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ABSTRACT Many applications involving physical systems, such as system control or fault detection, call
for a behavioral, black-box, or digital twin of the real system. By observing input-output pairs, a nonlinear
system’s black-box twinning model can be built, thus enabling real-time accurate estimation of the system’s
health and status. We propose a modeling approach that can be implemented with little hardware resources
and predicts system output with acceptable accuracy for a wide range of applications in the IoT and Industry
4.0 application domains, such as cloud and distributed predictive control, maintenance, fault detection, and
model drift avoidance. This approach consists of building a compact numerical model, based on the concept
of sum-decomposability, with reduced computational complexity and memory requirements, well suited for
microcontroller-based IoT applications. The black-box modeling theory, the sizing process, and the learning
method are reported. The outputs of two examples of non-linear systems are replicated in real-time using a
pioneer experimental setup built around amicrocontroller. According to experimental results, online learning
and prediction are performed at 1 kS/s with a prediction error comparable to the resolution of the digitalized
input-output data. The reduced size of the obtained model calls for real-time sharing and update with cloud
and edge-based simulation ecosystems enabling a near real-time digital twinning of field systems.

INDEX TERMS Digital twin, microcontroller, non-linear dynamical systems, system predictor, black-box
model.

I. INTRODUCTION
Advanced techniques such as predictive control and main-
tenance or fault detection require an accurate mathematical
model of the system to be controlled, to synthesize the con-
trol action that achieves a certain objective or to compare
the real performance with the nominal one, respectively ()
[1], [2], [3], [4]. However, an accurate analytical description
of a given process cannot be obtained in many cases.

In some cases, however, a behavioral model is sufficient.
The behavioral model does not require detailed knowledge
of the internal mechanisms of the system, but is based on the
observation of the input-output vector pairs and, knowing the
sequence of the input samples, reproduces the temporal trend
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of the outputs [5], [6]. Behavioral models are often called
black-boxes and can perform the functions of the digital
twin (DT), i.e. to provide virtual replication of a physical
system.

According to literature [7], the DT is a virtual represen-
tation or replica of an object, being, or system that can be
continuously updated with data from its physical counterpart,
thus synchronized with the field in a near to real-time fashion.
A numerically-representable replica of a system in the form
of a behavioral model that can be transferred, simulated and
updated with real-time data represents per se a DT. This is
the case of BatteryManagement Systems (BMS) for the auto-
motive sector, motor and machinery predictive fault detection
and maintenance [8], [9].

Digital twins of actual physical systems lay the way for
cloud and distributed predictive control, maintenance, fault
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detection, and model drift avoidance in the IoT and Industry
4.0 application domains.

In particular, some types of black-box models rely on some
prior knowledge of the internal structure of the system they
intend to replicate. They are tuned to the real system through
the estimation of a set of parameters, while their internal
structure is predefined [10].

In contrast, non-parametric black-box models require min-
imal prior knowledge of the real system, such as just the num-
ber of past time samples of the inputs and outputs required to
reproduce the current output () [11], [12].

Black-box nonparametric models constructed from exper-
imental input-output data sets may be easily incorporated
by controllers in many industrial situations with very little
engineering effort.

Much effort has been devoted to the construction of
black-box models for the representation of dynamical sys-
tems using neural networks in many different fashions ()
[13], [14], [15], [16], [17], [18], [19]. However, the conver-
gence of the training is not always guaranteed as well as
the effective generalization capacity, which allows the model
to provide a sufficiently correct output even for inputs not
belonging to the training set.

Black-box models can be implemented byMachine Learn-
ing (ML) [20], [21], [22], [23], requiring reliable datasets,
proper labeling, and a learning phase which is often quite
costly in terms of time and energy.

Furthermore, all black-box models built with the different
techniques are also vulnerable to drifting and aging, which
makes it desirable to be able to ‘‘update’’ periodically and
possibly automatically with current and online data from the
real system.

