
1

Beyond Edge Caching: Freshness and Popularity
Aware IoT Data Caching via NDN at Internet-Scale

Marica Amadeo, Claudia Campolo, Giuseppe Ruggeri, Antonella Molinaro

Abstract—In-network caching is one of the main pillars of the
Named Data Networking (NDN) paradigm, where every Internet
router, in the path between data sources and consumers, can
cache incoming content packets. Multiple strategies have been
designed for caching Internet of Things (IoT) data streamed
by resource-constrained devices in edge domains and wireless
sensor networks, while the benefits of IoT data caching at
Internet-scale, including both edge and core network segments,
have not been fully disclosed. In this work, we propose and
analyse a novel probabilistic Internet-scale caching design for
IoT data, which jointly accounts for the content popularity and
lifetime. In the considered scenario, IoT contents are requested
by remote consumers and delivered by crossing multiple edge and
core network segments of the NDN-based future Internet. The
proposal is composed of two distinct reactive caching strategies,
a coordinated and an autonomous one, to be implemented in the
edge and core domain, respectively. Achieved results show that
the proposal outperforms state-of-the-art solutions by providing,
among others, the highest cache hit ratio and the shortest number
of hops. Such performances testify a lower pressure on energy-
constrained devices and on the network infrastructure, overall
contributing to the sustainability of the IoT ecosystem.

Index Terms—Named Data Networking, Information Centric
Networking, Caching, Edge computing, Internet of Things, En-
ergy efficiency

I. INTRODUCTION

The Internet of Things (IoT) aims at interconnecting bil-
lions of heterogeneous devices, including resource-constrained
sensors that capture environmental and context parameters to
feed multiple local and remote applications. Smart city, smart
transportation, smart agriculture and smart building are among
the most representative application domains that leverage IoT
data streamed by devices massively deployed in the smart
environments [1].

Compared to traditional Internet contents, such as multime-
dia files and web contents, IoT data show some distinctive
features. First, many IoT sources like sensors implement low-
power low-rate communication protocols and produce data
with very limited packet size, e.g., a maximum payload of
104 bytes can be transferred by ZigBee devices [2]. Second,
IoT data are usually short-lived and have a transient validity;
they can be generated periodically and change over time like
environmental parameters collected during the day. Last but
not least, the same IoT data may be requested by multiple
applications, hence, burdening the resource-constrained source

Marica Amadeo, Claudia Campolo, Giuseppe Ruggeri and Antonella Moli-
naro are with CNIT and the DIIES Department, University Mediterranea of
Reggio Calabria, Via Graziella, Loc. Feo di Vito, 89100, Reggio Calabria,
Italy (corresponding author’s e-mail: claudia.campolo@unirc.it). Antonella
Molinaro is also with CentraleSupélec/L2S, Université Paris-Saclay, France.

devices and overwhelming the network with redundant data
forwarding.

Notwithstanding the small IoT data size, still the massive
data generation may largely affect the network performance
in terms of congestion, latency and energy consumption, by
mining the scalability and sustainability of the infrastructure.
Today, IoT heavily relies on cloud computing facilities for
long-term data storage and analytics [3]. Specifically, IoT
sources upload their data in the cloud facilities, and IoT
consumers, anywhere located, access the cloud to gather
(processed) data. Therefore, a large portion of IoT data has
to cross the Internet to be delivered from producers to con-
sumers, generally located in different network access domains.
Effectively and efficiently retrieving, distributing, storing (and
possibly processing) the IoT data becomes mandatory across
the heterogeneous network domains of the Internet, typically
consisting of IoT sensor networks, edge and core domains.

Sustainability of the IoT ecosystem in presence of increas-
ing data volumes and more demanding application require-
ments entails to re-engineer the network architecture.

In IP-based networks, data caching and processing is en-
abled in a limited number of specialized nodes, such as gate-
ways, cloud and edge servers, while the Internet Protocol (IP)
routers composing the Internet simply forward data packets,
being unaware of the carried contents. On the contrary, by
natively supporting name-based content delivery, Named Data
Networking (NDN) [4] enables ubiquitous, Internet-scale, in-
network caching by all routers, thus opening new caching
opportunities for IoT applications. NDN has been recognized
as a very effective information-centric network architecture
for IoT [5] and Wireless Sensor Networks (WSNs) [6], and
especially as an enabler of edge/fog computing [7], [8].
Available studies have demonstrated that caching IoT data
via NDN in edge domain scenarios and multi-hop WSNs is
extremely useful to reduce the retrieval latency. Moreover,
by limiting the exchanged data traffic with IoT devices and
reducing the amount of data needing to traverse the network,
caching reduces energy consumption and carbon emissions, by
contributing to green and sustainable networking [5], [9]–[13].

However, to cache or not to cache IoT data at Internet-scale,
by using NDN in-network caching capability, is still an open
question. Reserving caching resources for IoT data at the core
NDN routers might seem useless, given the limited IoT data
size and their transient validity. On the other hand, caching
IoT data in the core network could effectively complement
edge caching and further improve the network performance,
while being fully aligned with the cloud-to-things continuum
vision [14].

This is the post-print of the following article: Beyond Edge Caching: Freshness and Popularity Aware IoT Data Caching via NDN at Internet scale.
Article has been published in final form at: https://ieeexplore.ieee.org/abstract/document/9598870. DOI: 10.1109/TGCN.2021.3124452© 2022 IEEE.
Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works,for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

2

To the best of our knowledge, this is the first paper conduct-
ing a thorough analysis to answer the above research question,
by providing the following main contributions:
• We discuss the peculiarities of IoT data generated within

WSN domains and, by referring to current literature
works, we identify the benefits and the open challenges
of NDN caching.

• We propose a novel strategy for caching IoT data
streamed by WSNs at Internet-scale, which is built upon
two distinct policies applied, respectively, at the edge and
the core network segments. They are light and reactive
NDN-compliant schemes, both jointly accounting for
content popularity and freshness.

• We evaluate the performance of our proposal through
the official NDN simulator [15], when compared against
several representative literature solutions, in terms of
valuable metrics, such as cache hit ratio, content retrieval
latency, number of hops, and under different realistic
settings in terms of request patterns and loads. A storage
and computational overhead analysis is also provided to
assess the practicality of the proposal.

The remainder of the paper is organized as follows. In Section
II, a short summary about NDN caching strategies conceived
in the literature is provided. Section III examines the peculiar-
ities of IoT data, by pinpointing the benefits brought by NDN
to address the relevant challenges in their dissemination and
caching. The main findings of the analysis are summarized in
Section IV before describing the proposed caching strategy.
Results of the conducted evaluation study are reported in
Section V, before concluding in Section VI.

II. CACHING IN NDN

A. NDN: the Main Pillars

NDN is one of the most prominent Information-Centric
Networking (ICN) instantiation. Communication in NDN is
based on the exchange of two named packet types: the Interest,
issued by consumers to request contents by name, and the
Data, sent back by the original producers or any node caching
a copy of them [4].

Three tables are maintained at the forwarding plane of NDN
nodes: the Content Store (CS) caching incoming Data pack-
ets; the Pending Interest Table (PIT) tracking the forwarded
Interests; and the Forwarding Information Base (FIB) storing
the outgoing interface(s) per each known named prefix. At
the Interest reception, the node first looks for a Data packet in
the CS and, in case of success, it immediately sends it back.
Otherwise, the node looks for a matching in the PIT and, in
case of success, it updates the PIT entry with the identifier of
the interface the Interest arrived from and discards the Interest.
Otherwise, the node looks in the FIB to possibly forward the
packet towards the data source.

At the reception of the Data packet, the NDN node performs
a name-based lookup in the PIT table. If it finds the correspon-
dent pending Interest, then it cancels the request and forwards
the Data packet back to the consumer(s). Otherwise, the Data
packet is assumed unsolicited and it is discarded. Therefore,
by design, there is a strict one-to-one correspondence between

Interests and Data packets: each incoming Data packet con-
sumes exactly one pending Interest.

