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Abstract: An algorithmic method is proposed to generate all cubic polynomials with a
critical orbit relation. We generate curves (polynomials of parameters) that correspond to
those functions with critical orbit relations. The irreducibility of the polynomials obtained
is left as an open problem. Our approach also works to generate critical orbit relations in
all families of rational functions with active critical points.
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1. Introduction and Statement of the Problem
In their influential paper, Baker and DeMarco [1] explored the distribution of postcriti-

cally finite (PCF) polynomials through the perspective of the Zariski topology in algebraic
geometry. They defined special algebraic subvarieties as subvarieties within the space of
degree-d polynomials that contain a Zariski-dense set of postcritically finite polynomials.
They then posed the problem of classifying all such subvarieties.

Baker and DeMarco called an algebraic variety in the space of degree d polynomials
(or rational maps) “special" if it contains infinitely many postcritically finite polynomials
(rational maps) and asked to classify such special varieties [1]. Recently, this problem was
solved for the cubic polynomials in [2] and for all degrees in [3] by Favre and Gauthier.
They showed that the special curves can be characterized by the orbits of critical points
in three cases: one of the critical points is persistently preperiodic, the two critical points
have a persistent critical orbit relation, or there is a symmetry via z 7→ −z, in which case
the curve is b = 0, ([2] Theorem A). The special curves where the critical point is periodic
were studied by Milnor [4]. The works of Milnor were generalized for rational maps with
a preperiodic critical point by Buff, Epstein, and Koch and they showed that prefixed
subvarieties are irreducible [5].

This research builds on significant advances in holomorphic dynamics, particularly the
classification of special algebraic varieties containing postcritically finite polynomials, as
established by Baker, DeMarco, Favre, and Gauthier [1,3] . By addressing critical orbit rela-
tions in cubic polynomials, our study extends the computational and theoretical techniques
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used to explore stability and bifurcation in parameter spaces. This work introduces an
iterative framework for generating dynamical systems with specific critical orbit relations,
offering new tools for understanding the structure and irreducibility of COR varieties.
These contributions are pivotal for advancing computational approaches in dynamical
systems and analyzing the parameter spaces of complex polynomials.

The approach is applicable for generating critical orbit relations in all families of ratio-
nal functions with active critical points. We address the irreducibility of the polynomials in
the space of cubic polynomials for some low-degree cases. In this regard, we would like to
remark that experiments with other cases show that the irreducibility problem is very hard
and for each case one needs to use different tools.

Every cubic polynomial has the Branner–Hubbard form p(z) = z3 − 3a2z + b, where
a, b are complex numbers [6]. The critical points are at ±a. Cubic polynomials as a
dynamical system and the parameter plane of cubic polynomials were studied intensively
by many in [4,6–9]. Define the iterates of p(z) by letting p0(z) = z and pn+1(z) = p(pn(z)),
for z ∈ C. In this paper, we solve the following problem.

Problem 1. For each pair of (n, m), find all polynomials p(z) = z3 − 3a2z + b such that

pn(a) = pm(−a). (1)

Here, we also require that pn−1(a) ̸= pm−1(−a) if n ≥ 1 and m ≥ 1. In fact, we give an
answer to this problem as an algebraic curve on complex variables a, b, which is the Zariski
closure of the set of points that solve the Problem 1. The irreducibility of the obtained
curves is of great importance and is left as an open problem (see Proposition 2).

The orbit of a point z is {z, p(z), . . . , p◦n(z), . . .}. A point z0 ∈ C is called a critical
point of a polynomial p if p′(z0) = 0. A polynomial p is called postcritically finite if the
orbit of all critical points of p is finite as a set. A point z0 ∈ C is called a fixed point of a
polynomial p if p(z0) = z0. The derivative p′(z0) at the fixed point is called its multiplier.
Two polynomials p and q are called affine conjugate if and only if there exists an affine map
ϕ(z) = k1z + k2 with k1 ̸= 0, k2 ∈ C (conjugacy) such that ϕ(p(z)) = q(ϕ(z)) for all z ∈ C.
Note that here ϕ plays the role of affine change of coordinates in z-plane and in w = p(z)
planes at the same time. In the study of dynamical systems such a dynamical change in
coordinates produces the same dynamics. By scaling (z 7→ kz), we can make the leading
coefficient of any polynomial 1. In general, a cubic polynomial has two critical points so by
a change of coordinates (translation (z 7→ z + k) we can put them at some ±a and obtain
the Branner–Hubbard form.

We also consider cubic polynomials written in the form

q(z) = z3 + µz2 + λz (2)

with a fixed point at the origin with the multiplier λ. The family in this form is denoted by
Per1(λ). Critical points of q solve the quadratic equation

3z2 + 2µz + λ = 0.

Denote the critical points by c1 and c2. If λ ̸= 0 then it is not possible to label (mark) the
critical points without taking the square root function in the complex plane.

Problem 2. For each pair of (n, m), find all polynomials q(z) = z3 + µz2 + λz such that

qn(c1) = qm(c2). (3)
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These two problems are equivalent to each other but it is easy to work with the first
one as the critical points are marked at ±a. Indeed, let z0 be any fixed point of p(z) =

z3 − 3a2z + b; by the change of coordinates z 7→ z + z0 we can put its fixed point to the
origin to obtain a cubic polynomial of the form (2). Now we start with a cubic polynomial
of the from (2) and let c0 = (c1 + c2)/2 be the midpoint of the critical points c1 and c0 of
q(z) = z3 + µz2 + λz (the midpoint of the line segment joining the two critical points). By
the change in coordinates z 7→ z + c0 we can put its critical points to two points symmetric
with respect to the origin. The resulting cubic polynomial is of the Branner–Hubbard form.
Now for p(z) = z3 − 3a2z+ b and q(z) = z3 + µz2 + λz, for convenience, denote the change
in the coordinate by ϕ with ϕ(a) = c1 and ϕ(−a) = c2 then p(z) = ϕ−1(q(ϕ(z))) and for
all k ∈ N we obtain pk(z) = ϕ−1(qk(ϕ(z)). Finally, we assume that p satisfies the Problem 1
for (n, m), i.e., pn(a) = pm(−a). Then, ϕ−1(qn(ϕ(a))) = ϕ−1(qm(ϕ(−a))). Applying ϕ to
both sides of the latter we obtain qn(ϕ(a)) = qm(ϕ(−a)) or qn(c1) = qk(c2) which solves
Problem 2 with the same (n, m). Going backward, we can show that every solution to
Problem 2 is also a solution to Problem 1.

