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In this paper, a hybrid-domain deep learning (DL) based neural system is proposed to decode hand
movement preparation phases from electroencephalographic (EEG) recordings. The system exploits in-
formation extracted from the temporal-domain and time-frequency-domain, as part of a hybrid strategy,
to discriminate the temporal windows (i.e., EEG epochs) preceding hand sub-movements (open/close)
and the resting state. To this end, for each EEG epoch, the associated cortical source signals in the
motor cortex and the corresponding time-frequency (TF) maps are estimated via beamforming and
Continuous Wavelet Transform (CWT), respectively. Two Convolutional Neural Networks (CNN) are
designed: specifically, the first CNN is trained over a dataset of temporal (T) data (i.e., EEG sources),
and is referred to as T-CNN; the second CNN is trained over a dataset of TF data (i.e., TF-maps
of EEG sources), and is referred to as TF-CNN. Two sets of features denoted as T-features and TF-
features, extracted from T-CNN and TF-CNN respectively, are concatenated in a single features vector
(denoted as TTF-features vector) which is used as input to a standard multi-layer perceptron for clas-
sification purposes. Experimental results show a significant performance improvement of our proposed
hybrid-domain DL approach as compared to temporal-only and time-frequency-only based benchmark
approaches, achieving an average accuracy of 76.21 ± 3.77%.
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1. Introduction

The present work deals with decoding hand motion

planning from electroencephalographic (EEG) sig-

nals. The aim is to assess if EEG holds enough in-

formation to reveal, ever since the motion planning

phase preceding motion onset, which hand movement

the subject is going to perform. In this context, works

in the literature are usually focused on Motor Im-

agery (MI)1 (which consists in investigating the brain

potentials generated by the imagination of move-

ments) or Motor Execution (ME)2 (which consists

in finding cortical representation of different move-

ments). Motion preparation is far less investigated

than motor execution or imagery, although it may be

the keystone to achieving a natural Brain Computer

Interface (BCI) control paradigm. In the state-of-the-

art literature related to EEG-based motor imagery

decoding systems, most papers are focused on right

vs. left hand MI.3 Right and left hand motor imagery

EEG signals can indeed be somehow reliably discrim-

inated, thanks to the asimmetry in the sensorimotor

rhythms generated by motion planning, which is due

to the contralaterality in motion control by the two

brain hemispheres.4 The current rehabilitation sys-

tems are based on right hand vs. left hand vs. feet

sustained motor imagery and rely on the stimulus

to neural plasticity that derives from watching the

desired movement implemented virtually, by means

of an avatar, or really, by means of an external de-

vice like a prosthetic arm.5 Unfortunately, sustained

movement imagination is an unnatural mechanism

that requires prolonged and intensive user’s train-

ing. If the desired movement could be decoded ever

since its motion preparation phase, a motor impaired

subject could only need to attempt to move his/her

hand in order to activate the device that is in charge

of performing the desired action, with no need of any

sustained motor imagery. Motion attempt is a topic

related to motor execution, because it deals with the

motion planning phase of motor execution. In the

state-of-the-art literature related to EEG-based mo-

tor execution decoding, most works dealing with the

analysis of motion from EEG signals for BCI applica-

tions has focused on drawing information about the

ongoing movement, which seems to be to some extent

possible by analyzing lower frequencies (<3 Hz).6–8

In particular, reaching directions/targets9,10 appear

decodable from Motor Related Cortical Potentials

(MRCP), brain potentials associated with voluntary

movements.11,12 Researchers have hypothesized that

different sub-movements of the same hand, such as

open, hand close, palmar and lateral grasp,13,14 are

embedded in MRCP, which could be detected by

an EEG-based BCI and transformed into the con-

trol input to a neuroprosthesis or a computer appli-

cation. Sensorimotor rhythms (SMR), brain waves

detectable in the central area of the scalp in the

range 13-15 Hz, and beta waves (nearly 13-40 Hz) are

also considered relevant to movement analysis.12 In

contrast, little is known regarding the possibility to

decode motor preparation of sub-movements of the

same hand,5 which is a topic of paramount impor-

tance as a reliable decoding of motor planning would

allow for a more prompt and friendly way to interface

the brain with the machine. Furthermore, being able

to decode different sub-movements of the same hand

would empower the current EEG-based BCI systems

used for rehabilitation (mainly based on right vs.

left hand movement intention discrimination) with

possible benefit to neural plasticity. This would also

lead to a more natural control paradigm. In conclu-

sion, this work aims to respond to the following ques-

tions: Can motor preparation be reliably drawn from

EEG signals before motion onset? Can the intention

to perform different sub-movements of the hand be

drawn from EEG signals? Papers in the literature

have provided some answers to the first question,2

whereas the second one is still mostly unanswered ex-

cept in Ref.13 The proposed work aims to contribute

to the development of a system that is able to detect

the preparation a movement and to decode which

specific hand sub-movement the brain is planning.

To this end, a dataset of EEG recordings preceding

hand motion onset was analyzed. Herein, by “hand

motion planning” the paper will refer to the prepara-

tion of hand opening/closing movements. Many more

complex movements like, for example, finger flex-

ion/extension or palmar/lateral grasp, are based on

the simple, basic, task of hand opening/closing which

involves all the palmar muscles of the hand. Among

the possible hand sub-movements, open and close

are indeed of basic relevance.5 Since EEG signals re-

lated to hand motion analysis appear to hold relevant

properties both in the time (T) and in the time-

frequency (TF) domains,12 a hybrid-domain strat-

egy can be developed that in principle could out-

perform the two single domain approaches. Specifi-
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cally, as Deep Learning (DL15) achieved relevant re-

sults in several research fields,16–19 we propose the

use of a hybrid-domain DL neural architecture capa-

ble of combining features extracted from T and TF

domains, for improving hand’s movement planning

classification. Two customized Convolutional Neural

Networks (CNN) are developed to extract T and TF

features from EEG sources’ time series (estimated

by solving the inverse problem through beamform-

ing) and from the corresponding TF maps (estimated

via Continuous Wavelet Tranform, CWT). The ex-

tracted T and TF features are then fused together

and used as input to a standard multi-layer neural

network to perform the ultimate 3-way classification

task: pre-hand close (HC) vs. pre-hand open (HO)

vs. rest (RE). Experimental results show that the

proposed hybrid DL-based approach (hereby denoted

as TTF-NET) outperforms the two single-domain

systems (T-NET and TF-NET). As a consequence,

the fusion of features extracted from different do-

mains appears promising for the investigation of mo-

tor planning based on EEG.

The main contributions of this research can be

summarized as follows:

(i) Development of an innovative hybrid-domain DL-

based approach capable of discriminating EEG

segments preceding the execution of hand’s sub-

movements (open/close) and EEG resting seg-

ments

(ii) Development of a CNN-based system able to au-

tomatically extract the most significant features

from time (i.e., EEG sources’ time series) and

time-frequency (i.e., TF maps) domain

(iii) Development of a hybrid-domain DL-based sys-

tem with potential for deployment in BCI appli-

cations

The manuscript is organized as follows: in Sec-

tion 2, first, the EEG dataset used in the present re-

search is described. Then, the proposed methodology

(including premotor EEG epoch selection, extraction

of EEG sources in the motor cortex via beamform-

ing, the CWT analysis and the proposed DL-based

open/close hand movement planning detection fea-

tures fusion framework) is introduced. Section 3 re-

ports the achieved results, then discussed in Section

4. Section 5 concludes the paper and addresses some

future research perspectives.

2. Materials and Methodology

2.1. Dataset description

In this work, the publicly available database provided

by Ofner et al.13 was adopted. This database con-

sists of EEGs recordings co-registered with signals

collected from motion sensors (a glove and an ex-

oskeleton). To the best of our knowledge, this is the

very first public collection of high density EEGs co-

registered with motion data during the execution of

BCI experiments of motor execution and imagery.