B. Caching Solutions for Internet Contents

NDN caching is reactive and performed on a per-packet
basis. The reference caching and replacement schemes in
NDN are the Cache Everything Everywhere (CEE) and the
Least Recently Used (LRU) replacement strategy, respectively.
However, a vast research activity has been carried out in
recent years that proposes more effective caching strategies for
Internet contents, ranging from autonomous probabilistic solu-
tions to complex cooperative strategies with explicit signalling
[16]. In Internet-scale scenarios with potentially heavy traffic
load, autonomous caching schemes or solutions with implicit
signalling are preferable, due to the line rate constraints [17],
i.e., the caching decision must be performed very quickly when
forwarding the Data packets.

The simplest autonomous caching scheme outperforming
CEE is Random Caching (RC), where nodes cache incoming
packets with a static probability p, with 0 ≤ p < 1 [18]. Other
solutions take more judicious caching decisions by considering
some node’s attributes like the betweenness centrality [19],
some content’s attributes like the popularity [20], or a com-
bination of them [21]. In particular, popularity is the most
common parameter adopted in the caching literature, even
outside the NDN scope. Indeed, caching the most requested
contents reduces the load on the original producer, the network
traffic and the retrieval delay [16]. A pioneering popularity-
based caching scheme for NDN is the Most Popular Contents
(MPC) strategy [20], which applies a popularity-based selec-
tion for caching the contents. It defines a fixed popularity
threshold to distinguish between popular and non-popular
contents and therefore, it caches only the packets belonging
to the first category. The strategy is extended in [22] where
the popularity threshold is adjusted every minute according
to the frequency of received Interests and the available cache
capacity. The proposal, called Fine-Grained Popularity based
Caching (FGPC), further assumes that, if there is space in the
content stores, also non popular contents are cached.

Conversely, the Betweenness and Edge Popularity based
caching (BEP) scheme in [21] leverages three parameters for
the caching decision: the betweenness centrality of nodes, the
content popularity, and the cache size. In BEP, each Interest
carries two additional fields: the content popularity of the
requested content, included by the first edge node in the path
between consumer and producer, and an array of betweenness
centrality values, filled by all the on-path nodes. Based on this
information, the strategy caches the most popular contents on
the most central nodes, and the less popular packets in the less
central nodes, by avoiding large amount of cache redundancy.

III. CACHING IOT DATA: WHAT AND WHY

In principle, the NDN in-network caching strategies con-
ceived for Internet contents and Internet-scale scenarios can be
similarly applied to IoT contents and heterogeneous network
environments, provided that each Data packet has a globally
unique and recognisable name. For instance, the work in [23]

3

compares traditional schemes like CEE, RC, and the caching
based on betweenness centrality against a consumer-cache
strategy, which keeps content copies in the gateways directly
connected to the consumers. The authors employ an IoT data
set from a smart building and simulate a content catalog
with 4000 items and 21 consumers requesting them according
to a uniform distribution. Results show that consumer-cache
outperforms the other schemes; however, the analysis does
not focus on a peculiar feature of IoT data, that is their
transiency, i.e., their limited time validity. Moreover, in the
experimentation, the content popularity follows a uniform
distribution, which could be not the case for some classes of
IoT information.

Other works have started to extend existing caching ap-
proaches to the context of WSNs and IoT. For instance,
the work in [24] proposes a caching strategy that takes into
account the centrality of sensor nodes, like in [19], and
their distance from the source of the contents, like in [25].
However, to effectively understand how to leverage NDN
caching for IoT, it is crucial to identify the peculiarities and
requirements of IoT data as streamed by WSNs, which are
the main contributors of the IoT traffic. In the following, the
key features of WSNs are first described, i.e., intermittent
connectivity, energy constraints and limited capabilities asking
for lightweight protocol stack and messages. Then, the two
notable IoT content attributes, i.e., content transiency and
popularity, are discussed.

A. Key Features of WSNs

Intermittent connectivity. The majority of IoT sources are
wirelessly connected and, some of them, can be even mobile.
This implies that devices can be intermittently reachable and
transmissions are challenged by error-prone wireless links. In-
network caching can largely cope with this issue.

In traditional IP-based design, purpose-built caching nodes
like proxies and gateways are usually installed to manage the
interactions between remote consumers and IoT data sources1

[26]. Vice versa, any NDN node in the Internet, not only the
gateway, natively implements in-network caching and may act
as a caching proxy for other constrained devices.

In [27], a comprehensive comparison is presented between
NDN and the main representative messaging protocols for IoT,
i.e., Constrained Application Protocol (CoAP) and Message
Queue Telemetry Transport (MQTT), by deploying an IoT
testbed with wireless single-hop and multi-hop links. Results
show that performance of the three protocols are similar in
the single-hop scenario, while NDN outperforms the IP-based
schemes in multi-hop scenarios, mainly thanks to the hop-
by-hop caching strategy. Similar findings are provided by the
work in [5], where experimental results are achieved in a
campus testbed.

Energy constraints. Since many IoT sources are battery-
powered devices, in-network caching can be a very useful
mean to reduce the network energy consumption, even when
transmitting small data. As discussed in [5], first, caching

1In this paper we use the terms source and producer interchangeably, as
well as content and data.

decreases the number of energy-challenged devices that are
involved in the packet forwarding, and, second, it guarantees
that contents are still available in the network even if their
producers are in sleep mode. Therefore, resource-constrained
nodes can potentially increase their sleeping period.

At the same time, it has been recognized that caching
operations themselves incur a certain energy consumption and
therefore, in presence of constrained devices, they should be
either selectively performed or even completely inhibited [28].
Solutions that trade-off between the caching gain and the en-
ergy efficiency are reported in the literature. For instance, the
PCASTING strategy in [10] leverages the battery level, among
other parameters, as a metric for the probabilistic autonomous
caching decision: nodes with a low battery level reduce the
caching probability to save energy resources. Conversely, a
cooperative strategy is reported in [11], where battery-powered
devices periodically broadcast their data to the neighbours,
which have to cache them. The target is to let only few IoT
devices be active and provide the contents, while the others can
sleep. By doing so, data are always available in the network
but their producers are not forced to be awake all the time.

Lightweight protocol stack and messages. Besides en-
ergy consumption, wireless sensors generating IoT data have
typically other limitations, e.g., in terms of computing and
memory resources. Moreover, IoT access layer technologies
are conceived to deliver small amounts of data in order to
keep low the pressure on both network and device resources.

In NDN, caching is performed with a packet level granular-
ity and each Data packet, even the small sized ones, must be
uniquely named. Therefore, in principle, there are no technical
challenges for caching atomic content units of a few bytes, as
would be the case for data streamed by wireless sensor nodes.
Of course, due to hardware limitation, not every IoT device
will be able to cache Data. This is not an issue since caching
in NDN is not mandatory: different nodes may apply different
policies, according to their available resources, including not
caching at all.

B. Peculiarities of IoT Contents

Popularity. The content popularity pattern can highly im-
pact the benefits of caching. If the popularity is skewed, i.e.,
some contents are more requested than others, then caching
the most popular contents can provide a high gain in terms
of reduced load on the original producer, lower network
traffic and shorter access delay. Vice versa, the caching gain
diminishes if the content request distribution is uniform [29].

In [23], the authors argue that the request pattern of IoT
contents likely follows a uniform distribution. Vice versa, by
analyzing an IoT dataset and queries from search engines over
a period of nine months, the authors in [30] find that the
IoT popularity follows the Zipf’s law [31] with a skewness
parameter that can change on a regular basis. Such variations
are due to the fact that requests for IoT data are related
to the people’s daily life and needs. The authors propose a
distributed popularity-based caching algorithm, where caching
nodes periodically leverage a Deep Neural Network (DNN)
learning approach to predict the popularity of IoT contents

4

and prefetch the most popular ones. A Zipf distribution is also
considered in [32], where the authors present an edge caching
strategy for sensed vehicular traffic information.

