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Internal constraints in the theories of
immiscible mixtures for soils

Pasquale Giovine

Department of Civil Engineering, Energy, Environment and Materials (DICEAM)
University ‘Mediterranea’ of Reggio Calabria

Via Graziella, 1 - Locality Feo di Vito - 89122 Reggio Calabria - Italy
e-mail: giovine@unirc.it

Abstract

In this paper we formulate balance principles for an immiscible mixture of con-
tinua with microstructure in the broadest sense to include, e.g., di↵usion and ad-
sorption phenomena, strain gradient e↵ects and chemical reactions, and introduce
an additional balance of micromomentum for each constituent to describe the mi-
crostructural e↵ects. Next, we describe a method for taking into account the general
internal constraints in entropy inequality, based on an ‘extended’ principle of ther-
modynamic determinism, and obtain a set of ‘pure’ constitutive equations. Finally
we consider some examples of interest for thermo-mechanics of soils, such as gran-
ular materials dispersed in a fluid or the flow of fluids in a porous solid. Particular
solutions are obtained in linear approximations for mixtures of packed granular
materials in rarefied air, and solids with nano-pores filled by a gas.

Key words: Immiscible mixtures, complex materials, multi-scale representations,
internal constraints, soil mechanics, balance laws, constitutive equations,
numerical solutions.

1 Introduction

A general formulation of balance principles for a mixture of continua with
microstructure in the widest sense was presented in [41] to study di↵usion,
adsorption and broader chemical-physical phenomena. The theory generalizes
the multiphase mixtures presented in [76] where each constituent has a simple
geometric structure characterized only by a scalar kinematic parameter, its
volume fraction. In fact, by considering kinematical parameters on a di↵eren-
tiable manifold, we unify proposals (such as those in the essay [11] or in [62]
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dealing with granular and porous media, or Cosserat and micromorphic con-
tinua. An example of mixtures for micromorphic materials has been studied in
[90], and applied to micropolar media, although, there, the authors consider
for each constituent of the mixture an additional balance equation, parallel,
in a certain sense, to the mass constituent balance: that of microinertia mo-
ment. Instead, such equation has been shown to be a simple consequence of
the definition of the tensor field of microstructural inertia (see, e.g., §21 of
[11], or equations (4.12) and (34) of [17] and [43], respectively).

Moreover, in [41] a new expression of the integral balances of moment of mo-
mentum appears evident in the theory, in which the presence of the various
microstructures is taken into account, while the mass density fields can no
longer be regarded as determined by the deformation fields because chemical
reactions are present, thus the constitutive assumptions must allow for a de-
pendence on a larger number of variables (see, also, [14] for reacting mixtures
of polar bodies).

The present work concerns the use of internal constraints [18] in order to study
the essential features of some classical models of soils capable of describing the
e↵ects of immiscibility and variable volume fractions, besides those associated
to microstructural interactions. In the so-called immiscible mixtures the com-
ponents do not form a mixture on the molecular level, as it is the case for
fluids, but remain separated to the sub-structural level of observations: mate-
rial systems such as rocks, solid filters, granular and porous media, biological
tissues, clays, etc. belong to this class (see, for example, § 5A.4 of [10], other-
wise [79], or further the Ch. 13 of [95]). Furthermore, due to the complexity
of the interactions between components as well as among macro- and micro-
structure, it is assumed that the entropy flux is not equal to the heat flux
divided by the temperature, as suggested in [68] and [51].

As special cases of our proposal we find the description of a theory of fluid
suspensions, an incompressible mixture of a concentrated granular material
immersed in a fluid, and a mechanical theory of poroelasticity, in which the
constitutive equations for the solid elastic skeleton take into account for the
micro-strain gradient e↵ects due to the presence of nanopores.

Detailed numerical studies are also provided to describe the e↵ects of mi-
crostructures, such as the influence of micro-rotations in a quasi-linear dilatant
granular material with rotating grains, or the incidence of micro-vibrations in
a linear thermoelastic solid with big pores.
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2 Kinematics and microstructures

In this section we discuss the kinematics of motion and the equations of bal-
ance for a mixture of n continuous bodies Bi, i = 1, 2, . . . , n, each endowed with
its own microstructure, and, in our developments and notations, we mainly
follow Truesdell (Lecture 5 of [86]).

We assume that all of them are able to occupy regions of the three-dimensional
Euclidean space E , at a certain time ⌧ in an interval [⌧ 0, ⌧ 1] during which
the motion is observed, and indeed contemporaneously: for which every place
x in the body is simultaneously occupied by a material particle xi of each
constituent at time ⌧ . If Xi is the place taken by a particle of Bi in some
reference placement, the motion of Bi is the smooth mapping

x = xi(Xi, ⌧) (1)

of Bi onto a time-sequence of placements in space: each such motion has its
own kinematics.

We shall use a subscript to indicate a constituent and a prime to denote the
material time derivative following the motion of that constituent; therefore, vi
and ai are the peculiar velocity and acceleration of constituent i, respectively:

vi :=
@xi

@⌧
(Xi, ⌧) = x

0
i(x, ⌧), ai :=

@
2
xi

@⌧ 2
(Xi, ⌧) = x

00
i (x, ⌧). (2)

The i
th peculiar velocity gradient Li and deformation gradient Fi of Xi 2 Bi

are

Li = grad vi(x, ⌧) and Fi =
@xi

@Xi
(Xi, ⌧), (3)

respectively. Because of the assumptions made about the smoothness of xi, it
is

◆i := detFi > 0, (4)

thus F�1
i exists and, by the chain rule, it is easy to show that

Li =
⇣
F

0
iF

�1
i

⌘
(x, ⌧) = Di +Wi, (5)

where the standard decomposition of the velocity gradients are used with
Di :=

1
2(Li + L

T
i ) and Wi :=

1
2(Li � L

T
i ) the i

th peculiar rate of deformation
and spin tensor, respectively.

Each body Bi has its own bulk mass and consequently its mass density per
unit volume ⇢i in the placement xi at time ⌧ , then the density and the velocity

3



of the mixture are defined by

⇢ :=
X

⇢i and v :=
X

⇠ivi, with ⇠i =
⇢i

⇢
, (6)

respectively, where ⇠i is the concentration of the i
th constituent; here and

henceforth,
P

stands for summation from i = 1 to i = n. Moreover, if we
introduce the di↵usion velocity of the i

th constituent in the mixture

ui = vi � v, (7)

the following property holds:

X
⇠i ui =

X
⇠i vi �

⇣X
⇠i

⌘
v = 0. (8)

The hypothesis that the constituents Bi of the mixture have a Lagrangian
microstructure (in the sense of Capriz [11]) means that each material element
of a single body reveals a microscopic geometric order at a closer look; then
it is there assigned a measure ⌫i(x) of the peculiar microstructure, read on
a smooth manifold Mi of finite dimension mi: e.g., the interval [0, ⌫̄) of real
number, with ⌫̄ < 1, for the volume fractions of fluids in an immiscible mixture
[76], the projective plane in the theory of liquid crystals [29] or the space of
definite positive symmetric tensor in the theory of solids with large pores [35].
For now, we do not fix the tensor rank of each order parameter ⌫i.

Let us consider now two observers di↵ering by a rotation of characteristic
vector q(⌧), with corresponding proper orthogonal tensor

Q(⌧) = exp[�" q(⌧)]

:= I � " q +

1

2
(" q)(" q)� . . .

�
, (9)

where exp is the basis of natural logarithms, " is Ricci’s three-dimensional
alternating tensor and I is the identity tensor. They read two di↵erent values
⌫i and (⌫i)q of the i

th order parameters connected by the following relation
(see §3 of [11] or §6 of [19]):

(⌫i)q = ⌫i +Aiq + o(|q|), (10)

where Ai(⌫i) is the infinitesimal generator of the local action of the proper
orthogonal group SO(3) over Mi defined by:

Ai(⌫i) :=
d(⌫i)q
dq

�����
q=0

; (11)

Ai is a linear operator mapping vectors of <3 into elements of the tangent
space T⌫iMi to Mi at ⌫i and, in its matrix representation, has three columns
and a number of rows equal to the dimension mi of Mi. For the examples
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above, the volume fraction of a fluid is invariant for changes of observer, so Ai

vanishes; in the theory of uniaxial liquid crystals, the order parameter is a unit
vector d marking the alignment of rod-like molecules, therefore Ai coincides
with ("d); finally, in the theory of solids with large pores, the order parameter
is a symmetric tensor U , which changes as a 2nd order tensor, thus Ai has the
following components (Ai)↵�◆ = U↵�"��◆ � "↵�◆U�� (see, also, §3 of [11] and
§3.1 of [64] for more general changes in observers, currently not of interest
in this context). The convention that repeated greek indices are summed is
adopted throughout.

Now we suppose that, for each body Bi, exists a non-negative kinetic energy
i(⌫i,!i), associated with each time-rate of change of the i

th microstructure

!i := ⌫
0
i =

@⌫i

@⌧
+ (grad ⌫i) vi = ⌫̇i + (grad ⌫i) ui, (12)

that is the material time derivative of ⌫i with respect to the peculiar velocity
vi, and which will be called, briefly, the i

th microspeed; this kinetic energy i
is such that i(⌫i, 0) = 0 and @2i

@!2
i
6= 0. Here, ˙(·)

⇣
:= @(·)

@⌧ + [grad (·)] v
⌘
is the

material time derivative with respect to the mixture velocity v given by (6)2.

Moreover, we can define the density of kinetic co-energy �i(⌫i,!i) related to
i by the Legendre transform:

i =
@�i

@!i
· !i � �i, (13)

that is, �i is a solution of the system of linear partial di↵erential equation
of the first order (13) or, introducing coordinates ⌫↵i in a local chart of the
manifold Mi,

i(⌫
↵
i ; (!i)

�) =
@�i

@(!i)�
· (!i)

� � �i, (14)

with the usual convention for the sum over repeated indices. Of course, if �i

were homogeneous of second degree in !i, then it would coincide with i. On
the contrary, even if i were homogeneous of second degree in !i, �i need
not coincide with i (see [13]). In the absence of i, the measure ⌫i is rather
termed internal (state) variable and ruled by a first order evolution equation
instead of a balance equation (see, e.g., equation (5A.4.11) of [10]).

3 Laws of balance for constituents

For a region V of space, we may consider the actions on the part of the
constituent body Bi presently occupying V and calculate the rates of growth
per unit volume of mass ↵+

i , linear momentum m
+
i , micromomentum �

+
i ,
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rotational momentum z
+
i , energy ✏

+
i and entropy ⌘+i within it. It is meaningful

to note that these quantities derive from interactions between constituents
and should therefore be recognized as terms of interchange, thus the rules
that underlie our formulation of the constituent balance laws are the first two
metaphysical principles of Truesdell [86]: 1) all properties of the whole mixture
must be mathematical consequences of properties of the constituents; 2) so as
to describe the motion of a constituent, we may in imagination isolate it from
the rest of the mixture, provided we allow properly for the actions of the other
constituents upon it.

Each constituent Bi undergoes actions of three kinds: 1) the contact actions,
represented by the stress Ti, the microstress Si, the heating and entropy fluxes
qi and pi, respectively; 2) the internal microactions per unit volume ⇣ i; 3) the
prescribed actions at a distance, depicted by the densities per unit mass of
body force bi, microforce �i, heating �i and entropy supply $i. Therefore, the
integral equations of balance for the constituent i of the mixture, proposed in
[41], are assumed in the general form, with the growth terms included in the
source term:

Z
↵
+
i dv ⌘

✓Z
⇢i dv

◆0
,

Z
m

+
i dv ⌘

✓Z
⇢ivi dv

◆0
�
Z
⇢ibi dv �

I
Tin da,

Z
�
+
i dv ⌘

 Z
⇢i

@�i

@!i
dv

!0

�
Z "

⇢i

 
@�i

@⌫i
+ �i

!