The dataset can be downloaded from the website

BNCI Horizon 2020, all the details about how data

can be downloaded and how they were acquired, as

well as information regarding the protocol approved

by the Ethics Committee, are provided in Ref.13

The dataset includes 15 healthy subjects (aged 27±5

years, nine females). All of them, except S01, are

right-handed. EEG was recorded by means of 61 ac-

tive electrodes and four 16-channel amplifiers (g.tec

medical engineering GmbH, Austria), electrodes are

embedded in a cap that ensures correct positioning.

Reference channel is placed on the right mastoid and

the ground is placed on AFz. Further details about

channels’ montage can be found in Ref.13 Since the

present study is focused on motor preparation, the

motor execution part of the database was selected.

The protocol13 consists in executing cue-based move-

ments of the right upper limb starting from a com-

mon neutral position (lower arm extended to 120

degree and in a neutral rotation, hand half open).

Throughout the experiment, subjects had been sit-

ting on a comfortable chair with their right arm

supported by an anti-gravity exoskeleton (Hocoma,

Switzerland) to prevent muscle fatigue. Subjects had

a computer screen in front of them, displaying the

cues of the paradigm (movements to be performed).

Every session consisted of 10 runs. Every run in-

cluded 6 trials, every trial included one hand open,

one hand close and one rest cues. The paradigm fol-

lowed by Ofner et al.13 is structured as follows: at sec-

ond 0, a beep sounded and a fixation cross appeared

on the computer screen (subjects were instructed to

focus their gaze on it to avoid eye movements). At

second 2, a cue appeared on the computer screen,

showing the task the subject was required to per-

form in the next seconds. At the end of task exe-

cution, the subject moved her/his hand back to the

starting neutral position.



September 27, 2022 8:15 output

4 Cosimo Ieracitano, Francesco C. Morabito, Amir Hussain, Nadia Mammone

2.2. Methodology

Fig. 1 illustrates the procedure of the proposed

methodology framework. Notably, it includes the fol-

lowing stages:

(i) Premotor EEG epochs selection. Temporal win-

dows (i.e., epochs) of 1s preceding hand motion

onset and resting epochs of the same duration

are extracted from the available 61-channels EEG

recordings.

(ii) Beamforming and extraction of EEG sources in

the motor cortex. Given the eth EEG epoch, in-

verse problem is solved through beamforming

to reconstruct cortical electrical sources (there

are 2000 possible source locations in the model

adopted in the present work). Next, source loca-

tions belonging to the motor cortex, Brodmann

areas (BA) 4 and 6, are selected (210 source loca-

tions out of 2000).

(iii) Time-Frequency Analysis. For every epoch, the

210 EEG sources are analyzed through CWT and

hence, for each source signal, the corresponding

time-frequency map is estimated. The resulting

210 TF maps are then stratified in a single 3D

matrix (time x frequency x source location).

(iv) Temporal-only (T) domain based classification.

The 210-EEG source signals (corresponding to the

eth EEG epoch) is the input to the first CNN (here

denoted as T-CNN), developed to extract the T-

features. A standard NN (referred as T-NN) fol-

lows the T-CNN and performs the classification

based on T features only. It is to be noted that

the sub-system (T-CNN + T-NN) performs the

time-only domain based classification and is re-

ferred as T-NET.

(v) Time-frequency-only (TF) domain based classifi-

cation. The 3D-TF maps (estimated from the 210-

EEG source signals and corresponding to the eth

EEG epoch) is the input to the second CNN (here

denoted as TF-CNN) developed to extract TF-

features. Similarly, a standard NN (referred as

TF-NN) follows TF-CNN and performs the clas-

sification based on TF features only. The sub-

system (TF-CNN + TF-NN) performs the time-

frequency-only domain based classification and is

referred as TF-NET.

(vi) Hybrid TTF domain based classification. T-

features and TF-features, extracted from T-CNN

and TF-CNN respectively, are passed to a features

fusion layer. The resulting vector, here denoted

as TTF-features fusion vector, is the input to a

multi-layer TTF-NN that performs the ultimate

3-way classification task. The architecture com-

posed of the two CNNs, together with the features

fusion layer and the TTF-NN classifier, performs

our proposed hybrid TTF-domain DL based clas-

sification approach, referred as TTF-NET.

2.3. Premotor EEG epochs selection

Signals’ frames prior to hand’s open/close motion

onset were extracted and included in the analysis

together with resting frames of equal duration. In

particular, 900 (= 10 runs x 6 trials x 15 subjects)

EEG epochs per movement class (hand open/close)

were selected. In order to come up with a bal-

anced dataset, a comparable number of resting state

EEG epochs was included in the analysis. Overall,

Ne=2700 (= 10 runs x 6 trials x 3 classes x 15 sub-

jects) EEG epochs were analyzed: 1800 of them were

pre-motion epochs, 900 were resting epochs preced-

ing no motion. The exact timing of motion onset was

derived from the signals collected from motion sen-

sors, following the procedure described in Ref.13 In

order to assess that motion onset was correctly de-

tected, the marked timing was visually checked for

all of the 1800 pre-motion epochs under examina-

tion. The choice of the length of frames preceding

motion onset was made by taking into account the

theory of MRCPs, brain potentials that come with

planning and initiation of movements.12 A MRCP

consists of three sub-potentials: the readiness poten-

tial (RP) or Bereitschaft potential (BP, related to

movement preparation), the motor potential (MP,

related to movement execution) and the movement-

monitoring potential (MMP, related to performance

control).12 Since BP arises around 1.5 to 1s prior

to movement onset, the length of the selected EEG

frames (hereby named “epochs”) preceding motion

onset was set at 1s. The analyses described in Sec-

tion 2.4 and Section 2.5, were carried out epoch by

epoch.

2.4. Time-domain analysis: extraction
of EEG sources in the motor
cortex

A single dipole, located in the cortex, models the ac-

tivity of a large group of simultaneously active neu-
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Figure 1: Hybrid-domain deep learning approach. First, the paradigm followed by Ofner et al.13 is depicted.

Next, the EEG epoch of 1s preceding motion onset is selected. Given the eth EEG-epoch, inverse problem is

solved (through beamforming) and EEG source signals are reconstructed. Specifically, 210 source signals related

to motor cortex (Brodmann’s Areas 4 and 6) are selected. Finally, the extracted EEG source signals are projected

to the time-frequency (TF) domain and embedded into a volume (time x frequency x source) of TF maps. EEG

sources’ time series and TF maps are passed as input to two deep CNNs-based extraction modules, denoted as

T-CNN and TF-CNN, that extract the most relevant features from both T and TF domain. T-features and TF-

features are are fused together and fed into a standard multi-layer NN (denoted as TTF-NN). The architecture

highlighted in red (T-CNN, TF-CNN, features fusion, TTF-NN) represents the proposed hybrid-domain deep

learning model (TTF-NET).

rons.20,21 Unfortunately, because of volume conduc-

tion effects, a single EEG channel will not be able

to selectively collect the activity of a limited cortical

region underneath the sensor, but the activity of rel-

atively far away regions will be detected as well. This

results in a poor spatial resolution of EEG signals. In

order to deal with volume conduction, the proposed

methodology relies on the projection of EEG signals

into the cortex,22 which is of great importance as

our goal is to selectively analyze the electrical activ-

ity of a specific part of the brain: the motor cortex.

The cortical electrical activity can be estimated from

the analysis of the scalp one, provided that a model

of fields’ propagation through cerebral tissues is de-
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fined to reconstruct the cortical electrical sources.