Following a different approach, a black-box model can be
seen as a static mapping function that is reconstructed by
training using the learning data set. Unfortunately, this has
so far implied exponential memory usage, for the mapping
representation, in the number of inputs considered.

However, the recent availability on the market of pow-
erful microcontrollers with adequate onboard memory [24]
has finally made feasible the on-the-field implementation
of the approach of the so-called sum-decomposability: the
n-dimensional mapping, whose output depends on n inputs,
is decomposed into the sum of a certain number of one-
dimensional mappings, i.e.mappings that depend on a single
input [25].

In this work, after a brief introduction to the sum-
decomposable mapping approach, the first pioneering exper-
imental implementation of the technique described in [23]
is shown. A numerical model is sized and trained using
an experimental setup that includes a predictor based on a
NUCLEO-F767ZI board from STMicroelectronics, and two
non-linear systems of example.

The paper is organized as follows. Section II describes
the sum-decomposable mapping theory behind the black-
box modeling; Section III introduces the representation
of dynamical systems using static mappings; Section IV

describes the experimental setup and tested circuits, whereas
Section V reports the obtained results. Finally, Section VI
draws the conclusions.

II. THE SUM-DECOMPOSABLE MAPPING THEORY: BRIEF
NOTES
A multiple-input single-output (MISO) black-box model can
be seen as composed of a pair: a static mapping function f :
ℜ
n

→ ℜ from the input and the state space to the output
space, and a suitable regression vector, which includes a
certain number n of past input and output samples [26], [27].
Multiple Input Multiple Output (MIMO) black-box models
can be obtained by juxtaposingMultiple Inputs Single Output
(MISO) black-box models, one for each output.

When experimental samples are considered, they usually
are the output of some kind of analog to digital converter
with M quantization levels. In this way, the static mapping
can be represented by an n-dimensional matrix, consist-
ing of Mn discrete points. The direct representation of the
n-dimensional point set is a very troublesome problem,
because of the so called ‘‘curse of dimensionality’’, which
takes place dealing with every nonparametric technique for
mapping representation: in general, there is an exponential
growth of the memory requirements in the number of the
inputs. For example, with M = 256 (8-bit quantization) and
n = 10, Mn

= 280 memory locations should be allocated.
Even for small M and n, this exponential growth makes
this approach impracticable in a direct way in most cases.
Moreover, the time required for the experimental acquisition
of the input-output pairs also has an exponential growth.

A very large number of effective techniques aimed at
reducing to a minimum the number of inputs have been
proposed in past years (see for example [28], [29], [30]).

In this work, the approach developed in [25] to represent
discrete multidimensional static mappings is followed. The
‘‘curse of dimensionality’’ is avoided by approximating the
n-dimensional matrix with a proper set of 1-dimensional
memory arrays. A machine learning algorithm computes the
values contained in the arrays in order to minimize the map-
ping representation error.

More in detail, considering for the moment only single
output systems, the mapping to be represented is:

y = f (x1, x2, xn), (1)

where y, xi ∈ ℜ, i = 1, 2, . . . n.
In the following, and without complicating the formal

notations used, we will consider all the variables as quantized
with M levels.

In general, to obtain a sufficiently accurate mapping rep-
resentation, an auxiliary variable vector W = [w1, . . . wN ]
generated by N (N ≥ n) suitable linear transformations is
required:

wq = AqX + bq, (2)

where X = [x1, . . . xn]T,Aq = [aq1, . . . aqn] ∈ ℜ
n, bq ∈ ℜ,

and q = 1, 2, . . .N .
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The approximation of f in suitable discrete points can be
written as:

f̃ =

N∑
q=1

gq
(
AqX + bq

)
=

N∑
q=1

gq
(
wq

)
≈ f , (3)

where gq is a 1-dimensional array of M memory locations.
Each array gq is addressed by an integer index obtained after
a proper quantization of wq.

The higher the parameter N , the higher the accuracy of
the representation of f given by (3). From (2) and (3) the
computational complexity of the output generation is O(N ).