We think that popularity should be taken into account
as decision metric for IoT data caching, and expect that,
as suggested in [33], the popularity pattern will likely fall
between the uniform and the Zipf distributions.

Transient contents. Transiency is perhaps the most peculiar
characteristic of many IoT data. On the one hand, simple
sensors may generate data as a time series of readings, such as
CO2 emissions and temperature values, but also more complex
devices may generate information that changes over time, e.g.,
cameras periodically capture and transmit pictures and videos
about roads segments or building entrance. On the other hand,
IoT applications are usually interested in fresh data, e.g., e-
health services rely on highly fresh information to take proper
decision in response to a change of vital parameters, such as
blood pressure or blood oxygen level. Using stale measure-
ments can lead to sub-optimal/wrong control decisions.

NDN recognizes transient contents thanks to the so-called
freshness period, a field in the Data packet header, set by
the source, indicating the lifetime of the content in seconds.
When the freshness period expires, the packet is considered
stale and the source may have produced a new data sample.
The freshness period is treated like a timeout by the CS: when
it expires, the data is considered invalid and dropped.

Several works have demonstrated that caching transient
contents is still useful, even if their lifetime is of a few
seconds [34], [35], [36]. They almost unanimously assume
that the freshness must be considered in the caching decision
in any network domain, ranging from WSNs to core segments.
Of course, intuitively, reserving storage space for contents
that are ready to expire could not be always convenient and
some selective caching decisions should be implemented. In
[10], the caching probability reduces with the freshness of
the data, thus long-lasting contents have generally a higher
caching probability than short-lasting ones. In [34] and [36],
the caching strategy tries to trade off between data freshness
and communication cost when fetching IoT data. The freshness
cost increases as the Data packet moves away from the
source towards the consumers, while the communication cost
decreases in the same condition.

Our previous work in [35] jointly considers the content
lifetime and its popularity for designing a caching strategy at
the edge. Most popular data with the highest residual lifetime
are cached in order to maximize the cache hit ratio in the
domain. A similar approach is followed in [37], with the main
difference that the study provides more theoretical insights
in network topologies with a very few caching nodes. The
work in [38] leverages the content popularity together with
a move copy down [16] caching policy: when the content
popularity is higher than a predefined threshold the content
is cached in the downstream node, towards the consumer(s).
In [39] a proactive Edge Linked Caching (ELC) strategy
is proposed, where edge leaf nodes, on the path towards
the energy constrained producers (e.g., sensors) and directly
connected to the IoT data consumers, are in charge of caching
data to reduce the interactions between the two entities. If

the leaf node has to evict a data item that is still fresh then
it pushes another edge node for caching it. By doing so, a
copy of the content is always available at the edge without the
need of accessing the resource-constrained device. However,
this mechanism requires major modifications in the NDN
architecture, since push-based/proactive caching is not natively
enabled.

The freshness may also drive the replacement policy. In
[40], the Least Fresh First (LFF) policy evicts invalid cached
contents based on time series forecasting of sensors-related
future events. Basically, LFF predicts the time a sensor will
produce a new sample in order to estimate the residual lifetime
of the content. Contents that are supposed to be replaced soon
by new ones from the producer are discarded with higher
priority. Of course, the calculation is trivial if the source
generates contents periodically and advertises the freshness
period (e.g., to feed monitoring applications with a specific
sampling time). Vice versa, in case of event-triggered data
transmissions, an Autoregressive Moving Average (ARMA)
model is used for time series forecasting.

IV. DESIGNING A CACHING STRATEGY FOR IOT DATA AT
INTERNET-SCALE

A. Motivations and Reference Scenario

As shown in the previous Section, the majority of NDN-
based IoT caching strategies typically consider network do-
mains with a limited geographical scope, such as WSNs [6],
[10], [11], [41], or edge networks [5], [30], [35], [39].

Less attention has been devoted to those cases where
IoT consumers and producers are located in different access
domains, and the IoT data may have to cross an Internet-
scale network to reach the remote consumers. In such contexts,
enabling in-network caching can offer further opportunities
compared to the cases in which only edge and cloud servers
can cache data. The work in [40] considers only the freshness
information as a caching metric at Internet scale, while the
work in [38] is centered around the popularity metric. The
proposal in [34], instead, considers both freshness and com-
munication metrics, without targeting the content popularity. In
this paper, we design an Internet-scale caching strategy driven
by both IoT content popularity and freshness parameters,
and aimed to minimize the interactions with constrained data
sources.

Caching IoT data at Internet-scale would be useful in several
IoT scenarios, such as smart grid, smart city, factory and
building automation, healthcare [42], usually characterized by
a variety of client applications running in remote data centers
or in distributed user devices like smartphones and tablets.
In general, caching valid contents can avoid that multiple
requests reach the IoT sources, which are typically constrained
devices implementing low-power communication protocols.
Moreover, caching in the right places, possibly close to both
the consumer and/or the producer, may significantly reduce
the content retrieval latency and the network traffic congestion.
This makes caching advantageous also for data-hungry low-
latency IoT applications, e.g., in the context of intelligent
driving.

5

Without loss of generality, the reference scenario considered
in our design is an Internet-scale network composed of edge
and core domains. As shown in Fig. 1, different edge domains
can provide network access to the end devices (both IoT data
consumers and IoT data sources), while a core network inter-
connects the edge domains. IoT data sources are constrained
devices, modelled as sensors in WSNs, generating contents
that have to reach the (remote) consumers, generally located in
different access domains, therefore crossing the Internet-scale
network, unless data is cached in a network node in-between
the source and the consumer. All the routers in the considered
scenario, i.e., both core and edge nodes, are mains powered
devices that implement the NDN architecture and perform in-
network caching.

Edge domains cover small-to-medium sized area, like col-
lege campuses, airports or, at most, a city area, with tens
of edge nodes [43], [44], which manage a moderate amount
of incoming traffic. Vice versa, core nodes, being located
in central points of the Internet, are supposed to receive a
generally higher amount of incoming traffic than edge nodes.
Moreover, they usually have more incoming/outgoing links
than edge nodes.

Given the distinctive features of the two network domains,
we present a reactive caching design for IoT contents that
consists of two distinct strategies, namely Caching in the Core
Strategy (CCS) and Caching at the Edge Strategy (CES). This
is a further novelty compared to the existing Internet-scale
caching schemes for IoT contents [34], [38], [40], which are
all characterized by a one-size-fits all solution. In practical
scenarios, it will be the network operator, in charge of a given
domain, to configure the appropriate policy in the NDN nodes
of its domain.

Both CCS and CES are centered on content freshness and
popularity metrics. To the best of our knowledge, in the
scientific literature a formal coupling relationship between the
IoT content popularity and lifetime cannot be found, and in
any case the two parameters are reasonably loosely related.
In fact, IoT contents can be highly heterogeneous and vary in
terms of popularity and lifetime, with one of these features
that does not necessarily affect the other one. Short or long
lifetime does not necessarily imply more or less popularity
of a given content. Some short-lived contents may be highly
requested during their brief lifetime, but the contrary can
be true as well. Similarly, long-lived contents could be not
requested at all during their long lifetime, and the contrary
can also hold. Although intuitively the two parameters are
not tightly coupled, they must be jointly considered when
taking a caching decision, in order to ensure that the most
popular data with the highest residual lifetime are cached with
higher probability. This is one of the novelties of our work,
in fact unlike most of the existing literature solutions, we do
not consider popularity and lifetime individually as decision
criteria, but jointly. Therefore, each node has to individually
monitor both metrics.

According to the freshness period, stale contents are evicted
from the content store by following the native NDN replace-
ment routine. In addition, compared to the standard NDN node
architecture including the CS, PIT and FIB data structures,

Fig. 1. Reference scenario.

both strategies require that NDN nodes maintain a Popularity
Table. It tracks the requested contents and the related number
of incoming Interest packets, together with additional variables
taken as input for the caching decision, as it will be clarified
in the following.