One can also consider the following subproblem if we restrict to a slice λ = 1 and
work in Per1(1).

Problem 3. For each pair of (n, m), find all polynomials q(z) = z3 + µz2 + z such that

qn(c1) = qm(c2). (4)

The third problem has the same difficulty as the second one but both can be derived
from the first.

Two distinct cubics z3 − 3a2z + b and z3 − 3a′2z + b′ are affine conjugate if and only
if a′ = −a and b′ = −b; the conjugacy is z 7→ −z. Indeed, for a ̸= 0 assume that there
is an affine conjugacy: p1(k1z + k2) = k1 p2(z) + k2. Take the derivative from both sides
and obtain p′1(k1z + k2) = p′2(z). It yields that the conjugacy ϕ(z) = k1z + k2 sends the
critical points of p2 to the critical points of p1. If we substitute z = ±a2 we must have
±k1a2 + k2 = ±a1 or ±k1a2 + k2 = ∓a1. In both cases, we obtain k2 = 0. Then, we obtain
p1(k1z) = k1 p2(z) and directly obtain k1 = ±1. Thus, the conjugacy is the identity or it is
z 7→ −z. If a = 0 then the conjugacy is (k1z + k2)

3 + b1 = k1(z3 + b2) + k2. By collecting
common terms we obtain k1 = ±1 and k2 = 0, which finishes the claim. The conjugacy
z 7→ −z interchanges the markings (labeling) of critical points ±a. Thus, the moduli space,
consisting of all affine conjugacy classes of cubics with marked critical points, can be
identified with coordinates (a2, b2) ∈ C2. It means that all four pairs (±a,±b) correspond
to the same equivalence class.

Definition 1. For a polynomial p with critical points c1 and c2 a critical orbit relation is a
quadruple (n, m, c1, c2) (in short, a pair (n, m)) with nonnegative integers n and m such that

pn(c1) = pm(c2). (5)

If c1 = c2 then we require n ̸= m. If c1 = c2 then the critical orbit relation is of the first
type and for c1 ̸= c2 it is of the second type. In this paper, we only consider critical orbit
relations of the second type.

We do not require such n, m to be exact but only ask if (5) is true then f n−1(c1) ̸=
f m−1(c2) and we call it a minimal relation. Every critical orbit relation of the form (n, 0)
satisfies our requirement so it is minimal. As the Equation (5) is symmetric with respect to
n and m, it suffices to consider only the cases of n ≥ m.
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For a polynomial p(z) = z3 − 3a2z + b, a critical orbit relation is a pair (n, m) with
non-negative integers n and m such that for the critical points a and −a we have (1).

Let pt(z) for t ∈ χ be a holomorphic family (χ is a complex manifold) of cubic
polynomials and mark critical points c1(t), c2(t) of pt. A point t = t0 belongs to the stability
locus [10] if the Julia sets J(pt) move holomorphically in a neighborhood of t0. Alternatively,
a point t = t0 belongs to the stability locus if the sequence

{t 7→ pn
t (ci(t))}

forms a normal family on some neighborhood of t0 for both i ∈ {1, 2}. A point t = t0

belongs to the bifurcation locus if stability fails at t0. In complex dynamics, the bifurcation
locus (also known as the activity locus [10,11]) of a parameterized family of one-variable
holomorphic functions refers to the set of parameter points where small changes in the
parameter cause significant changes in the dynamical behavior. This locus is often seen as a
counterpart to the Julia set but in the context of parameter space. The most well-known
example of a bifurcation locus is the boundary of the Mandelbrot set [10].

The following lemma motivates us to study functions with interacting distinct critical
points. It is analogous to Lemma 2.3 in [11].

Lemma 1. Assume that {t 7→ pn
t (c1(t))} is not normal at t0 for c1(t) (the bifurcation locus is not

empty) and #{orbit of c2(t)} ≥ 3 persists throughout χ (or in every sufficiently small neighborhood
of t0). Then, there are infinitely many parameters t ∈ χ such that c1(t) and c2(t) are in critical orbit
relations. In particular, there are infinitely many parameters t ∈ χ such that pn

t (c1(t)) = c2(t),
where n ∈ N depends on t.

Proof. Consider t0 from the bifurcation locus. In a small neighborhood of t0 let c0
2(t) ̸= c1

2(t) be
two preimages of c2(t). An application of Montel’s theorem with the triple c0

2(t), c1
2(t), c2(t),

which is persistent, finishes the proof. If there are no two preimages, then they must
coincide, creating a critical point, which must be c1(t) as there are only two critical
points, so that the image of it is the critical point c2(t) so that the relation is of the form
pt(c1(t)) = c2(t).

The Problem 1 may be reduced to computing the result of two polynomials pn(z)−
pm(−z) and z2 − a2, with respect to variable z [12] (see Proposition 1). The result (denoted
by Resz(pn(z)− pm(−z), z2 − a2)) is a polynomial on the parameters a, b.

We propose a procedure for constructing a sequence of auxiliary polynomials (see
Lemma 2) from which we directly arrive at the polynomial equation in the parameters a, b,
a zero set of which corresponds to a critical orbit relation (1) for each pair n, m.

The zero set of the obtained polynomials can also be viewed as a family of a critical
orbit relation, known as a COR variety (Critical orbit relations), in the parameter space
of cubic maps, as described in [13]. These COR varieties are fundamental in the analy-
sis of holomorphic and arithmetic dynamical systems, and they have been extensively
studied [13–16]. With this paper, we proposed a new class of COR curves. The problem of
the irreducibility of these new curves can be studied by the use of the techniques developed
in [5,15–18].

The notion of poscritical minimality in families of rational functions was introduced
in [19,20]. The condition on functions we consider in this paper is weaker than the condition
for poscritical minimality. Moreover, the functions with a critical orbit relation are not nec-
essarily postcritically finite. They can well be postcritically infinite. The above-mentioned
result of Favre and Gauthier [2] shows that each variety defining the critical orbit relation
contains infinite postcritically finite cubic polynomials. If we consider a slice in the cubic
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family consisting of polynomials with a persistent attracting or parabolic periodic point
(e.g., Per1(1)), all such maps will be postcritically infinite. But in these slices, there always
exist those with a critical orbit relation. On the other hand, if the slice consists of entirely
cubics with a persistent superattracting period point then all cubics with a critical orbit
relation are necessarily postcritically finite.