The problem of choosing the optimal value for the param-
eter N is very similar to that of choosing the number of
neurons of the MLP hidden layers. At present, only heuristic
techniques are available; for example, N can be increased
until an elbow in the decreasing representation error curve
is reached, with a negligible improvement for larger values.

A noteworthy case is when a mapping f of n variables
is decomposable. Mappings that are summation of non-
linear functions Gq of a single variable xq are naturally
decomposable:

f =

n∑
q=1

Gq
(
xq

)
. (4)

Excepting the quantization error, this kind of mapping is
perfectly represented by the summation of n 1-dimensional
arrays gq. In other words, each Aqvector of (2) has only one
1 in position q, and zeros elsewhere, and bq = 0:

f̃ =

n∑
q=1

gq
(
xq

)
, (5)

where remember that xq is quantized withM levels.
In order to compute the values contained in the N arrays

gq from a sequence of experimental input-output pairs, i.e.
the mapping samples, the following iterative learning rule
presented is used:

gi+1
q (wq) = giq(wq) + α{y−[gi1(w1)+gi2(w2) + . . . giN (wN )},

(6)

where i is the iteration index, q = 1, 2 . . . N , 2/N > α > 0,
and giq is the array computed at ith iteration.

The representation technique is applied through the follow-
ing steps:

a) N 1-dimensional arrays gq, of M elements each, are
allocated. The initial value of all the arrays’ memory
locations is set to zero;

b) theN inputs are quantizedwithM levels (i.e. each input
value becomes an integer number ranging from 0 to
M -1), whereM = 2Nbit and Nbit is the bit number used
to quantize the inputs wq. Each integer input value is
used to address a different memory location in each gq;

c) the contents of the addressed N memory locations, one
for each gq, are read and summed up; the result is the

current approximation ypr = gi1(w1) + gi2(w2) + . . .

giN (wN ) of the mapping output y;
d) the representation error is computed as epr = y - ypr ,

where y is the true mapping output; α · epr is then
accumulated by the iteration (6) in all the memory
locations involved in the current approximated output;

e) steps from b) to d) are repeated for all mapping input-
output pairs.

The definitive advantage of this technique over other simi-
lar ones is that the convergence of the representation (3) to the
mapping (1) through of iteration (6) has been demonstrated,
provided that 0 < α < 2/N .

Decomposable mappings in particular can be represented
with a significant reduction in memory requirements with-
out compromising the integrity of the mapping information.
In fact, we only need to compute and store n 1-dimensional
arrays gq, with amaximum storage of n·M memory locations,
as opposed to the Mn memory locations needed by direct
mapping representations.

It is important to note that the availability of numerous sub-
sequent occurrences of the same input-output pair is required
for the correct construction of the arrays gq, and that the
algorithm can receive the pairs in any order (for example,
sequentially or randomly). In addition, note that the algorithm
only constructs the gq locally for those regions of themapping
where input-output data are available.

III. FROM CONTINUOUS TIME DYNAMICAL SYSTEMS TO
BLACK-BOX MODELS
Each deterministic discrete time dynamical system may be
thought of as a static mapping f from a collection of past and
current inputs and outputs to future outputs. Without loss of
generality, in what follows we will consider a Single Input
Single Output (SISO) system:

y(k + 1) = f [y(k), . . . y(k − p+ 1), u(k) . . . u(k − q+ 1)],

(7)

where (q, p) are the numbers of past samples input and
outputs required to represent the dynamical system, respec-
tively (see Figure 1). The concept could be extended toMISO
systems straightforwardly.

The aim of this work is to show that it is possible to obtain
a replica of the behavior of the system under examination
by building a numerical model through the above-mentioned
learning technique. The model thus obtained is placed side
by side with the real system, is fed by the same input, and
provides a good approximation of the real system output.

For example, in the event of a failure in the real system,
a difference can be immediately observed between the real
and simulated outputs provided by the model. This difference
might be used for various purposes, including the identifica-
tion of faults and anomalies.