B. Caching in the Core Strategy

A low-complex and low-overhead caching strategy is to be
implemented in the core nodes, which must take decision at
line-speed in presence of a huge amount of data [17] generated
by traditional Internet services and upcoming IoT applications.
Therefore, we consider the implementation of an autonomous
probabilistic caching strategy based on the popularity and
freshness parameters, which can be locally estimated by each
node from the received Interest and Data packets, without
requiring any additional signalling exchange among nodes.

On the one hand, works like [45] demonstrated that on-
line accurate popularity monitoring is possible even at line-
speed. On the other hand, by accessing the freshness period
field carried in the Data packet, each node may infer the
content lifetime. Our target is caching at the core nodes the
most popular IoT contents which also have a long lifetime
expectancy (i.e., long-lived), in order to maximize the cache
hit ratio. Indeed, given the high number of contents passing
through the core nodes, there would be no gain in caching
highly volatile contents that are rarely requested.

Popular contents are recognized according to a popularity
threshold (Pth), which is periodically updated on a time
window basis, T , e.g., set equal to a minute as in [22]. At
each time interval T , the node stores in the Popularity Table
the number of received Interests per each distinct content dk,
Idk

, and computes the current average number of received
Interests per content, Īcurr = 1

N

∑N
i=1 Idi

, with N being the
number of distinct contents requested in the time interval. The
popularity threshold Pth is defined as the average number of
received Interests per content, and it is updated based on an
Exponential Weighted Moving Average (EWMA), as follows:

Pth = (1− γ)Pth,old + γĪcurr, (1)

where Pth,old is the previous value of the popularity threshold,
and parameter γ ∈ [0,1] is set to 0.125 to give more relevance
to the historical values rather than to the instantaneous ones
and to avoid large fluctuations in the result. If Idk

≥ Pth the
content dk is considered popular.

6

In addition, a freshness threshold (Fth) is defined to dis-
tinguish between long-lived and short-lived contents. Fth

identifies the average freshness period of received IoT Data
packets and it is dynamically updated, at every T interval, by
the node through an EWMA, as follows:

Fth = (1− γ)Fth,old + γF̄curr, (2)

where Fth,old is the previous value of the freshness threshold,
and F̄curr is the current average freshness period computed
by considering the IoT Data packets received during T . A
new received Data packet, dk, whose freshness period, Fdk

,
is higher than Fth is considered long-lived, vice versa it is
short-lived.

Hence, according to content freshness and popularity, the
caching probability of packet dk, pc,dk

, is derived as follows:

pc,dk
(CCS) =

1 if Idk

≥ Pth && Fdk
≥ Fth

Fdk

Fth
if Idk

≥ Pth && Fdk
< Fth

0 otherwise
(3)

Basically, popular long-lived Data packets are always
cached, i.e., the caching probability is set equal to 1. Whereas,
unpopular, either short-lived or long-lived, Data packets are
never cached, i.e., the caching probability is set equal to
0. Popular short-lived contents are, instead, cached with a
probability that is proportional to the ratio between their
freshness period and the threshold. In particular, upon receipt
of a new Data packet, dk, the node generates a random number
between 0 and 1. If the generated number is smaller than
pc,dk

(CCS), the content is stored in the cache.
It is worth observing that, if contents are requested accord-

ing to a uniform popularity distribution, the strategy is only
driven by the freshness of contents, since the average number
of received Interests, which drives the popularity threshold,
would be almost the same for every content.

If the packet is to be cached but the CS if full, LRU is
implemented as replacement policy in the core segment, given
that it can guarantee good performance despite its extreme
simplicity [18]. Fig. 2(a) summarizes the CCS workflow.

C. Caching at the Edge Strategy

Being closer to the IoT sources, edge nodes may have a
crucial role in coping against intermittent connectivity and
energy issues of resource-constrained devices. To reduce the
number of requests reaching the WSNs, CES leverages the
popularity metric to drive the caching decision strategy, while
freshness and popularity are jointly used in the replacement
policy, to compute an Utility Index estimating how useful
would be keeping the packets in the content store during their
lifetime. This is a novelty compared to other freshness-driven
approaches, e.g., [10], [40], where the freshness is used only
to identify and to possibly replace (or to avoid caching) the
contents that are ready to expire.

In addition, CES aims at reducing the cache redundancy
and therefore, at diversifying the contents cached at the edge
in order to significantly limit the number of requests reaching
the IoT data sources. The latter target is also achieved by

(a) CCS.

(b) CES.

Fig. 2. Workflow of the proposed strategies.

the edge caching strategy in [39], however, there, coordina-
tion is obtained with a pushing service that is not natively
supported by NDN. Conversely, CES, is a light and reactive
coordinated caching scheme that leverages an additional flag
called CACHED, piggybacked in the Data packet header and
initially set to false by the producer. The CACHED flag will
be set to true by the first edge node that caches the packet.

Caching decision. At the reception of a Data packet dk,
the edge node connected to the IoT sources, in the following
referred to as leaf node, checks if it has free storage space
for it. If it is the case, it just caches the packet, otherwise it
computes the caching probability as a function of the content
popularity that is updated, like in CCS, on a time window
basis.

A content dk is cached with a probability defined as the ratio
between the current number of received requests for dk, Idk

,
and the maximum number of requests received for a content
in the time window, both tracked in the Popularity Table:

pc,dk
(CES) =

Idk

max∀di(Idi)
. (4)

Eq. (4) sorts contents according to their popularity as locally
perceived by each node: pc,dk

(CES) equals 1 if dk is the
most requested content, whereas it is lower than 1 for contents
receiving a lower number of requests.

Once the caching operation is performed by the leaf node,
the CACHED flag is set to true, thus the following on-path
nodes will simply forward the packet. Vice versa, if the leaf
node has not cached the packet, then a parent node will try
to cache it. In case of a positive outcome, the parent node
will set the CACHED flag to true. Such a design choice, which
attempts to achieve the caching of a given content into a single
node only, has the aim of improving the utilization of precious

7

storage space, which can be leveraged to cache other contents,
hence increasing content diversity.

Replacement. If the Data packet dk is to be cached but
the CS is full, then a stored packet is replaced according to
a new policy based on the Utility Index of the cached items.
For a cached packet dj , the Utility Index, Udj

, is obtained by
estimating the number of cache hits for dj , i.e., the number
of received Interests for dj that are locally satisfied by the
node’s CS, during its residual lifetime, Lres,dj

. Based on the
information included in the Popularity Table, the node retrieves
the number of Interests received for dj and estimates the
request frequency for the content, fdj

. The Utility Index of
dj is then computed as:

Udj = Lres,dj · fdj . (5)

Intuitively, the higher the cache hits for dj the higher the
utility of maintaining dj in the CS. Vice versa, the replaced
packet is the one which satisfies the following condition
min∀di∈Cs

(Udi
), with Cs being the set of contents stored in

the CS.
It is worth observing that the computation of the Utility In-

dex includes an additional burden on the edge nodes, however
this latter is limited for two main reasons. First, the Utility
Index is computed only if a new item has to be included in
the CS and this latter is full. Therefore, the calculation is not
performed at the reception of each Data packet, but only if
no other node has previously cached the same packet and if,
based on the result from Eq. 4, it has to be cached. Second,
the content residual lifetime, taken as input in the computation
of the Utility Index, is natively calculated by NDN nodes
in presence of transient contents. By design, NDN nodes,
even those implementing the traditional CEE+LRU policy,
periodically compute the residual lifetime of every cached item
to clean up the CS and remove each stale Data packet (the
default time interval between each check is one second [46]).
As a result, CES simply leverages this available information to
compute the Utility Index, when needed. The CES workflow
is summarized in Fig. 2(b).