� ⇣ i

#

dv �
I
Sin da,

Z ⇣
z
+
i + r ⇥m

+
i +AT

i �
+
i

⌘
dv ⌘

"Z
⇢i

 

r ⇥ vi +AT
i

@�i

@!i

!

dv

#0
� (15)

�
Z
⇢i

⇣
r ⇥ bi +AT

i �i

⌘
dv �

I h
r ⇥ Tin+AT

i (Sin)
i
da,

Z
✏
+
i dv ⌘

Z
⇢i

✓
✏i +

1

2
v
2
i + i

◆
dv

�0

�
Z
⇢i (�i + bi · vi + �i · !i) dv +

I ⇣
qi � T

T
i vi � ST

i !i

⌘
· n da,

Z
⌘
+
i dv ⌘

✓Z
⇢i⌘idv

◆0
�
Z
⇢i$idv +

I
pi · n da.

In the equations (15),
R
denotes integration over the volume V and dv the

element of volume;
H
denotes integration over its boundary @V and da the

element of surface, while n is the outward unit vector normal to the boundary
@V ; the position vector field r is given by (x � x0) with x0 a fixed point in
E ; the transpose of the (mi + 1)th order tensors Ai (or Si) has the following
components (AT

i )↵...�◆ = (Ai)◆↵...�; "i and ⌘i are the i
th peculiar internal energy

and entropy, respectively.
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The formulation of the balance of rotational momentum in the form (15)4
appears to be a novelty in the theories of general continua with microstruc-
ture, even if the deduction of its local form will be in agreement with that
inferred, e.g., from a theorem of kinetic energy in [11] and [40], or obtained
with invariance requirements with respect to classes of changes in observers
[63]. Moreover, if we consider polar continua of Cosserat brothers or oriented
materials of Toupin, the order parameters ⌫i and the operator Ai can be recog-
nized as a proper orthogonal tensor R and the 3rd-order tensor of components:
(Ai)↵�◆ = "↵�◆R��, respectively; therefore, for a single polar body, the balance
(15)4 in local form reduces to the Cosserats’ law for balance of moment of mo-
mentum (205.10) of [89], or otherwise to the Toupin’s spin momentum balance
(98.26) of [88] (when the same spin momentum vanishes), that is

skw Ti = ⇢il + divM, (16)

where the skew part of a tensor C is defined as skwC := 2�1(C � C
T ), while

the assigned couple field l and the couple stress tensor M are now

l↵� := R[↵�(�i)��] and M↵�◆ = R[↵�(Si)��]◆ (17)

respectively: here the square brackets specify the skew-symmetric part with
respect to indicated indices.

Finally, there are appropriate additional terms in the energy equation (15)5
corresponding to the work done by the respective field terms in the balance
of micromomentum.

For suitably smooth regions and fields, it is possible to apply the divergence
theorem and obtain the local statements of balance equations (15) for each
constituent Bi:

↵
+
i = ⇢

0
i + ⇢i div vi, (18)

m
+
i � ↵

+
i vi = ⇢iv

0
i � ⇢ibi � div Ti, (19)

�
+
i � ↵

+
i

@�i

@!i
= ⇢i

 
@�i

@!i

!0

� ⇢i

 
@�i

@⌫i
+ �i

!

� divSi + ⇣ i, (20)

z
+
i = "Ti �AT

i ⇣ i � (gradAT
i )Si, (21)

✏
+
i �m

+
i · vi � �

+
i · !i � ↵

+
i

⇣
✏i � 2�1

v
2
i � i

⌘
= (22)

= ⇢i✏
0
i � ⇢i�i + div qi � Ti · Li � ⇣ i · !i � Si · grad!i,

⌘
+
i =↵

+
i ⌘i + ⇢i⌘

0
i � ⇢i$i + div pi. (23)

We wish to observe that, to get equation (21), we used balances (18)-(20)

and the invariance of �i under the galilean group, i.e.,
⇣
AT

i

⌘0 @�i
@!i

= �AT
i
@�i
@⌫i

.

Further, in equation (23), we followed Müller [68] by assuming that, in general,
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the entropy flux pi is not equal to the heat flux qi over the peculiar temperature
✓i: in fact the components of the mixture are complex bodies as it is the case,
for example, for granular mixtures (see [92,44]). In this regard, the multiphase
theory formulated in [76], and based on the continua of “Goodman & Cowin”
type [51], ignores this assumption despite it being present in [51] itself: it could
be neglected only if the related body has particular material symmetries [68].

4 Powers and objectivity

The kinetic energy Ti of the i
th constituent Bi occupying V in the present

configuration is defined by

Ti ⌘
Z
⇢i

✓
1

2
v
2
i + i

◆
dv, (24)

while the mechanical power Pi developed on the i
th constituent occupying V

is the rate of working of all forces acting on Bi by the exterior bodies:

Pi = Ppro
i + Pexc

i , (25)

where the decomposition of the power Pi into a proper part Ppro
i , the one

that can be attributed to Bi as if it was isolated, and an exchange part Ppro
i ,

which accounts for the power of the direct actions exerted on Bi by other
components, is motivated by the second metaphysical principle for mixtures,
for which each constituent can be isolated from the rest provided that the
interactions with the others are accounted for. Precisely, they are

Ppro
i :=

Z
⇢i (vi · bi + !i · �i) dv +

I
[vi · (Ti n) + !i · (Si n)] da and (26)

Pexc
i :=

Z "

vi ·
⇣
m

+
i � ↵

+
i vi

⌘
+ !i ·

 

�
+
i � ↵

+
i

@�i

@!i

!

+
1

2
(curl vi) · z+i

#

dv,

where the curl of a vector u is defined as: curl u := �"(grad u). The macro-
and micro-actions appearing in the expressions above have contact and bulk
nature. In definition (26)1, contact and bulk macro- and micro-actions include
all mechanical actions, as introduced on the right hand-side of balances (15).
Instead, the second category of bulk actions, which appears in (26)2 for Pexc

i ,
consists of macro- and micro-interactions expressed on the i

th constituent by
all the other components: they are defined through the rates of growth and
their expressions become evident on the left hand-side of balances (19-21) (see,
also, [63,60]).

We are now able to obtain the expression for the net working Wi of the i
th

constituent according to a classical theorem of kinetic energy first proved by
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Stokes for simple bodies (see Lecture 2 of [86]). It is given by

Wi ⌘ Pi � Ṫi (27)

and can be inferred in a standard way from the definition (25) of the power Pi,
the divergence theorem and the balance equations (19) and (20) of macro- and
micro-momentum, respectively; namely, taking the appropriate scalar product
of both sides of (19) by vi, operating similarly with !i on (20), integrating both
sides over the region V by parts where possible, taking account for the balance
of mass (18) and the Legendre transform (13) and summing finally term by
term.

The result (27) asserts that the working Wi is the power of the forces exerted
upon Bi by the exterior of Bi, minus the rate of increase in kinetic energy of
Bi, in an inertial frame. Therefore, we are led to the following formula:

Wi =
Z ✓

Ti · Li +
1

2
z
+
i · curl vi + ⇣ i · !i + Si · grad!i

◆
dv, (28)

where the scalar under the sign of integral is the so-called net working per
unit volume wi of the body with microstructure Bi in the mixture; wi is often
called the stress power [86,18].

In the following we shall give a suitable definition of a continuum with mi-
crostructure subject to perfect internal kinematical constraints, for which the
expression of the stress power wi plays an essential rôle, thus we furnish here a
version of wi which clearly shows its independence from the observer by means
of the use of the corotational time derivative ⌫̆i, due to the spin tensor Wi,
which is an objective measure of the microspeed !i (see, e.g., equation (36.13)
of [88] or §2.8.2.4 of [55]); precisely, if we introduce the spin vector

ri := �1

2
"

⇣
F

0
iF

�1
i

⌘
=

1

2
curl vi, (29)

we have the subsequent expression for ⌫̆i:

⌫̆i = !i �Ai ri (30)

(see comments in Remark 2 of §6 in [11]), while the standard decomposition
(5)2 of the velocity gradient Li assumes here the following form: Li = Di�"ri.

At the end, we can obtain the requested objective version of the stress power
wi by the use of the balance of moment of momentum (21):
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wi =Ti · Li + z
+
i · ri + ⇣ i · !i + Si · grad!i =

=sym Ti ·Di � skw Ti · ("ri) + z
+
i · ri + ⇣ i · !i + Si · grad!i =

=sym Ti ·Di �
h
AT

i ⇣ i +
⇣
gradAT

i

⌘
Si

i
· ri + ⇣ i · !i + Si · grad!i =

=sym Ti ·Di + ⇣ i · ⌫̆i + Si · grad ⌫̆i +
⇣
AT

i Si

⌘
· grad ri, (31)

where, in the last row, Di, ⌫̆i, grad ⌫̆i and grad ri are all frame indi↵erent.

These few formulas provide us with a specific mechanical framework upon
which a thermodynamic structure can be raised for constrained immiscible
mixtures.

Moreover, by introducing the expression (31)1 for the stress power wi in the
balance of energy (22), we obtain

✏
+
i � z

+
i · ri �m

+
i · vi � �

+
i · !i �↵

+
i

⇣
✏i � 2�1

v
2
i � i

⌘
= (32)

= ⇢i✏
0
i � ⇢i�i + div qi � wi.

Before going further, we record here an expression for ⌘+i obtained by intro-
ducing the vector of extra entropy flux ki, which means the di↵erence between
entropy flux pi and heat flux qi over the peculiar temperature ✓i, and assum-
ing that the entropy supply $i from the external world is equal to the energy
supply �i divided by the same temperature (see [68,51]):

ki = pi �
qi

✓i
, $i =

�i

✓i
, (33)

with, in general, ki 6= 0 for bodies with microstructure, as we specified in
previous section; thus, it is

⌘
+
i = ↵

+
i ⌘i + ⇢i⌘

0
i � ⇢i✓i

�1
�i + div ki + div (✓i

�1
qi). (34)

After, we can reduce it by elimination of the body heating �i through (32)
and by use of the concept of Helmholtz’s free energy per unit mass

 i := ✏i � ✓i⌘i, (35)

of the chain rule and of the balances of mass (18) in order to recast the entropy
equation (23) in the following form:

⌘
+
i =div ki + ✓i

�1
h
wi � ⇢i ( 

0
i + ⌘i✓

0
i)� ✓i

�1
qi · grad ✓i+ (36)

+ ✏
+
i � z

+
i · ri �m

+
i · vi � �

+
i · !i � ↵

+
i

⇣
 i � 2�1

v
2
i � i

⌘i
.
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5 Balance laws for the mixture

In our mixture, we assume that physical transfers, and eventual chemical re-
actions, are exchanges rather than true processes of creation or destruction,
thus we allow mass, linear momentum, rotational momentum, and energy of
any constituents to change form, but do not allow the total mixture to pro-
duce these quantities, i.e., they are conserved for the whole mixture and, from
balances (15), give rise to the following four axioms of balance for mixtures
(that satisfy the third metaphysical principle of Truesdell: the whole mixture
behaves as a single body):

X
↵
+
i = 0,

X
m

+
i = 0,

X
z
+
i = 0,

X
✏
+
i = 0. (37)

In addition, following Lecture 5 of [86], we do not restrict ⌘+i except for the
requirement that the total growth of entropy for the mixture remain non-
negative, i.e., our axiom of dissipation is

X
⌘
+
i � 0 (38)

(see, also, [91]). We can give a more expressive form to the entropy inequality
(38) by using the general equation of transport (5.16) of [86], which relates
the time derivative ⌘̇ of ⌘ =

P
⇠i⌘i following the mean motion of the mixture

to the time derivative ⌘0i of ⌘i, following the motion of the body Bi, that is:

⌘̇ =
X

⇠i⌘
0
i +

1

⇢

hX
↵
+
i ⌘i � div

⇣X
⇢i⌘iui

⌘i
. (39)

Therefore, the summation of (23) over all constituents i gives the so-called
second law of thermodynamics for the mixture in the form

D = ⇢⌘̇ � ⇢µ+ div p � 0, (40)

where D =
P
⌘
+
i is the dissipation, while

µ :=
X

⇠i$i and p :=
X

(pi + ⇢i⌘iui); (41)

we wish to observe that not only the net entropy flux, but also di↵usion may
give rise to mixture entropy flux p: in fact we see that, even if pI (:=

P
pi) = 0,

the resultant rate of entropy increase div p will not generally vanish if di↵usion
is occurring.