For this purpose, first of all, it is necessary to identifywhich
are the meaningful inputs and outputs of the dynamical sys-
tem under examination. Next, the desired degree of accuracy
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FIGURE 1. SISO discrete-time system represented as a static mapping and
time delays.

in replicating the outputs is set by design. This in turn depends
on two factors:

1) quantization level: a higher Nbit value decreases
the quantization error. On the other hand, increasing Nbit
increases the amount of memory and calculations required;

2) degree of decomposability in sum of 1-dimensional
functions of the f to be reproduced: in case the f is not
decomposable, adding array gqs improves the approximation,
but, on the other hand, the memory usage and the required
amount of calculations are increased.

A parameter to be chosen, which is connected to the num-
ber of levels M of each input, is the generalization param-
eter L. In fact, the greater the number of levels, i.e. array
addresses, into which a given range of variation of an input is
subdivided, the lower the probability that all available levels
are used, i.e. all the memory locations of the gq arrays are
addressed, by the available input-output pairs. This can result
in leaving some ‘‘gaps’’ in the contents of the arrays gq.
The generalization mechanism ‘‘fills’’ these gaps using the
‘‘information’’ contained in a number of adjacent memory
locations in the array.

The mechanism works as follows: instead of placing
the value obtained from (6) only in the memory location
addressed by the current input, a fraction 1/L of this value
is stored in a certain number L of adjacent array locations.
When generating the output corresponding to a certain input,
the L memory locations adjacent to the corresponding index
are added.

It has been shown that it is possible, after repeated iter-
ations of this mechanism, to obtain a good approximation
of the mapping not only for all inputs provided, but also

for inputs for which the mapping has not been previously
acquired [20], under the assumption that there is a certain
‘‘proximity’’ with the inputs actually supplied to the system.
The greater the number of inputs provided and their density,
and the smoother the mapping (i.e. continuous mapping and
with continuous derivatives up to a certain order), the better
the approximation that can be obtained.

Furthermore, the generalization allows to reduce the neg-
ative effect of mean zero noise on the input data, extending
the mechanism of successive sums on a large base of arrays’
memory locations. Since an analytical criterion for dimen-
sioning the parameter L is not yet known, one proceeds by
trial and error until a satisfactory result is obtained.

In order to build the SISO model the following steps are
applied, according to Section II:

a) N 1-dimensional arrays gq, of M elements each
(or M+ L elements in case of generalization L), are
allocated. The initial value of all the arrays’ memory
locations is set to zero;

b) at sample times, past input and inputs are time shifted,
i.e. u(k) = u(k+1) and y(k) = y(k+1);

c) new current system input u(k+1) and output and
y(k+1) are sampled and analog-to-digital converted
to integer numbers quantized with M levels (i.e. each
value becomes an integer number ranging from 0 to
M -1), whereM = 2Nbit and Nbit is the bit number used
to quantize both. Each integer input value is used to
address a different memory location in each gq;

d) the predictor output is computed as ypr (k+1) =

g1[ypr (k)]+, . . . . gp[ypr (k– p+ 1)]+ gp+1[u(k)]+. . . .

gp+q[u(k– q+ 1)];
e) the prediction error is computed as epr (k+1) = y

(k+1) - ypr (k+1);
f) α · epr is then accumulated by the iteration (6) in all the

memory locations involved in the current approximated
output;

g) steps from b) to g) are repeated (see flow chart in
Figure 2, where learning is active when α > 0).

When generalization is applied, i.e. L > 0, L read/write
operations are executed on L adjacent memory locations
starting from the current address, for each gq.

IV. EXPERIMENTAL SET-UP
The modeling technique presented here is applied for demon-
stration purposes to the construction of two black-boxmodels
of two distinct highly non-linear electronic circuits

A. EXAMPLE 1 - VOLTAGE CLIPPER CIRCUIT
The first circuit is a voltage clipper: the output is equal to
the input only if it is higher than a certain voltage threshold,
otherwise it has the same value as the voltage threshold.