D. Understanding the Utility Index

To theoretically figure out how the conceived Utility Index
affects the content replacement, we performed a preliminary
numerical study in Matlab, when considering a catalog of
5000 contents requested according to a Zipf-based popularity
distribution [31]. Fig. 3 reports the Utility Index when varying
the content residual lifetime in the range [1-500]s and the
frequency of requests, for the Zipf’s skewness parameter, α,
equal to 0.4, 0.8, 1.2. It can be clearly observed that the
higher the residual lifetime the higher the Utility Index. The
higher the frequency of requests (which is much more true
for higher α values) the higher the Utility Index. As a further
remark, let us consider the impact of the parameter α. It can be
observed that for higher α values, there are a few very highly
requested contents; i.e., a few caching probability points are
shown corresponding to high frequency of requests values.
With α passing from 1.2 to 0.4, the Utility Index points span
different frequency of requests values. In other words, the

Frequency of requests [Interests/s],

logscale
Residual Lifetime [s]

10
0

500

400

10
2

U
ti
lit

y
 I

n
d

e
x
,

lo
g

s
c
a

le

300

10
0

200

10
4

100

10
-2

=0.4

=0.8

=1.2

Fig. 3. Utility index when varying content residual lifetime and popularity
distribution.

number of requests is more uniformly distributed. Moreover,
the number of points increases because a higher number of
distinct contents from the catalog is requested.

V. PERFORMANCE EVALUATION

A. Reference Scenario and Settings

The performance evaluation aims at reproducing a large-
scale network scenario and it is not meant to assess the
viability of the proposal for a single IoT application, but to
provide general findings in presence of a varying traffic pattern
with realistic settings from related literature, i.e., [30], [33],
[47], [48].

More specifically, we consider a realistic hybrid network
scenario that includes a backbone network connecting mul-
tiple edge domains which WSNs are attached to. To model
the backbone network, we consider the GEANT topology, a
high-bandwidth, high-speed and highly resilient pan-European
network. The topology, accessed from the Internet Topology
Zoo database (www.topology-zoo.org/), consists of 39 nodes.
Among them, 25 GEANT nodes are randomly selected to be
access routers towards the edge domains, which are simulated
as 2-level fat tree topologies. 50 leaf nodes of the edge
domains are randomly selected to be attached to access points
acting as gateways towards the WSNs.

In particular, we consider 50 distinct WSNs, each one
including 100 IoT sensors2 that leverage ZigBee to connect
to the gateway. Each source produces periodically a single
transient content and, therefore, the total catalog is of 5000
contents. Each IoT content, e.g., a sensor reading, is assumed
to be small enough in terms of memory to fit within a single
Data packet and a single radio transmission. Moreover, each
source includes in the Data packet a freshness period, which
is uniformly varying in the range [1 − 500]s. Such range is
selected to reflect the typical temporal scope of different real
application domains, ranging from smart mobility to smart grid

2A number of sensor nodes in the order of thousands is representative of a
typical smart city deployment, see for instance the SmartSantander case [49].

8

TABLE I
MAIN SIMULATION SETTINGS.

Parameter Value
Number of core nodes 39
Number of edge nodes 175
Number of WSNs domains 50
Content catalog size 5000
Content lifetime [1,500]s
Content request rate Poisson, λ=5 requests/s
Content popularity • Zipf, α=1

• uniform distribution
Node caching capacity 5 Data packets

[47], [48], under the overall smart city umbrella. For the sake
of simplicity, IoT sources never sleep during the simulation.

We assume the content request rate follows a Poisson
distribution with parameter λ equal to 5 Interests/s. Requests
are generated in the network and assigned to consumer nodes
that are randomly attached to the leaf nodes of the edge
domains. Therefore, in principle, the majority of requests
for IoT contents come from remote consumers w.r.t. the IoT
sources. The request pattern follows two distinct popularity
distributions, uniform and Zipfian with skewness parameter
α=1, to cover both the patterns identified in the literature [30],
[33], also according to the analysis of realistic datasets. The
main simulation settings are summarized in Table I.

B. Benchmark Schemes and Metrics

We compare the proposed CCS/CES against the following
reactive benchmark schemes:

• CEE, representing the simplest caching solution deployed
in vanilla NDN, where each node caches all the contents
crossing it, until it has space in the cache and then it uses
LRU as replacement policy.

• RC, where contents are randomly cached with a fixed
probability p = 0.5, which limits the data redundancy
without underusing the available resources [33]. It is also
coupled with LRU replacement.

• Least Fresh First (LLF) [40], representing a benchmark
freshness-aware policy where short-lived contents are
replaced in favour of long-lived ones.

• Fine Grained Popularity-based Caching (FGPC) [22],
representing a traditional popularity-aware scheme obliv-
ious of the freshness parameter. It is coupled with LRU
replacement.

• Betweenness and Edge Popularity Caching (BEP) [21],
where contents are cached based on their popularity and
the betweenness of the nodes. It is coupled with LRU
replacement.

All the selected benchmark schemes were specifically de-
signed to work in an Internet-scale scenario, being this latter
the focus of our study. In particular, CEE and RC are selected
as baselines for our performance comparison, while LLF and
FGPC allow to show the benefits of the metrics leveraged
in our proposal, respectively freshness and popularity, when
they are individually considered. Finally, BEP allows to assess
the joint effect of popularity and topological centrality of the

nodes, being this latter another commonly used caching deci-
sion parameter. We recall that, in any of the aforementioned
cases, a lifetime is associated to each Data packet: whenever
the corresponding timeout expires, the content is removed
from the CS.

The following performance metrics are measured:
• Cache hit ratio. It is defined as the average ratio

between the number of requests satisfied at the intermediate
nodes and the total number of received requests. Therefore, it
assesses the effectiveness of the caching strategy and it also
reflects the reduction of the number of requests reaching the
original IoT source in the WSN domain, which translates in a
lower energy consumption of battery-powered devices.

• Packet delay. It is the time elapsed since the Interest is
sent from the consumer until the IoT Data packet is received.
This metric allows to assess the effectiveness of the caching
strategy from a consumer-centric perspective.

• Hop count. The number of hops needed to retrieve
the content. This metric allows to assess the efficiency of
the caching strategy from an operator-centric perspective: the
smaller the hop count the lower the probability of network
congestion and the amount of data traversing the network,
translating in a reduction of energy consumption.

All simulations include a warm-up period of 5 minutes,
which is useful to make popularity-based schemes reach a
stationary regime. During the warm-up, the schemes simply
cache incoming packets according to the CEE+LRU policy
and update the caching parameters; after the warm-up, we start
to compute the performance metrics over the newly generated
content requests. The simulation ends when all the content
requests generated after the warm-up period are satisfied (i.e.,
the consumers receive the requested contents). The targeted
number of content requests over which metrics are computed
is varying from 200 to 1600.

Results are averaged over ten independent runs and reported
with 95% confidence intervals.

C. Results

Fig. 4 compares the proposal against the considered bench-
mark schemes, when varying the number of targeted content
requests in presence of the Zipf distribution, in terms of the
chosen evaluation metrics.

It can be clearly observed that, as expected, the CEE
scheme (black curves) exhibits the poorest performance for
all the considered metrics. By allowing all packets to be
cached indiscriminately, the strategy tends to cache the same
contents in the CSs of involved nodes. This translates in
the lowest cache hit ratio (see Fig. 4(a)), the highest data
retrieval delay (see Fig. 4(b)), and the highest number of hops
(see Fig. 4(c)). Better performances are achieved by the RC
scheme (blue curves), since it natively increases the cache
diversity by probabilistically caching contents. RC is further
outperformed by the LFF scheme (cyan curves). The latter one,
by leveraging the freshness information in the replacement
strategy, erases the contents with the shortest residual lifetime
and leaves space for long-lived contents. By giving caching
priority to popular contents, FGPC scheme (green curves)

9

outperforms LFF, RC and CEE. In turn, FGPC is slightly
outperformed by BEP (orange curves) because, in addition
to the content popularity, this latter takes into account the
betweenness of the nodes and caches the contents according
to the relationship between the two parameters, thus limiting
the cache redundancy. However, by combining the benefits
of a freshness- and popularity-aware strategy, our proposal
outperforms all the considered benchmark schemes: it takes
more judicious caching decisions aimed at selectively caching
contents and improving the storage resources utilization.