A reduced version of the dissipation inequality for microstructured mixtures
(40) can be obtained by using in (38) the alternative expression (36) for ⌘+i ,
where the heat flux �i does not occur due to the constitutive expression (33):
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�D=
Xn

✓i
�1
h
⇢i ( 

0
i + ⌘i✓

0
i)� wi + ✓i

�1
qi · grad ✓i � ✏

+
i + z

+
i · ri+

+ �
+
i · !i +m

+
i · vi + ↵

+
i

⇣
 i � 2�1

v
2
i � i

⌘i
� div ki

o
 0. (42)

The balance principles (18)-(22) of mass, linear momentum, micro-momentum,
rotational momentum and energy make it possible to remove from (42) any
one member of each of the five lists ↵+

i ,m
+
i ,�

+
i , z

+
i , and ✏

+
i if we wish to.

A final axiom for the mixtures was added in [74,76] to take into account
the rôle of the particular microstructure treated therein, the volume fractions
of constituents. But here the growth of micromomentum �

+
i take values on

the cotangent space T
⇤
⌫iMi to Mi at ⌫i that is, obviously, di↵erent for each

constituent i, therefore, their sum is meaningless in our framework. Instead,
in [41], we have proposed more generally that the micromomentum growths
must assure the consistency of the axiom of dissipation with the constitutive
equations, as we shall discuss in the following (see, also, [39,40,61]), that is,

X
✓
�1
i

⇣
↵
+
i i � �

+
i · !i

⌘
= 0. (43)

Alternatively, it appears very interesting a recent proposal in [66] that sug-
gests to modify the third metaphysical principle of Truesdell, which states:
“The motion of the mixture is governed by the same equations of a single
body”. Axioms (37) assures the validity of the third principle, when all con-
stituents are described as simple bodies, but they do not su�ce for mixtures of
complex bodies, when the constituent representations belong to di↵erent mod-
eling classes: what kind of single body should be considered? Therefore, the
extended proposal [66] is cogent, because it a�rms that “the interactions be-
tween any pair of constituents appear only at the common level of description
while the whole mixture behaves as a body admitting the richest description
among those of the constituents”.

Thus, at microstructural level, only for kinematic measures ⌫i read on ‘similar’
manifolds Mi, of same dimension mi, we can assign possible exchanges of
micromomentum and connections like formulas (37): this is the case of volume
fractions in [76] where the whole mixture behaves as a single “Goodman &
Cowin” granular materials (see [51]) for which all micromomentum growths
are scalar quantities; moreover, the atypical immiscible mixture in [39], that
describes the behaviour of soils and where constituents are a porous solid with
ellipsoidal microstructures filled by a compressible fluid, the scalar fluid gain
sums to zero only with the trace of the porous solid gain, that is a symmetric
tensor with the deviatoric part null.

At the end, in general, for our mixtures of continua with microstructure, we
shall have a single body with the richest microstructure necessary to com-
pletely describe its macro- and micro-motions, as we can see in [94,41,48]
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and, also, in the examples below, where the additional axiom of balance for
micromomentum growths for mixtures is proposed on a case-by-case basis.

6 Internal constraints in microstructured mixtures

In the previous sections we tacitly supposed that the triple of variables xi, ⌫i, ✓i,
for the constituent i, could take arbitrary values for each element of the body
Bi; however, there exists a wide class of microstructured mixtures for which,
when an element of Bi has reached a certain state, the complete placement
xi, the microstate ⌫i, the temperature ✓i are somehow restricted: as examples,
we may think of uniaxial liquid crystals, usually modeled as perfect incom-
pressible fluids with a unit vectorial microstructure, or of Cosserat’s continua,
where their tensorial microstructure is constrained to be a proper orthogonal
tensor, or, finally, of a macroscopically rigid conductor where the introduction
of a di↵erentiable internal constraint on the microstructure ⌫i, only depending
by temperature variations, implies finite-speed heat conduction [65]. There-
fore, if the choice is limited, we will say that the body is subject to an internal
constraint, and so is the mixture itself. Accordingly we need to define here the
class of immiscible microstructured mixtures with internal constraints and
adopt an e↵ective extended principle of thermodynamic determinism in order
to analyze the consequences of their presence and to give a full thermodynam-
ical description for a broad family of such peculiar immiscible mixtures.

The thermo-mechanical theory of internal constraints in media with microstruc-
ture, such as those we conceive of here, is a not trivial case of the abstract
thermodynamical theory of constrained materials developed in [53], as gener-
alized in [18]. In particular, to our knowledge, this is the first time that the
constraints in a microstructured mixture theory are treated with the formalism
of [18], in fact, usually, the theory of Lagrange multipliers is used. Hence, the
body Bi is said to be internally constrained if the allowed velocity, microspeed
and temperature rate distributions vi, !i and ✓

0
i, respectively, are such that

not all values of the objective factors Di in the space of symmetric tensors, ⌫̆i
in the tangent space T⌫iMi, grad ⌫̆i in the space of linear operators from the
vectorial space of translations into T⌫iMi, grad ri, grad ✓i and grad ✓0i in the
space of linear operators are accessible.

The Extended principle of thermodynamic determinism for mixtures of ma-
terials with microstructure subject to contraints asserts that each quantity,
which in absence of the constraint is ruled by a constitutive prescription, as
Ti, ⇣ i, Si, . . . , is now the direct sum of two components, one active and the
other reactive:

Ti = T
a
i + T

r
i , ⇣ i = ⇣

a
i + ⇣

r
i , Si = Sa

i + Sr
i , . . . (44)
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where only active components T
a
i , ⇣

a
i , Sa

i , . . . have to be specified, through
suitable constitutive relations, by the independent thermo-kinetic variables.
As for the reactive terms T r

i , ⇣
r
i , Sr

i , . . . , in general they remain undetermined
unless some information on the physical mechanism which causes the con-
straint is given (see, also, §27 of [11] or, for the purely mechanical case, §IV.7
of [87] and §9 of [19]). Following [52], we do not include reaction terms  r

i for
the free energies in (44): in fact, if we enclose such quantities, the conclusion
would be that they are constant in every process.

However, as we anticipated before, we shall consider the class of mixtures
with perfect constraints, i.e., internally frictionless, for which, in this thermo-
mechanical context, reactive parts do not produce entropy (see, also, [71]):
that is the contribution of reactions to the left hand part of (42) is identically
zero for every process allowed by the constraints:

Xn
✓i

�1
h
⇢i ⌘

r
i ✓

0
i � w

r
i + ✓i

�1
q
r
i · grad ✓i � ✏

+r
i + z

+r
i · ri+

+ �
+r
i · !i +m

r+
i · vi + ↵

+r
i

⇣
 i � 2�1

v
2
i � i

⌘i
� div kr

i

o
= 0, (45)

where, in agreement with relation (31)4,

w
r
i := symT

r
i ·Di + ⇣

r
i · ⌫̆i + Sr

i · grad ⌫̆i +
⇣
AT

i Sr
i

⌘
· grad ri. (46)

7 Constitutive choices in the thermomechanics of soils

For each body with microstructure Bi, a thermokinetic process is a triple of
fields on Bi ⇥< with values on E ⇥Mi ⇥<+, namely

xi(Xi, ⌧), ⌫i(x, ⌧), ✓i(x, ⌧); (47)

an associated caloro-dynamic process involves not only the classical fields
Ti, ✏i, qi, ⌘i, pi, i, but also, besides, microstructural ones Si, ⇣ i, in addition to
the growths

↵
+
i (x, ⌧), m

+
i (x, ⌧), �

+
i (x, ⌧), z

+
i (x, ⌧), ✏

+
i (x, ⌧), (48)

provided these be subject to the general balance axioms of the thermodynam-
ics of microstructured mixtures, namely, (18)-(22), (36), (37) and (42), plus
the (eventual) general axiom regarding micromomentum growths, as well as
constraint conditions.

Therefore, to express the constitutive axioms, the prior fields have to satisfy
the general principles governing constitutive equations, which are: 1. Deter-
minism, 2. Equipresence, 3. Local action, 4. Material frame-indi↵erence, 5.
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Dissipation (see note 12, Lecture 5 of [86]). These principles are well known
as those governing the constitutive relations for mixtures of simple bodies,
and must be appropriately interpreted in our context: Determinism is speci-
fied in the previous section; Equipresence, “which forbids the theorists from
choosing independent variables by caprice” (see Lecture 1 of [86]), imposes
that the variables and analytic restrictions at the outset be the same for all
constitutive functionals; Local action asserts that the response of components
at any points Xi depends only on the thermokinetic process in the immedi-
ate neighbour of Xi; Material frame-indi↵erence a�rms that the behavior of
constituents is independent of the observer; Dissipation requires that the re-
sponse of constituents satisfy the reduced dissipation inequality (42) for every
thermodynamics process.

We observe here that, to simplify the calculations and inferences from the
entropy principle, in many mixture theories the Equipresence is sometimes
replaced by the so-called principle of Phase Separation, which reduces the
equipresence only to the growth functionals (48) (see, e.g., [1,76,92]), but
there are also valid plausibility arguments to reject that choice, as we do in
our context of soil thermodynamics (see [91] for comments on this question).

The last feature of the constitutive relations concerns the material symme-
tries of each constituent, associated with its physical structure, therefore such
symmetries must be appropriately reflected in the form of the constitutive
equations of the whole mixture.

In the following sections we wish to present applications for immiscible mix-
tures of interest for the di↵usion of pollutants, soil micromechanics, granular
flows or poroelasticity, for which the individual constituents remain physically
separate and thus the volume fractions influence the constitutive responses,
in accordance with [10].

Therefore, it is necessary to distinguish between the bulk mass densities ⇢i
and the true mass densities �i of the i

th constituent: the first one represents
the mass of the i

th constituent per unit of mixture volume; the second one
is its mass per unit of true volume, which is given as a fraction of the whole
mixture by the introduction of the volume fraction �i, a smooth scalar field
representing the proportion of space occupied by the i

th component. For the
hypotheses made, the bulk densities ⇢i are tied to the true densities �i by the
following relation

⇢i = �i�i, with �i 2]0, 1[, (49)

and the total volume fraction is

�tot =
X

�i; (50)

the mixture is said saturated if �tot = 1, unsaturated if �tot < 1, i.e., when
there are void spaces in the mixture. Finally, we write again the mass balance
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(18) inserting the decomposition (49)

↵
+
i = �

0
i�i + �i�

0
i + �i�i div vi. (51)

Furthermore, we would like to conclude this section by introducing an ad-
ditional important special case concerning temperatures: in particular, if the
energy exchange between the constituents is so e�cient that the mixture can
be characterized by a single temperature

✓i = ✓, for i = 1, . . . , n, (52)

then such an assumption is tantamount to restricting considerations to the
mixture energy equation only, rather than to each energy equation separately
[69]: in fact the terms in ✏+i drop out of (42) because of (37)4, so the dissipation
principle does not restrict the growths of energy and we need then work only
with the mixture forms for reduced energy and entropy balances (see, also,
Lecture 5 of [86] and [84,92]). Moreover, in this ‘single temperature’ model,
constituent interactions are limited to those associated with mass, momentum,
micromomentum and moment of momentum.