2. From Critical Orbit Relations to Recurrence Relations
This section is a preliminary to a quantitative answer to the main Lemma 1, which is

the main theme of the paper. Below we reduce the orbit of the critical point to a simple
looking form with universal polynomials that are recursively obtained. In what follows,
the powers in the polynomials p represent iterations while the powers of newly introduced
polynomials and the variables or in the algebraic expressions represent the algebraic power.

Lemma 2. There exist sequences {An(a, b)}n≥0 and {Bn(a, b)}n≥0 of polynomials of parameters
a, b such that for all n ≥ 0 the equality pn(±a) = ±aAn(a, b) + Bn(a, b) holds.

Proof. As p0(z) = z, set A0(a, b) = 1 and B0(a, b) = 0. Recurrently define polynomi-
als An(a, b) and Bn(a, b) such that An+1(a, b)z + Bn+1(a, b) = p(An(a, b)z + Bn(a, b)) for
z = ±a. It follows that the recurrence relation is the following.

An+1(a, b) =An(a, b)(a2 A2
n(a, b) + 3B2

n(a, b)− 3a2), (6)

Bn+1(a, b) =B3
n(a, b) + 3a2Bn(a, b)(A2

n(a, b)− 1) + b. (7)

The above formulas are obtained by substituting z2 = a2, z3 = a2z for z = ±a into the
expansion of (An(a, b)z + Bn(a, b))3 − 3a2(An(a, b)z + Bn(a, b)) + b and combining the
common terms.

Denote by dega Q(a, b) the degree of a two-variable polynomial Q(a, b) with respect
to a variable a and by deg Q the degree of a two-variable polynomial Q(a, b), which is
the sum of degrees of variables a and b in the highest monomial of Q. For instance,
dega(a2 − ab4) = 2 and deg(a2 − ab4) = 5. It is easy to see from the recurrence rela-
tions that dega An(a, b) = deg An(a, b) = 3n − 1 for n ≥ 1, dega Bn(a, b) = 3n − 3 and
deg Bn(a, b) = 3n − 2 for n ≥ 1 (to ease the notations in some places of this paper we drop
the arguments in writing functions).

The following lemma gives even more structure to the introduced polynomials
{An(a, b)}n≥0 and {Bn(a, b)}n≥0. It also helps to reduce by half the degrees of the later
obtained algebraic curves that represent each critical orbit relation.

Lemma 3. There exist sequences {Ãn(x, y)}n≥0 and {B̃n(x, y)}n≥0 of polynomials such that for
every n ≥ 0 one has An(a, b) = Ãn(a2, b2) and Bn(a, b) = bB̃n(a2, b2).

Proof. We proceed by induction on n. For n = 0 the statement is true as A0 = 1 and B0 = 0,
set Ã0 = 1 and B̃0 = 0. Suppose that the statement holds for n:

An(a, b) = Ãn(a2, b2) and Bn(a, b) = bB̃n(a2, b2).

By the inductive hypothesis,

An+1(a, b) = An(a, b)(a2 A2
n(a, b) + 3B2

n(a, b)− 3a2)

= Ãn(a2, b2)(a2 Ã2
n(a2, b2) + 3b2B̃2

n(a2, b2)− 3a2).
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Set
Ãn+1(x, y) = Ãn(x, y)(xÃ2

n(x, y) + 3yB̃2
n(x, y)− 3x), (8)

so that An+1(a, b) = Ãn+1(a2, b2). Similarly,

Bn+1(a, b) = B3
n(a, b) + 3a2Bn(a, b)(Ã2

n(a2, b2)− 1) + b

= b3B̃3
n(a2, b2) + 3a2bB̃n(a, b)(Ã2

n(a2, b)2 − 1) + b

= b
(
b2B̃3

n(a2, b2) + 3a2B̃n(a2, b2)(Ã2
n(a2, b2)− 1) + 1

)
.

Set
B̃n+1(x, y) = yB̃3

n(x, y) + 3xB̃n(x, y)(Ã2
n(x, y)− 1) + 1, (9)

so that Bn+1(a, b) = bB̃n+1(a2, b2). This finishes the proof.

In fact, by the above we have

pn(±a) = ±aÃn(a2, b2) + bB̃n(a2, b2)

for all n ≥ 0.
The recurrence formulas that define An and Bn allow us to easily construct a linear

equation in z from a critical orbit relation. If n > m the critical relation pn(z)− pm(−z) = 0
becomes a linear equation in z, and for n = m the critical relation reduces to An(a, b) = 0.

3. Main Technical Results
In this section, the critical orbit relations are reduced to polynomial relations. We

consider them case by case.
Case of (n, n). By Lemma 2 we have

pn(a)− pn(−a) = An(a, b)a + Bn(a, b)− (−An(a, b)a + Bn(a, b)) = 2An(a, b)a, n ≥ 1.

This implies that the critical orbit relation reduces to An(a, b) = 0.
If A1 = −2a2 vanishes then a = 0. In this case, both critical points collide so the critical

orbit relation is (0, 0). This means that there is no cubic polynomial with an exact critical
orbit relation (1, 1). There is also a topological reason why the case (1, 1) is not realized in
the cubic polynomial family.

Denote Pn,n(a, b) = An(a, b)/A1(a, b). Then,

pn(a)− pn(−a) = −4a3Pn,n(a, b), (10)

and (6) yields

Pn,n(a, b) = An(a, b)/A1(a, b) = An−1(a, b)/A1(a, b)(a2 A2
n−1(a, b) + 3B2

n−1(a, b)− 3a2).