Reconstructing sources consists in solving the “in-

verse problem” starting from a “forward model” def-

inition. Solving the forward problem consists in cal-

culating the scalp potentials resulting from the prop-

agation of the fields generated by the current dipoles

located in the cortex. Sources are projected into the

scalp through the forward model, which takes into

account the structural and conductive properties of

the cerebral tissues, that get involved in fields’ propa-

gation. Considered that the capacitive component of

tissue impedance can be discarded in the frequency

range of bioelectric signals generated by the body,

the quasi-static approximation of Maxwell’s equa-

tions can be adopted thus the forward model can

be assumed linear23 and can be formulated in the

following way:

x(t) = Lqr(t) . (1)

where qr(t) is a 3 dimensional directed current

dipole associated to location “r” (with r=1,...,Ns,

where Ns is the number of possible source locations

in the cortex); L is knows as “lead field” matrix,

which represents the head model and projects the

current dipole qr(t) to the scalp potential x(t).23

Since the number of cortical locations Ns (2000 in

this work) is much larger than the number of avail-

able scalp channels Nc (61 in this work), the estima-

tion of qr(t) from x(t) is an ill posed problem and in-

finite solutions exist. Solving the inverse problem al-

lows to estimate cortical sources qr(t) given the col-

lected signals x(t) and a lead field matrix L. In this

work, the finite element model (FEM) of the cortical

surface with 2000 nodes (i.e., source locations) and

the lead field L generated by Haufe et al.23,24 was

adopted. Furthermore, the New York Head (NYH)

forward model, introduced in Ref,24 was used. Once

the forward model is defined, the inverse problem

is solved starting from EEG signals collected at the

scalp by beamforming technique. The advantages of

using beamforming in EEG-based BCI applications

were demonstrated by Grosse-Wentrup et al.25 In the

present paper, linearly constrained minimum vari-

ance (LCMV) beamformers were employed to recon-

struct source activity at each of the 2000 cortical lo-

cations.23 Beamformers assume the EEG collected

at a given sensor is a linear combination of com-

ponents originating from different source locations.

Each component is estimated by maximizing the con-

tribution of one of the sources while suppressing con-

tributions originating from the other source loca-

tions. Here, the BA of every source location (node)

of the model was determined starting from its Mon-

treal Neurological Institute (MNI) stereotaxic coor-

dinates. MNI coordinates of the 2000 nodes were first

converted into Talairach coordinates through the al-

gorithm developed by Lancaster et al.26 After coordi-

nates’ conversion, Talairach Daemon software27,28

was used to match the Tailarach coordinates with

Talairach Atlas labels, in order to estimate the BA

of every source location. Finally, the 210 locations

belonging to BAs 4 and 6 were selected.

2.5. Time-Frequency Analysis of EEG
sources

The electrical activity of the 210 source locations

of interest were then analyzed through Continuous

Wavelet Transform (CWT),29 in order to investigate

the behaviour of the motor cortex in the phase of mo-

tor planning in the time-frequency domain. Given an

epoch preceding hand open/close motion or a rest-

ing epoch of the dataset under analysis, source sig-

nals in the motor cortex were estimated according

to Section 2.4. Every source signal was then passed

through CWT in order to project it into the time-

frequency domain and construct a TF map. Given a

source signals x, CWT is defined as:

CWT (s, τ) =
1√
s

∫
x(t)ψ∗(

t− τ
s

) . (2)

where CWT (s, τ) is the wavelet coefficient as-

sociated to scale s and shift τ , the symbol * rep-

resents the complex conjugate operator,29 ψ is the

wavelet mother function (a template basis function

with zero mean, finite duration and variable fre-

quency content). The two variables s and τ deter-

mine how much the wavelet mother is dilated (scale

s) and shifted (translation τ). In this work, db4 was

selected as mother wavelet as it allowed to cover the

range of interest (0.6-45 Hz) with a uniformly dis-

tributed vector of frequencies. The range of interest

was set between 0.6Hz and 45Hz because it covers

the motor related cortical potentials (<5 Hz),30 the

sensory motor rhythms (nearly 13-15 Hz) and the

beta band (nearly 13-30 Hz), which are of paramount

importance in the analysis of neural correlates of
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movements,12 while mitigating the effects of muscu-

lar artifacts (20-300 Hz).31 Given a mother wavelet

function, the scale s is inversely proportional to fre-

quency. Given a set of scale values, the related set

of frequencies depends on the mother wavelet. Once

the mother wavelet is selected (db4 was selected

in this work), it is therefore necessary to identify

the most suitable set of scales to represent the fre-

quency range of interest. As addressed above, the aim

of the present work was to process EEG segments

preceding motion onset in order to extract Time-

Frequency maps representative of the frequencies in

the range 0.6-45 Hz, as uniformly as possible and to

give equal emphasis to the various sub-rhythms in-

volved in movement preparation (MRCP, mu, beta,

etc). Given the selected mother wavelet db4, the fre-

quency band under consideration (0.6-45Hz), and the

sampling rate of 160Hz, we analysed the pseudo-

frequencies corresponding to the scales (the pseudo-

frequency being equal to the central frequency of the

mother wavelet divided by the scale s) by means of

the Matlab function scal2freq. This led to a vec-

tor of scales being defined that was suitable to uni-

formly represent the frequencies in the range under

examination, resulting in 43 constituent elements. In

the end, for every epoch and for every source loca-

tion, a CWT matrix was calculated. By calculating

|CWT (s, τ)|2 the scalogram is determined and de-

noted herein as “Time-frequency” (TF) map.

2.5.1. Comparison of pre-hand motion TF
images

For every subject and every pre-motion epoch, the

TF maps of the 210 source signals were extracted as

described in Sections 2.4. In order to evaluate the

potential of pre-motion TF maps in providing in-

formation relevant to the classification of the move-

ment under preparation, a similarity comparison was

carried out between pre-hand opening and pre-hand

closing TF maps, for every subject and for every

source location. Comparing the similarity between

the pre-motion TF maps could indeed help to un-

derstand whether any difference is detectable in the

time-frequency behaviour of the electrical sources in

the motor cortex during the pre-hand opening and

pre-hand closing phases. The Structural Similarity

Index (SSIM) was selected32 to estimate the similar-

ity between HC-TF and HO-TF images. SSIM was

introduced by Wang et al.33 and quantifies the simi-

larity between an image and a reference one. SSIM=1

means perfect match whereas SSIM=0 means no

match. Let x and y be two images to be compared,

SSIM index is defined as follows:

SSIM(x, y) =
2µxµy + C1

µ2
xµ

2
y + C1

·2σxσy + C2

σ2
xσ

2
y + C2

· σxy + C3

σxσy + C3
.

(3)

where µx and σx represent, respectively, the mean

and the standard deviation of image x (similarly,

µy and σy for image y), σxy represents the cross-

covariance between x and y. C1, C2, C3 are small

positive constants values, introduced to guarantee

numerical stability of µx,µy, σx, σy, σxy. C1, C2,

C3.32 For comparing images, it is often useful to ap-

ply SSIM index locally rather than globally. Local-

ized quality measurement can indeed provide a simi-

larity map of the two images and hence provide infor-

mation about where in the images they differ most

from each other. According to Ref.,32 local statis-

tic are computed within a circular-symmetric Gaus-

sian weighting function, SSIM index is then calcu-

lated within the local window in this way producing

a SSIM map.

2.6. Hybrid-domain deep neural
architecture for open-close hand
movement planning detection

Fig. 2 shows a schematic block diagram of the pro-

posed hybrid-domain DL based neural architecture

for open-close hand movements planning detection.

Specifically, the proposed system includes mainly:

two DL modules, that receive input data in the time

domain (i.e., EEG-source time-series) and in time-

frequency domain (i.e., 3D-TF maps), to extract the

T and TF features; a contextual features fusion com-

ponent followed by a multi-layer TTF-NN that ex-

ploits the fused T and TF features for enhanced clas-

sification. Further details of each processing module

of the developed hybrid-domain DL architecture is

comprehensively described in the following Sections.