About the reduced dissipation inequality (42), inserting condition (52) we have
that

�✓D=
Xnh

⇢i

⇣
 

0
i + ⌘i✓

0i
⌘
� wi + ✓

�1
qi · grad ✓ + z

+
i · ri+

+ �
+
i · !i +m

+
i · vi + ↵

+
i

⇣
 i � 2�1

v
2
i � i

⌘i
� ✓ div ki

o
 0, (53)

where ✓0i := @✓
@⌧ + (grad ✓) vi = ✓̇ + (grad ✓) ui. Moreover, using the resul-

tant free energy  defined as the concentration-weighted sum of the peculiar
Helmholtz’s free energies per unit mass (35)

 =
X

⇠i i, (54)

we obtain

�✓D= ⇢

⇣
 ̇ + ⌘ ✓̇

⌘
� w + ✓

�1
q · grad ✓ � ✓ div k + (55)

+
Xh

z
+
i · ri + �

+
i · !i +m

+
i · vi � ↵

+
i

⇣
2�1

v
2
i + i

⌘i
 0,

where

w :=
X

wi, q := qI +
X

⇢i ( i + ✓ ⌘i) ui and k := kI � ✓
�1
X

⇢i iui (56)

with qI :=
P

qi and kI :=
P

ki the net heating and extra-entropy flux, re-
spectively: as for (41)2, also here the presence of di↵usion can increase the
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additional heating and extra-entropy fluxes, even if qI and kI are null. From
(41)2 and (56)2,3, we have also that

k = p� ✓
�1
q. (57)

In addition, we write the condition (45) of perfect constraints for reactions,
when (52) holds,

⇢ ⌘
r
✓̇�w

r + ✓
�1
q
r · grad ✓ � ✓ div kr +

+
Xh

z
+r
i · ri + �

+r
i · !i +m

+r
i · vi � ↵

+r
i

⇣
2�1

v
2
i + i

⌘i
= 0. (58)

8 Applications

8.1 Two-phase suspensions

In this first application we specialize our theory to a saturated multiphase
mixture of bodies with scalar microstructure, where all the order parameters
⌫i represent the volume fraction �i of the i

th constituent, as it is the case for
granular materials of Goodman & Cowin type [51], or for fluid suspensions of
Passman, Nunziato & Walsh [76], or for saturated solid-fluid mixtures of Wang
& Hutter [91]. All these scalar measures �i are not a↵ected by rigid rotations,
so that the infinitesimal generators Ai vanish, for each i, and ⌫̆i = !i for
relation (30).

We consider now a simple temperature model for a two-phase motion of spher-
ical particles, of subscript 2, suspended in a fluid, of subscript 1, in circum-
stances where there are no chemical reactions: ↵+

i = 0. The particles may be
either solid or fluid and we make no restriction concerning diluteness, while
we suppose that the saturation constraint �tot = 1 applies, so that

� := �2 = 1� �1 and !i = (�1)i �0i
, (59)

with �0i := @�
@⌧ + (grad �) · vi, for i = 1, 2. Moreover, the three axioms for the

mixture balance (37)2,3,4, plus the additional one for micro-momentum growth
�
+, are now, for i = 1, 2:

m
+ := (�1)i m+

i , z
+ := (�1)i z+i , ✏

+ := (�1)i ✏+i , �
+ := (�1)i �+

i . (60)

The kinetic co-energies �i, i = 1, 2, are assumed to be quadratic forms in !i, as
is customary for immiscible fluid, or fluid-like, mixtures (see, e.g., [7,12,46,42]);
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then �i coincides with the kinetic energy i and it is

i = �i := 2�1
µi(�i)!

2
i = 2�1

µi(�i)(�
0i)2. (61)

The kinetic energies express the inertia due to the local microvariations of
the volume of inclusions, as well as that related to the admissible expansional
motion of spherical boundaries (see, also, [34,43], other than references cited
above, for explicit evaluations of non-negative coe�cient µi(�i)).

With these hypotheses, the balance equations (51), (19), (20), (21), (32) reduce
to the following ones for i = 1, 2:

⇢
0
i + ⇢i div vi = 0, (62)

⇢iv
0
i � div Ti � ⇢ibi = (�1)i m+

, (63)

(�1)i⇢i

 

µi�
00i +

1

2

dµi

d�
(�0i)2

!

� divSi + ⇣ i � ⇢i�i = (�1)i �+
, (64)

"Ti = (�1)i z+, (65)

⇢ ✏̇� w + div q � ⇢ � =

= z
+ · (r1 � r2)� �

+(�01 + �
02) +m

+ · (u1 � u2). (66)

with ui defined in (7) and w and q given by (56)1,2, respectively, while ✏ :=P
⇠i✏i and � :=

P
⇠i�i are the concentration-weighted sums of the peculiar

inner energies and heating supplies per unit mass, respectively; we have

✏ =  + ✓⌘. (67)

The mixture energy balance (66) is obtained by summing peculiar energy
equations (32) on i = 1, 2 and an expression, more pertinent to the third
metaphysical principle of Truesdell, could be easily obtained by substituting
values of m+

, z
+
,�

+ given by (63), (64) and (65) (see equation (2.18) of [86]).

We emphasize that �+
, �i, divSi and ⇣ i in equations (64) are all scalar fields

and that the microstress vector Si is normally related to the boundary mi-
crotractions, even if, in some cases, it could express weakly non-local internal
e↵ects; �i is interpreted as an externally controlled fluid pressure; ⇣ i includes
interactive forces between the gross and fine structures. Further, stress ten-
sors Ti are not ‘a priori’ symmetric because, for (65) and the properties of the
Ricci’s alternating tensor ", we have that

skw Ti = (�1)i
1

2
" z

+
, (68)

while only their sum is, inasmuch

skw T := skw T1 + skw T2 = 0. (69)
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We remark here that in the models based on ‘void theories’, as, e.g., [75,76,92],
unexpectedly only the first microinertia term are present in their balances of
‘equilibrated’ forces (i.e., our micromomentum balances (64)): in fact those
equations remain ambiguous because the complete Lagrangian derivative of
the kinetic co-energy does not appear on the left hand side of the equations
themselves.

For the presence of the perfect saturation constraint (59)1, we impose the
extended principle of thermodynamic determinism (44) and the condition (58)
with (46), together with the identity �0i = �̇+ui · grad � deriving from (7), in
order to obtain the following equation

⇢ ⌘
r
✓̇ + ✓

�1
q
r · grad ✓ � ✓ div kr � symT

r
1 ·D1 � symT

r
2 ·D2 +

+(⇣r1 � ⇣
r
2 + 2�+r)�̇ + Sr

1 · grad �01 � Sr
2 · grad �02 + z

+r · (r2 � r1) +

�[m+r � (⇣r1 + �
+r)grad �] · u1 + [m+r � (⇣r2 � �

+r)grad �] · u2 = 0. (70)

If we observe that the constraint (59)1 leaves locally the choice of ✓, ✓̇, grad ✓,
D1, D2, �̇, grad �

01, grad �02, (r2 � r1), u1 and u2 totally free, we deduce from
(70) that the reactions are characterized by the following requirements:

⌘
r = 0, qr = 0, div kr = 0, symT

r
i = 0, Sr

i = 0, z+r = 0, (71)

⇣
r
1 + �

+r = ⇣
r
2 � �

+r and m
+r = (⇣r2 � �

+r) grad �. (72)

Now we are able to obtain a set of pure balance equations which rules the
thermo-mechanical evolution of our model of a saturated two-phase suspen-
sion; in fact, by splitting the stress tensors Ti into its symmetric and skew
parts and by using the conditions (71)4 together with the balances of moment
of momentum (68) into the Cauchy balances (63), the following reaction-free
expressions for it follows:

⇢i(v
0
i � bi)� div

✓
symT

a
i + (�1)i

1

2
" z

+a
◆
= (�1)i(m+a + ⇡

in grad �), (73)

where
⇡
in := ⇣

r
2 � �

+r (74)

and the expressions (72) for (⇣r1 + �
+r) and m

+r were used; moreover, from
the balance (64) with i = 2, it follows:

⇡
in = ⇢2

"

�2 � µ2�
002 � 1

2

dµ2

d�

⇣
�
02
⌘2
#

+ div Sa
2 � ⇣

a
2 + �

+a : (75)

here, we physically interpret the coupled reactions ⇡in as the interface pressure
between constituents, i.e., the pressure that acts at the interface between the
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phases necessary to maintain the contact in order to satisfy the saturation
constraint (see Appendix of [6]).

Moreover, if we sum (64), for i = 1, 2, use (31)4 for w and (67) for ✏I , and
substitute reactions (71) in (66), we obtain

⇢1

"

µ1�
001 +

1

2

dµ1

d�

⇣
�
01
⌘2
#

+ ⇢2

"

µ2�
002 +

1

2

dµ2

d�

⇣
�
02
⌘2
#

= div (Sa
2 � S

a
1 ) +

+(⇣a1 + �
+a)� (⇣a2 � �

+a) + ⇢2�2 � ⇢1�1 and (76)

⇢
˙( a + ✓⌘a) + div qa � ⇢ � =

Xh
sym T

a
i ·Di + (�1)i Sa

i · grad �0i
i
�

�(⇣a1 + �
+a)�01 + (⇣a2 � �

+a)�02 +m
+a · (u1 � u2) + z

+a · (r1 � r2). (77)

We would like to observe that also the active components of the internal
microactions ⇣ai and the growth rates of the micromoment �+a, besides the
reactive ones, are coupled in all the pure balances and so their constitutive
laws will always be linked.

In conclusion, only the active parts of all fields, which will be the object of a
constitutive prescription, appear in the Cauchy equations (73) (with ⇡in given
by (75)), in the equation for micromomentum (76) and in the equation of
evolution for the temperature of the whole mixture (77): these are the pure
equations which rule the thermo-mechanical evolution of the body.

Once a motion is ensued from them, the corresponding reaction ⇡
in to the

constraint is obtained by the equation (75) (other than by (71) and (72))
within the intrinsic indeterminacy generated from the equation itself for �+r

and ⇣r2 (see, also, §205 and 227 of [89], or Remark 1, §3 of [15]).