Set for n ≥ 2
P̃n,n(a, b) = a2 A2

n−1(a, b) + 3B2
n−1(a, b)− 3a2,

or by Lemma 3 we can write

P̃n,n(a, b) = a2 Ã2
n−1(a2, b2) + 3b2B̃2

n−1(a2, b2)− 3a2. (11)

This implies that, for n ≥ 2, we can write the following

Pn,n(a, b) = Pn−1,n−1(a, b) · P̃n,n(a, b). (12)
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For n ≥ 1, P̃n,n(x, y) = Qn,n(x2, y2), where

Qn,n(x, y) = xÃ2
n−1(x, y) + 3yB̃2

n−1(x, y)− 3x. (13)

If there is a minimal critical orbit relation (n, n), then P̃n,n(a, b) = 0.
Moreover, dega Pn,n(a, b) = deg Pn,n(a, b) = 3n − 3 and dega P̃n,n(a, b) = deg P̃n,n(a, b)

= 2 · 3n−1 for n ≥ 1.
From (12) we obtain that if Pn,n(a, b) = 0 and the relation is minimal then Pn−1,n−1(a, b) ̸= 0

it yields that P̃n,n(a, b) = 0. By definition

deg Pn,n(a, b) = deg An − 2 = 3n − 1 − 2 = 3n − 3

and
deg P̃n,n(a, b) = 2 + 2 deg An−1 = 2 + 2(3n−1 − 1) = 2 · 3n−1.

Moreover, dega Pn,n(a, b) = deg Pn,n(a, b) and dega P̃n,n(a, b) = deg P̃n,n(a, b).
Case of n > m for m = 0 and m = 1. Note that if n ̸= m we have

pn(a)− pm(−a) = aAn + Bn − (−aAm + Bm) = a(An + Am) + (Bn − Bm)

and

pm(a)− pn(−a) = aAm + Bm − (−aAn + Bn) = a(An + Am)− (Bn − Bm).

We denote
Pn,m(a, b) := (pn(a)− pm(−a))(pm(a)− pn(−a)), (14)

then Pn,m(a, b) = a2(An + Am)2 − (Bn − Bm)2. Recall that A0 = 1, B0 = 0 and A1 = −2a2,
B1 = b. For n ≥ 1 we have that Pn,0 = a2(An(a, b) + 1)2 − B2

n(a, b). By Lemma 3 set

P̃n,0(a, b) = Pn,0(a, b) = a2(Ãn(a2, b2) + 1)2 − b2B̃2
n(a2, b2). (15)

Note that the critical orbit relation (n, 0) is minimal. An easy calculation shows that

Pn,1 =
(
a2(An−1 + 1)2 − B2

n−1
)2 ·

(
a2(An−1 − 2)2 − B2

n−1
)
. (16)

For n ≥ 1 set
P̃n,1(a, b) = a2(An−1(a, b)− 2)2 − B2

n−1(a, b),

or by Lemma 3 we can write it as

P̃n,1(a, b) = a2(Ãn−1(a2, b2)− 2)2 − b2B̃2
n−1(a2, b2) (17)

then the above implies that

Pn,1(a, b) = P2
n−1,0(a, b) · P̃n,1(a, b). (18)

The following trivially follows by (15)–(18) and from the degrees of An and Bn.
For n ≥ 1 set

Qn,0(x, y) =x(Ãn(x, y) + 1)2 − yB̃2
n(x, y), (19)

Qn,1(x, y) =x(Ãn−1(x, y)− 2)2 − yB̃2
n−1(x, y) (20)
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then P̃n,0(x, y) = Qn,0(x2, y2) and P̃n,1(x, y) = Qn,1(x2, y2). If there is a minimal critical
orbit relation (n, 1) then P̃n,1(a, b) = 0. Moreover, dega P̃n,0(a, b) = deg P̃n,0(a, b) = 2 · 3n

and dega P̃n,1 = deg P̃n,1 = 2 · 3n−1 for n ≥ 1.
Case of n > m > 1. By following Taylor’s formula for cubic polynomials

p(z) = p(w) + p′(w)(z − w) + p′′(w)(z − w)2/2 + p′′′(w)(z − w)3/6

and since p′(w) = 3w2 − 3a2, p′′(w) = 6w, and p′′′(w) = 6 we obtain p(z) − p(w) =

(z − w)(3w2 − 3a2 + 3w(z − w) + (z − w)2). After simplification it becomes

p(z)− p(w) = (z − w)(z2 + zw + w2 − 3a2).

By substituting pn−1(a) and pm−1(−a) instead of z and w, respectively, we obtain

pn(a)− pm(−a) =(pn−1(a)− pm−1(−a))(pn−1(a)2 + pn−1(a)pm−1(−a)

+ pm−1(−a)2 − 3a2)

Similarly,

pm(a)− pn(−a) =(pm−1(a)− pn−1(−a))(pm−1(a)2 + pm−1(a)pn−1(−a)

+ pn−1(−a)2 − 3a2)

Now, if we multiply the left-hand sides (which is Pn,m(a, b) as was defined in (14)) and
the right-hand sides of the latter two identities (product of the first items is Pn−1,m−1(a, b))
and substituting the iterates in the second items of the products on the right-hand sides by
Lemma 2 correspondingly and denote by P̃n,m(a, b) then

P̃n,m(a, b) =
(
a2(A2

n−1 − An−1 Am−1 + A2
m−1) + B2

n−1 + Bn−1Bm−1 + B2
m−1 − 3a2)2 (21)

− a2((2An−1 − Am−1)Bn−1 − (2Am−1 − An−1)Bm−1
)2.

and we obtain the factorization

Pn,m(a, b) = Pn−1,m−1(a, b) · P̃n,m(a, b).

Let n > m > 1 and set

Qn,m(x, y) =
(

x(Ã2
n−1(x, y)− Ãn−1(x, y)Ãm−1(x, y) + Ã2

m−1(x, y))

+ y(B̃2
n−1(x, y) + B̃n−1(x, y)B̃m−1(x, y) + B̃2

m−1(x, y))− 3x
)2

(22)

− xy
(
(2Ãn−1(x, y)− Ãm−1(x, y))B̃n−1(x, y)

+ (Ãn−1(x, y)− 2Ãm−1(x, y))B̃m−1(x, y)
)2

,

then P̃n,m(x, y) = Qn,m(x2, y2). We have Pn,m(a, b) = Pn−1,m−1(a, b) · P̃n,m(a, b) and if there
is a minimal critical orbit relation (n, m) then P̃n,m(a, b) = 0.

