTNs, which does not affect its 
potential to be applied in specific scenarios. Therefore, a visible future research direction is to apply LLM-twin to 
various areas of traditional DTNs, including intelligent traffic management, urban intelligent scheduling, smart 
home remote control and industrial control analytics, and so on. In addition, some realistic challenges including 
arithmetic scheduling of edge devices and servers, LLM hallucination problems, additional privacy and security 
policies, etc. will also be important directions for future research.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request. Regarding the smart home physical side dataset simulated in the case study, we open-source 
it by uploading it to Github: https://​github.​com/​CURRY​SGITH​UB/​LLM-​twin/​tree/​main.
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