About constitutive equations for immiscible mixtures, we assume that the
overall response of the simple temperature model for a two-phase suspension
depends only on the set T of the following thermokinetic variables

T = {�1, �2, �, grad �1, grad �2, grad �, ✓, grad ✓}; (78)

by imposing the principle of equipresence, we postulate that the dependent
constitutive quantities  a

, ⌘
a
, q

a
, k

a
, T

a
i , ⇣

a
i ,Sa

i ,m
+a
,�

+a and z
+a are all twice

continuously di↵erentiable functions with respect to all constitutive fields and
require the consistency with the reduced dissipation inequality (55), when the
perfect constraint condition (70) applies, i.e.:

⇢

⇣
 ̇

a
+ ⌘

a
✓̇

⌘
+ ✓

�1
q
a · grad ✓ � ✓ div ka � sym T

a
1 ·D1 �

�sym T
a
2 ·D2 + (⇣a1 + �

+a) �01 + (�+a � ⇣
a
2) �

02 + Sa
1 · grad �01 �

�Sa
2 · grad �02 +m

+a · (u2 � u1) + z
+a · (r2 � r1)  0. (79)
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Since the constitutive relations allow dependency on the true densities �i, the
constituents have a fluid-like behavior and the frame-indi↵erence implies that
all response functions are isotropic functions of their variables [71]. Introducing
the dependency of the active components on the set (78), using the mass
conservations (51), with ↵+

i = 0, the property (8) and the identities

�̇i = �
0
i � ui · grad �i = ��i��1

i �
0
i � �idiv ui � ui · grad �i, (80)

�̇ = �
0i � ui · grad �, ˙grad � = grad �0i � L

T
i grad � � (grad 2

�)ui,

when the terms are appropriately ordered, produce the following new inequal-
ity:

⇢

 

⌘
a +

@ 
a

@✓

!
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Because the left-hand member is linear in the scalar fields ✓̇ and �0i, the vector

fields grad ✓, ˙grad ✓, ˙grad �i, ui, (r2�r1) and grad �0i, and the symmetric tensor
fields grad 2

✓, grad 2
� and Di, the classical arguments of Coleman and Noll

[20] assure us that the coe�cients in the linear expressions must all vanish,
and hence:

•) the active part of the Helmholtz free energy  a is a function only of the array
T̂ = {�1, �2, �, grad �, ✓} and is a potential function for active parts of the
entropy ⌘a, the symmetric part of stress tensors sym T

a
i , the microstresses Sa

i ,
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the growths of linear and rotational momentumm
+a and z

+a, respectively, and
the di↵erence between the internal microactions ⇣ai and the micromomentum
�
+a, in the sense that:

⌘
a = �@ 

a

@✓
, Sa

1 = ��1(1� �)
@ 

a

@grad �
, Sa

2 = �2�
@ 

a

@grad �
, (82)

sym T
a
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1� �

⇠1

⇡
t
1I � sym

"
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a

@grad �

#

,

sym T
a
2 = � �

⇠2

⇡
t
2I � sym

"

�2� grad � ⌦ @ 
a

@grad �

#

, (83)

m
+a = ⇡

c
2grad � +

�⇡
t
2

⇠2�2

grad �2, z
+a = �⇢ "

 

grad � ⌦ @ 
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@grad �

!

, (84)

⇣
a
1 + �

+a = �⇡c
1 � ⇠

�1
1 ⇡

t
1, ⇣

a
2 � �

+a = ⇡
c
2 � ⇠

�1
2 ⇡

t
2, (85)

together with the compatibility condition on m
+a

(⇡c
1 + ⇡

c
2) grad � +

(1� �)⇡t
1

⇠1�1

grad �1 +
�⇡

t
2

⇠2�2

grad �2 = 0, (86)

where

⇡
c
i = ⇢i

@ 
a

@�
and ⇡

t
i = �

2
i

@ 
a

@�i

, for 1 = 1, 2, (87)

are the configuration and the thermodynamic pressures, respectively, while
the last term of stress tensors in (83) are of Ericksen’s type (grad � ⌦ @ a

@grad� )
and justify the ability of granular suspension to sustain shear in equilibrium;
in constitutive relations (82)-(86) we used the identities (6)1,3, (7) and (49),
for i = 1, 2.

•) Moreover, the active extra-entropy flux k
a must be such that

@k
a

@grad �i
· grad 2

�i = 0,
@k

a

@grad ✓
· grad 2

✓ = 0,
@k

a

@grad �
· grad 2

� = 0, (88)

which means that @ka

@grad �i
,

@ka

@grad� and @ka

@grad ✓ are all skew-symmetric and, there-
fore, ka must be collinear to grad �i, grad � and grad ✓ with the corresponding
tensorial material coe�cients being skew-symmetric; on the other hand, the
isotropy of ka requires that any such material tensors must be symmetric (see
analogous computations for the constitutive part jc of the mixture flux den-
sity j in [91]). To satisfy both conditions these tensors must vanish, making
k
a independent of grad �i, grad � and grad ✓, and yielding its reduced form

k
a = k̂

a(�1, �2, �, ✓), (89)

but there is no isotropic vectorial function of only scalars, and thus the reduced
form (89) necessarily implies ka = 0 for thermo-elastic two-phase suspensions.
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Accordingly, the reduced dissipation inequality reduces to the following one:

✓
�1
q
a · grad ✓  0, (90)

which apparently expresses the classical Fourier inequality for a single body,
except that it is valid only for the active part of the heat flux q

a which, in
addition, depends on the whole set T .

•) Finally, as  a is an isotropic function, its dependence on T̂ implies that

 
a(T̂ ) =  ̂

a
(�1, �2, �, grad � · grad �, ✓). (91)

Substituting (91) into equations (82)2,3 assert that the microstresses Si have
the following representation

Sa
1 = ��1(1� �)' grad �, Sa

2 = �2� ' grad �, (92)

where the so-called modulus of dilatancy ' is given by the following expression:

' = '̂(�1, �2, �, grad � · grad �, ✓) = 2
@ ̂

a

@(grad � · grad �) (93)

and thus, for the two-phase suspensions of the type considered here, the
Cauchy stress tensor Ti is symmetric and the moment of momentum growth
z
+a vanishes identically:

T
a
1 = (1� �)

⇣
⇠
�1
1 ⇡

t
1 I � �1 ' grad � ⌦ grad �

⌘
,

T
a
2 = ��

⇣
⇠
�1
2 ⇡

t
2 I + �2 ' grad � ⌦ grad �

⌘
, z

+a = 0. (94)

Now we are able to write the set of pure balance equations, which rules the
thermo-elastic evolution of a two-phase suspension, inserting constitutive laws
(84)1, (85), (92), (93), (94), into balance equations (51) (with ↵+a = 0) and
(73), for i = 1, 2, (76) and (77) to obtain:
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0
1(1� �) = �1

h
�
01 � (1� �) div v1

i
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0
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⌘
, (95)
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h
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grad �2 � ⇡
in grad �, (96)

�2�v
0
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h
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⇣
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t
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+⇡c
2grad � +
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in grad �, (97)
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with

⇡
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and where the evolution equation (77) for the temperature ✓ of the mixture is
considerably simplified and, formally, is reduced to the classical one (99), the
di↵erence remains in the dependence on the set T̂ .

Next we quote from [76] the mechanical balance equations (5C.7.5)-(5C.7.7),
which should correspond to ours (95)-(98) when we suppose isothermal flows
of a two-phase mixture of particles dispersed in an elastic fluid. In particular,
identifying the di↵erent pressures as follows: ⇡ = ⇡

in, �a = ⇡
c
i , pa = ⇡

t
i, putting

their viscous coe�cients µa, sa,�a to zero, adding (5C.7.7)a to (5C.7.6)a for
a = 1, 2, in order to delete the term (⇡ � pa) containing the reaction ⇡ and
after subtracting (5C.7.7)1 to (5C.7.6)2, the substance of the analysis in [76]
would be easily recovered, still getting rid of some kinematic terms, such as
⇢ak

0
a('

0
a)

2
/2, in their definition (5C.4.9) of the dissipation function; moreover,

the di↵erence remains in the constitutive equations in which we applied the
classical Principle of Equipresence of Truesdell, instead of that of the Phase
Separation.

8.2 Concentrated suspensions with solid particles

For concentrated suspensions with density preserving constituents, i.e., when
true mass densities does not change, �i and grad �i are no more independent
variables and then must be deleted from the list (78): the saturated two-phase
immiscible mixture is subjected to other two constraints, the incompressibility
of the suspending fluid and of the dispersed granular solid.

The balances of mass (62) are now

�
01 = (1� �) div v1, �

02 = �� div v2, (100)

for which, using the definition of peculiar time derivatives and summing (100),
we obtain the condition of incompressibility for the whole mixture:

div v = 0. (101)
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Again, for the extended principle of thermodynamic determinism, the condi-
tions of perfect constraints (58) gives now the following requirements for the
reactive terms:

⌘
r = 0, qr = 0, div kr = 0, Sr

i = 0, m+r = 0, z+r = 0, (102)

symT
r
1 = (1� �)(⇣r1 + �

+r)I and symT
r
2 = �(⇣r2 � �

+r)I, (103)

while, using the constraints of saturation and incompressibility in the reduced
dissipation inequality (55) and performing the same calculations made in the
previous section, we obtain that the active part of the free energy  a is always
a potential function but, here, of the array T̃ = {�, grad �, ✓}. The constitutive
relations (82) still hold for ⌘a and Sa

i , whereas now it is
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, (104)

m
+a = 0, z+a = 0 and k

a = 0, (105)

where ⇡c
i is defined in (87)1 and the last two results are valid for the isotropy

of  a and k
a itself, as before.

According to reactions (102)6 and (103), and constitutive laws (68), (104) and
(105)2, we can obtain the following expressions for Cauchy stress tensors:

T1 =symT
a
1 + symT
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T2 =symT
a
2 + symT
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+ � ⇡
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, (107)

where

'̃(�, grad � · grad �, ✓) = 2
@ 

a

@(grad � · grad �) . (108)

Now, using the reactions (102)4,5, the constitutive laws (82)2,3 and the mass
balances (100) in the micromomentum balances (64), we get the following
expressions
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, (110)

and, therefore, we are able to write the two pure balances of linear momentum,
which governs the motion of a saturated two-phase granular suspension with
incompressible components, replacing the Cauchy stresses (106) and (107) in
the equations (63) and taking into account the expressions (109) and (110)
now obtained:

�1(1� �)v01 =grad [(1� �)(⇣1 + �
+)] + �1(1� �)b1 +

+div [(1� �)(⇡c
1 I � �1 '̃ grad � ⌦ grad �)], (111)

�2�v
0
2 =grad [�(⇣2 � �

+)] + �2�b2 �
� div [�(⇡c

2 I + �2 '̃ grad � ⌦ grad �)]. (112)

The pure evolution equation for the mixture temperature ✓ remains the same,
i.e., equation (99), as well as the Fourier inequality (90) with the active part
of the heat flux q

a now depending on the set T̃ .

At the end, as soon as the motions of constituents are ensued from (111) and
(112), the corresponding unknown reactions, that is, the saturation pressure
�
+r and the two pressures ⇣r1 and ⇣

r
2 due to the peculiar incompressibility of the

components, are obtained by the equations (109), (110) and the corresponding
one to (98)
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. (113)

Moreover, if the constituents are closely packed, we infer that microstructural
inertial e↵ects are negligible, and thus set µi = 0; in absence of body forces,
equation (113) reduces to

⇣
r
1 + ⇣

r
2 = �(⇡c

1 + ⇡
c
2) + div {[�2� � �1(1� �)]'̃ grad �]}, (114)

where the configuration pressures ⇡c
i and the dilatancy modulus '̃ are func-

tions of T̃ : therefore the total pressure in the solid and fluid phases results
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from the e↵ects of intergranular contact forces, represented by ⇡c
i , and the local

variation in the stress fields due to a non-homogeneous granules distribution,
given by '̃.

Here, we compare our results with [92] where, again, the Principle of Equipres-
ence of Truesdell were substituted by that of the Phase Separation, while,
furthermore, the kinematic terms on the left hand side of their micromomen-
tum balances (33) and (34) remain ambiguous, because the full Lagrangian
derivatives of the kinetic energy, due to micromotions, do not seem complete:
in fact, e.g., it is easily to demonstrate that, for a material with rigid grains,
the kinetic coe�cient µ2 is proportional to �

� 2
3 (see equation (6)1 of [43]) and

so the second term on the left hand side of our equation (64), for i = 2, misses
in the balance (33) of [92].

However, even now, we easily retrieve from our equations (109)-(112) the
essence of the constitutive analysis in [92] of a fluid-saturated granular material
with incompressible thermoelastic constituents, when, there, the mass conser-
vations (28) and (29) and the saturation constraint (30) are used in the balance
equations (31)-(34), the viscous coe�cients are null places and the pressures
are identified as it follows: ⇡ = �

+r, pi = ⇣
r
i and �i = ⇣

a
i � (�1)i�+a = ⇡

c
i .