2.7. Deep Learning based features
extraction modules

The core building blocks of the two processing fea-

tures extraction modules are based on a DL ar-

chitecture. Specifically, two CNNs are employed:
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one used to extract temporal features directly from

EEG sources’ time series; one used to extract time-

frequency features directly from 3D-TF maps of EEG

sources. It is worth mentioning that a typical CNN

includes a features extractor stage, consisting of sev-

eral layers of convolutional, activation and pooling ;

and a classification stage consisting of a standard

artificial neural network (NN).34 The convolution

layer performs the dot product between a set of F

learnable filters and the input representation R sized

r1 x r2. Notably, each filter (sized f1 x f2) is spa-

tially small and scans the input data with a step (or

stride) s, generating a corresponding set of F acti-

vation maps (or features maps) sized a1 x a2 where

a1 = r1−f1+2p
s + 1 and a2 = r2−f2+2p

s + 1 (with p

zero padding parameter). The activation layer ap-

plies a nonlinear transfer function to every estimated

feature map. In particular, here, the Rectified Lin-

ear Unit (ReLu) is used, as offers good generaliza-

tion performance and is not computationally expen-

sive.35 The pooling reduces the spatial dimension

of the input representation. In this work, the max

pooling operation is employed as it provides robust-

ness to small fluctuation and consequently, better

translation-invariant features.36 It consists of a fil-

ter sized f̄1 x f̄2 that sweeps over the feature map

(resulting from the previous layer) with step size s̄,

producing a downsampled representation sized ofr̄1

x r̄2, with: r̄1 = r1−f̄1
s̄ + 1 and r̄2 = r2−f̄2

s̄ + 1.

2.7.1. Temporal features extraction: T-CNN

The CNN developed for the extraction of temporal

features, denoted as T-CNN, consists of three con-

volutional layers (each followed by a ReLU), three

max pooling layer, and a final 2-layer NN (denoted

as T-NN) employed to perform the 3-way classifica-

tion task: HC vs. HO vs. RE. The network is designed

to receive as input epochs of EEG sources I sized i1
x i2, with i1=210 (number of sources estimated) and

i2=512 (samples in 1s EEG window, preceding the

movement onset). The Ith EEG sources epoch feeds

into the first convolutional layer consisting of 8 fil-

ters (sized 3 x 3) and p=1. Each filter slides over

the input representation I with stride s=1, coming

up with a corresponding feature map of the same in-

put dimension. Next, the ReLU activation function

is applied to each feature map and the max pooling

layer, consisting of filters sized 3 x 2 and stride s=3,

reduces the input space from 210 x 512 to 70 x 171.

The second convolutional layer has 16 filters sized 3

x 3, padding parameter and stride of 1. The features

maps generated, after applying ReLU function, are

downsampled through max pooling operation (filter

size 4 x 3, stride s=3), delivering 16 features maps

sized 23 x 57. The last convolutional layer includes

32 filters sized 3 x 3, padding parameter and stride of

1. At this stage, the max pooling layer has filter size

of 5 x 6, stride of 3 and produces features maps of

7 x 18. The feature maps are flattened into a vector

sized 32 x 7 x 18 = 4032 (referred as T-features vec-

tor) processed by a standard feedforward NN (T-NN

with 2-hidden layers of 1000 and 500 hidden neu-

rons, respectively, with softmax output layer, used

to discriminate among HC/HO/RE). In this study,

the sub-system composed of T-CNN and T-NN is

denoted as T-NET (Fig. 2 (a)).

2.7.2. Time-frequency features extraction:
TF-CNN

The CNN developed for the extraction of time-

frequency features, denoted as TF-CNN, has a sim-

ilar structure of T-CNN. In particular, it consists

of three convolutional layers (with 8, 16, 32 filters,

respectively), three max pooling layers and a final 2-

hidden layers NN (denoted as TF-NN) with softmax

output to perform HC vs. HO vs. RE discrimination

task. In contrast to T-CNN, TF-CNN receives as in-

put a volume of time-frequency maps J sized j1 x j2 x

j3, with j1=43 (number of frequencies ranging 0.6-45

Hz), j2=i1=210 and j3=i2=512. Each convolutional

layer uses filters size of 3 x 3, boundary padding of 1,

stride of 1 and is followed by a ReLU activation func-

tion; whereas, the first max pooling layer has filter

size of 5 x 4, stride 2 and produces 8 features maps

sized 20 x 255; the second max pooling layer has filter

size of 6 x 5, stride 2 and delivers 16 features maps

sized 8 x 126; the last max pooling layer has filter size

of 6 x 6, stride 2 and generates 32 features maps sized

2 x 61. Finally, the 32 feature maps are reshaped

into a vector sized 32 x 2 x 61 = 3904 (referred as

TF-features vector) and used as input to a 2-hidden

layer feedforward NN (TF-NN) topologically similar

to T-NN (Fig. 2 (a)). Similarly, the sub-system com-

posed of proposed TF-CNN and TF-NN is referred

as TF-NET (Fig. 2 (b)). Both the T-CNN and the

TF-CNN were implemented with MATLAB R2018a
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and trained by using Adaptive Moment (ADAM) op-

timization algorithm (with minibatch size of 21), on

two NVIDIA GeForce RTX 2080 Ti GPU installed on

a high performance workstation Intel(R) Core(TM)

i7-8700K CPU 3.70 GHz with 64 GB RAM. After

running several training/test sessions, we empirically

observed that a mini batch size of 21 delivered fast

computation and good generalization ability and was

thus adopted in our experiments. Learning parame-

ters of T-CNN and TF-CNN were set-up according

to a trial and error strategy. Specifically, it was ob-

served that the best classification performances were

achieved with the default ADAM hyper-parameters

(first moment exponential decayβ1=0.9, second mo-

ment exponential decay β2=0.999), learning rate α=

10−3 for T-CNN and α=10−4 for TF-CNN. Each

CNN was trained by taking into account one sub-

ject at time for about 120 iterations, until the loss

function converged. Notably, the training time for T-

CNN and TF-CNN was of about 30 minutes and 1,5

hours, respectively, per subject and using the 10-fold

cross validation technique.

2.7.3. Features fusion for enhanced
classification

The T-features (sized 1 x 4032) and TF-features

(sized 1 x 3904) vectors extracted from T-CNN and

TF-CNN, respectively, are fused into a single vec-

tor, denoted as TTF-features fusion vector, which

is further classified. Specifically, the TTF-features

fusion vector sized 1 x 7936 (4032 + 3904) is the

input to a multi-layers NN (denoted as TTF-NN),

trained and tested to obtain enhanced classification

performances. NN3 is composed of 2-hidden layers

with 4000 and 1000 units, respectively, trained with

supervised learning modality via conventional back-

propagation procedure.37 The saturating ReLU acti-

vation function is used in each layer and the proposed

network is trained for 50 iterations until the cross-

entropy loss function converges. It is to be noted

that, the features fusion layer and the proposed TTF-

NN is referred as TTF-NET (Fig. 2 (c)).

2.8. Performance parameters

The effectiveness of our proposed systems (T-NET,

TF-NET, TTF-NET) was assessed by applying the

k-fold cross validation. It is generally preferable to

split the data sample into k groups with the same

number of samples, so that the sample of model skill

scores are all equivalent. In our work, the dataset

consisted of three subsets: Resting (RE), prepara-

tion of hand opening (HO), preparation of hand clos-

ing (HC), each comprising 60 samples. The overall

dataset of a given subject was therefore made up of

180 examples. Choosing k=10 allowed us to split up

each dataset into 10 folds of 18 samples (balanced

with respect to the classes RE, HC, HO) taking into

account the limited size of the original dataset (i.e.,

180 samples per subject). Other trials have been car-

ried out with different k values that yielded similar

performance. F-score, precision, recall and accuracy

parameters, defined as follows:

F − score = 2 ∗ Precision ∗Recall
Precision+Recall

. (4)

Precision =
tp

tp+ fp
. (5)

Recall =
tp

tp+ fn
. (6)

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
. (7)

where tp, fp, tn, fn are the true positive, false

positive, true negative, false negative, respectively.

