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Abstract—The latest technological developments have fueled
revolutionary changes and improvements in wireless communi-
cation systems. Among them, mmWave spectrum exploitation
stands out for its ability to deliver ultra-high data rates.
However, its full adoption beyond fifth generation multicast
systems (5G+/6G) remains hampered, mainly due to mobility
robustness issues. In this work, we propose a solution to address
the problem of efficient sidelink-assisted multicasting in mobile
multimode systems, specifically by considering the possibility
of jointly utilizing sidelink/device-to-device (D2D), unicast, and
multicast transmissions to improve service delivery. To overcome
the complexity problem in finding the optimal solution for
user-mode binding, we introduce a pre-optimization step called
multicast group formation (MGF). Through a clustering technique
based on unsupervised machine learning, MGF allows to reduce
the complexity of solving the sidelink-assisted multiple modes
mmWave (SA3M) problem. A detailed analysis of the impact of
various system parameters on performance is conducted, and
numerical evidence of the complexity/performance trade-off and
its dependence on mobility patterns and user distribution is
provided. Particularly, our proposed solution achieves a network
throughput improvement of up to 32% over state-of-the-art
schemes while ensuring the lowest computational time. Finally,
the results demonstrate that an effective balance between power
consumption and latency can be achieved through appropriate
adjustments of transmit power and bandwidth.

Index Terms—6G, millimeter wave, multicast, unicast, sidelink,
radio resource management, mobility, machine learning.

I. INTRODUCTION

FUTURE wireless networks are anticipated to deliver a
wide range of services requiring improved performance
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compared to the fifth generation (5G) in terms of delivered data
rate, tolerated latency, mobility support, and massive access.
Such services make use of different kinds of wearable devices,
including head-mounted displays, motion-tracked controllers,
haptic gloves, and body-tracking sensors.

Various future mobile applications, such as camera-
assisted automotive driving, virtual reality with rich sensory
information, and holographic communications, call for extra-
high-demanding service delivery requirements that current
communication technologies, operating in the low- and
middle-frequency bands, are unable to meet. Millimeter-wave
(mmWave) communication is considered a viable way to
overcome this challenge, enabling multi-Gigabit/s data rates
and ultra-low latency for a high number of devices thanks to
its wide bandwidth and the compact antenna size allowed by
short wavelength communications [1].

However, relying solely on mmWave technology may not
be sufficient to ensure efficient spectrum utilization for future
group-oriented applications. Exploiting multicasting becomes
crucial to enhancing the capabilities of mmWave communi-
cations and boosting network utility while saving spectrum
resources since it enables the simultaneous delivery of con-
tent to multiple users through a single transmission, thereby
optimizing network efficiency. Coupling mmWave technol-
ogy with multicast transmission is becoming an important
research trend toward increasing energy efficiency and network
throughput [2], [3]. However, in the case of sparse user
deployments, serving the whole group with either one wide
beam or a set of directional beams may significantly reduce
the benefits of exploiting extremely high frequencies.

Device-to-device (D2D) is a technology that can be effec-
tively leveraged in such a scenario. Primarily, D2D involves
two devices in close proximity communicating directly without
a base station (BS). In 5G this is done over the sidelink, which
is defined as the interface between user equipment devices
(UEs) for direct communications. Thanks to the ability of
sidelink-assisted communications to achieve ultra-low latency
connectivity, high data rates, and ultra-high reliability [4], [5],
this technology is expected to play the same fundamental role
in 6G as it actually does in 5G. The main reason why D2D
can assist in highly directional multicast communications is
that beam narrowing can be achieved by excluding scattered
users from the multicast transmission and replacing the trans-
mission from the BS with the creation of D2D links between
interacting nodes in the local range.
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Generally, existing research works only focus on unicas-
ting/multicasting in mmWave networks or provide heuristic
solutions to the complex multicasting problem (sometimes
enhanced by D2D) in directional systems (see, e.g., [6]) under
no mobility constraint. This raises a fundamental question:

Is there a framework for sidelink-assisted mmWave mul-
ticasting, which works for mobile scenarios and is scalable
when working with a large number of users?

In this work, we focus on multicast scheduling assisted by
sidelink and unicast transmissions. In particular, we take a
cue from our previous investigations on multicast data trans-
mission optimization [7] and consider scenarios that include
multicast users moving at low speeds, such as pedestrians
equipped with wearable devices. Differently from [7], where
we introduced a framework for mmWave beam coverage
estimation, we propose to split users into groups by leveraging
fast algorithms (e.g., unsupervised hierarchical clustering [8],
which has received much attention in the literature in this
field), and then enable the system to modify the transmis-
sion mode of moving users for performance improvement
by considering their dynamic channel conditions. Considered
options are (i) unicasting, (ii) sidelink unicasting/multicasting,
and (iii) mmWave multicasting, and, for each user’s group
and each occurring condition, the designed policy makes
the decision whether to widen the beam or use different
beams.

The main contributions of our study are as follows:
• Multicast services delivery framework: We propose a

framework that integrates sidelink/D2D, unicast transmis-
sions, and multicasting, tailored to finding the optimal
user-mode association solution. The framework serves
as a mobility management tool for dynamic directional
multicast systems and includes two steps: (i) multicast
group formation (MGF) for forming multicast groups
and (ii) sidelink-assisted multiple modes mmWave (SA3M)
step for establishing D2D and unicast links.

• Complexity reduction via unsupervised machine learning:
We leverage unsupervised machine learning techniques to
cluster users in the MGF step, with the aim of reducing
the complexity of finding the optimal SA3M solution.

• Optimization problem formulation: We formulate the
transmission scheduling problem in the SA3M step as an
optimization problem that maximizes network through-
put. This formulation enables the development of an
optimal scheduling solution.

• Low-complexity heuristic solution: We present a low-
complexity heuristic solution that yields comparable
results to the proposed scheduling solution. This approach
reduces computational complexity while maintaining
effective performance.

• Analysis of complexity vs. performance trade-off: We
conduct an extensive numerical analysis to explore the
trade-off between complexity and performance, consider-
ing user mobility. The results provide practical insights
for achieving the desired trade-off.

• Guidelines for transmit power tuning to reduce power
consumption: We provide numerical results illustrating
the potential of adjusting transmit power and transmission

bandwidth to effectively reduce total power consumption
in the system.