8.3 Poroelastic materials

The last application of our theory concerns an isothermal flow of a fluid com-
ponent through the channels of a solid skeleton with large pores, namely a
part of soil [38,94,26,77,28], so the model is in some sense complementary to
the previous one. Even now every constituent is considered incompressible (so
�i = constanti), and therefore also the immiscible mixture is; moreover, the
mixing itself is regarded as if it happened without the creation of voids, and
so the saturation constraint is applied again. Following Biot [8], we consider
virtual mass e↵ects due to di↵usion and also introduce the microinertia asso-
ciated with the rates of change of the volume fraction of the fluid, as well as
that due to the deformation of the lacunae in the vicinity of their boundaries.

We wish to observe that the model for the solid constituent here considered is
thought to have an a�ne microstructure with kinematic parameters indepen-
dent from the macro motion, in order to include all other models. In particular,
the presence of the saturating fluid constituent support this hypothesis, when
the pores are very large and constitute a structure of sparse trabeculae, as it is
the case of porous materials with evolving microstructure [78,33] or of cancel-
lous bone [24]: Cowin itself [22] pointed out the importance of the shape of the
pores in the description of bone canaliculi or of lacunae containing osteocytes,
e.g., in the human bone the lacunae are roughly ellipsoidal with mean values
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along the axes of about 9 µm, 22 µm and 4 µm. Moreover, ‘Voids theories’
are recovered in the case that pores are small and finely dispersed, as in [75],
because our microstructure reduces to a spherical tensor depending upon a
single additional variable [16]. Furthermore, a very interesting intermediate
model, in which the ellipsoidal microstructure is partially constrained by the
macro-motion, the isotropic part being free, falls within the theory presented
here and permit us to o↵er an interpretation of constitutive prescriptions,
involving the displacement gradients of higher order than the first, which al-
lows one to circumvent certain apparent inconsistencies with the second law
of thermodynamics (see, also, [49,47]), but is too elaborate and lengthy to be
mentioned here explicitly: it will be presented in a forthcoming work.

The microstructural kinematic variable ⌫1 for the skeleton is a 2nd order
symmetric tensor with positive determinant V (2 Sym+), that is the left mi-
crostretch, which takes into account for contractions or expansions of the large
pores in the material (see [39–41]). Instead the fluid variable ⌫2 is the volume
fraction �, i.e., the proportion of space occupied by the two-phase fluid con-
stituent of the body. Therefore, we have that the infinitesimal generator A1

of the local action of the proper orthogonal group SO(3) over Sym+, defined
in (11), has the following components

(A1)↵�◆ = V↵�"��◆ � "↵�◆V��, (115)

while A2 = 0, because a proportion does not change for a rotation. Conse-
quently, the corotational time derivative of the microstretch V̆ in (30) rep-
resents the Oldroyd’s time derivative [72] of V with rate the spin tensor
W1 = �"r1:

V̆ = V
01 + ("r1)V � V ("r1). (116)

The kinetic co-energy �1 for materials with a�ne microstructure is usually
assumed to be a quadratic form in V

01 with a costant coe�cient µ1 [11,39],
thus

1 = �1 := 2�1
µ1(V

01)2, (117)

while �2 is as in (61)2. We suppose further that the tensorial micromomentum
growth for the porous phase is isotropic of coe�cient ��+, the opposite of
that of the fluid.

We insert the hypotheses made in the mechanical balance equations (51), (20),
(21), (66) and reduce them to (100), (63), (64)2, (68)2 and the following ones:

⇢1µ1V
001 = div⌃� Z + ⇢1C � �

+
I, (118)

skw T1 + 2�1
" z

+ = skw (V Z + gradV � ⌃) , (119)

⇢ ✏̇ = w + z
+ · (r1 � r2) +m

+ · (u1 � u2) + �
+
⇣
trV 01 � �

02
⌘
. (120)

In these equations the fields div⌃, Z and C for the porous constituent are
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all 2nd order symmetric tensors: the 3rd order microstress tensor ⌃ is nor-
mally related to boundary microtractions, even if, in some cases, it could
express weakly non-local internal e↵ects, Z includes interactive forces be-
tween the gross and fine structures and C is interpreted as an externally
controlled pore pressure. Further, we used the balances for the whole mix-
ture (37) and introduced the following tensor product ‘�’ of components
(gradV � ⌃)ij := Vih,k ⌃jhk.

From equation (63), for i = 2, we could obtain the Darcy’s law, if we neglect
the inertial terms and make suitable constitutive proposals on fields m, b2 and
T2. The balance of micromomentum (64)2 for the volume fraction � general-
izes the classical Langmuir’s evolution equation, while the balance (118) for
the microstretch V includes the Wilmanski’s porosity balance as well as the
equation which rules the changes of internal surfaces area of the pores (see
[59,93,2], respectively).

Finally, we apply the saturation constraint by di↵erentiating it with respect
to time and using the identity (80)2 and the definition (59)1:

0 = �̇1 + �̇2 = �
0
1 + �

0
2 � u1 · grad �1 � u2 · grad �2 =

=��01 + �
02 + u1 · grad � � u2 · grad �; (121)

thus, for equation (100)1, the di↵erential link is:

�
02 = (1� �)I ·D1 + (u2 � u1) · grad �. (122)

In the actual context with ✓i = ✓̄ constant and k null, the perfect constraint
condition (58) becomes

0 = symT
r
1 ·D1 + symT

r
2 ·D2 + Z

r · [V 01 + 2("r1)V ] + ⇣
r
2 �

02 +

+⌃r · [gradV 01 + 2("r1)(gradV )] + Sr
2 · grad �02 + z

+r · (r1 � r2) +

+m
+r · (u1 � u2) + �

+r(I · V 01 � �
02) =

= [symT
r
1 + (1� �)(⇣r2 � �

+r) I] ·D1 + symT
r
2 ·D2 +

+(Zr + �
+r
I) · V 01 + ⌃r · gradV 01 + Sr

2 · grad �02 +

+[z+r � 2"(V Z
r + gradV � ⌃r)] · r1 � z

+r · r2 +
+[m+r � (⇣r2 � �

+r) grad �] · (u1 � u2), (123)

where the symmetry properties of V, Z and ⌃ were used. Therefore, we have
that the reactions have to satisfy the following relations:

symT
r
1 = �(1� �) ⇡in

I, symT
r
2 = 0, Z

r = ��+r
I,

⌃r = 0, Sr
2 = 0, m

+r = ⇡
ingrad �, z

+r = 0, (124)
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where ⇡in is the interface pressure between constituents (74).

At this point, as regards the constitutive equations, in order to avoid a lot
of specialization, we consider a very special case in which the set of kinetic
variables is the following one: P = {�, d := grad�, F1, V,f := gradV }; more-
over, we observe that, inserting results (124) in the purely mechanical energy
equation (120), the mixture internal energy ✏ replaces the free energy as po-
tential function. If we now di↵erentiate ✏(P) and substitute the result along
with (31), (116) and (122) into (120), by performing standard calculations as
described above, the results can be written as

sym T
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where

⇡
c
i = ⇢i

@✏

@�
, for 1 = 1, 2, and � = ⇣

a
2 � �

+a (126)

are the configuration pressures of the i-constituents and the hydrostatic pres-
sure acting on the mixture, respectively; in addition, two compatibility condi-
tions are valid on z

+a and m
+a due to the balance laws for the mixture (37)2,3,

as well as internal constraints:
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Now, by inserting relations (124-125) in the balance equations (63), (118),
(64)2, (119) and (68)2, then using conditions (127-128) and substituting (119)
and (68)2 into equations (63), we obtain
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�1(1� �)v01 = div T̃1 + �1(1� �) b1 � f, (129)

�2�v
0
2 = div T̃2 + �2� b2 + f (130)

�1(1� �)µ1 V
001 = div
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@f

!

� ⇢
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@V
+ �1(1� �)C, (131)

where the pure symmetric Cauchy stresses T̃i for the solid and the fluid con-
stituents are defined by

T̃1 := (1� �)(⇡c
1 � ⇡in) I + ⇢ sym
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F
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!

,
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2)I, (132)

while the interaction force f between the phases is

f :=
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⇡in � div
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The e↵ects of the microstructure describing the large pores appear only in the
extended stress of Ericksen’s type for the solid phase, defined by

E := �⇢ sym
2

4d⌦ @✏

@d
+ fT �

 
@✏

@f

!T
3

5 , (134)

and in the micromomentum equation (131).

Finally, we can still propose a system of mechanical equations of motion for an
incompressible saturated poroelastic material, which satisfies the constitutive
principle of equipresence in addition to the other axioms usually considered for
mixtures. There are 15 scalar unknowns, �, v1, v2, V, ⇡in and �, and 15 scalar
di↵erential equations (100)1, (122), (129-131) and the one after (133) for ⇡in,
for which we would also expect that the appropriate initial and boundary
conditions, as well as the surface tractions associated with T̃i and ⌃a, are
provided to resolve them.

The comparison in the poro-elastic mechanics for this last example is with clas-
sical mixture theories of Bowen [9] and Pence [77] for the isothermal flow. In
particular, the Cauchy stress tensor for the solid constituent of the transversely
isotropic case (see equation (82) of [77]) is directly recovered, if one binds, even
partially, the microstructural parameter V to the macro-deformation and rep-
resents the Ericksen tensor (134) appropriately. Instead, Bowen replaced the
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solid equation of linear momentum by that of the mixture (see equation (3.32)
of [9]) that, in our notations, is as follows

X
�i�iv

0
i = div T̃ +

X
�i�ibi; (135)

therefore, by supposing that the microstructure is absent, and so the potential
✏ does not depend on d and f, µ2 = 0 and �2 = 0, we have

T̃ (:= T̃1 + T̃2) = [�⇡in + (1� �)⇡c
1 � �⇡

c
2] I + ⇢ sym

 
@✏

@F1
F

T
1

!

, (136)

where we can easily recognize his stress tensor TI , when we put  I = ⇢✏ and
� = ⇡in � @(⇢1✏)

@� , and insert definitions (126)1 for the configuration pressures

⇡
c
i (see (3.22) of [9]); moreover, the expression of our Cauchy tensor T̃2 for the

fluid phase coincides with (3.29) of [9].

9 Peculiar solutions

9.1 Micro-rotations in a quasi-linear dilatant granular material

The example of dilatant granular media that we are dealing with here, continua
which are models of suspensions of rigid spheres in a fluid, is, in a sense,
complementary to that considered in §8.3; rather, it could be thought of as
an enriched sample of the concentrated suspensions of §8.2: in fact, now, the
peculiar microstructure of the solid phase is spherical, that is, the rotations of
the individual granules must be taken into account, in addition to the use of
volume fraction � (see [16,43]).

In particular, we consider the flow of a large number of discrete inelastic
particles (�2 = const.) at relatively high concentrations and with interstices
filled by a gas or a fluid of neglectable mass (�1 ⇡ 0), as it is for cohesionless
soils, such as sand with rough surface grains, or fluidized particulate beds. The
admissible micro-motions of the body consist of either the rotation R of the
same granules rigid with respect to each other, as well as the homogeneous
dilatations, or contractions, of the macro-elements, i.e., radial motions due to
the displacements of the grains relative to the center of mass of the macro-
element itself, as introduced by Reynolds [80]; the material macro-element of
the granular material has a fine structure and, in a mental magnification, we
think of it as a sort of quasi–particle, which consists of a rigid grain and its
immediate rigid neighbours [43].

Therefore, the microstructural kinematic variable ⌫2 is now the rotation R,
while the infinitesimal generator A2, defined in (11), has the following com-
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ponents

(A2)↵�◆ = "↵◆�R��, (137)

for which the angular momentum balance (119)2 becomes now
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2

4R

 
@✏

@R

!T

+ gradR� @✏

@(gradR)

3

5 , (138)

while the pure mechanical balance equations of interest in the problem are
similar to those of the previous section, only by exchanging the subscript
1 with 2 (here the complementarity), with the exception of the negligible
equation (129).