2.9. Permutation Analysis

In order to demonstrate the classification results are

not achieved by chance (due to the randomness of the

10 folds taken into account) and in order to better

analyze the behavior of the proposed classifier, we

carried out the standard permutation-based p-value

statistical test.38 Such test assesses the probability

that the estimated performance parameter would be

obtained by chance, evaluating the p-value under a

certain textitnull hypothesis. In particular, the null

hypothesis assumes that features and class labels are

independent. This results in permuting the labels of

the dataset under analysis several times and evalu-

ating for each iteration the statistical metric of in-

terest (S).38 The p-value represents the fraction of

permuted instances where the classifier performed at

least as extreme as or better in the random configu-

ration (X∗) than in the original dataset (X) and is
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Figure 2: (a) Temporal-only domain based classification approach: T-NET. (b) Time-frequency-only domain

based classification approach: TF-NET. (c) Highlighted in red, the hybrid temporal and time-frequency (TTF)

domain based classification approach: TTF-NET.

empirically defined as:

p− value =
1

N

N∑
i=1

I(S∗ ≥ S) . (8)

where N is the number of permutations, I is

the indicator function, S is the statistic evaluated

for the original data X; whereas, S∗ is the statis-

tic evaluated for permuted dataset X∗. Low p-value,

typically smaller than a specific threshold α, means

that the null hypothesis (independence of features

and labels) is rejected and consequently the classi-

fier is statistically significant.

3. Results

3.1. Analysis of pre-hand motion TF
images

For every subject and every source location, the

available 60 pre-opening (HO) TF images as well as

the 60 pre-closing (HC) TF images were entered in

joint a pre-movement collection of 120 matrices (Pre-

mov) meant for comparison with the available 60

resting (RE) TF images. Then, the SSIM between

every pair of Premov and RE TF images was com-

puted. In this way, every source location was assigned

a set of 7200 (=120x60) SSIM values. Such values

were then averaged for every source location. For ev-

ery subject, the 10% of source locations exhibiting

the lowest average SSIM values were selected in or-

der to pinpoint which cortical locations minimized

the similarity between motion planning and resting

conditions. As detailed in Section 2.4, cortical source

locations belonging to the premotor cortex (BA6)

or to the primary motor cortex (BA4) were selected

and included in the analysis. In Fig. 3, such corti-

cal locations are denoted by dots: BA6 is depicted

in yellow dots and BA4 in green dots, the remaining

locations of the cortex model are denoted by black

dots. For every subject, the source locations of BA4

and BA6 that exhibited the lowest SSIM between

Premov and RE conditions are depicted with red

dots. Such an analysis brought to light an interesting

recurrent trend across the subjects: most of source

locations minimizing SSIM between TF images in

the Promov and RE conditions were located astride

BA6 and BA4, in line with the cortical projection

of hand motion in the motor homunculus represen-

tation.39 Such sources are mainly located in the left

hemisphere, in line with the contralaterality of the

mechanisms of movement planning (the subject was
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indeed planning to move his/her right hand).

In order to provide to further endorse the choice

to work at source rather at scalp level, two source lo-

cations (named Sleft and Sright hereinafter), located

symmetrically in the two hemispheres, were selected

to show the role of source estimation in emphasiz-

ing the contralaterality of motion planning. Top sub-

plots in Fig. 4 show an example (subject S03) of

the temporal trend of the EEG scalp channels C3

and C4 (typically analyzed in BCI EEG-based ap-

plications related to the execution or imagination of

movements1) in a segment astride the onset of the

right hand opening movement (1s before, 1s after).

Similarly, the bottom subplots in Fig. 4 show the

temporal trend of the EEG sources’ time series re-

lated to Sleft and Sright (the two central source lo-

cations shared by all subjects in Fig. 3). In particu-

lar, the thick black line indicates the mean, whereas

the vertical blue bars indicate the variance over the

epochs. It is worth to highlight the presence of slow

oscillations that precede movement onset (related to

MRCPs), which endorses the decision to develop a

classifier based on features extracted in the time do-

main. When the brain plans or imagines the exe-

cution of the movement of a limb, the contralateral

hemisphere is activated.39 Such contralaterality is in-

deed more relevant in the EEG at source level rather

than at scalp level, mainly because projecting EEGs

into the cortex allows to improve EEG’s spatial res-

olution, as discussed in Section 2.4.

The idea of combining the information deriving

from the features extracted by a T-based CNN clas-

sifier with those extracted by a TF-based CNN clas-

sifier originated from the consideration that MRCP

and SMR represent complementary aspects of motor

preparation, which is also confirmed in the litera-

ture.40 One of the two aforementioned source loca-

tions, Sleft and Sright, was selected to show an exam-

ple of how the SSIM map between the pre-opening

and pre-closing average TF images looks (Fig. 5). It

is worth to note that the dissimilarity between the

two pre-motion conditions is more marked (blue re-

gions of the SSIM map) in two regions of the map:

1) below 1.5 Hz in throughout the time interval of

1s preceding motion onset; 2) between 13 and 30

Hz in the interval 1 to 0.5 s prior to motion onset.

The aforementioned observations suggest that time-

frequency maps of motor cortex sources may help

to discriminate hand sub-movement motion planning

and endorsed the decision to develop DL classifier

based on such maps.

3.2. Sub-movement planning
classification

A hybrid-domain deep learning based neural archi-

tecture is developed to extract T and TF features,

automatically, from EEG sources signals (time-

domain) and 3D-TF maps (time-frequency domain),

in order to perform a 3-way classification: pre-hand

open (HC) vs. pre-hand close (HC) vs. resting (RE).

Specifically, two DL-based networks, denoted as T-

NET and TF-NET (that included two custom CNNs:

T-CNN and TF-CNN, respectively) were developed.

T-CNN received as input the EEG sources’ time se-

ries, whereas TF-CNN received as input the volume

of TF maps. The following ablation analysis is car-

ried out: first, the ability of T-NET and TF-NET to

perform the 3-way (HC vs. HO vs. RE) classifica-

tion task in the time-only and time-frequency-only

domain, respectively, was evaluated. Next, the hy-

brid TTF-domain DL-based approach that combines

T and TF features, extracted from T-CNN and TF-

CNN, respectively, was evaluated to assess its ability

to enhance HC vs. HO vs. RE classification (TTF-

NET). It is worth noting that, 15 3-way classifiers

(one per subject) were trained and tested indepen-

dently. Each classifier included 180 EEG epochs (60

of HC, 60 of HO and 60 of RE) and for each class.

The k-fold cross validation technique (with k=10)

was employed, hence, performance parameters are

expressed as mean value ± standard deviation. Since

F-score includes information of precision and recall,

results are discussed in terms of F-score and accu-

racy.

• Temporal-only (T) domain based classification: T-

NET. Table 1 (a) reports F-score performance for

each class (i.e. HC/HO/RE) of the developed T-

NET (composed of T-CNN and T-NN). Specifi-

cally, HC and HO classes were discriminated very

well in S04 with values of 86.29 ± 3.78% and 91.32

± 3.51% respectively, while RE category showed

rate up of to 99.43 ± 1.28% in S10. It is worth

noting that the worst classification performance of

RE class was only 79.03 ± 14.79% (S06); whereas,

lower values were observed for HC and HO: 41.09

± 20.45% (S11) and 35.07 ± 17.87% (S10), re-

spectively. The average performance per discrimi-
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nation task was also estimated, achieving F-scores

of 57.05 ± 10.59%, 52.90 ± 12.38%, 89.47 ± 5.96%

for HC, HO and RE, respectively. Overall, the av-

erage accuracy score was of 67.90 ± 5.72%. In par-

ticular, the best performance was observed in S04

with 88.52 ± 4.22% (Table 2).