Regardless of the specific caching scheme, metrics improve
as the number of requests increases. Such a trend is due to
the fact that as the number of requests increases, with a Zipf
distribution, it is more likely that they concentrate on a few
popular contents, i.e., a subset of the contents in the catalog.
Hence, it is more likely to cache contents that can serve
multiple requests. This proves the scalability achieved by the
in-network caching solution, which is particularly helpful to
reduce the interactions with energy-constrained wireless sensor
nodes acting as producers.

Fig. 5 reports the same metrics discussed above, when
considering the content popularity to be uniformly distributed.
Compared to previous results in Fig. 4, it can be observed that
the content retrieval latency is higher and tends to increase
with the number of requests (Fig. 5(b)), the cache hit ratio is
lower (Fig. 5(a)) and the number of hops significantly higher
(Fig. 5(c)). Indeed, with content requests following a uniform
distribution, there is less chance to serve multiple requests
through cached contents. In such a scenario, freshness-aware
strategies, like LFF and CCS/CES, perform better than the
other schemes, since they privilege caching contents with a
longer lifetime, which can potentially serve multiple requests.
In addition, thanks to the cooperative caching scheme at the
edge, coupled with freshness-aware replacement, our proposal
is able to outperform LFF. The poor performance of BEP
is due to the fact that it ranks the contents based on their
popularity level. However, in presence of a uniform popularity
distribution, all the contents have basically the same ranking
and therefore, they are cached at the same central nodes, which
become overwhelmed by multiple caching and replacements
operations, while the storage space distributed in the other
nodes remains underutilized.

To gain insight into the performance boost individually
provided by CCS and CES, we focus on the cache hit
ratio metric and distinguish: (i) the percentage of cache hits
cumulatively obtained by the core nodes implementing CCS
and (ii) the percentage of cache hits cumulatively obtained by
the edge nodes implementing CES. Fig. 6 shows this metric in
the simulated network scenario, when content requests follow
the Zipf and the uniform popularity distribution. In the Zipf
case, it can be observed that CCS accounts for about the
60% of the cache hits in presence of 200 requests, while
the contribution grows to 78% in presence of 1600 requests.
The higher gain of CCS w.r.t. CES is mainly due to the fact
that, in the considered scenario, the majority of requests (i)
concentrate on few popular contents and (ii) are generated by
remote consumers and cross the core network before reaching
the edge domain where the IoT sources are located. As a

result, there is a high chance to find the popular contents
cached by core routers implementing CCS. Vice versa, the
gain of CCS reduces when the popularity pattern of requests
is uniformly distributed. In this case, the benefits of caching
are generally less remarkable, since consumers tend to ask for
distinct contents and a higher number of requests reach the
edge domains, where the IoT sources are attached to. As a
result, there is a higher chance to obtain a cache hit at the
edge nodes implementing CES.

D. Storage Overhead Analysis

To assess the practicality of the proposal, in this section, we
discuss the storage overhead of the proposed solution w.r.t. the
benchmark schemes. Table II presents the storage overhead
incurred to drive the caching decision. It can be observed that
all the popularity-based schemes, i.e., FGPC as well as BEP
(but at the edge nodes only) and the proposed CCS and CES,
store the Popularity Table tracking the number of requests for
each distinct named content. A 4 bytes-long (float) counter
of requests is supposed to be kept for each received content.
Hence, the overhead is upper bounded by (4 + 40) · |Cr|
bytes, being |Cr| the number of requested contents, which
is typically lower than the content catalog size [50], [51],
and 40 the average content name length (in bytes) [52], [53].
As a result, under the considered assumptions, the storage
overhead per content is 44 bytes for the proposed strategies3.
This number passes to 48 bytes in case of BEP due to the
historical popularity field kept in the Popularity Table.

The CCS scheme also stores the popularity and the freshness
thresholds computed through a simple moving average, while
BEP leverages the betweenness centrality parameter of the
nodes, each resulting in additional 4 bytes of storage footprint.
However, it is worth to highlight that BEP introduces a non
negligible signalling overhead w.r.t. CCS/CES. In particular,
each Interest carries in piggybacking: (i) the current popularity
of the requested contents (i.e., a float variable) and (ii) the
betweenness centrality of all the nodes traversed by the request
(i.e., an array of float variables, whose length depends on the
number of on-path nodes). The Data packet instead carries
a field identifying the betweenness centrality of the selected
cacher (i.e., a float variable). Vice versa, the only signalling
overhead needed in our proposal is the CACHED bit, i.e., a
boolean variable foreseen by CES in the Data packet.

E. Computational Analysis

When receiving a Data packet, the basic benchmark
schemes CEE+LRU and RC+LRU simply evict the least re-
cently used item from the cache. The computational complex-
ity of the two schemes is well known in literature and equal to
O(1) [54]. The LFF scheme, instead, performs a replacement
based on the least fresh cached content. Therefore, LFF has to
find the minimum lifetime among the set of cached items and
the complexity of this operation is bound by O(SCS), being

3According to [22], in order to significantly reduce the overhead of the
Popularity Table, specific techniques such as the message-digest (MD5) hash
algorithm could be effective, but this is out of scope of the current paper.

10

TABLE II
STORAGE OVERHEAD: OUR PROPOSAL VS. THE BENCHMARK SCHEMES

.
Strategy Storage Footprint
LFF/CEE/RC - -
FGPC Popularity Table 44 · |Cr| bytes

• Content name
• Counter tracking the number of

requests
BEP Popularity Table (Edge nodes only) 48 · |Cr| bytes

• Content name
• Counter tracking the number of

requests
• Historical Popularity

Betweeness Centrality (All nodes) 4 bytes
CCS Popularity Table 44 · |Cr| bytes

• Content name
• Counter tracking the number of

requests
Popularity Threshold 4 bytes
Freshness Threshold 4 bytes

CES Popularity Table 44 · |Cr| bytes
• Content name
• Counter tracking the number of

requests

SCS the size of the CS, which - in the NDN context - can be
expressed in terms of number of cached Data packets.

It is worth noticing that the estimation of the content
residual lifetime is a feature natively provided by NDN
and implemented by all the schemes. Both CCS and FGPC
are threshold-based schemes and replace contents by using
LRU. Therefore, the additional overhead, w.r.t. the previous
schemes, consists only in the computation of the threshold(s),
which however is not performed at each packet reception, but
periodically, e.g., every minute.

Compared to the previous schemes, CES and BEP incur
a slightly higher computational overhead since, to derive the
caching probability they have to identify the most popular
content(s). The computation overhead of this operation de-
pends on the number of contents |Cr| tracked in the Popularity
Table and, therefore, the complexity is in the order of O(|Cr|).
However, similarly to CCS, this operation is performed peri-
odically, on a time window basis. In BEP, the popularity is
computed only at the edges nodes and then, shared with the
rest of the nodes. The replacement operation in CES requires
the computation of the minimum of the Utility Indexes of the
contents cached in the CS. This operation, similarly to LFF, is
bound by O(SCS) but, as previously discussed, it is performed
only in presence of a positive outcome of the caching decision
strategy.

VI. MAIN FINDINGS AND CONCLUSION

In this paper, an Internet-scale caching strategy for IoT
contents generated by WSNs nodes is designed that jointly
considers popularity and freshness parameters as decision
metrics. The strategy has different targets, depending on the
core and edge network segments where it is implemented.

Via extensive simulations conducted under realistic set-
tings, we evaluated the performance of the conceived solution
both when compared against baseline benchmarks as well
as other representative freshness-aware or popularity-aware

(a) Cache hits.

(b) IoT data retrieval delay.

(c) Hop Count.

Fig. 4. Metrics when varying the number of IoT Data requests (Zipf
distribution).

caching schemes available in the literature. We observed the
superiority of the proposal under all the considered settings.
Improvements are gradually achieved when moving from
completely blind caching solutions to those accounting for
popularity, freshness, betweenness, and a combination of them,
confirming the need for more judicious caching decisions.