By definition deg Pn,n(a, b) = dega Pn,m(a, b) = 2 dega An + 2 = 2 · 3n and
deg P̃n,m(a, b) = dega P̃n,m(a, b) = 4 dega An−1 + 4 = 4 · 3n−1.

Here is an application of the above computations. The problem of the exclusion of the
variable z from the system pn(z)− pm(−z) = 0 and z2 − a2 = 0 is equivalent to finding the
resultant of the two polynomials, with respect to variable z [12]. We obtain the following as
a direct corollary of the above computations.
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Proposition 1. For all pairs of n, m, we have if n ̸= m then

Resz

(
pn(z)− pm(−z), z2 − a2

)
= −Pn,m(a, b),

and
Resz

(
pn(z)− pn(−z), z2 − a2

)
= −16a6P2

n,n(a, b).

Proof. For the case of n ̸= m by ([21] Theorem 1.3.1) and by (14) we obtain

Resz

(
pn(z)− pm(−z), z2 − a2

)
= (pn(a)− pm(−a))(pn(−a)− pm(a)) = −Pn,m(a, b).

For the other case, by ([21] Theorem 1.3.1) and by (10) we obtain

Resz

(
pn(z)− pn(−z), z2 − a2

)
= (pn(a)− pn(−a))(pn(−a)− pn(a)) = −16a6P2

n,n(a, b).

4. Main Result and Its Proof
Our main result is the following:

Theorem 1. Every minimal critical orbit relation (n, m) ̸= (1, 1) (1) reduces to an algebraic
equation P̃n,m(a, b) = 0 on the parameters a, b defined in Section 3. In particular, there are infinitely
many cubic polynomials for each minimal critical orbit relation (n, m), except the relation (1, 1),
which does not exist.

Let us remark that if the critical orbit relation (1, 1) exists then any nearby point to the
critical value must have four preimages but our polynomial is cubic so it is not realized for
this family. The main result concludes that all other critical orbit relations are realized.

Proof of Theorem 1. The first part of the theorem has been considered in the previous
section for all three cases ((n, n), (n, m) for n > m and m = 0 and m = 1, (n, m) for
n > m > 1). For each case, the zero level of polynomials P̃n,m(a, b) corresponds to minimal
(n, m) critical orbit relation. The degree counts show that all but (1, 1) critical orbit relations
are realized so that there are infinitely many cubic polynomials for every minimal critical
orbit relation (n, m) ̸= (1, 1). It finishes the proof and answers to Problems 1 and 2 as these
two are the same.

We would like to remark that for the minimal critical orbit relation (n, m) the curves
defined by P̃n,m(a, b) = 0 contain points (a0, b0) satisfying some other minimal critical orbit
relation (n′, m′) ̸= (n, m). So the required minimality is not equivalent to exactness. Our
definition of minimality was introduced to factor those Pn,m(a, b) as much as possible. We
conjecture that there are no further factorizations than those we found in this paper. If one
needs to find the exact critical orbit relation it is necessary to study the intersection of these
distinct algebraic curves defined by all pairs of P̃n,m(a, b) = 0 and P̃n′ ,m′(a, b) = 0. Then, the
exact critical orbit relations for particular (n, m) are obtained from the curve P̃n,m(a, b) = 0
by removing infinitely many discrete points that belong also to other such curves. It is clear
that an algebraic curve defined by P̃n,m(a, b) = 0 on complex variables a, b is the Zariski
closure of the set of points that solve the Problem 1 for the critical orbit relation (n, m).

If we consider a slice Per1(λ), for a given λ, then if |λ| <= 1 this slice does not contain
postcritically finite maps. One can show that in this slice the above defined minimality is
equivalent to exactness.
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The moduli space can be described by the coordinates (a2, b2), let x = a2 and y = b2

then instead of P̃n,m(a2, b2) we can work well with Qn,m(x, y). We obtained the following.

Corollary 1. In the moduli space of cubic polynomials of the form z3 − 3a2z + b with coordinates
x = a2 and y = b2 the minimal critical orbit relation (n, m) corresponds to the set {(x, y) ∈ C2 :
Qn,m(x, y) = 0}, where Qn,m(x, y) is defined by (13), (19), (20), (22), respectively. It is never
empty, except for the relation (1, 1). The degree of the curve Sn,m is half of the degree of the
polynomial P̃(n,m)(a, b).

Denote Sn,m = {(x, y) ∈ C2 : Qn,m(x, y) = 0} the affine algebraic curve in C2. It seems
that each curve Sn,m, except S1,1 (which is an empty set), is irreducible. These curves are
analogous to those defined by Milnor [4].

Denote Crit(n, m) = {(a, b) : P̃n,m(a, b) = 0}. In the parameter space except (n, n) for
all cases the algebraic curves Crit(n, m) in C2 have two components as P̃n,m(a, b) which
are the difference of two squares. But it seems that each factor of P̃n,m(a, b) is irreducible
over C in this trivial factorization, which we leave as an open problem together with the
irreducibility of P̃n,n(a, b). Moreover, the coefficients of each of P̃n,m(a, b) are integers.

We end this section with the following.
Conjecture. Every curve Sn,m is irreducible in C[x, y].

If this conjecture holds true, it implies that the structure of the parameter space
remains consistent for points with critical orbit relations. If the curves were reducible, their
reduced components would behave differently, causing the parameter space to split into
non-uniform regions. However, visualizations and experimental results show no indication
of such asymmetrical regions within the parameter space.

5. Examples of Special Curves in C2

Here are some examples of these special curves in C2.

S0,0 = {x = 0}, S1,0 = {x(2x − 1)2 − y = 0},

S2,0 = {x(8x4 − 6x2 + 6xy − 1)2 − y(12x3 − 3x + y + 1)2 = 0},

S2,1 = {4x(x + 1)2 − y = 0}, S2,2 = {4x3 − 3x + 3y = 0},

S3,1 = {x(8x4 − 6x2 + 6xy + 2)2 − y(12x3 − 3x + y + 1)2 = 0},

and
S3,3 = {64x9 − 96x7 + 528x6y + 36x5 − 288x4y + 108x3y2 + 72x3y + 27x2y − 18xy2 − 18xy + 3y3 + 6y2 + 3y − 3x = 0}.

Proposition 2. The curves S0,0, S1,0, S2,0, S2,1, and S2,2 are irreducible in C[x, y].