• Time-frequency-only (TF) domain based classifi-

cation: TF-NET. Table 1 (b) reports the F-score

performance for each class (i.e. HC/HO/RE) of

the developed TF-NET (consisted of TF-CNN and

TF-NN). The highest F-score values of 90.16 ±
7.10% (HC), 92.62 ± 5.91% (HO) were observed

in S04 and 97.81 ± 2.32% (RE) in S10. In contrast,

the worst performance were of 32.24 ± 12.15%

(HC), 29.46 ± 14.30% (HO) and 72.17 ± 7.54%

(RE) for S13, S07 and S06, respectively. Here, the

average values of HC, HO and RE were of 53.22

± 11.80%, 54.28 ± 9.10%, 84.72 ± 6.95% respec-

tively. Finally, the achieved mean accuracy was of

65.68 ± 5.38%. In particular, the best performance

was observed in S04 with an accuracy of 92.22 ±
7.34% (Table 2).

• Hybrid Temporal and time-frequency (TTF) do-

main based classification: TTF-NET. Table 1 (c)

reports the F-score performance for each class (i.e.

HC/HO/RE) of the developed TTF-NET (con-

sisted of the two developed CNNs, the features fu-

sion component and the TTF-NN classifier). The

maximum HC, HO and RE discrimination value

was of 97.14 ± 2.08% (S04), 97.11 ± 2.94% (S04)

and 98.89 ± 2.48% (S10), respectively; whereas,

the minimum HC, HO and RE classification per-

formance was of 52.62 ± 11.65% (S02), 51.79 ±
13.10% (S02) and 89.81 ± 2.94% (S12), respec-

tively. Overall, higher average values than T and

TF based classifications, in terms of both F-score

and accuracy, were achieved. Indeed, average F-

scores were of 66.00 ± 6.17% for HC, 67.21 ±
6.87% for HO and 94.24 ± 3.57% for RE tasks. Fi-

nally, the average accuracy was of 76.21 ± 3.77%

(Table 2).

Fig. 6 shows the histogram of the accuracies

achieved by T-NET, TF-NET, TTF-NET for each

subject. As can be seen, TTF-NET outperformed T-

NET, TF-NET in all subjects, except for S12, where

T-NET reported similar accuracy, but with higher

standard deviation. It is also to be noted that, T-

NET, TF-NET, TTF-NET delivered accuracies sig-

nificantly higher than chance level (33%). It is to

be noted that the 10-folds cross validation technique

reported very good results in terms of average accu-

racy and showed that the fusion of T and TF features

improved the classification performance (TTF-NET,

Table 2).

Furthermore, in order to demostrate that such

results are statistically significant, the permutation

analysis (described in Section 2.9) was performed.

Specifically, in this study, the TTF-features dataset

(extracted from T-CNN and TF-CNN) and used as

input to the TTF-NET was taken into account. First,

for each subject, the kth fold, comprising of the TTF-

features corresponding to the accuracy closest to the

achieved average value, was used as original dataset.

Next, N permutations of the class label were pro-

duced. Ideally, the entire set of permutations should

be considered to estimate the exact p-value. How-

ever, this was not computationally feasible. Hence,

here, N=1000 permutations were performed due to

the limited computational power available. For each

iteration, the statistic metric (i.e., accuracy) was cal-

culated. Finally, the p-value was estimated accord-

ing to 8 and compared with a small threshold (α

= 0.0541). It is to be noted that S in the defini-

tion 8 here corresponds to the average accuracy value

of the subject under analysis. For example, for sub-

ject 02, the average accuracy was of 66.30% (Table

2). Hence, the p-value was estimated by counting

how many estimated accuracy values were equal or

greater than 66.30%, over 1000 permutations. In this

case p-value=0.00/100=0.00 < 0.05. Overall, exper-

imental results reported that for all subjects p-value

< 0.05. Thus, the null hypothesis is rejected and the

proposed classifier is statistically significant.

3.3. Comparison with the
state-of-the-art

Other groups have used the dataset shared by Ofner

et al.13 In particular, Cho et al.,42 who proposed a

subject-specific time interval selection and applied

common spatial patterns (CSP) and regularized lin-

ear discriminant analysis (RLDA) to classify mo-

tor execution EEGs, reporting an average classifi-

cation accuracy of 56.83%. Namazi et al.43 explored

how the complexity of EEG signal changes during

the execution or the imagination of different up-

per limb’s movements. They found out that EEG

exhibits high level of complexity in elbow flexion
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Figure 3: Source locations that exhibited the lowest SSIM values (highest dissimilarity) between the average

time-frequency behaviour in pre-movement (hand’s opening/closing planning) and resting conditions. The nodes

of the head model of the cortex are represented as black dots. Yellow dots represent BA6 whereas green dots

represent BA4 (premotor and primary motor cortex). The red thick dots show the 10% of source locations that

exhibited the lowest average SSIM. Every subplot is associated to a subject.

and hand-close movements in ME and the lowest

level of complexity in hand-open and rest condi-

tion in ME. Jeong et al.44 proposed a method to

enhance the MRCP decoding performance by intro-

ducing a subject-dependent and a section-wise spec-

tral filtering (SSSF) method that takes into account

the subjects’ peculiar MRCP characteristics. They

performed a binary motor execution classification,

achieving an average accuracy of 0.72±0.09 in HC

vs. RE and of 0.76±0.06 in HO vs. RE. However,

the aim of the aforementioned works was to discrim-

inate the movement, performed or only imagined, by

analyzing the EEG signals astride the movement on-

set (pre-movement+movement execution), but not

to predict whether the subject was going to perform a

movement by processing his/her pre-movement EEG

signals only, which is the aim of the present work. An-

alyzing pre-movement EEG signals only, makes the

classification inherently more difficult as neural cor-

relates of motor initiation are missing, nevertheless,

for sake of comparison with the literature, the perfor-

mance of the proposed method (pre-movement anal-

ysis) will be compared to the performance achieved

in the literature in decoding movements by analy-

sis both pre-movement+movement execution EEG

signals. In particular, Ofner et al.13 estimated the

performance of their method for varying length of

the processed EEG segments, for sake of compari-

son, the performance of the present method will be

compared to the best performance achieved by them:

the largest accuracy they achieved in movement exe-

cution vs. resting was 80% whereas the largest accu-

racy in movement execution vs. movement execution

was 40%. As regards further differences with the lit-

erature, our approach aims at performing a 3-way

classification (preparation of hand opening, prepa-

ration of hand closing, resting with no movement

preparation: HO vs. HC vs. RE) in this way, a sin-

gle classifier would be able to perform motion plan-

ning detection while decoding hand opening vs. hand

closing planning. In our work, an average accuracy of

76.21±3.77% was achieved (chance level = 33.33%)

in HO vs. HC vs. RE discrimination. Also Jeong et

al.45 performed a 3-way classification, but over fore-

arm supination vs. forearm pronation vs. rest class,

they introduced a Hierarchical Flow CNN, achieving
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Figure 4: Example of the temporal behaviour of EEG signals astride the onset of hand opening (1s before, 1s

after) observed in Subject 3. The two top subplots show the EEG signals collected at scalp sensors C3 (top, left)

and C4 (top, right). The two bottom plots show the EEG sources’ time series estimated for the two locations

mentioned in Section 3.1, namely the source in the left hemisphere (bottom, left) and in the right one (bottom,

right). Every subplot shows the mean trend (black thick line), averaged over the 60 pre-opening epochs of the

subject, together with the variance (blue vertical bars).