As a further finding, the simulation study shows that the
content popularity distribution also affects the results. In case
of Zipf distribution, the content popularity is crucial as a
caching decision metric, since the majority of requests are
centered around few popular contents. Conversely, when the
uniform distribution is considered, the popularity metric is
irrelevant since contents are equally requested.

Moreover, although overall contributing, at an end-to-end
level, to the improvements of the proposal compared to

11

(a) Cache hits.

(b) IoT data retrieval delay.

(c) Hop Count.

Fig. 5. Metrics when varying the number of IoT Data requests (Uniform
distribution).

the other benchmarks, the two proposed schemes, CES and
CCS, applied in the edge and the core segments respectively,
differently contribute to the performance and in a different way
for different content distributions. Under the Zipf distribution,
there is a high chance to find the popular contents cached by
core routers implementing CCS. Whereas, there is a higher
chance to obtain a cache hit at the edge nodes implementing
CES when the popularity pattern of requests is uniformly
distributed. Such a finding confirms our intuition about the
need for a differentiated caching decision into different net-
work segments. Although specifically shown to be suited to
deal with the caching of IoT data, such an approach looks
promising also to treat other kinds of contents traveling over
the Internet.

The measured higher cache hit ratio and lower number

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22

Zipf
U
niform

Zipf
U
niform

Zipf
U
niform

Zipf
U
niform

Zipf
U
niform

Zipf
U
niform

Zipf
U
niform

Zipf
U
niform

C
a

c
h

e
 h

it
 r

a
ti
o

 [
%

]

Requests

CCS
CES

1600140012001000800600400200

Fig. 6. Cache hit ratio individually provided by CCS and CES (Zipf and
uniform distribution).

of hops traversed by data, coupled with the negligible in-
curred signalling and lower footprint per node, compared to
the benchmarks, overall ensure a lower pressure on energy-
constrained devices and less burden on the network nodes
for data forwarding. This further translates into a higher
sustainability of the network infrastructure.

Future work will focus on further improving the perfor-
mance of the caching strategy for IoT contents, for example
by adding other decision parameters like topological centrality,
and by integrating NDN with other future Internet network-
ing paradigms like Software Defined Networking (SDN) to
support more judicious caching as well as energy-efficient
decisions.

ACKNOWLEDGMENTS

This work has been partially supported by the “A COGnItive
dynamic sysTem to allOw buildings to learn and adapt’
(COGITO) project, funded by the Italian Government (PON
ARS01 00836).

REFERENCES

[1] F. Cicirelli, A. Guerrieri, G. Spezzano, A. Vinci, O. Briante, and G. Rug-
geri, “iSapiens: a platform for social and pervasive smart environments,”
in IEEE 3rd World Forum on Internet of Things (WF-IoT), 2016, pp.
365–370.

[2] I. Poole, “What exactly is ZigBee?” Communications Engineer, vol. 2,
no. 4, pp. 44–45, 2004.

[3] S. Sarkar, S. Chatterjee, and S. Misra, “Assessment of the Suitability of
Fog Computing in the Context of Internet of Things,” IEEE Transactions
on Cloud Computing, vol. 6, no. 1, pp. 46–59, 2015.

[4] L. Zhang et al., “Named data networking,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 3, pp. 66–73, 2014.

[5] E. Baccelli, C. Mehlis, O. Hahm, T. C. Schmidt, and M. Wählisch,
“Information Centric Networking in the IoT: experiments with NDN
in the Wild,” in ACM Conference on Information-Centric Networking,
2014, pp. 77–86.

[6] M. Amadeo, C. Campolo, A. Molinaro, and N. Mitton, “Named data
networking: A natural design for data collection in wireless sensor
networks,” in 2013 IFIP wireless days (WD). IEEE, 2013, pp. 1–6.

[7] A. Mtibaa, R. Tourani, S. Misra, J. Burke, and L. Zhang, “Towards
edge computing over named data networking,” in IEEE International
Conference on Edge Computing (EDGE), 2018, pp. 117–120.

12

[8] M. Amadeo, G. Ruggeri, C. Campolo, and A. Molinaro, “IoT services
allocation at the edge via named data networking: From optimal bounds
to practical design,” IEEE Transactions on Network and Service Man-
agement, vol. 16, no. 2, pp. 661–674, 2019.

[9] J. Takemasa, Y. Koizumi, T. Hasegawa, and I. Psaras, “On energy re-
duction and green networking enhancement due to in-network caching,”
in IEEE 12th International Conference on Mobile Ad Hoc and Sensor
Systems, 2015, pp. 513–518.

[10] M. A. Hail, M. Amadeo, A. Molinaro, and S. Fischer, “Caching in
Named Data Networking for the Wireless Internet of Things,” in IEEE
RIoT, 2015, pp. 1–6.

[11] O. Hahm et al., “Low-power internet of things with NDN & cooperative
caching,” in ACM Conference on Information-Centric Networking, 2017,
pp. 98–108.

[12] M. A. Naeem, R. Ali, M. Alazab, Y. Meng, and Y. B. Zikria, “Enabling
the content dissemination through caching in the state-of-the-art sustain-
able information and communication technologies,” Sustainable Cities
and Society, vol. 61, p. 102291, 2020.

[13] J. Xu, K. Ota, and M. Dong, “Energy efficient hybrid edge caching
scheme for tactile internet in 5g,” IEEE Transactions on Green Com-
munications and Networking, vol. 3, no. 2, pp. 483–493, 2019.

[14] C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito, and O. Rana, “Fog
computing for the internet of things: A survey,” ACM Transactions on
Internet Technology (TOIT), vol. 19, no. 2, pp. 1–41, 2019.

[15] S. Mastorakis, A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM 2.0:
A new version of the NDN simulator for NS-3,” NDN, Technical Report
NDN-0028, 2015.

[16] M. Zhang, H. Luo, and H. Zhang, “A Survey of Caching Mechanisms
in Information-Centric Networking,” IEEE Communications Surveys &
Tutorials, vol. 17, no. 3, pp. 1473–1499, 2015.

[17] G. Rossini and D. Rossi, “Coupling caching and forwarding: Benefits,
analysis, and implementation,” in ACM Conference on Information-
Centric Networking, 2014, pp. 127–136.

[18] S. Tarnoi, K. Suksomboon, W. Kumwilaisak, and Y. Ji, “Performance
of Probabilistic Caching and Cache Replacement Policies for Content-
Centric Networks,” in IEEE LCN, 2014, pp. 99–106.

[19] W. K. Chai, D. He, I. Psaras, and G. Pavlou, “Cache “less for more”
in Information-Centric Networks,” in International Conference on Re-
search in Networking. Springer, 2012, pp. 27–40.

[20] C. Bernardini, T. Silverston, and F. Olivier, “MPC: Popularity-based
Caching Strategy for Content Centric Networks,” in IEEE International
Conference on Communications (ICC), 2013, pp. 3619–3623.

[21] Q. Zheng, Y. Kan, J. Chen, S. Wang, and H. Tian, “A cache replication
strategy based on betweenness and edge popularity in named data
networking,” in IEEE ICC, 2019, pp. 1–7.

[22] M. D. Ong, M. Chen, T. Taleb, X. Wang, and V. Leung, “FGPC:
Fine-Grained Popularity-based Caching Design for Content Centric
Networking,” in ACM international conference on Modeling, analysis
and simulation of wireless and mobile systems, 2014, pp. 295–302.

[23] M. Meddeb, A. Dhraief, A. Belghith, T. Monteil, and K. Drira, “How to
cache in ICN-based IoT environments?” in IEEE/ACS 14th International
Conference on Computer Systems and Applications (AICCSA), 2017, pp.
1117–1124.

[24] G. Jaber and R. Kacimi, “A collaborative caching strategy for content-
centric enabled wireless sensor networks,” Computer Communications,
vol. 159, pp. 60–70, 2020.

[25] I. Psaras, W. K. Chai, and G. Pavlou, “Probabilistic in-network caching
for information-centric networks,” in Proc. of the 2nd edition of the ICN
workshop on Information-centric networking, 2012, pp. 55–60.