The remainder of this paper is organized as follows.
Related works are surveyed in Section II. In Section III, we
explain the motivation behind the proposed two-step approach.
Section IV details the system model. The proposed framework
for multicast scheduling assisted by sidelink and unicast
transmissions is formulated in Section V, where we also
introduce a heuristic algorithm. Numerical results and algo-
rithms’ performance comparison are discussed in Section VI.
Section VII concludes this work.

II. BACKGROUND AND RELATED STUDIES

The use of directional beams, as opposed to conventional
omnidirectional systems, has a significant impact on various
aspects of wireless system design. Therefore, in the following,
we first provide a background on multicasting with sidelink
assistance to deal with mmWave propagation challenges. Then,
we review sidelink-assisted multicast communications and
machine learning-aided group-based mmWave transmission
approaches.

A. mmWave D2D-Aided Multicasting

D2D communications can significantly improve the cover-
age of systems operating in the mmWave band by serving UEs
that are not covered by the directional beam via proximity
communications. The problem of D2D-assisted multicasting
in mmWave directional systems has been the focus of several
recent studies. In [9], an efficient heuristic for multicast data
delivery is developed, where multi-hop and simultaneous D2D
transmissions (also known as spatial reuse) are combined to
achieve reduced power consumption compared to mmWave
multicasting performed through a series of unicast transmis-
sions. In [10], the optimal multicast scheduling problem is
addressed by exploiting D2D and simultaneous transmissions,
multicast group partitioning, and beam selection by exploiting
a multilevel codebook structure. Furthermore, in [11], D2D
communication has been shown to increase the efficiency
of multicasting. The authors propose a user clustering and
multicast path planning algorithm with cubic complexity on
the set of multicast users.

In [12], a similar approach is proposed, wherein multicast
scheduling takes advantage of the relaying and spatial sharing
features of mmWave networks operating at 73 GHz. The
proposed multicast method reduces the total data delivery
time for all multicast group members by properly selecting
transmitting nodes and their target destinations at each time
slot. Similarly, in [13], an optimal D2D-enabled multicast
scheduling policy is proposed to minimize energy consumption
in mmWave cellular networks. The authors solve the joint
problem of D2D communications and concurrent transmis-
sions for multicast data delivery, where multicast transmission
from BS to the users is implemented through multi-hop D2D
links. In [14], an optimal sidelink-aided multicast system
for multiquality tiled 360 VR video is proposed to achieve
high user experience under the constraints of bandwidth
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resource and tile quality smoothness in overloaded situations.
A suboptimal solution of low complexity is also offered.

Differently, the security aspect is considered in [4], wherein
the proposed D2D protocol manages the efficient and reli-
able delivery of multicast data to a group of IoT devices.
In [15], a sidelink-assisted cooperative retransmission scheme
is proposed, according to which the neighboring UEs assist an
error-prone downlink transmission.

A common feature of all the studies mentioned above is the
fact that all assume only a static scenario i.e., the mobility of
multicast groups is not considered, which means that there are
no significant environmental changes affecting the channels
between the BS and the group.

A further challenge emerges in directional multicast systems
in the case of a non-static scenario. In mmWave multicast
systems, beams are steered between users to cover multiple
receivers at once, which leads either to signal degradation or
even to the interruption of the connection between the BS and
the mobile receiver if the latter is located near the edge of the
beam. Therefore, ensuring coverage in the presence of mobile
users is becoming more and more challenging. Mobility
aspects in mmWave multicast systems have been considered
in [16], where, based on the training information and starting
only with the finest beams, a scalable beam grouping algorithm
(without D2D capabilities) is designed to achieve minimum
multicast group data transmission time. Then, in [17], a
mode selection algorithm (cellular communication based on
uplink/ downlink, including multicasting and direct vehicle-to-
everything (V2X) communications using sideline), is proposed
based on a heuristic with the goal of avoiding the overload in
the sidelink resources. The algorithm is based on controlling
the received signal on the user side.

While research efforts have focused on multi-beam systems,
this paper explicitly examines single-beam multicast transmis-
sion. We make this choice based on the assumption that mobile
devices typically have a single radio frequency (RF) chain to
ensure cost efficiency [18].

B. Machine Learning for mmWave Transmission

Machine learning (ML) techniques provide fast and efficient
solutions to multicast group formation, D2D clustering, and
transmission mode selection. In [8], a Self-Organizing Map
(SOM) is used to perform multicast group formation, whereas
the D2D technology is exploited to deal with blockages.
In [19], an intelligent mode selection strategy in D2D-
assisted 5G heterogeneous networks is proposed to improve
the performance of virtual reality (VR) data broadcasting in
terms of network throughput. The policy consists of two main
parts: (i) fast D2D clustering algorithm based on unsupervised
learning, (ii) smart mode selection based on reinforcement
learning (Nash-Q-learning and WoLF-PHC) to find the optimal
transmission strategy in every time slot among broadcasting,
mmWave unicasting, and D2D multicasting.

A similar strategy is utilized in [20], where different
supervised ML algorithms are executed to define the subset
of users that shall be served directly by the eNB1 instead of

1Evolved Node Bases (eNBs) is the LTE term for a BS.

D2D clusters (by default). Here, ML is an effective tool to
address the identified problem since it exploits offline training
without involving the eNB, thereby distributing the training
process. Data (distance and channel conditions) required to
create clusters in an online implementation can be obtained
via the D2D discovery process, which occurs before the
communication begins.

ML techniques have also been exploited to determine
beam direction, beam weights, transmit power, and blockage
predictions for directional unicast systems [21], [22], [23].

III. MOTIVATIONS

In 5G systems and beyond, the user-mode association
problem poses a significant challenge due to the complexity
of calculating unicast, multicast, and sidelink communication
mode combinations for all users.

Such complexity can be managed with the help of super-
vised, unsupervised, and reinforcement learning (RL) as
well as optimization techniques. RL can outperform the
optimization in scenarios with rapidly changing channels,
coverage, and topology, i.e., a large state space [24], [25].
In this case, the problem can be formulated as multi-agent
reinforcement learning (MARL) with centralized rewards,
which requires addressing privacy concerns [26], [27]. For
this purpose, the protocols used by users to communicate
their actions to the central system must be carefully designed.
In [19], the authors use MARL for a static scenario and
do not consider multicasting. Since we consider mobility,
the user’s action is his changing position while moving. In
the multicasting scenario under analysis, wherein multiple
users are served with the same beam, the complexity fur-
ther increases because users’ actions are dependent on each
other. In fact, the data rate of the group is limited by the
user with the worst channel conditions, which dynamically
changes due to mobility. Also, in our scenario, users do not
communicate with each other as they move around and are
unaware of other users’ actions (for example, changes in
location).