In particular, they are equations (100)2, (130) and (131):

�
02 + � div v2 = 0, �2�v

0
2 = div T̂2 + �2� b2, (139)

µ2 �R
002 = div

"

�
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@(gradR)

#

� �
@✏

@R
, (140)

where we suppose to zero all the growth rates, as well as the micro-viscosities
in the granular phase in absence of external microspin actions C.

A general treatment of the constitutive relations of T̂2 and (the partial deriva-
tives of) ✏ for dilatant granular assemblies with rotating grains is given in
[43,44], while their quasi-linear expression has recently appeared in [3], where
the classical model of Coulomb granular material [51] is also obtained as a
particular case.

We consider, in detail, cohesionless granular media in which mutual granu-
lar fluctuations are negligible, the dissipative part of the Cauchy’s stress T̂2

behaves like a viscous fluid with viscosity coe�cients �̂ and µ̂ [50], and the
conservative stress component depends on {�, grad �, gradR} (see, in general,
[3]); therefore,

T̂2 =
h
2 ↵̂��� + ↵̂ |grad �|2 � �̂ �

2 + 2 �̂ |gradR|2 + �̂(trD)
i
I +

+2 µ̂ D � 2 ↵̂ grad � ⌦ grad � � 4 �̂ (gradR)T � (gradR)T (141)

and

⌃̂a := �
@✏

@(gradR)
= 2 �̂ gradR, Ẑ

a := �
@✏

@R
= 0. (142)
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The micro-elastic constant �̂ of the hyperstress tensor ⌃a depends on the
macro-elastic ones. In [27] it has been shown that “the (three) elastic con-
stants of the granular micropolar theory (modeled as a Cosserat’s material)
are strongly correlated and that only two of them can be identified inde-
pendently”, and thus, it has been suggested a strict correlation of �̂ with
the Coulomb’s constant ↵̂ related to T̂2. In particular, �̂ is proportional to ↵̂
through the square of an intrinsic length scale that we put equal to the initial
grain radius (rg/

p
5).

Moreover, the constant micro-kinetic coe�cient µ2 := 1
5r

2
g�2 for rigid grains

appears in the Appendix A of [37], where we assumed a special initial geomet-
rical configurations of the grains, supposed all spherical of constant radius rg
in the reference placement.

For our numerical purposes, we specify balance equations (139) and (140) to
two-dimensional setting, for which the velocity v2 has only two components
(v̂1, v̂2) in the Oxy plane, the rotation R is around the z-axis of angle ⇥
only and b2 is the gravity force g directed along Oy. Thus, inserting (141)
and (142), using the definition (12)2, for i = 2, and placing the expressions
now indicated for �̂, µ2 and b2, we write the two-dimensional system of four
mechanical equations for dilatant granular material as

@�

@⌧
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@(�!)
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+ div
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= 0, (146)

where ! := ⇥
02 is grain angular velocity normal to the xy-plane, while co-

e�cients with overbar are those with the over hat divided by the true mass
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density of the granules, e.g., ↵̄ = ↵̂
�2
.

The constant parameters are chosen for a closely packed system composed
by rigid spheres with equal radii rg = 0.4 ⇥ 10�3 m, of true mass density
�2 = 1.5⇥103 Kg·m�3, suspended in air at room temperature of 20�C. The ref-
erence volume fraction �⇤ of the solid is set at 70 per cent, while the elasticity
parameters of Coulomb were calculated in [27], i.e., the first is �̂ = 4.94⇥ 104

N·m�2 and the second ↵̂ = 9.1 ⇥ 104 N, so the micro-elastic parameter is, at
the end, �̂ = 2.912⇥ 10�3 N. These parameters refer to dry sand.

Due to the presence of air, the mixture is compressible and since it is subject
to small variations in pressure, temperature and velocity gradients, both the
shear (or kinematic) and the bulk (or volume) viscosity µ̂ and µ̂b := �̂ + 2

3 µ̂,
respectively, can be treated as constants. When the distribution of granules is
fairly uniform throughout the air, in order to obtain the kinematic viscosity
µ̂ we can use the semi-empirical formula

µ̂

µ0
= 1 + �̂�⇤, (147)

where µ
0 = 1.83 ⇥ 10�5 Pa·s is the shear viscosity of air and �̂ ⇡ 67, 81 is

an interaction factor which depend on the grain incompressibility other than
the geometry of the involved particles (see equations (9-4.22) and (9-5.3) of
[54]), whereas the bulk to shear viscosity ratio is 1 [81,73], for which we have,
finally, the value �̂ (= µ̂b � 2

3 µ̂) = 2.96⇥ 10�4 Pa·s. All the coe�cients of this
example are summarized in Table 1.

Table 1
Parameters for the model of dilatant granular material

Par. Value Description

�2 1.5⇥ 103 Kg·m�3 true mass density of dry sand

�⇤ 0.7 reference volume fraction

rg 4⇥ 10�4 m reference granule radius

µ2 1.2⇥ 10�4 Kg·m�1 micro-kinetic coe�cient

µ0 1.83⇥ 10�5 Pa·s shear viscosity coe�cient of air at 20�C

µ̂ 8.87⇥ 10�4 Pa·s shear viscosity coe�cient of the packed system

�̂ 2.96⇥ 10�4 Pa·s second viscosity coe�cient of the packed system

�̂ 4.94⇥ 104 N·m�2 first Coulomb’s elasticity parameter

↵̂ 9.1⇥ 104 N second Coulomb’s elasticity parameter

�̂ 2.912⇥ 10�3 N micro-elastic coe�cient
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(a) (b)

(c) (d)

Fig. 1. Parallel between the distributions of the volume fraction �, for the E-, V- and
VR-models, along the vertical cut line taken at: (a) ⌧ = 0.04 s; (b) ⌧ = 0.12 s; (c)
and (d): 103 magnification of arbitrary portions of boxes (a) and (b), respectively.

In developing numerical tests, we limit ourselves to analyze the influence
of micro-rotations on macroscopic motion. We consider a squared section
⇤ = [0, 1] ⇥ [�1, 0] m2 of a three dimensional vertical channel, perpendic-
ular to two delimiting vertical plates, spaced 1 m apart, along the horizontal
direction x, in which the granular material can flow in the vertical direction.
We adopt a uniform mapped mesh of [28 ⇥ 28] grid points and a time step
�⌧ = 0.0005 s, ⌧ 2 (0, ⌧ 0] and ⌧ 0 = 0.25 s. The dependent variables are
volume fraction �, mass fluxes �v̂1, �v̂2 and couple flux � !, all depending on
(x, y, ⌧) 2 ⇤ ⇥ (0, ⌧ 0]. Initial conditions are �v̂1(0) = 0 m·s�1, �v̂2(0) = 0
m·s�1 and �!(0) = 0.01 s�1, while, for the initial volume fraction, we suppose
that �(0) = exp[�(0.15)�1|y|2], i.e., we admit that an initial chunk of granu-
lar material is settled along the x direction, decreasing along the y direction
with a half-gaussian-like shape. The granular flow is supposed entirely con-
fined inside the ⇤ domain. Consequently, we impose for the volume fraction �
zero-flux boundary conditions on all sides of the domain. We impose zero-flux
boundary conditions on the top side for the velocity, and Dirichlet boundary
conditions on all other sides with �v̂1 = �v̂2 = 0 m·s�1. Finally, concerning
the angular velocity of the grain, zero-flux boundary conditions are imposed
on both top and bottom sides of the integration domain, and Dirichlet condi-
tions with �! = 0.6 s�1 on left and right sides. In order to give a quantitative
description of the granular dynamics, we consider a ‘vertical cut line’, that is
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a vertical straight line cutting the integration domain at x = 0.5 m, splitting
the domain up into two symmetric sub-domains.

In Figs. 1 and 2 we compare the profiles of � and �v̂2, respectively, obtained
from our ‘complementary’ microstretching model (VR) with the voids theory
[50] in the purely elastic case (E), with zero µ̂, �̂, �̂, and the dissipative one
(V), with �̂ = 0 only.

At each time step, the profiles appear almost identical in boxes (a)-(b) of
Figs. 1 and 2, hence a magnification of them is shown in boxes (c)-(d), re-
spectively. The magnifications in boxes (c) and (d) put in evidence di↵erences
among E, V and VR profiles, in which the contribution coming from E model is
always weaker with respect to the contribution coming from V model, in turn
weaker with respect to VR model contribution, at least till ⌧ = 0.12 s (and
taking into account the absolute tolerance of 10�4 imposed to the numerical
procedure).

(a) (b)

(c) (d)

Fig. 2. Parallel between the distributions of the mass flux �v̂2, for the E-, V- and
VR-models, along the vertical cut line taken at: (a) ⌧ = 0.04 s; (b) ⌧ = 0.12 s; (c)
and (d): 103 magnification of arbitrary portions of boxes (a) and (b), respectively.

In Figure 3 the profile of the �! variable along the vertical cut line is shown
at di↵erent time steps. In box (a), until ⌧ = 0.12 s, the �! profiles fall in the
10�3 s�1 range, but if compared to the profiles obtained at the higher time
steps, as in box (b), the former appear flatted due to the di↵erent scale of the
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profiles for ⌧ = 0.16 s and ⌧ = 0.20 s. (see, also, [3] from where figures are
taken).

(a) (b)

Fig. 3. Profiles of the mass flux �! along the vertical cut line: (a) parallel between
the profiles taken at ⌧ = 0.04 s and ⌧ = 0.12 s; (b) parallel among the profiles taken
at ⌧ = 0.04 s, ⌧ = 0.12 s, ⌧ = 0.16 s and ⌧ = 0.20 s.

Such results are consistent with the initial conditions imposed to the model
simulation: in fact, while �v̂1(0) = �v̂2(0) = 0 m·s�1, instead �!(0) = 0.01
s�1, then, at t = 0 s, a non-zero rotational contribution is already present,
which is relevant in the first stage of the granular dynamics. During the time
evolution, the �! contribution is weak and confined within the 10�5�10�2 s�1

range (see Figs. 3), while the growing �v̂2 contribution makes the di↵erences
between V and VR dynamics to vanish, even if a major contribution to the
granular dynamics coming from the V model cannot be excluded, for ⌧ > 0.20
s, on the basis of physical considerations.

9.2 Micro-vibrations in a linear thermo-elastic porous solid

Consolidate soils can be considered as porous continua with a fabric deter-
mined by the way grains are in contact, possibly linked by cohesive forces.
Under dynamic solicitations, such as those induced by trains on a railway, ve-
hicles on pounding roads or earthquakes, we may recognize interplay between
macroscopic and microscopic vibrations. The phenomenon has its counterpart
in the dynamics of foams, the scheme developed in the previous sections allows
us to describe such a phenomenon with a certain detail.

We remark again that pore volume fraction is insu�cient to describe the
microdeformations of the holes when they are large [23]. In fact, the linear
theory of porous materials (as well as classical Cauchy’s one) does not predict
size e↵ects in torsion as they occurs in the mechanics of bones [21] or rod-
shaped specimens of dense polyurethane foams [58].

Instead the linear theories obtained from Cosserat brothers’ theory [30] and/or
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the model of porous media with ellipsoidal microstructure [35], later renamed
as microstrain continua [31], were used to study numerous applications to the
model of media with a�ne microstructure. The latter is surely preferable when
we consider soils or cellular solids consisting of a solid matrix with large pores
filled by gas, because the e↵ects of micro-rotations are trivial. As an example
of this complex microstructure, we show in Fig. 4 (see also [5]) a graphene
foam sheet (spongy graphene, 2” x 2” x 1.2 mm).

Fig. 4. Scanning electron micrograph of cellular structures of graphene foam.