Some examples of these curves are obtained in [22].

Proof. The curves S0,0, S1,0, S2,1, and S2,2 are irreducible as they can be identified with
the complex plain C, graphs of polynomials (Figure 1). Let us show that the curve S2,0 is
irreducible. We need to show that the polynomial Q2,0(x, y) = x(8x4 − 6x2 + 6xy − 1)2 −
y(12x3 − 3x + y + 1)2 is irreducible in Q[x, y]. Since its linear part does not vanish, it is
irreducible in C[x, y] as well (see ([5] Lemma 5) or ([17] Theorem 4.6)). First, we show
that the polynomial Q2,0(x, y) does not have a factor which is a polynomial of only x.
On the contrary, assume Q2,0(x, y) = f (x)g(x, y). As Q2,0(x, 0) = x(8x4 − 6x2 − 1)2 and
Q2,0(0, y) = −y(y + 1)2 we obtain f (0) = ±1. Since Q2,0(x, 0) = f (x)g(x, 0) we obtain,
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without loss of generality, that f (x) = 8x4 − 6x2 − 1. Now divide Q2,0(x, y) by f (x) and
obtain a nonzero reminder, which is a contradiction.

Note that in Z13 we have Q2,0(−2, y) = 12(y3 + 6y2 + 2) now apply the Eisenstein
criterion for prime number 2, which proves the claim.

Figure 1. The graphs of the curves S2,0,S2,1,S2,2,S3,3.

In Table 1 the degrees of Sn,m for n ≥ 2 have been listed in a row.

Table 1. The degree row of Sn,m for n ≥ 2.

m

0 1 2 . . n − 1 n

n 3n 3n−1 2 · 3n−1 . . 2 · 3n−1 3n−1

6. Two Methods to Solve Problem 3
To solve Problem 3 one can try to use the method developed for Problem 1 by obtaining

analogous results of Sections 2 and 3. The factorizations of Section 3 for P̃n,m are no longer
needed. We can still reduce each critical orbit relation into a polynomial equation. In this
section by briefly go through the main parts of the former and also develop a new method
for the latter. The main Lemma 2 will become the following.

Lemma 4. Let q(z) = z3 + µz2 + z be a cubic polynomial with critical points c1 and c2 that solve
the equation 3z2 + 2µz + 1 = 0. Then, for all n ≥ 0 the equality qn(c) = An(µ)c + Bn(µ) holds
for c = c1 and c = c2 where polynomials An(µ) and Bn(µ) are recurrently defined as

An+1(µ) =An(µ)
(4µ2 − 3

9
A2

n(µ)−
2µ(3Bn(µ) + µ)

3
An(µ) + 3B2

n(µ) + 2µBn(µ) + 1
)
, (23)

Bn+1(µ) =B3
n(µ) + µB2(µ)− 3Bn(µ) + µ

3
A2

n(µ) + Bn(µ) +
2
9

µAn(µ) (24)

with A0(µ) = 1, B0(µ) = 0.
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Proof of this lemma goes alongside of the proof of Lemma 2 where in the expansion of
(An(µ)z+ Bn(µ))3 + µ(An(µ)z+ Bn(µ))2 + (An(µ)z+ Bn(µ)) we substitute z2 = − 2

3 z− 1
3

and z3 = 4µ2−3
9 z + 2

9 µ.
Now we deal with the critical orbit relations and reduce them to polynomial relations.

Since both critical points c1 and c2 are the roots of 3z2 + 2µz + 1 = 0, Vieta’s formula yields
that c2 = −2µ/3 − c1, which can be used to exclude the unknown c2 from the critical
orbit relations.

Case of (n, n). By Lemma 4 we have

qn(c1)− qn(c2) = An(µ)c1 + Bn(µ)− (An(µ)c2 + Bn(µ)) = An(µ)(c1 − c2), n ≥ 1.

If c1 = c2 then the discriminate of 3z2 + 2µz + 1 = 0 vanishes: 4(µ2 − 3) = 0. So that if
µ = ±

√
3 then the critical orbit relation is (0, 0). For all other values of µ the critical points

c1 and c2 are distinct and the (n, n) critical relation reduces to An(µ) = 0. Direct calculation

yields A1(µ) =
2(3−µ2)

9 so that A1(µ) = 0 does not produce a (1, 1) critical orbit relation, so
this case is empty.

Denote Pn,n(µ) = An(µ)/A1(µ). From (23) we obtain

Pn,n(µ) =An(µ)/A1(µ) = An−1(µ)/A1(µ)
(4µ2 − 3

9
A2

n−1(µ)−
2µ(3Bn−1(µ) + µ)

3
An−1(µ)

+ 3B2
n−1(µ) + 2µBn−1(µ) + 1

)
.

Set

P̃n,n(µ) =
4µ2 − 3

9
A2

n−1(µ)−
2µ(3Bn−1(µ) + µ)

3
An(µ) + 3B2

n−1(µ) + 2µBn−1(µ) + 1,

This implies that for n ≥ 2, we have the following factorization

Pn,n(µ) = Pn−1,n−1(µ) · P̃n,n(µ). (25)

Case of n > m. For m = 0 we have

qn(c1)− c2 = An(µ)c1 + Bn(µ)− c2 = 0. (26)

Substituting c2 = −2µ/3 − c1, into (22) yields

qn(c1)− c2 = An(µ)c1 + Bn(µ) + 2µ/3 + c1 = (An(µ) + 1)c1 + Bn(µ) +
2µ

3
= 0

Now the problem, the (n, 0) critical orbit relation, reduces to the following system of
equations from which we need to exclude c = c1.

(An(µ) + 1)c + Bn(µ) +
2µ

3
= 0

3c2 + 2µc + 1 = 0.

This system reduces to

3
(

Bn(µ) +
2µ

3
)2 − 2µ

(
Bn(µ) +

2µ

3
)
(An(µ) + 1) + (An(µ) + 1)2 = 0.

For m ≥ 1, using the identity

q(z)− q(w) = (z − w)(z2 + zw + w2 + µ(z + w) + 1),
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we obtain

qn(c1)− qm(c2) =(qn−1(c1)− qm−1(c2))
(
qn−1(c1)

2 + qn−1(c1)qm−1(c2) + qm−1(c2)
2 (27)

+ µ(qn−1(c1) + qm−1(c2)) + 1
)
= 0.