Table 1: F-score values estimated on test sets, when: (a) temporal-only data (i.e., EEG sources) are used as in-

put to T-NET; (b) time-frequency-only data (i.e., 3D-TF maps) are used as input to TF-NET; (c) the temporal

and time-frequency features are used as input to TTF-NET. All the outcomes are reported as average value ±
standard deviation %. The highest values are typed in bold face.

(a) T-NET

(T-CNN + NN1)

(b) TF-NET

(TF-CNN + NN2)

(c) TTF-NET

(features fusion layer + NN1)

Subject HC HO RE HC HO RE HC HO RE

S01 55.35 ± 18.41 43.57 ± 13.12 89.73 ± 5.17 52.76 ± 12.16 41.07 ± 6.98 85.91 ± 8.15 62.94 ± 10.74 64.14 ± 9.04 95.01 ± 4.14

S02 44.62 ± 10.56 39.25 ± 10.50 91.50 ± 3.79 44.32 ± 17.26 43.88 ± 11.17 95.00 ± 4.36 52.62 ± 11.65 51.79 ± 13.10 94.24 ± 4.54

S03 74.56 ± 6.42 82.21 ± 2.24 90.05 ± 3.47 85.13 ± 2.46 85.37 ± 6.51 88.97 ± 5.77 88.29 ± 5.80 92.79 ± 3.20 96.30 ± 2.23

S04 86.29 ± 3.78 91.32 ± 3.51 87.83 ± 7.70 90.16 ± 7.10 92.62 ± 5.91 93.63 ± 10.48 97.14 ± 2.08 97.11 ± 2.94 96.84 ± 2.79

S05 53.42 ± 12.65 45.70 ± 19.13 89.39 ± 7.81 45.11 ± 6.54 51.81 ± 4.09 82.04 ± 6.58 59.82 ± 3.37 66.26 ± 10.67 93.99 ± 6.06

S06 49.66 ± 8.68 42.82 ± 14.41 79.03 ± 14.79 39.80 ± 17.85 50.89 ± 10.84 72.17 ± 7.54 56.62 ± 3.98 61.93 ± 11.88 92.74 ± 2.74

S07 53.60 ± 6.68 41.18 ± 9.01 80.69 ± 9.73 34.37 ± 20.51 29.46 ± 14.30 58.85 ± 19.33 55.63 ± 11.13 54.28 ± 4.67 89.07 ± 2.91

S08 58.35 ± 4.48 57.97 ± 11.99 96.81 ± 2.19 54.61 ± 12.97 54.87 ± 10.91 90.70 ± 5.76 71.37 ± 7.02 73.31 ± 5.61 96.36 ± 3.47

S09 62.25 ± 8.90 55.66 ± 13.70 96.70 ± 1.26 55.07 ± 16.47 47.11 ± 15.34 95.04 ± 2.35 67.26 ± 6.43 63.71 ± 3.95 96.70 ± 1.26

S10 49.67 ± 13.76 35.07 ± 17.87 99.43 ± 1.28 53.10 ± 4.62 49.05 ± 10.31 97.81 ± 2.32 56.57 ± 3.99 55.07 ± 8.31 98.89 ± 2.48

S11 41.09 ± 20.45 46.77 ± 13.12 82.84 ± 7.41 43.26 ± 19.77 51.26 ± 0.94 77.52 ± 12.67 60.40 ± 4.87 64.09 ± 8.52 95.54 ± 6.12

S12 62.89 ± 11.16 55.91 ± 16.84 93.61 ± 5.44 52.31 ± 8.63 36.63 ± 16.47 75.11 ± 4.63 62.35 ± 4.08 60.61 ± 5.64 89.81 ± 2.94

S13 46.47 ± 15.10 50.28 ± 18.40 88.94 ± 7.80 32.24 ± 12.15 58.51 ± 11.70 86.40 ± 4.02 64.80 ± 7.35 61.69 ± 6.92 91.18 ± 7.06

S14 62.44 ± 9.22 54.89 ± 11.43 87.99 ± 7.54 64.87 ± 8.70 69.34 ± 3.90 88.95 ± 5.36 70.13 ± 5.94 76.18 ± 3.73 94.65 ± 3.20

S15 55.04 ± 8.58 50.89 ± 10.37 87.46 ± 3.95 51.22 ± 9.79 52.27 ± 7.09 82.71 ± 4.95 63.99 ± 4.17 65.20 ± 4.86 92.23 ± 1.56

Average 57.05 ± 10.59 52.90 ± 12.38 89.47 ± 5.96 53.22 ± 11.80 54.28 ± 9.10 84.72 ± 6.95 66.00 ± 6.17 67.21 ± 6.87 94.24 ± 3.57

an average accuracy of 0.52±0.03.



September 27, 2022 8:15 output

A hybrid-domain deep learning-based BCI For Discriminating hand motion planning from EEG sources 15

4. Discussion

The present research aims at exploring the potential

of DL in detecting whether the brain is in a rest-

ing condition or is planning to perform a specific

movement of the hand, from the analysis of its EEG

recordings. This is a challenging issue in the field

of BCI. To this end, the dataset made freely avail-

able by Ofner et al.,13 consisting of 61-channels EEG

recordings acquired during the execution of hand

open/close sub-movements (of the same limb) and

also during resting state, was taken into account.

Next, source signals in the motor cortex were ex-

tracted from 1s EEG epochs preceding the onset of

motion and from 1s resting state epochs. The EEG

source signals of every epoch under analysis were pro-

jected into the time-frequency (TF) domain and the

estimated TF maps were arranged in a 3D config-

uration so that the three directions of the matrix

represented time, frequency and source location. To

the best of our knowledge, this is the first work that

attempts to develop a hybrid-domain deep learning

system, using T and TF features extracted from EEG

sources and TF maps by means of two custom CNNs,

with the aim to discriminate hand’s opening/closing

motor preparation (i.e. HC/HO) and rest (RE). It

is worth mentioning that the dataset used to perfom

the 3-way classification is in principle too small. How-

ever, each sample consisted of a high-dimesionsional

matrix in the time-frequency as well as in the tem-

poral domain. Specifically, a 3D-TF-map sized 43

x 512 x 210 and a 2D-T map (i.e., EEG-sources)

sized 210 x 512, were processed. Hence, here, we ex-

ploited DL techniques (i.e. CNN) for automatic ex-

traction of the most significant features from such

high-dimensional inputs (i.e., 3D-TF-maps sized 43

x 512 x 210 and EEG-sources sized 210 x 512, as

shown in Fig. 2), which are otherwise difficult to

process with standard ML approaches. Furthermore,

a total of 7936 features were extracted through the

developed CNNs, including 3904 features from 43 x

512 x 210=4.623.360 TF-input data, and 4032 fea-

tures from 210 x 510= 107.100 T-input data. Hence,

since the results achieved with the concatenation of

both T and TF features (extracted from T-CNN

and TF-CNN respectively) were promising, we de-

cided to explore the potential of DL in decoding mo-

tion planning of hand’s sub-movements from EEG

signals by processing the available dataset shared

by Ofner et al.13 Experimental results show that

the proposed hybrid-domain deep learning approach

outperformed the temporal-only domain and time-

frequency-only domain classification approaches, re-

porting higher performances in discriminating pre-

motion planning (pre-hand open vs. pre-hand close)

and rest condition (no movement). Notably, T-NET

and TF-NET achieved averaged accuracies of 67.90

± 5.72% and 65.68 ± 5.38%, respectively. In con-

trast, TTF-NET reported averaged rate up to 76.21

± 3.77% (Table 2). As regards the complexity in

terms of number of learnable parameters, the two

branches, T-NET and TF-NET, involve a feature

extraction part (named T-CNN and TF-CNN, re-

spectively) and a classifying part (named T-NN and

TF-NN, respectively). Both T-NN and TF-NN in-

volve approximately 4.5M parameters. Following ini-

tial independent training of the T-NET branch and

of the TF-NET branch, the T-NN and TF-NN are

discarded and the trained T-CNN and TF-CNN are

included in the double branch approach (TTF-NET).