In order to compare the solutions of micro-vibrations in di↵erent models (with
voids, or microstretch or ellipsoidal microstructure), we linearize the system
of di↵erential balance equations in the case in which the saturating fluid is a
gas of negligible mass (⇢2 ⇡ 0). Also we neglect macroscopic dynamics in the
mixture, i.e., impose

ūi(Xi, ⌧) := xi(Xi, ⌧)�Xi = 0 for i = 1, 2. (148)

Then, we follow also analyses in [36,45]. Particularly, we consider a homoge-
neous isotropic, thermoelastic porous solid initially undisturbed and at uni-
form temperature ✓0. We suppose further that all the external volume contri-
butions vanish, as well as the micromomentum growth �+a, i.e., bi = 0, C =
O, �2 = 0, � = 0 and �+a = 0. Therefore, the only pure equations of inter-
est in the problem are micro-momentum balance (118) and thermal evolution
(99),

⇢1 µ1 V
001 = div⌃a � Z

a and ⇢1 ✓⌘̇
a = div qa, (149)

respectively. For them we refer to constitutive relations (82)1 and (124)3,4.

The linear representations of constitutive fields, depending on the set {V1 :=
V � I, gradV1, # := ✓� ✓0, grad#}, have been already obtained in [36] (equa-
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tions (28)2,3 and (30)). Together with the Fourier law for qa, they reduce the
balances (149) to

@
2
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@⌧ 2
= v

2
sm�V1 + 2(v2tm � v

2
sm) sym [grad (div V1)] + �̄1grad

2(tr V1) +

+
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�̄1div

2
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i
I � 2�̄4V1, (150)

0= �̄1

@#

@⌧
+ �̄2�#+ µ1�̄3tr V̇1, (151)

where tr (·) denotes once again the trace, i.e., in a flat metric, trV1 := V1 ·
I; moreover, v2sm, v

2
tm and �̄i, for i = 1, . . . , 4, are micro-elastic constants,

�̄3 depends on micro-mechanical and thermal properties of the porous body;
(�̄1✓0) is the specific heat at constant strain, while �̄2 := ⇠⇤(⇢1⇤✓0)

�1 � 0, with
⇠⇤ the coe�cient of thermal conductivity (see, also, [33]).

We can uncouple the spherical and deviatoric components of the linear balance
of micromomentum (150) to obtain, respectively,
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where ⌫ is the trace of V1, while its deviatoric part is defined by V D := V1� 1
3⌫I.

Consider solutions of the form

⌫ = ⌫̂ e
ib⌧
, V

D = V̂ e
ib⌧
, # = #̂ e

ib⌧
, (154)

where ⌫̂, V̂ and #̂ are constant amplitudes, b is the frequency and i is the imag-
inary unit. By inserting these expressions into equations, we get the system
of algebraic equations
⇣
b
2 � 3�̄3 � 2�̄4

⌘
⌫̂ = 3�̄3#̂,

⇣
b
2 � �̄4

⌘
V̂

D = O, �̄1#̂+ µ1�̄3⌫̂ = 0, (155)

with the restriction on the free energy density  a to be positive definite which
implies

�̄1

⇣
3�̄3 + 2�̄4

⌘
> 3µ1�̄

2
3, �̄4 > 0 (156)

(see equations (30) and (31) of [36]).

Eventually, we get admissible values of frequency b for di↵erent types of waves.
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�) Dilatational modes:

bd =
q
3�̄3 + 2�̄4 � 3µ1�̄

�1
1 �23, with ⌫̂ = 3 V̂11, (157)

V̂22 = V̂33 = ⌫̂/3, V̂ij = 0, 8 i 6= j, #̂ = �µ1�̄
�1
1 �̄3⌫̂ :

the cuto↵ frequency bd of this micro-thermal oscillation is real, for the
restriction (156)1, and we may expect one longitudinal acoustical wave
in the three-dimensional porous medium to couple with the micro-modes
to form four optical branches.

�) Extensional modes with a constant volume:

be =
q
�̄4, with V̂11 = �V̂22 � V̂33, ⌫̂ = #̂ = 0, V̂ij = 0, 8 i 6= j : (158)

the cuto↵ frequency be of the micro-oscillations is real for inequality
(156)2, while no thermal vibration is present; we may also expect one
transverse acoustical wave to couple with the micro-modes to form three
optical mechanical branches.

�) Pure shear modes:

bs =
q
�̄4, with V̂ij 6= 0, 8 i 6= j, V̂ii = 0, 8 i, #̂ = 0 : (159)

their cuto↵ frequency bs coincides with the real frequency be of the ex-
tensional modes and even here micro-oscillations are purely mechanical;
the transverse acoustic wave in the microstructured medium couple again
the micro-modes to form three optic branches.

When we neglect thermic phenomena, our oscillating solutions recover three
of the mechanical micro-vibrations obtained for general microstructure in [67].

The characteristic values of the frequencies given in equations (157-159) are
fixed, once the material parameters �̄3, �̄3, �̃ := µ1�̄

�1
1 �̄3, �̄4, and ✓0 in sys-

tem (151-153) are specified. Here, we want to compare micro-oscillations for
some di↵erent materials for which they have been calculated experimentally:
in particular, in Table 2 they refer to porous materials with nano-pores, mod-
eled linear thermoelastic solids with ellipsoidal microstructure with vanishing
Cosserat’s couple modulus: high density rigid polyurethane closed-cell foam
(PO) [58], nickel foams (NI) [5,70] and Berea sandstone saturated with air
(SA) (or similar)[83,56].

Figures 5 and 6 report dimensionless micro-vibration (154) for the three porous
solids in Table 2 in the longitudinal and transverse cases (equations (157) and
(158)-(159)), respectively. Wave frequencies in foam materials are higher than
seismic micro-vibrations in the sandstone, more in the polymeric matrix than
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Table 2
Dimensional parameters for porous solids with ellipsoidal microstructure.

Parameter PO NI SA

�̄3 2,16 ⇥1012 s�2 3,70 ⇥1011 s�2 5,00 ⇥1010 s�2

��̄3 2,71 ⇥1010 s�2 �C�1 4,61 ⇥109 s�2 �C�1 4,61 ⇥109 s�2 �C�1

�̃ 3,46 ⇥100 �C 5,34 ⇥10�1 �C 6,67 ⇥10�1 �C

�̄4 3,23 ⇥1012 s�2 5,57 ⇥1011 s�2 3,00 ⇥1010 s�2

✓0 2,20 ⇥101 �C 2,00 ⇥101 �C 2,50 ⇥101 �C

bd 3,64 ⇥106 s�1 1,49 ⇥106 s�1 4,68 ⇥105 s�1

be = bs 2,54 ⇥106 s�1 1,06 ⇥106 s�1 2,45 ⇥105 s�1

in the metallic one; as noted above, transverse waves proceed una↵ected by
thermal properties.

Fig. 5. Dilatational modes of coe�cient bd.

Now, we want to compare micro-vibrations for porous media described in
theory of voids, the microstretched model and ours, the one with ellipsoidal
microstructure, i.e., the general a�ne microstructure internally constrained
to have null micro-rotation. In particular, only for the third example we still
observe transverse waves with frequencies that do not disappear, because,
obviously, the parameter �̄4 vanishes in the first two.

Therefore, in Table 3 we summarize all significant parameters of the mentioned
models, at uniform room temperature ✓0: for the theory of voids, we consider
the magnesium crystal like material (MA) [25,82]; for the thermo-microstretch-
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Fig. 6. Extensional and shear modes with the same coe�cient be = bs.

elastic solid (with vanishing Cosserat’s couple modulus vanishing), aluminum
matrix with randomly distributed epoxy spheres (AL) [32,57], a sheet mold-
ing compound (SMC) of randomly oriented chopped glass fibers in polyester
matrix [4,57], and an electro-microelastic solid (EM), with zero dielectric co-
e�cients [85]. The physical dimensions of the parameters of Table 3 are shown
in Table 2, as well as the pertinent values for the (SA) material.

Table 3
Dimensional parameters for di↵erent models of porous solids.

Parameter MA AL SMC EM

�̄3 5,37 ⇥1020 5,97 ⇥106 9,88 ⇥105 5,52 ⇥109

��̄3 2,19 ⇥1017 8,62 ⇥105 1,03 ⇥107 9,19 ⇥104

�̃ 2,76 ⇥101 4,72 ⇥10�2 5,60 ⇥10�2 5,45 ⇥10�2

✓0 2,50 ⇥101 2,00 ⇥101 2,00 ⇥101 2,00 ⇥101

bd 4,02 ⇥1010 4,24 ⇥103 1,88 ⇥103 1,29 ⇥105

Finally, the cuto↵ frequency bd for the dilatational mode in the magnesium-
crystal-like-material, viewed as a thermoelastic medium with voids, results to
be very high with respect to one computed on the basis of microstretch and mi-
crostrain models, while the frequency obtained for electro-microstretch solids
is of the same order of the previous microstrain and micromorphic samples.
Instead, the detected microstretch solids with zero Cosserat’s couple constant,
i.e., the aluminum-epoxy composite and the polyester matrix with glass fibers,
give lower frequencies than microstrain ones. All the models presented in Ta-
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ble 3 do not show transverse micro-vibrations.

10 Concluding remarks

In this paper the balance principles for an immiscible mixture of continua with
microstructure in the presence of chemical-physical phenomena are presented
by generalizing previous thermodynamic theories of multiphase mixtures. A
new formulation for the balances of moment of momentum is proposed and
additional terms are also included in the peculiar energy equations, corre-
sponding to the work done by the respective terms in the micro-momentum
balances, introduced, for each constituent of mixture, to accommodate for the
dynamical e↵ects played by the respective microstructural descriptors. More-
over, we assume that the entropy flux of each constituent is not egual to the
heat flux divided by the temperature of the constituent itself.

Furthermore, a new procedure is presented to incorporate internal constraints,
such as the saturation condition or the incompressibility of the constituents,
in the balance equations for immiscible mixtures of interest in the thermo-
mechanics of the soils, and some applications are considered. In particular,
a first example is studied in which a saturated fluid suspension is consid-
ered in detail by imposing the general principles, that govern the constitutive
equations, including that of equipresence, usually substituted, in this field, by
that of phase separation. Secondly, the fluid suspension is specified as incom-
pressible to comprise concentrated granular materials in the fluids and the
complete Lagrangian derivative of the kinetic energies due to micromotions,
even if constrained. Finally, an isothermal flow of a fluid component through
the big pores of a solid skeleton is examined, where the model for the solid
constituent is thought to have an ellipsoidal microstructure with the fluid that
fills all the interstices. The proposed model is proved to be perfectly consistent
with previous known theories, derived from theories of the voids or from the
classical ones, even if, also now, it satisfies all Truesdell’s metaphysical prin-
ciples, while those theories have failed in some respects. It had already been
used to describe the transport of pollutants with rainwater in the soils.

It is remarkable that, for all the applications, it was possible to obtain a set of
reaction-free thermodynamic equations; moreover, it has been found that the
internal microactions are always coupled with the micromomentum growths,
and therefore it remains very di�cult to separate the relative influences on
the micromotions.

Besides, to perform numerical simulations on simplified models, firstly it was
quasi-linearized a continuum theory for a cohesionless viscous dilatant granu-
lar material with rotating grains, which generalizes the voids theory and the
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Cosserat brothers’ medium, and was tested on a vertical granular gravity flow
to obtain numerical results showing that the e↵ects due to the rotation of
granules are relevant in a first stage of the granular dynamics, as well as those
due to shear and bulk viscosities. Secondly, a linear theory of a thermoelastic
solid with nano-pores was used to study the propagation of micro-waves, with
three admissible results: a dilatational micro-thermal oscillation and two solu-
tions, both with no thermal vibrations, with the same frequency and with null
trace: a shear mode and an extensional mode with constant volume. Compar-
isons of wave frequencies were also made revealing that, in foam materials,
they are higher than seismic micro-vibrations in the sandstone, more in the
polymeric matrix than in the metallic one.
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