In Figure 3 the circuit diagram of the circuit is
shown, where the lower voltage threshold has been fixed
at 1.5 V.

Figure 4 shows a 30 Hz sinusoidal 3 VPP and 1.5 V offset
input and the circuit output, acquired via a digital oscilloscope
(Keysight DSOX1204G).
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FIGURE 2. Flow-chart of the machine learning black-box algorithm.
learning is active when α > 0. When generalization is applied, for each gq
L read/write operations are executed on L adjacent memory locations
starting from the arrays’ current address.

FIGURE 3. Voltage clipper circuit: the output voltage is limited down to
Vclip= 1.5 V minus the diode forward voltage.

B. EXAMPLE 2 - NONLINEAR 2nd ORDER FILTER
Example 2 was designed to test the ability of the model built
following the machine learning approach to reproduce the
output of a dynamical system that exhibits high nonlinearity
and damped oscillations.

The second circuit realizes a non-linear system consisting
of a diode voltage limiter followed by an active 2ndorder low-
pass filter with a cut frequency 228 Hz, and a Q value of 7,
whose schematic is shown in Figure 5.
Figure 6 shows a sawtooth input and the circuit output,

acquired by a digital oscilloscope. Figure 6 also shows that

FIGURE 4. Experimental inputs and outputs of the voltage clipper circuit.

FIGURE 5. The nonlinear circuit: a diode limiter followed by a 2nd order
low-pass filter with cut frequency 228 Hz and Q = 7.

FIGURE 6. Experimental inputs and outputs of the 2nd order nonlinear
circuit.

the system exhibits high nonlinearity and damped oscilla-
tions.

V. SIZING AND TRAINING THE BLACK-BOX MACHINE
LEARNING MODEL: EXPERIMENTAL RESULTS AND
DISCUSSION
In the following, two machine learning models of the two
systems reported in the examples of the previous Section
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FIGURE 7. Experimental setup: up) Keysight DSOX1204G oscilloscope
acquiring validation signals; down) the NUCLEO-F767ZI board acting as
the predictor and the example non-linear electronic circuit system.

are built using experimental input-output data from the real
systems.

First of all, the dimensioning activity of the black-box
models is carried out, followed by the learning phase of the
input-output relationship and by the validation that completes
the process.

After the successful completion of the previous phases, for
each of the two examples reported, a model is obtained whose
outputs are a good approximation of those of the real system
with the desired level of error.

Finally, in order to verify the ability of this approach to
provide away to detect a possible fault, a ‘‘fault’’ is induced in
the first example real system, i.e. one parameter of the circuit
is changed and the deviation between the outputs of the faulty
circuit and of the model is evaluated.

The experimental black-box model is implemented using
a NUCLEO-F767ZI board equipped with a STM32F767ZI
microcontroller, with 32-bit ARM architecture, 512 kB
SRAM, 2MB Flash, and clock up to 216MHz (see Figure 7).

In both circuits, inputs, and outputs are read by two analog-
to-digital converters (ADC), integrated into the microcon-
troller, at a rate of 1 kS/s, while the resolution has been set
to 8-bit. The output of the black-box model is produced at
the same rate of 1 kS/s by one of the on-chip digital-to-
analog converters (DAC), also with 8-bit signal resolution.

TABLE 1. STM32F767ZI usage data.

The calculated sample-by-sample error is also output by the
second on-chip the DAC, with a signal resolution of 8 bits.

In Table 1 is summarized the internal resource usage of
STM32F767ZI (the RAM usage is related to Example 2).