As for supervised machine learning, offline learning is not
suitable due to its “configuration specific” nature. Variations
of transmission power, number of users, area of interest,
and other transmission parameters affect the final result. This
means that we have to provide offline training for each
configuration. Furthermore, optimization is still needed for
the collection of datasets. Similarly, in the case of online
supervised machine learning, the model also needs the training
dataset and should be retrained on ground truth values over
time. For the considerations discussed above, both MARL
and offline/online supervised ML are not viable for mobile
mmWave multicasting.

While developing an optimal strategy for multicasting
in [28], we encountered complexity issues starting with 15
users in terms of computational time and RAM on disk needed
to create all possible options for exhaustive search. Therefore,
a trade-off between complexity and optimality should be
considered to address scalability issues in cellular systems
working in real time.
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Fig. 1. System illustration.

TABLE I
COMPUTATIONAL TIME, SECONDS

Table I collects the results in terms of computational time
required for: (i) optimal multicasting in [28], (ii) optimal user-
mode association considering multicast, unicast, and D2D,
(iii) the heuristic multicasting solution in [30], and (iv) the
proposed MGF via unsupervised learning that works as a
first step of the designed framework. Optimal multicasting
has considerable complexity that is further compounded when
unicast and D2D modes are also considered. A significant
reduction in complexity is achievable when using a heuristic
solution. Significant benefits can be gained by leveraging
unsupervised machine learning for multicasting, as in the
proposed MGF step. To implement a practical user-mode
association strategy, the design choice in this work is to
leverage unsupervised ML for multicast user clustering before
system performance is optimized, considering the possibility
of establishing unicast and D2D communications, as will be
discussed in the following sections.

IV. SYSTEM MODEL

This section introduces the reference scenario and describes
traffic, antenna, propagation, blockage, and mobility models.
The reference system is depicted in Fig. 1, while the system
modeling notation is reported in Table II.

A. Deployment and Traffic Model

We examine a 5G NR outdoor deployment, wherein all
UE devices, such as XR glasses and wearable headsets, are
provisioned with mmWave modules to be served by an NR BS

that operates in the 28 GHz band. The height of the NR BS is
set to hA, and its coverage radius is Rd, within which all UEs
can successfully receive data. The geometric locations of UEs
are assumed to be scattered across a plane. In our system, all
UEs, N = {1, . . . , N}, are assumed to be dynamic.

We assume that all UEs from N , located and moving within
a specific area of interest, require the same multicast service.
In practical deployments, both multicast and unicast sessions
may coexist. In this work, we do not consider unicast sessions
and focus on a single multicast transmission, mainly to analyze
the performance of the proposed framework in case of no
“external disturbances” in the system. The problem of the joint
management of unicast and multicast traffic is, by itself, a
research problem that deserves particular attention [31], [32].

We specify that the concepts of session type and delivery
methods are different. In this work, only a multicast session
(i.e., one-to-many content/data stream delivery) is considered,
while both multicast and unicast transmission modes can serve
multicast UEs of a given session.

B. Antenna Model

We assume that devices transmit directionally with an
antenna pattern akin to a conical shape, i.e., beamwidths
are symmetric in both the vertical and horizontal planes. To
this end, we approximate the beamforming pattern with the
following transmit antenna gain as proposed in [33]:

Gtx = D0ρ(αi), (1)
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TABLE II
SYSTEM MODELING NOTATION

where D0 is the maximum antenna directivity along the
antenna boresight, αi is the angular deviation of the trans-
mit/receive direction from the boresight of a directional
antenna for receiver i, i ∈ N , and ρ(αi) ∈ [0; 1] is a piecewise-
defined linear function that scales the directivity D0 with
respect to the angular deviation [33].

C. Propagation and Blockage Model

Following 3GPP standard [34], we exploit the 3GPP urban
microcell (UMi) street canyon path-loss model:

LdB = 32.4+ 21 log10 yi + 20 log10 fc, (2)

where fc is the carrier frequency in GHz, and yi is the
three-dimensional (3D) distance between the BS and the UE i.

5G NR systems operating in a high-frequency band suffer
from moving obstacles (called “blockers”), including humans
and vehicles. Here, pedestrians are assumed to temporarily
block the line-of-sight (LoS) path between the UE and the NR
BS, i.e., causing blockage by the human body. This blockage
attenuation is considered to be 15 dB. We also introduce
shadow fading margins represented by MS,B and MS,nB for the
blocked and non-blocked states, respectively. Then, the path
loss in (2) may be written in a linear scale using Ayς

i , with A
and ς being propagation coefficients:

ALoS,nB = 102 log10 f+3.24MS,nB, ςLoS = 2.1,

ALoS,B = 102 log10 f+4.74MS,B, ςLoS = 2.1. (3)

The blockers are modeled as cylinders with height hB and
radius rB [35]. The number of blockers follows a Poisson
distribution with density λB per square meter.

Then, the signal-to-noise ratio (SNR) in the propagation
model can be represented as

S = PTD0ρ(αi)

N0W

(
y−ζLoS

i

ALoS,nB

[
1− pB(yi)

]+ y−ζLoS
i

ALoS,B
pB(yi)

)
, (4)

where pB(yi) is the blockage probability at the 3D distance yi,
N0 is the noise power spectral density, and W is the operating
bandwidth.

D. Mobility Model

We assume that UEs follow the social force-based mobility
model that captures the realism of crowd behaviors. More
specifically, we apply the Headed Social Force Model (HSFM)
proposed in [36], which can reproduce pedestrians moving
together. The HSFM model allows us to test the real-life
scenario composed of several groups of moving UEs (with
speed v) and is relevant to our system as we consider the
multicast content delivery for a set of UEs.

V. PROPOSED SIDELINK-ASSISTED MULTICAST

SCHEDULING

A. Framework Description at a Glance

The primary objective of our proposed framework is to
maximize the system throughput for delivering a multicast
session to multiple mobile UEs by dynamically selecting the
transmission mode (i.e., unicast, multicast, or sidelink) for
each member of the multicast group. This section details our
proposed solution for the dynamic sidelink-assisted mmWave
scheduling problem. The framework consists of two steps:
the multicast group formation (MGF) and the sidelink-assisted
multiple modes mmWave (SA3M) scheduling. The general flow
diagram relevant to our proposal is presented in Fig. 2.