If m = 1 then the latter simplifies to

qn(c1)− q(c2) = (qn−1(c1)− c2)(qn−1(c1)
2 + qn−1(c1)c2 + c2

2 + µ(qn−1(c1) + c2) + 1)

= (qn−1(c1)− c2)
2(qn−1(c1) + 2c2 + µ)

= (qn−1(c1)− c2)
2(An−1(µ)c1 + Bn−1(µ) + 2(−2µ/3 − c1) + µ)

= (qn−1(c1)− c2)
2((An−1(µ)− 2)c1 + Bn−1(µ)− µ/3

)
= 0.

Now the problem, the (n, 1) critical orbit relation, reduces to the following system of
equations from which we need to exclude c = c1.

(An−1(µ)− 2)c + Bn−1(µ)− µ/3 = 0

3c2 + 2µc + 1 = 0.

This system reduces to

3
(

Bn−1(µ)− µ/3
)2 − 2µ

(
Bn−1(µ)− µ/3

)
(An−1(µ)− 2) + (An−1(µ)− 2)2 = 0.

It remains to consider the case of n > m ≥ 2. By (27) this case reduces to solve the
following system.

qn−1(c1)
2 + qn−1(c1)qm−1(c2) + qm−1(c2)

2 + µ(qn−1(c1) + qm−1(c2)) + 1 = 0

3c2
1 + 2µc1 + 1 = 0.

By Lemma 4 and substituting c2 = −2µ/3 − c1 into the first equation of the latter system
we obtain the following.

To obtain the latter we substituted identities c2
1 = −2µc1/3 − 1/3, c2

2 = 2µc1/3 +

4µ2/9 − 1/3, and c1c2 = 1/3.
Finally, this system reduces to

3
(

Bn−1(µ)− µ/3
)2 − 2µ

(
Bn−1(µ)− µ/3

)
(An−1(µ)− 2) + (An−1(µ)− 2)2 = 0.

Instead of this, we propose an alternative method to solve Problem 3. In fact, it is not
much alternative as it uses all the solutions of Problem 1 developed in Sections 2 and 3. The
idea is to work with a different parametrization of Per1(1) other than q(z) = z3 + µz2 + z.

We start with the Branner–Hubbard form of a cubic polynomial p(z) = z3 − 3a2z + b
and require that it has a multiple fixed point, not necessarily at the origin. It means that the
fixed point equation z3 − 3a2z + b = z has a multiple solution, which in turn, is equivalent
to the vanishing of the discriminant of z3 − (3a2 + 1)z + b, which is 4(3a2 + 1)3 − 27b2 = 0.
Now solve the latter for b2 and substitute it in P̃n,m(a, b) that is defined in Section 3 (by
Formulas (10), (15), (16) and (21)) as these all are polynomials of a2 and b2 and thus obtain
polynomials of a2 only. For Problem 3 the corresponding result becomes stronger and, in
particular, answers affirmatively on the infiniteness of cubic polynomials with critical orbit
relations. Let us state it as a theorem without giving a proof.

Theorem 2. The slice of C2 defined by 4(3a2 + 1)3 − 27b2 = 0 represents Per1(1) and cubic
polynomials q(z) = z3 +µz2 + z with exact critical orbit relations (n, m) corresponding to level sets



Mathematics 2025, 13, 401 14 of 17

P̃n,m(a, b) = 0, where P̃n,m(a, b) are defined in Formulas (11), (15), (16), (21) with a substitution
b2 = 4(3a2 + 1)3/27. Moreover, the obtained critical orbit relations (n, m) ̸= (1, 1) are all realized
and are exact and there are infinitely many cubic polynomials q(z) = z3 + µz2 + z with a critical
orbit relation except the relation (1, 1).

The idea of its proof is as follows. Let us note that every map q(z) = z3 + µz2 + z has a
parabolic fixed point at the origin and such a fixed point attracts the infinite orbit of a critical
point [4]. If both critical points are in a relation then this relation is exact. By substituting
An(a, b) = Ãn(a2, b2) and Bn(a, b) = bB̃n(a2, b2) from Lemma 3 with (8), (9) and b2 =

4(3a2 + 1)3/27 into (11) we obtain P̃n,n(a, b) = a2 Ã2
n−1(a2, b2) + 3b2B̃2

n−1(a2, b2)− 3a2 =

a2 Ã2
n−1(a2, b2) + 4(3a2+1)3

9 B̃2
n−1(a2, b2)− 3a2, which is a polynomial of variable a. Similarly,

we can show that after substitutions the polynomials defined in Formulas (15), (16), (21)
are polynomials of variable a. Now introduce notations x = a2 and y = b2 then

y = 4(3a2 + 1)3/27 = 4(3x + 1)3/27 = 4(x + 1/3)3.

By abusing the notation, (8) and (9) become the following after the substitutions.

Ãn+1(x) =Ãn(x)(xÃ2
n(x) + 12(x + 1/3)3B̃2

n(x)− 3x), (28)

B̃n+1(x) =4(x + 1/3)3B̃3
n(x) + 3xB̃n(x)(Ã2

n(x)− 1) + 1, (29)

Denote the leading term of a polynomial f by LT( f ) and the leading coefficient by
LC( f ). We obtain the following recurrence relations for the leading terms and coefficients.

LT(Ãn+1(x)) =xLT(Ãn(x))3 + 12x3LT(B̃n(x))2LT(Ãn(x)), (30)

LT(B̃n+1(x)) =4x3LT(B̃n(x))3 + 3xLT(B̃n(x))LT(Ãn(x))2, (31)

with LT(Ã1(x)) = −2x and LT(B̃1(x)) = 1.