A. EXAMPLE 1 - VOLTAGE CLIPPER CIRCUIT
Due to the instantaneous nature of the circuit of Exam-
ple 1, it is assumed that the input-output relationship is the
following:

y(k + 1) = f [u(k)], (8)

therefore, fis composed of one-dimensional function (n= 1).
Inputs and outputs samples vary in the range 0-3 V and are

quantized with 256 levels (8-bit quantization).
The generalization parameter L was set equal to 128, i.e.

half of the signals’ range.
The microcontroller was programmed according to the

steps depicted in Section III, where α was set at 0.07 (see
Figure 2).
The real system and the MCU input are fed with the same

voltage signal, while theMCU also samples the system output
voltage.

When the model sizing is correct, i.e. the number of
required inputs and outputs is correctly identified in relation
to the structure of the system, together with the number
of inputs and outputs passed, as the input-output pairs are
presented to the predictor and processed according to the
algorithm of Figure 2, the prediction error decreases grad-
ually, up to the desired minimum value.

If, on the other hand, at the end of the training process the
desired level of error is not reached, but it is believed that
also the number of past instants used is correct or even over
dimensioned, then most likely the system was not decompos-
able and one should resort to themore complex representation
described in Section II by formulas (2) and (3), and follow the
related sizing process.

The training phase can be considered completed only when
the learning algorithm has received a sufficient number of
input-output pairs whose values cover the entire range of
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FIGURE 8. Learning signals: after the training phase, the model is able to
reproduce the actual system output: input (blue), nonlinear circuit output
(magenta), predicted output (green), and prediction error (red).

expected variation of inputs and outputs. By ‘‘expected vari-
ation range’’ we mean the system input-output signal range
under the foreseen conditions of use.

Therefore, the duration of the training phase and the final
level of the prediction error depend on the quantity, variety,
or shape, of the input-output pairs that the learning algorithm
receives as input.

The best input might seem to be the random type, which,
as is known, contains within itself, if applied for sufficiently
long times, signals of all possible shapes. However, in prac-
tice, this is almost never possible, both due to the long times
necessary to observe some shapes of signal and becausemany
real systems can undergo damage or dangerous behavior (e.g.
robotic arms or navigation systems) if the input signal is not
selected accurately.

In this example, the signal fed to the system during the
learning phase, was a sinusoidal chirp up to 280 Hz, ampli-
tude 3 VPP, and offset 1.5 V (see Figure 8).

Given the simplicity of the system considered, this signal
certainly explores the whole range allowed for input and
output.

In particular, Figure 8 reports the non-linear circuit input
and output, the output predicted by our model, and the
prediction error after the learning phase is completed. The
prediction error is computed on-board the MCU on-line and
it is the output of one of the two on-chip DACs. Since the
DAC can’t output negative voltage, the voltage corresponding
to error zero is centered at about 1.6 V, i.e. the center of the
output range of the DAC. For display purposes, the error is
translated so that zero error corresponds to 0 V (see right y-
axis).

Figure 9a shows that after 7 seconds (i.e. 7 kS) the percent
learning RMS error went below 0.5% and after 10 s was
below 0.25%. The limit RMS error was below 0.15%.

Figure 9b shows the validation phase, i.e. when the out-
put of the predictor is based exclusively on the acquired

FIGURE 9. Experimental results: a) learning curve with RMS error
decreasing along time; b) validation RMS error.

knowledge having set α = 0. In this situation, the predictor
receives only the input of the real system, and is able to
replicate the output with a low error level comparable to
that achieved in the training phase (see Fig. 9b). The final
validation RMS error in all cases was below 0.3%.

Figure 10 shows the outputs in response to a signal of a
shape not used in training. The prediction error is comparable
with that obtained during the training phase.

Figure 11 instead shows the output signals when the orig-
inal system is altered, for example due to a fault. Here the
threshold voltage Vclip has been lowered from 1.5 V down
to 1.15 V and the prediction error increases. The prediction
error can be continuously monitored and when it exceeds a
certain level can easily be used to detect a failure in the real
system.