First, we perform the MGF step by applying a hierarchical
clustering algorithm, which is an unsupervised machine learn-
ing technique that aims to find natural grouping based on the
characteristics of the input data. We accomplish this task based
on the information about the UE locations. Note that different
clustering methods can be used at this stage. Among them, we
chose hierarchical clustering because it is characterized by low
complexity and considers UEs’ position, which is essential for
directional multicast transmissions.

After initial clustering and multicast group configuration by
MGF, as UEs move at speed v, the system may implement the
SA3M step. The output is a change in the transmission mode 2

involving the use of (i) sidelink transmission(s), (ii) or unicast
transmisison(s), or (iii) the beamwidth adjustment for the
multicast group. Specifically, starting from the configuration

2Transmission mode switching means a change in the initial scheduled
multicast transmissions for groups of multicast UEs (after MGF) so as to adapt
the system to UE’s mobility. For example, if a UE moves far away from its
original multicast group, unicast transmission may be employed specifically
for this UE, while maintaining multicast transmission for the remaining UEs.
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Fig. 2. Flow diagram of proposal.

generated by MGF, the optimal SA3M algorithm exhaustively
searches for all possible switching options, that is 1, 2, . . ., or
all N UEs can be served via unicast while the rest of UEs
belong to multicast groups. Similarly, 1, 2, . . ., or N − 1 UEs
can receive the data through sidelink (N−1 since at least one
UE has to be a relay node towards the sidelink receivers). Note
that, in case a UE needs to join a different multicast cluster,
MGF, which serves as the means to build multicast clusters,
is rerun. Without MGF, the algorithm would need to examine
all potential multicast clusters, i.e., 2N − 1 possible multicast
groups (instead of the configuration containing just n groups
selected by MGF). Moreover, the procedure described above
would have to be run for sidelink and unicast options for each
multicast configuration, significantly complicating the model.
Thus, the main mission of MGF is to reduce the complexity
of the SA3M step.

B. Step I – Multicast Group Formation

Hierarchical clustering, applied for MGF, builds a binary
merge tree. It starts from the data elements stored at the leaves
(interpreted as singleton sets) and proceeds by merging two
by two the closest subsets (stored at nodes) until the root
of the tree contains all the elements of X. Specifically, in
the beginning, each data point is assumed to be a separate
cluster. Then, similar clusters are iteratively combined. We
denote by �(Xk, Xj) the distance between any two subsets of

X, called the linkage distance. This technique is also called
agglomerative hierarchical clustering [37]. In our case, X
represents an array with the observations, with at least one
column and N strings (each string corresponds to a UE). The
reference angle from the X-axis and the distance between the
BS and every UE are used as the observations.

Let D(xk, xj) denote the elementary distance between any
two elements of X (e.g., Euclidean, Minkowski, Chebyshes,
etc.). In order to select the closest pair of subsets at each
stage of the hierarchical clustering, we define a subset distance
�(Xk, Xj) between any two subsets of elements. When both
subsets are singletons Xk = xk and Xj = xj, then �(Xk, Xj) =
D(xk, xj). There are four different methods to measure the sim-
ilarity between clusters, i.e., four common linkage functions
(also known as cluster-level scoring functions) that calculate
the distance between clusters:
• Single linkage (SL) represents the shortest distance

among all data points in two clusters, i.e.,

�
(
Xk, Xj

) = min
xk∈Xk,xj∈Xj

D
(
xk, xj

)
.

• Complete linkage (CL) represents the farthest distance
among all data points in two clusters, i.e.,

�
(
Xk, Xj

) = max
xk∈Xk,xj∈Xj

D
(
xk, xj

)
.
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Algorithm 1: MGF
1 Input: X;
2 Output: Multicast clusters;
3 Initialize Gk = {xk}, k = 1, . . . , N, L = {{x1}, {x2}, . . . , {xN }},

distance threshold;
4 counter← N;
5 while counter �= 2 do
6 Select Gk and Gj from L such as �(Xk, Xj) is minimized along all

pairs;
7 if �(Xk, Xj) < distance threshold then
8 Merge Gk ∪ Gj;
9 L← L \ Gk;

10 L← L \ Gj;
11 L← L ∪ (Gk ∪ Gj);
12 counter← N − 1;
13 else
14 go to line 5;

15 return L;
16 end

• Average linkage uses the average distance between all
pairs of objects in any two clusters, i.e.,

�
(
Xk, Xj

) = 1

|Xk|
1

|Xj|
∑

xk∈Xk

∑
xj∈Xj

D
(
xk, xj

)
.

• Ward linkage (appropriate for Euclidean distances only)
uses inner squared distance, i.e.,

�
(
Xk, Xj

) =
√

2|Xk|Xj|
|Xk| + |Xj| ‖xk − xj‖2,

where ‖‖2 is the Euclidean distance, xk, xj are the
centroids of clusters Xk and Xj, respectively.

We note that, in the case of hierarchical clustering, the
number of clusters may not be determined in advance as, for
example, in the case of the k-means algorithm. Here, either
a cutoff distance or a maximum number of clusters must be
specified. In this work, we exploit a cutoff distance, which
is the linkage distance threshold above which clusters will
not be merged. The pseudo-code of the hierarchical clustering
adapted for MGF is presented in Algorithm 1.

The algorithm assigns each observation in X to a single-
object cluster (line 3). Then, the algorithm computes similarity
information between every pair of objects Gk and Gj in the
data set and uses a linkage function to group objects into a
hierarchical cluster tree (line 6). Therefore, objects/clusters in
close proximity are linked together if the result of the linkage
function does not exceed the cutoff distance distance threshold
(lines 7-14). This determines where to cut the hierarchical tree
into clusters, thereby partitioning the data.

Since we start from counter = |X| = N and finish with a
root containing the full set X, the algorithm performs exactly
N − 1 merge operations. A straightforward implementation
yields a cubic time complexity, in O(N3), since, in the k-th
iteration of N − 1 in total, all

(N−1−k
2

)
pairwise distances

between the N − k nodes in L are searched [38]. Using
priority queue data structure we can reduce this complexity
to O(N2 log N). By using some more optimizations, it can
be brought down to O(N2). In Matlab, hierarchical clustering
implementation is usually O(N2). It is important to note

TABLE III
5G NR NUMEROLOGY AND SUBCARRIER SPACING [39]

Algorithm 2: Optimal SA3M
1 Input: Multicast clusters L;
2 Coordinates of N multicast UEs (X(i), Y(i), Z(i)), i ∈ N
3 Output: Optimal network configuration;
4 Create all 2N possible network configurations considering unicasting;
5 Create all 2N − 1 possible network configurations considering D2D

transmissions;
6 for each network configuration do
7 TNC

total =
∑

m∈G Tm +∑
u∈U Tu.