LC(Ãn+1(x)) =LC(Ãn(x))3 + 12LC(B̃n(x))2LC(Ãn(x)), (32)

LC(B̃n+1(x)) =4LC(B̃n(x))3 + 3LC(B̃n(x))LC(Ãn(x))2, (33)

with LC(Ã1(x)) = −2 and LC(B̃1(x)) = 1. To solve the recurrence relation, introduce
tn = LC(Ãn(x))/LC(B̃n(x)) and divide the first equation by the second and obtain

tn+1 =
tn(t2

n + 12)
3t2

n + 4
,

with t1 = −2. This recurrence relation produces a constant sequence tn = −2 as −2 is a

fixed point of the rational function t 7→ t(t2+12)
3t2+4 . Now it is easy to see that LC(Ãn(x)) =

−22·3n−1−1 and LC(B̃n(x)) = 22·3n−1−2. Corresponding degrees are as follows:

deg(Ãn+1(x)) =1 + 3 deg(Ãn(x)), (34)

deg(B̃n+1(x)) =3 + 3 deg(B̃n(x)), (35)

with deg Ã1 = 1 and deg B̃1 = 0. Solving these recurrence relations one obtains

deg Ãn = (3n − 1)/2

and
deg B̃n = (3n − 3)/2.
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Finally, LT(Ãn(x)) = −22·3n−1−1x(3
n−1)/2 and LT(B̃n(x)) = 22·3n−1−2x(3

n−3)/2.
Note that

P̃n,n(x) = xÃ2
n−1(x) + 12(x + 1/3)3B̃2

n−1(x)− 3x,

P̃n,0(x) = x(Ãn(x) + 1)2 − 4(x + 1/3)3B̃2
n(x),

P̃n,1 = x(Ãn−1(x)− 2)2 − 4(x + 1/3)3B̃2
n−1(x),

and for n > m ≥ 2

P̃n,m(x) =
(

x(Ã2
n−1(x)− Ãn−1(x)Ãm−1(x) + Ã2

m−1(x))

+ 4(x + 1/3)3(B̃2
n−1(x) + B̃n−1(x)B̃m−1(x) + B̃2

m−1(x))− 3x
)2

− 4x(x + 1/3)3
(
(2Ãn−1(x)− Ãm−1(x))B̃n−1(x) + (Ãn−1(x)− 2Ãm−1(x))B̃m−1(x)

)2
.

We have that

LT(P̃n,n) = xLT(An−1)
2 + 12x3LT(Bn−1)

2 = 163n−2
x3n−1

.

For the rest of the polynomials there are resonances. The term xÃ2
n(x) resonates

with the term 4(x + 1/3)3B̃2
n−1(x) so that for P̃n,0(x) and P̃n,1(x) half of their degrees

are dropped. For the polynomial P̃n,m(x) the resonance happens for x2(Ã2
n−1(x)2 with

16x(x + 1/3)3 Ãn−1(x)2 resulting in a drop of the degree. But one can show that

degP̃n,0(x) = (3n + 1)/2,

degP̃n,1(x) = (3n + 3)/6,

and for n > m ≥ 2 we have that

degP̃n,m(x) = 2 · 3n−1.

Here are some examples: P̃2,0(x) = −128x5 − 308x4/3 − 340x3/27 − 904x2/243 −
139x/729 − 3844/19683, P̃2,1(x) = 4x2 + 8x/3 − 4/27, P̃2,2(x) = 16x3 + 12x2 + x + 4/9,
P̃3,1(x) = 64x5 + 124x4/3 − 16x3/27 + 392x2/243 + 2048x/729 − 3844/19683, P̃3,3(x) =
4096x9 + 6144x8 + 2816x7 + 5504x6/9 + 1136x5/3 + 1604x4/9 + 2344x3/81 + 472x2/81 +
139x/243 + 3844/6561.

7. Summary and Further Discussions
This paper considered the problem of generating cubic polynomials with all possible

critical orbit relations. We explicitly found that for polynomials, the level sets correspond to
specific critical orbit relations. We also considered the sub-problems where we considered
some slices in the parameter plane. The slices are cubic polynomials with fixed points with
constant multipliers, Problem 2, and the multiplier 1, where the cubic polynomials have
parabolic fixed points, and Problem 3. For the latter case, we gave two solutions to the
problem. The statement of the main Lemma 2 is true for all other families of polynomials or
rational functions as long as we have two interacting critical points that solve a quadratic
equation of the parameters of the family. The idea is to reduce high powers in iterates of
the critical point to a linear map (affine) of the critical point and then to reduce the critical
relation into a linear equation and solve it explicitly. For some low degrees, the irreducibility
is studied in Proposition 2. We propose a conjecture that all obtained polynomials in this
paper are irreducible but this problem could be very hard to solve in full generality. To
continue this line of research the other problems are as follows: One can also consider
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critical orbit relation for Blashke products. In this case, maps depend only on real analysis
of the parameters so that the obtained equations will not be complex polynomials but
polynomials involving parameters and their complex conjugates. The family considered
in [23] is also a perfect example of the methods proposed in this paper.

One of the applications of the results in this paper is to study the number of stable
components in the parameter plane of cubic polynomials as they contain unique centers
where maps have critical orbit relations [19,20,24]. We can label them by the number of
iterates for a critical orbit to reach the immediate basins of some fixed points. The difficulty
one needs to overcome this problem is that the polynomials that we obtain do not determine
the exact location of the critical point. The critical point could be in any Fatou component
or both critical points could be at the same component and have a relation with each other.
So the solution for this could be to use the Blaschke products that are mentioned above to
exclude the latter case and obtain correct numbers on the number of stable components.

Another open problem is to study the interaction of more than two critical points.
Now the critical points solve cubic equations or higher-order equations. In this case, we
can modify the main Lemma 2 such that the iterates are now quadratic or one degree
lower than the critical equation. The findings in this paper have significant implications
for computational dynamics and related fields. By providing a systematic method for
generating dynamical systems with specified orbit relations, our approach offers tools to
study parameter spaces and the stability of holomorphic families. These insights can be
utilized in modeling phenomena in physics, biology, and other sciences where dynamical
systems are prevalent.

In computational dynamics, the iterative techniques described here can improve
algorithms for detecting critical orbit relations, which are pivotal in visualizing fractals,
such as the Mandelbrot set. Furthermore, understanding the structure and irreducibility of
COR varieties aids in optimizing parameter exploration in high-dimensional spaces.

Future research could extend this framework to higher-degree polynomials or other
families of rational functions. Additionally, exploring connections between critical orbit
relations and arithmetic dynamics might yield new methods for solving Diophantine equa-
tions. The interdisciplinary nature of this work invites collaboration across mathematics,
physics, and computer science to tackle complex systems and advance computational
methods for analyzing their behavior.
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