Figure 12 shows the content of the single g1 array at the
end of the learning phase. This information is calculated
onboard and stored in the RAM in real-time and is extracted
through the debug port of the NUCLEO-F767ZI board using
the STM32CubeIDE and STM32CubeMonitor programming
tools for analysis and display purposes.
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FIGURE 10. Outputs in response to a signal whose shape was not used
during the training phase. The prediction error is comparable with that
obtained during the training phase: non-linear circuit input (blue), circuit
output (magenta), predicted output (green), and prediction error (red).

FIGURE 11. Experimental results after the original system is altered, for
example due to a fault. Here the Vclip voltage has been lowered from
1.5 V down to 1.15 V, and the error becomes significative: non-linear
circuit input (blue), circuit output (magenta), predicted output (green),
and prediction error (red).

B. EXAMPLE 2 - NONLINEAR 2nd ORDER FILTER
The system under examination (see Figure 5) is composed of
a non-linear section (the voltage limiter diode) and a linear
section (the 2nd order filter). A careful analysis of the circuit
shows that the nonlinearity acts only on the input, while the
rest of the circuit is, within its saturation limits, linear.

Taking into account that we are dealing with a second order
system, the model can therefore represent the system using a
set of four arrays g1−4 indexed by the system’s two past inputs
and two past outputs:

y(k + 1)=g1[y(k)] + g2[y(k − 1) + g3[u(k) + g4[u(k − 1)],

(9)

where arrays g3 and g4 are expected to represent nonlinear
functions of u(k) and u(k-1), while the value of the contents

FIGURE 12. Content of the numeric array g1 learned by the predictor that
constitutes the numerical representation of the nonlinear system after
the learning has been completed.

FIGURE 13. Learning signals: after the training phase, the model is able
to reproduce the actual system output: input (blue), nonlinear circuit
output (magenta), predicted output (green), and prediction error (red).

of arrays g1 and g2 will represent linear relationships with
their inputs, respectively.

A signal, provided by the internal signal generator of the
digital oscilloscope, is fed as input of the non-linear system.

In this case, the learning phase can also be carried out with
simple input waveforms. A sinusoidal chirp up to 280 Hz,
amplitude 2.65 VPP and offset 1.575 V was used for the
training (see Figure 13). The input signal was slightly reduced
from the maximum amplitude (3 V) in order to avoid out-of-
range outputs near the circuit resonance frequency.

Figure 14a shows that after 10 seconds (10 kS) the percent
RMS learning error went below 1% and after 20 s was below
0.5%. The final RMS error was below 0.18%. Figure 14b
shows the validation phase with α = 0. The final validation
RMS error in all cases was below 0.45%.

Figure 15 shows the predictor output after the learning and
validation phases are completed and an input not used in the
learning phase is used: non-linear circuit input (blue), circuit
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FIGURE 14. Experimental results: a) learning curve; b) validation error.

output (magenta), predicted output (green), and prediction
error (red) for two different circuit inputs: a) sine, and b) saw-
tooth. The prediction error is comparable with that obtained
during the training phase.

Figure 14a shows that after 10 seconds (10 kS) the percent
RMS learning error went below 1% and after 20 s was below
0.5%. The final RMS error was below 0.18%. Figure 14b
shows the validation phase with α = 0. The final validation
RMS error in all cases was below 0.45 %.

Figure 15 shows the predictor output after the learning and
validation phases are completed and an input not used in the
learning phase is used: non-linear circuit input (blue), circuit
output (magenta), predicted output (green), and prediction
error (red) for two different circuit inputs: a) sine, and b) saw-
tooth. The prediction error is comparable with that obtained
during the training phase.

On the basis of the good result obtained, for example if the
error level reached is of the order of the LSB of the ADCs
and DACs used, we can then, a posteriori, confirm that both
the assumption of decomposability that we made in the sizing
phase of the model, both the number of instants passed for

FIGURE 15. Validation: outputs in response to a signal whose shape was
not used during the training phase. The prediction error is comparable
with that obtained during the training phase: non-linear circuit input
(blue), circuit output (magenta), predicted output (green), and prediction
error (red) for two different circuit inputs: a) sine, and b) sawtooth.

the input and output samples are sufficient. As a thumb rule,
a counter-test can be had by reducing the number of instants
passed in order to verify if the final prediction error remains
the same or increases. This heuristic procedure underlies the
optimization process related to the size of the predictor, i.e.
the number of gqs needed.
The fact that the relationship between inputs and outputs

has actually been learned for all permitted inputs also has to
be checked a posteriori.