8 end
9 Solve optimization as per (12).

that these time complexities are general approximations and
can vary based on factors such as the specific algorithm
used, the distance metric employed, and the efficiency of the
implementation.

C. Step II – Optimization

Unicast, sidelink, and multicast transmission modes can
coexist in a cell for the transmission of the same content. In
this context, the UE tunes to the corresponding channel for
data reception based on the optimization problem described
below.

We consider a dynamic scenario where time is divided into
discrete time slots t of constant duration. 5G NR utilizes the
scalable numerology that determines the subcarrier spacing,
the number of slots in a subframe, and the slot duration
(see Table III). At each time slot t, UEs can be associated
with different transmission modes depending on the channel
conditions, i.e., as per (5), (8), (10), and the results of the
optimization.

The SA3M optimization deals with choosing the best
network configuration in terms of the considered metric of
interest (see Algorithm 2). To create the network config-
urations, the following rules are set: (i) UEs cannot join
a multicast group different from the one defined using
Algorithm 1 (we rerun MGF to form distinct multicast groups
at a given rerunning interval, see Section VI-C); (ii) the
predefined multicast transmission mode can be switched into
unicast or sidelink for each UE following the SA3M algorithm
to improve the network throughput.

As a preliminary step, the algorithm creates all possible
network configurations that determine the transmission modes
for all UEs (lines 4-5). Among them, the BS will choose
(through exhaustive search) the one that optimizes the network
performance. The number of possible network configurations
is 2 · 2N − 1 since there are 2N possible combinations of 0
and 1, where 1 means that the UE remains in the multicast
group determined by MGF, and 0 represents a switch of the
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transmission mode to unicast. In the case of sidelink mode,
we have 2N − 1 options as one of the devices should always
be considered as a relay. Hence, all network configurations are
in 2 · 2N − 1.

Then, depending on the network configuration, UEs can
be associated with different transmission modes, and SNR is
determined as follows.

Multicasting. Multicast services are multi-user specific, and
the quality of the channel of a multicast group m is determined
by the UE experiencing the worst channel conditions, i.e.,

Sm(t) = min
i∈Gm

(
PTD0ρ(αi(t))

N0W

[
yi(t)−ζLoS

ALoS,nB(t)

[
1− pB(yi(t))

]
+ yi(t)−ζLoS

ALoS,B(t)
pB(yi(t))

])
, (5)

where Gm is the set of UEs in a multicast group covered by the
same beam m, 1 < |Gm| ≤ N,Gm ⊆ N , m ∈ G is the subscript
of the multicast group, and G is the set of all multicast groups.
Initially, when all UEs are clustered into multicast groups,
L = G, meaning that L is represented by multicast groups
only. Set of unicast groups U is added at step 2.

The time required for the transmission of a packet of size
B to a multicast subgroup when experiencing the channel
condition Sm(t) can be calculated as

Tm(t) = B

Wm log2(1+ Sm(t))
. (6)

Hereinafter, we omit the slot notation (t) for the sake
of space.

The half power beamwidth (HPBW) θ required to serve
subgroup Gm is given by:

θGm = arccos

(
X(i)X

(
i′
)+ Y(i)Y

(
i′
)+ Z(i)Z

(
i′
)

y(i)y(i′)

)
, (7)

where multicast UEs i and i′ are the two edge UEs in the
group, i.e., the farthest in terms of the angle between them.

Unicasting. mmWave unicast transmission facilitates
expanding the coverage area by sweeping narrow beams (e.g.,
HPBW of 2◦). The UE that cannot be served as part of
multicast transmission may prefer unicasting, considering the
following link quality and data transmission duration:

Su = PTD0

N0W

(
y−ζLoS

i

ALoS,nB

[
1− pB(yi)

]+ y−ζLoS
i

ALoS,B
pB(yi)

)
, (8)

Tu = B

Wu log2(1+ Su)
. (9)

D2D. We assume in-band D2D, wherein UEs share the
licensed uplink frequency resources with cellular communica-
tions. The channel link can be determined as

Sd = PT,dD0

N0W

(
y−ζLoS

i,d

ALoS,nB

[
1− pB

(
yi,d

)]+ y−ζLoS
i,d

ALoS,B
pB

(
yi,d

))
,

(10)

where yi,d is the distance between UE i and D2D transmitter,
and the data transmission delay can be calculated as

Td = B

Wd log2(1+ Sd)
. (11)

The BS selects the possible D2D transmitter (relay device)
based on the following rules: (i) the distance between a relay
and a UE has to be within D2Dthr (i.e., yi,d < D2Dthr), (ii) the
closest relay among those that satisfy the previous condition
is selected, and (iii) a relay can transmit data to one or more
UEs (more details are given in the following). We assume that
a relay device can simultaneously receive and transmit data to
the UE (i.e., full-duplex relaying). A D2D transmission link
cannot be established with a particular UE if no relay satisfies
the described conditions. In this case, unicast transmission
shall be performed.

We consider two relay selection options to account for
different hardware on the devices. In the case referred to
as “D2D communication without restrictions”, a relay device
can convey the traffic to more than one UE at a time.
Conversely, a simple device works in the category of “D2D
with restrictions”, wherein it can relay data to one UE at
a time.

We assume that the power transmitted by the relay node is
lower than the power emitted by the BS, that is PT,d < PT ,
which helps to avoid that D2D communication causes exceed-
ing interference. Recall that in-band D2D UEs reuse the
same uplink resources of the mmWave cell, which can cause
interference.

1) Optimization Objective: A multicast UE can receive
data at different rates depending on its current location
and blockage conditions. The optimization objective is to
maximize the network throughput (NT) (i.e., aggregated
throughput optimization). NT is calculated as the sum of data
rates delivered to all UEs in the network.