The TTF-NET merges the features extracted by T-

CNN and TF-CNN and feeds them to another clas-

sifier (named, TTF-NN) that involves 35M param-

eters. Overall, the double branch approach implies

35M-4.5M-4.5M=26M more parameters, compared

to the two single branches approach. This increased

complexity can be acceptable considering the aver-

age accuracy improvement provided by TTF-NET

is 5%, compared to T-NET, and 10%, compared to

TF-NET.For further information about the number

of network’s parameters, please refer to Figure 2.

Table 2: Accuracy values estimated on test sets,

when: temporal-only data (i.e., EEG sources) are

used as input to T-NET; time-frequency- only data

(i.e., 3D-TF maps) are used as input to the TF-NET;

the temporal and time-frequency features are used as

input to TTF-NET. All the outcomes are reported

as average value ± standard deviation The highest

values are typed in bold face.
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Subject
(a) T-NET

(T-CNN + NN1)

(b) TF-NET

(TF-CNN + NN2)

(c) TTF-NET

(features fusion layer + NN1)

S01 65.56 ± 6.88 61.48 ± 4.61 74.07 ± 6.55

S02 60.00 ± 4.06 62.96 ± 5.56 66.30 ± 6.98

S03 82.59 ± 2.81 86.67 ± 2.75 92.59 ± 3.46

S04 88.52 ± 4.22 92.22 ± 7.34 97.04 ± 2.11

S05 64.44 ± 7.57 59.26 ± 4.14 74.07 ± 3.46

S06 58.52 ± 9.41 56.67 ± 2.81 71.48 ± 5.34

S07 59.26 ± 6.80 45.19 ± 6.49 66.67 ± 4.54

S08 71.85 ± 4.22 68.15 ± 5.77 80.74 ± 4.26

S09 72.59 ± 4.42 67.41 ± 6.75 76.30 ± 3.31

S10 64.07 ± 3.84 67.41 ± 2.81 70.37 ± 3.46

S11 60.37 ± 6.36 58.15 ± 8.55 73.70 ± 3.56

S12 71.85 ± 8.53 57.04 ± 7.90 71.85 ± 2.41

S13 63.33 ± 7.45 62.22 ± 6.63 72.96 ± 2.81

S14 69.63 ± 5.49 63.51 ± 3.37 80.74 ± 2.48

S15 65.89 ± 3.71 65.52 ± 5.37 74.20 ± 1.76

Average 67.90 ± 5.72 65.68 ± 5.38 76.21 ± 3.77

Most of the previous studies on EEG-based

BCI were focused on the discrimination of imagined

movements of the right hand, the left hand, of feet,

tongue and most of them were based on the anal-

ysis of public datasets made available by the inter-

national BCI competitions. DL could lead to a sig-

nificant step forward in EEG-based BCI, provided

that large databases are shared by the international

scientific community, as happened for image analy-

sis and Natural Language Processing, which experi-

enced an extraordinary development right thanks to

the availability of very large shared dataset. Another

key step forward would be to make a distinction be-

tween pure “motor imagery” and “motor intention”

by giving the latter a more restrictive meaning as

compared to what has been done far in the litera-

ture. “Motor intention” should indeed mean inten-

tion to actually perform a movement and not merely

to imagine performing a movement. To the best of

our knowledge, to this day, the concepts of motor

imagery and motor intention are quite overlapped in

the literature. In Ref.,46 the group from Graz em-

phasized the importance of complex movement in-

tention decoding which has been far less investigated

than classic motor imagery. The ability to decode

the intention of complex movements would lead to a

big step forward in the development of user-friendly

BCI and encourage the development of a DL-based

movement-assist devices (i.e., BCI-rehabilitation sys-

tems) for those who are capable of planning move-

ments but that are (totaly or partially) incapable to

perform motor control. The main limitation of the

present work derived from the poor spatial resolu-

tion of EEG signals. We have been pursuing here the

challenging goal of discriminating the preparation

phase of two different sub-movements of the same

limb (hand open/hand close), thus inherently map-

ping onto the same sub-region of the primary motor

cortex, at least in the phase of movement implemen-

tation. In order to improve the EEG spatial reso-

lution and reduce volume conduction effects, EEG

signals were mapped onto the cortex by solving the

inverse problem through beamforming. In particular,

a very detailed head model was adopted including 6

types of different tissues (scalp, skull, cerebrospinal

fluid (CSF), gray matter, white matter, air cavities)

and 2000 cortical locations. Nevertheless, in order

to fully exploit the inverse problem solution, a very

high-density EEG (128 channels or more) will be

used in the future. Another limitation is the size of

the dataset. A relatively small number of examples is

available, specifically, 60 trials per class per subject.

The number of participants (15) is small as well. In

our future work, a larger cohort of subjects will be

involved and more trials will be recorded per subject.

The results achieved within the present study, albeit

limited to the analysed dataset, look promising and

endorse that EEG source signals recorded during the

preparation of different sub-movements of the same

limb have different projections in the time-frequency

domain, which could encourage to extend the appli-

cation of the proposed system to electrocorticogra-

phy, thus to implantable BCI.

5. Conclusions

The main objective of the present study was to re-

alise early detection and decoding of motor prepa-

ration of sub-movements (open/close) of the same

hand. To this end, EEG segments (i.e., epochs) rela-

tive to 1s before movement onset and to resting state,

were extracted and preprocessed through beamform-

ing to estimate the EEG sources in the motor cor-

tex. Next, 3D-TF maps (time x frequency x source)

were also generated. A hybrid-domain deep neural

architecture was proposed by combining the fea-

tures obtained from a time-based CNN and a time-

frequency-based CNN, delivering the highest accu-

racy rate of up to 76.21 ± 3.77% when compared to

temporal-only and time-frequency only based frame-

works. However, we expect a higher number of EEG

channels could allow for a more accurate inverse

problem solution and consequently a better recon-

struction of source signals. This, would entail an im-
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Figure 5: Example of a source location in the motor cortex (a) and its SSIM map between the pre-opening and

pre-closing mean TF images (b).
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Figure 6: Histogram of the accuracy achieved with the temporal-only approach (T-NET, light grey bars), time-

frequency-only approach (TF-NET, dark gray bars) and our features fusion approach (TTF-NET, back bars),

for each subject. The vertical red line of each box represents the standard deviation, while the horizontal dash

blue line the chance level (that is of 33%).

proved classification. For these reasons we plan BCI

experiments of motor execution by collecting high-

density EEGs (with 256 channels) during the exe-

cution of different sub-movement of the single hand

as well as of both hands. A large of number of par-

ticipants will be enrolled in our future studies and

many trials will be recorded per subject so that we

will be able to develop and test both intra-subject

and cross-subjects classifiers, with the very ambi-

tious goal to contribute to development of BCI sys-

tems that do not require calibration. BCI systems

are indeed usually calibrated to fit individual users

which implies that the classifier learns specific neu-

ral characteristics of the subject under analysis, and

hardly adapts to other individuals (whether healthy

or even with some neurological injury). Furthermore,

newer and more powerful supervised machine learn-

ing/classification algorithms will be considered in the

future extension of our research such as Enhanced

Probabilistic Neural Network, Neural Dynamic Clas-

sification algorithms, Dynamic Ensemble Learning

Algorithm, and Finite Element Machines for fast

learning.47–53
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