[26] J. Mišić and V. B. Mišić, “Proxy cache maintenance using multicasting
in coap iot domains,” IEEE Internet of Things Journal, vol. 5, no. 3,
pp. 1967–1976, 2018.

[27] C. Gündoğran, P. Kietzmann, M. Lenders, H. Petersen, T. C. Schmidt,
and M. Wählisch, “NDN, CoAP, and MQTT: a comparative measure-
ment study in the iot,” in ACM Conference on Information-Centric
Networking, 2018, pp. 159–171.

[28] Y. An and X. Luo, “An in-network caching scheme based on energy ef-
ficiency for content-centric networks,” IEEE Access, vol. 6, pp. 20 184–
20 194, 2018.

[29] D. Liu, B. Chen, C. Yang, and A. F. Molisch, “Caching at the
wireless edge: design aspects, challenges, and future directions,” IEEE
Communications Magazine, vol. 54, no. 9, pp. 22–28, 2016.

[30] B. Chen, L. Liu, M. Sun, and H. Ma, “IoTCache: Toward data-driven
network caching for internet of things,” IEEE Internet of Things Journal,
vol. 6, no. 6, pp. 10 064–10 076, 2019.

[31] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and Zipf-like distributions: Evidence and implications,” in IEEE INFO-
COM’99, vol. 1, 1999, pp. 126–134.

[32] J. Yao and N. Ansari, “Joint content placement and storage allocation
in C-RANs for IoT sensing service,” IEEE Internet of Things Journal,
vol. 6, no. 1, pp. 1060–1067, 2018.

[33] J. Pfender, A. Valera, and W. K. Seah, “Performance Comparison of
Caching Strategies for Information-Centric IoT,” in ACM Conference
on Information-Centric Networking, 2018, pp. 43–53.

[34] S. Vural, N. Wang, P. Navaratnam, and R. Tafazolli, “Caching Transient
Data in Internet Content Routers,” IEEE/ACM Transactions on Network-
ing, vol. 25, no. 2, pp. 1048–1061, 2016.

[35] M. Amadeo, G. Ruggeri, C. Campolo, A. Molinaro, and G. Mangiullo,
“Caching popular and fresh IoT contents at the edge via named data
networking,” in IEEE INFOCOM WKSHPS, 2020, pp. 610–615.

[36] H. Zhu, Y. Cao, X. Wei, W. Wang, T. Jiang, and S. Jin, “Caching
transient data for Internet of Things: a deep reinforcement learning
approach,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2074–
2083, 2018.

[37] S. Fatale, R. S. Prakash, and S. Moharir, “Caching policies for transient
data,” IEEE Transactions on Communications, vol. 68, no. 7, pp. 4411–
4422, 2020.

[38] B. Nour, H. Khelifi, H. Moungla, R. Hussain, and N. Guizani, “A
distributed cache placement scheme for large-scale information-centric
networking,” IEEE Network, vol. 34, no. 6, pp. 126–132, 2020.

[39] H. Asmat, I. U. Din, F. Ullah, M. Talha, M. Khan, and M. Guizani,
“ELC: Edge linked caching for content updating in information-centric
internet of things,” Computer Communications, vol. 156, pp. 174–182,
2020.

[40] M. Meddeb, A. Dhraief, A. Belghith, T. Monteil, K. Drira, and H. Math-
kour, “Least fresh first cache replacement policy for NDN-based IoT
networks,” Pervasive and Mobile Computing, vol. 52, pp. 60–70, 2019.

[41] M. A. M. Hail, M. Amadeo, A. Molinaro, and S. Fischer, “On the Perfor-
mance of Caching and Forwarding in Information-Centric Networking
for the IoT,” in International Conference on Wired/Wireless Internet
Communication. Springer, 2015, pp. 313–326.

[42] P. Schulz et al., “Latency critical iot applications in 5G: Perspective on
the design of radio interface and network architecture,” IEEE Commu-
nications Magazine, vol. 55, no. 2, pp. 70–78, 2017.

[43] J. Augé, G. Carofiglio, G. Grassi, L. Muscariello, G. Pau, and X. Zeng,
“Map-me: Managing anchor-less producer mobility in content-centric
networks,” IEEE Transactions on Network and Service Management,
vol. 15, no. 2, pp. 596–610, 2018.

[44] G. Carofiglio, M. Gallo, L. Muscariello, and D. Perino, “Scalable mobile
backhauling via information-centric networking,” in IEEE Local and
Metropolitan Area Networks (LANMAN), 2015, pp. 1–6.

[45] H. Dai, Y. Wang, H. Wu, J. Lu, and B. Liu, “Towards line-speed
and accurate on-line popularity monitoring on NDN routers,” in IEEE
IWQoS, 2014, pp. 178–187.

[46] A. Afanasyev et al., “Nfd developer’s guide,” 2014.
[47] Y. Atif, S. Kharrazi, D. Jianguo, and S. F. Andler, “Internet of Things

Data Analytics for Parking Availability Prediction and Guidance,” Trans-
actions on Emerging Telecommunications Technologies, vol. 31, no. 5,
p. e3862, 2020.

[48] M. Sharaf et al., “Modeling and code generation framework for IoT,”
in Int. Conf. on System Analysis and Modeling. Springer, 2019, pp.
99–115.

[49] L. Sanchez et al., “SmartSantander: IoT experimentation over a smart
city testbed,” Computer Networks, vol. 61, pp. 217–238, 2014.

[50] M. Z. Shafiq, A. X. Liu, and A. R. Khakpour, “Revisiting caching
in content delivery networks,” in ACM international conference on
Measurement and modeling of computer systems, 2014, pp. 567–568.

[51] D. Rossi and G. Rossini, “Caching performance of content centric net-
works under multi-path routing (and more),” Relatório técnico, Telecom
ParisTech, pp. 1–6, 2011.

[52] A. V. Ventrella, G. Piro, and L. A. Grieco, “Publish-subscribe in mobile
information centric networks: Modeling and performance evaluation,”
Computer Networks, vol. 127, pp. 317–339, 2017.

[53] Y. Wang, B. Xu, D. Tai, J. Lu, T. Zhang, H. Dai, B. Zhang, and B. Liu,
“Fast name lookup for named data networking,” in 2014 IEEE 22nd
International Symposium of Quality of Service (IWQoS). IEEE, 2014,
pp. 198–207.

[54] S. Podlipnig and L. Böszörmenyi, “A survey of web cache replacement
strategies,” ACM Computing Surveys (CSUR), vol. 35, no. 4, pp. 374–
398, 2003.

13

Marica Amadeo is an assistant professor at Univer-
sity Mediterranea of Reggio Calabria. She received
a master degree (2008) in telecommunications engi-
neering from the University Mediterranea of Reggio
Calabria, and a Ph.D. degree in 2013 from the same
University. Her major research interests are in the
field of Information-Centric Networking, Internet of
Things and edge computing.

Claudia Campolo is an associate professor of
telecommunications at the University Mediterranea
of Reggio Calabria. She received an master degree
(2007) and a Ph.D. degree (2011) in telecommuni-
cations engineering from the same university. Her
main research interests are in the field of vehicular
networking, 5G and future Internet architectures.

Giuseppe Ruggeri received the master degree in
electronics engineering in 1998 from the University
of Catania, Italy and, in 2002, he received the Ph.D.
in electronics, computer science and telecommuni-
cations engineering from the University of Palermo,
Italy. He is currently assistant professor at the Uni-
versity Mediterranea of Reggio Calabria. His current
interests include self organizing networks, Internet
of Things, Social Internet of Things.

Antonella Molinaro is an associate professor of
telecommunications at the University Mediterranea
of Reggio Calabria, Italy, and has a double affiliation
with CentraleSupélec/L2S, Université Paris-Saclay,
France. Previously, she was an assistant professor
with the University of Messina (1998-2001) and the
University of Calabria (2001-2004), and a research
fellow at the Politecnico di Milano (1997-1998). She
was with Siemens, Munich (1994-1995). Her current
research focuses on 5G, vehicular networking and
future Internet architectures.