Here, the problem consists of solving the overall maximum
throughput optimization problem that is formulated as follows:

max
BN∑

m∈G Tm +∑
u∈U Tu

,

s.t. Sm ≥ Sthr, Su ≥ Sthr, Sd ≥ Sthr, yi,d < ythr, (12)

where G is the set of all multicast groups, and U is the set
of all unicast users. As stated above, the algorithm needs to
search through 2 · 2N − 1 operations. Hence, the estimated
complexity is O(2N). Note that O(2N) represents exponential
time complexity, which means the computation time grows
exponentially with the number of UEs, N. As N increases, the
computational requirements become increasingly prohibitive,
and the exhaustive search becomes impractical. In such cases,
heuristic algorithms or approximation techniques may be more
suitable.

As an alternative to solving (12) according to SA3M, we
propose a heuristic solution requiring low run-time, detailed in
the following, to improve the system performance by adjusting
the user-mode association.

2) Proposed Heuristic: The proposed heuristic, detailed in
Algorithm 3, works as follows. First, it checks whether the
SNR of each multicast group from L satisfies Sthr,h (line 6).
If the SNR of the group (i.e., the worst SNR value among
the group members as per (5)) is lower than the Sthr,h value,
then the algorithm proceeds with checking every UE i in this
group (lines 7-8). In this case, UE i is removed from the group
and added to a separate one, Gg, if its SNR value is below
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Algorithm 3: Heuristic Solution
1 Input: Multicast clusters L;
2 Coordinates of N multicast UEs (X(i), Y(i), Z(i)), i ∈ N
3 Output: Network configuration;
4 g← N;
5 for each Gm ∈ L do
6 if Sm < Sthr,h then
7 for each UE i ∈ Gm do
8 if Si < Sthr,h then
9 g← g+ 1;

10 L← L \ Gm;
11 Gm ← Gm \ {xi};
12 L← L ∪ Gm;
13 Gg ← {xi};
14 L← L ∪ Gg;

15 for each Gm ∈ L do
16 if |Gm| > 1 then
17 calculate θ as per (7);
18 calculate Sm, Tm as per (5),(6);
19 else
20 find maxl∈G∗ {S(yi,l)|yi,l < D2Dthr}; yi,l is the distance

between UEs i and l, G∗ is a set of UEs served via multicast
21 calculate Td as per (11);
22 calculate Su, Tu as per (8),(9);
23 choose best option as min(Td, Tu);

24 return L;
25 end

the threshold (lines 6-14). By doing so, the algorithm detects
the UEs that deteriorate the multicast group performance.
The second for cycle of the algorithm is responsible for the
calculation of the beamwidth θ of the multicast group (lines
16-19). All groups are already reformed at this stage, and
the algorithm needs to adjust the beamwidth to be swept as
per (7). Lines (19-23) are in charge of the selection between
sidelink and unicast modes for single UEs that were deleted
from multicast groups due to their channel conditions.

The computational complexity of the algorithm is given by

O((|L| · N)+ |L|) = O(|L| · N) = O
(

N2
)
,

where each summons (on the left side of the expression)
determines the complexity of each for cycle. Then, as each
cycle is called in turn (sequential execution), the complexity
of the algorithm is O(|L| · N). We note that |L| = N in
the worst case when we have only unicast UEs. Hence, the
algorithm’s complexity is polynomial and can be rewritten
as O(N2). Note that our algorithm has embedded for cycle
(lines 7-14). We highlight that this execution helps reduce the
complexity when not all multicast groups contain a “bad” UE
that deteriorates the group’s performance. These two cycles
could be substituted by one for cycle among all N UEs. That
is, we could check all UEs without exclusion.

D. Metrics of Interest

The analyzed metrics of interest are: (i) energy consump-
tion, measured in joules (J), computed as the number of power
units consumed over transmission time, i.e., in the case of
multicasting, EC = PT

∑
m∈G Tm, (ii) network throughput

representing the sum of data rates delivered to all UEs
in the network as defined in (12), and (iii) latency, i.e.,

TABLE IV
DEFAULT PARAMETERS FOR NUMERICAL EVALUATION

∑
m∈G Tm. We emphasize that the metrics are calculated for

the resulting configuration after the execution of (i) both
algorithms (MGF+SA3M) based on (12) and (ii) the proposed
heuristic. We note that our ultimate goal is to maximize
the network throughput. However, energy consumption is
another critical metric to be considered in 5G/6G systems.
Therefore, in the next section, we provide a set of results while
carefully selecting the plotted metrics. That is, in case network
throughput shows straightforward behavior, we present energy
consumption plots instead and also analyze the impact of
transmit power and available bandwidth on all metrics of
interest.

VI. MAIN NUMERICAL RESULTS

This section describes the performance of the proposed
MGF and SA3M algorithms and of the proposed heuristic
solution, evaluated by means of a simulation environment
developed in MATLAB that accepts the default parameters
summarized in Table IV. In the remainder of the section,
we first select the linkage function within the considered
unsupervised learning algorithm that is best suited for MGF.
We then proceed with a numerical analysis of the introduced
optimal SA3M algorithm and discuss the effects of mobility,
complexity, and UEs’ distribution on the system performance
and compare proposed algorithms against benchmarks. Finally,
we report on the performance of the proposed low-complexity
heuristic and analyze the impact of transmit power on energy
consumption, latency, and network throughput.

Users are distributed within a sector of radius 100 m
according to a Poisson point process (PPP) and Matérn cluster
point process with 2 clusters. We consider N = 10 UEs,
which is a commonly employed assumption in multicasting
scenarios [28], [40]. The transmission parameters are modeled
as indicated in Section IV with the operating frequency
of 28 GHz and transmit power of 46 dBm. The bandwidth
is 1 GHz [41] and the noise figure is 7.6 dB. The beam
parameters are adjusted depending on the position of UEs in
the multicast groups, whereas unicast and sidelink UEs utilize
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Fig. 3. Impact of linkage functions on (a) energy consumption and
(b) network throughput over 200 time slots. Uniform user distribution.

the antenna with beamwidth of 3.18◦. The mobility pattern of
UEs is simulated as HSFM (see Section IV-D).

A. Effect of Linkage Function

We test the four general linkage functions introduced
in Section V-B for MGF to assess their impact on the
performance. Our analysis focuses on their influence on energy
consumption and network throughput, as depicted in Fig. 3.
In Fig. 3(a), we observe a decreasing trend in the curves,
indicating an improvement in energy consumption due to
the MGF algorithm’s ability to better track UEs mobility by
rerunning it at every time slot. It is important to highlight
that the single and average linkages exhibit better performance
in terms of minimal energy consumption. However, they
occasionally fail to maintain the minimum required service
quality for all users of the multicast groups formed by the
unsupervised learning algorithm. This can be attributed to
group members being too far from each other. Consequently,
the BS must utilize a wider beam to cover the entire group,
resulting in a lower transmit antenna gain compared to more
directional beam configurations. As a result, there might not
be enough power to reach the worst user in the group.