At this point, one of the advantages that the proposed
structure (6) has compared to other types of black-boxmodels
clearly emerges. In fact, the content of each array, which we
can view at any time, represents the geometric projection
of the n-dimensional mapping on the related independent
variable. In the case of linear systems, trivially the trend of the
values contained in each gq is rectilinear with the variation of
the addressing index, at least in the range of values received
during learning. In the other cases, a more or less variable
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FIGURE 16. Content of the four numeric arrays learned by the model that
constitute the numerical representation of the nonlinear system after the
learning has been completed.

curve is obtained (see [25]). Typically, physical dynamical
systems have rather smooth curves, sometimes interrupted
by sharp discontinuities. With the proposed approach it is
possible to see the portions of the arrays involved in the
learning process and whether or not there are ‘‘gaps’’ or
anomalies (saturations, etc.).

In fact, Figure 16 shows the content of four arrays g1−4
at the end of the learning phase. The information is calcu-
lated and stored onboard in real-time and extracted through
the programming port of the NUCLEO-F767ZI board using
the STM32CubeIDE and STM32CubeMonitor programming
tools.

Arrays g1 and g2 during training have received inputs in
the range of indexes 0-80 approximately corresponding to the
output range of the system, which is limited in nature. Beyond
the value of 80, the arrays have been filled by the generaliza-
tion process (here L= 128)which obviously provides less and
less accurate guesses moving away from the upper learning
limit. Within the range of 0-80 they show a linear trend with
respect to the index, as was expected.

Arrays g3 and g4, on the other hand, during training
received inputs in the range of indexes 0-230 approximately
corresponding to the range of the input fed to the system.
Beyond the value of 230, the arrays have been filled by the
generalization process, which obviously makes the guess less
and less accurate as you move away from the upper limit of
the learned region. Within the range of 0-230, they have a
typical trend of a saturation curve such as the one expected
from a diode limiter.

Once the arrays have been built correctly for the range
being used, we can be sure that all inputs will produce correct
outputs. It is therefore one somewhat ‘‘explicit’’ or ‘‘explain-
able’’ representation of the mapping. Such explainable inter-
pretation of the numerical representation learned is clearly
not obtainable using other representation methods such as
MLP or similar, where the information on the input-output
mapping is ‘‘implicitly’’ enclosed in the set of values assumed

by the network weights and is not ‘‘visually’’ attributable to
the modeled system properties.

VI. CONCLUSION
In this paper, a pioneer implementation of the black-box
modeling of a nonlinear system based on the reduced dimen-
sionality mapping theory using a resource-constrainedmicro-
controller, was presented.

It was proved that the knowledge of relationship between a
certain number of past inputs and outputs and the output to be
predicted is sufficient for the sizing of the black-box model
of the SISO nonlinear dynamical system.

A NUCLEO-F767ZI board was used in an experimental
setting that showed online learning at 1 kS/s and operations
with a low error, which is comparable to quantization error.

The learning is continuous or periodic, depending on oper-
ational needs.

The model obtained, a numerically-representable replica
of the system, can be used, for example, for fault detection
or predictive control and maintenance. The reduced size of
the model allows for its real-time sharing and update with
cloud and edge-based simulation ecosystems enabling a near
real-time digital twinning of production systems while fed
with current sensed data from the field.

The proposed technique has been showed well suited to
being performed by microcontrollers with reduced comput-
ing capacity and relatively low power consumption, opening
wide application in terrestrial, marine or aerial vehicles and
IoT devices.
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