Similar trends are observed in Fig. 3(b). In general, the
ward function exhibits slightly superior performance in terms

Fig. 4. Energy consumption over time for pedestrian mobility: (a) uniform
and (b) 2 clusters. Black lines are drawn in case MGF is rerun at every time
slot.

of mean energy consumption and network throughput com-
pared to complete and significantly outperforms the other two
functions (due to service interruption). This suggests that both
ward and complete functions can capture directional multicast
transmission features. Hence, we adopt the ward linkage as
the default parameter for the MGF Algorithm in the following
sections.

B. Effect of Mobility

We start our primary evaluation campaign by analyzing
the performance of the MGF and SA3M algorithms over
time, as shown in Fig. 4. Our objective is to compare the
performance of MGF and SA3M under different conditions,
including restrictions for sidelink relaying, in two distinct
modes: (i) MGF together with SA3M launched at every time
slot and (ii) MGF launched at time slot 1 only (no rerun-
ning) and SA3M run every time slot for the two considered
user distributions with pedestrian mobility. We note that no
rerunning of MGF (see colored curves compared to black
ones) affects the performance over time, even though the
speed and users’ mobility are the same. In particular, for
uniform distribution, we can see the most noticeable difference
between the two running modes of the algorithms. In contrast,
rerunning produces almost no improvement for the 2 cluster
distribution, as seen in Fig. 4(b). This effect can be explained
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Fig. 5. (a) Energy consumption and (b) network throughput for multicast
users moving with different speeds in case of uniform distribution (each
second bar is when we rerun MGF at every time slot).

by the fact that, in the case of PPP, UEs are spread around
the area of interest. In general, the distance between every two
uniformly distributed UEs in the network is higher than in the
case of the cluster distribution. This impacts the performance
since, in this case, D2D transmissions have to be performed
over longer distances, and wider beams should be swept to
cover multicast groups.

Analyzing further the effect of mobility for segway (with
v = 11 m/sec) and pedestrian (with v = 0.69 m/sec) UEs
in Fig. 5, we learn that for faster speeds, MGF rerunning
plays a crucial role in maintaining the performance level in
dynamic scenarios. As expected, the gap between rerunning
vs. no rerunning of MGF is higher for segway mobility. The
average performance improves by 11% and 7% for segway and
walking UEs, respectively, in the case of energy consumption,
and by 14% and 7% in the case of network throughput.
Similarly, rerunning of MGF improves the performance of
SA3M. Hence, it is highly recommended to rerun MGF to
maintain the required performance level. In the following
subsection, we comment on the rerunning interval of the MGF
algorithm and on the complexity of the algorithms.

C. Complexity vs. Energy Performance Trade-Off

We run the simulations via MATLAB R2021a on an Intel
Core i5-7200U CPU @2.50 GHz at 2.71 GHz with 8.00 GB

TABLE V
ALGORITHMS’ COMPLEXITY

RAM. The observed and theoretical complexities of the
proposed algorithms are summarized in Table V.

We now analyze the complexity/energy performance trade-
off in Fig. 6. For this reason, we run additional simulations
to compare the performance of SA3M with or without MGF
rerunning in terms of (i) energy consumption gain on the right
y-axis and (ii) complexity gap on the left y-axis as a function
of the MGF rerunning interval. First, let us analyze how MGF
behaves when considering rerunning interval values ranging
from 1 (i.e., the algorithm runs every single slot) to 40 (i.e.,
the algorithm runs every 40th slot). By observing Fig. 6(a),
it emerges a high increase in complexity (up to 20000%) for
MGF when rerunning is performed at every slot compared
to the “no rerunning” case. Moreover, one may observe a
noticeable drop in complexity for rerunning interval values
ranging from 1 to 10. By further increasing the rerunning
interval, the performance gap between “no rerunning” and
“rerunning” slowly decreases.

Similar trends are observed in Fig. 6(b) and Fig. 6(c), in
which, however, the observed quantitative increase in com-
plexity is not so significant. This can be explained by the fact
that the total complexity of SA3M is vastly greater than that
of MGF. Hence, we may conclude that MGF complexity does
not contribute to the overall complexity of SA3M. On the
other hand, shortening the rerunning interval might be crucial
for fast UE speeds, depending on the mobility pattern. Thus,
taking into account both above-mentioned considerations, our
recommendation is to keep the rerunning interval in the range
of 10-20 slots, which represents a good trade-off between
complexity and achievable performance in terms of energy.

D. Effect of Users’ Distribution and Benchmarks

This subsection illustrates the results of our evaluation
campaign in terms of network throughput as a function of
users’ distribution. We compare the results of the proposed
SA3M with several widely used methods: (i) sequential unicas-
ting, (ii) D2D-assisted multicasting (based on Self-Organizing
Map (SOM) unsupervised machine learning) [8], (iii) multi-
casting based on SOM with 4 neurons [8], (iv) incremental
multicasting [30]. As shown in Fig. 7, the Matérn cluster
distribution of UEs within the sector provides, in most cases,
better results compared to the uniform one. The reason is
that, in the case of Matérn cluster distribution, its randomly
located points tend to be clusterized, which is beneficial for
multicasting rather than being scattered around the area of
interest. However, the observed trends in the results exhibit
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Fig. 6. Complexity gap vs. energy performance gain compared to no MGF rerunning for uniform distribution of UEs: (a) MGF, (b) SA3M without restrictions,
(c) SA3M with restrictions.

Fig. 7. Effect of different distributions of multicast users on network
throughput in case MGF is executed at every time slot.

differences depending on the distribution of multicast users,
with certain benchmark schemes performing better for one
distribution over another. For instance, “Multicast SOM with
4 neurons” outperforms “Incremental multicast” in the case of
uniform distribution, while in the case of cluster distribution,
the “Incremental multicast” emerges as the superior approach.
Instead, the proposed SA3M algorithm without restrictions
shows a dominant performance for both distribution types.
This result highlights the versatility of the proposed solution
and its potential for practical application.

E. Heuristic Evaluation

To evaluate the performance of the heuristic algorithm, let us
examine the impact of (i) SNR threshold, Sthr,h, for removing a
multicast UE from the group (as for lines 6-14 of the Heuristic
Algorithm) and assigning unicast/sidelink transmissions, and
(ii) distance threshold at which sidelink communication
can be established [42], D2Dthr. For SNR thresholds,
we use modulation and coding scheme (MCS) mappings
from [43].

The impact of D2Dthr is evaluated in Fig. 8. The analysis
demonstrates that using a less stringent threshold, specifi-
cally D2Dthr=50 m, for establishing sidelink communication
distances outperforms all other thresholds. This superiority
can be attributed to our proposed low-complexity heuristic,
which avoids an exhaustive search for all possible config-
urations and instead generates configurations based on the

Fig. 8. Energy consumption for heuristic solution varying Sthr,h and D2Dthr
thresholds.

channel conditions of UEs. In the case of thresholds such
as 30 m, 40 m, and 45 m, uniformly distributed UEs are too
far from each other and cannot fulfill the SNR requirements
of the multicast group. Consequently, bad UEs must be
removed from the multicast group and served via unicast
links. This sequential transmission approach may degrade
performance. Recall that we consider a single beam system
and that higher CQI puts stricter requirements for multicast
group channels. Hence, more sidelink connections should
be established beyond multicast connections. This general
trend, while varying the SNR threshold, is more remarkable
for D2Dthr=50 m, where UEs can freely establish sidelink
connections.

In Fig. 9, we further investigate the performance of the
proposed Heuristic compared to MGF and both SA3M algo-
rithms. In particular, we show the mismatch between the
energy consumption required by the Heuristic with respect
to the analyzed solutions. It can be noticed that the SNR
threshold for CQI 8 provides the best Heuristic performance.
The reason is that, in this case, more multicast users will
be unclustered, and sidelink transmissions will be preferred.
Furthermore, regarding the performance vs. complexity trade-
off, it is essential to highlight that the Heuristic has lower
complexity (by orders of magnitude) compared to SA3M while
showing comparable performance under proper parameters’
settings.
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Fig. 9. Heuristic compared to MGF and SA3M algorithms for (a) CQI 6, (b) CQI 7, and (c) CQI 8. D2Dthr=50 m. Effect of different distributions of
multicast users on (a) energy consumption, (b) network throughput, and (c) energy efficiency. MGPF is executed at every time slot.

Fig. 10. Effect of transmit power on (a and d) energy consumption, (b) latency, and (c) network throughput. Heuristic with D2Dthr=50 m, MCS 8, and
W = 1 GHz (a, b, and c) and W = 400 MHz (d, e, and f).

F. Effect of Transmit Power

As a final step, we investigate the impact of transmission
power on energy consumption, latency, and network through-
put. Obviously, by lowering the transmit power, a decrease in
energy consumption is achieved. The same decreasing trend
is experimented in terms of SNR, leading to a throughput
degradation, which, in turn, causes a delay increase. The raised
delay affects energy consumption. Therefore, there is a trade-
off between transmit power, PT , and delay. Moreover, packet
size and available bandwidth at a transmission link also impact
energy consumption.

To this aim, PT is varied as shown in Fig. 10(a,b,c). Observe
that the rise in transmit power increases energy consumption
up to 73% comparing the two extreme cases of 46 dBm and
33 dBm. Conversely, PT reduction results in higher latency,
as demonstrated in Fig. 10(b). Depending on the service
requirements and hardware on the devices, the choice of the
transmit power can be shifted to one of the extreme cases or,

differently, to a middle value. By analyzing Fig. 10 further,
one can notice that packet size does not influence the trend of
the curves for W = 1 GHz since the available bandwidth in
the system allows data delivery.

When focusing on Fig. 10(d,e,f), where the transmission
bandwidth is set to W = 400 MHz, it is observed that the
latency increases under decreasing transmission power values
for all considered bandwidths and packet sizes. However, the
performance in terms of energy consumption and network
throughput shows different trends when varying the available
bandwidth (see Fig. 10(a) w.r.t. Fig. 10(d), and Fig. 10(c)
w.r.t. Fig. 10(f)). A nonlinear trend is observed in case of lower
available bandwidth under increasing transmit power (see
PT = 35 dBm compared to PT = 33 dBm and PT = 37 dBm)
for both considered packet sizes, revealing that there is a
non-trivial relationship among transmit power, bandwidth, and
latency and that the fine tuning of these parameters can lead
to an advantageous reduction in both energy consumption and
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latency. For example, see the magenta bars (PT = 37 dBm) in
Fig. 10(d) w.r.t. the bars with other considered transmit powers
and Fig. 10(a).

As a result, we infer that bandwidth, together with the
transmit power, must be properly adjusted to reduce the total
power consumption in the network.

VII. CONCLUSION

In this work, we developed a two-step framework for
sidelink-assisted multiple modes mmWave scheduling. Its
complexity is reduced by exploiting an existing unsupervised
learning algorithm to form multicast clusters. The resulting
proposed solution leverages both optimization and machine
learning techniques to deal with different types of users’
mobility, user distribution, and network-side parameters, such
as transmit power and bandwidth. To face complexity issues, a
heuristic, which tracks channel conditions of multicast users,
is also designed.

A thorough analysis of the system behavior has revealed
crucial quantitative trade-offs to handle. Specifically, we elabo-
rated on the complexity/performance trade-off connected with
users’ mobility. In particular, we recommend rerunning the
multicast group formation algorithm, which allows for achiev-
ing better performance in mobile scenarios at the expense
of low computational complexity. We then evaluated the
energy consumption reduction as a consequence of a decreased
transmit power and its impact on the total network latency.
We emphasize that in 5G NR, the network’s overall power
consumption can be reduced by adjusting both bandwidth and
transmit power. By combining the achieved results, we may
conclude that multicast and D2D technologies are powerful
tools to improve the performance of mmWave directional
systems in the presence of dynamic users.

The findings of this research can be applied in the context
of 5G networks, IoT deployments, smart city applications,
vehicular communication systems, and other scenarios where
reliable and high-performance wireless connectivity is crucial.
By leveraging complexity reduction and adaptive resource
allocation, these systems can enhance their efficiency, adapt-
ability, and overall performance, thus meeting the demands of
diverse communication environments.

Future research could explore the adaptation of the proposed
framework for terahertz (THz) systems, where the coverage
area of a single beam varies significantly depending on deploy-
ment specifics. This may involve incorporating advanced
techniques such as ray-tracing to accurately model beam
propagation and coverage patterns.
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