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A B S T R A C T   

This paper addresses the evaluation of the time-domain response of nonlinear beams endowed with a fractional 
derivative element crossed by moving loads. Nonlinearities originate from the assumption of moderately large 
displacements of the beam. Following a Galerkin-type solution procedure, beam transversal displacement is 
represented in terms of the linear modes of vibration and time-dependent generalized coordinates. A novel step- 
by-step integration scheme, labeled improved pseudo-force method (IPFM), is developed for the numerical solution 
of the set of coupled nonlinear fractional differential equations governing the time-dependent generalized co-
ordinates. The proposed procedure stems from the extension of a recently developed step-by-step scheme for the 
dynamic analysis of fractional single-degree-of-freedom systems. The IPFM involves the following main steps: i) 
to apply the Grünwald–Letnikov approximation of the fractional derivative; ii) to treat terms depending on the 
unknown values of the response as pseudo-forces; iii) to handle nonlinearities by performing iterations at each 
time step. 

Numerical results are presented to assess the accuracy of the IPFM as well as to investigate the influence of the 
fractional derivative order and coefficient on nonlinear beam vibrations under moving loads.   

1. Introduction 

Nowadays, fractional calculus [1,2] is successfully applied to model 
several phenomena in material science and engineering, such as visco-
elasticity, diffusion in porous media, heat conduction, wave propaga-
tion, etc. [3–6]. In their pioneering studies on fractional viscoelasticity, 
Nutting [7] and Gemant [8] observed that experimental data from 
relaxation tests on viscoelastic materials, such as rubber, bitumen, 
polymers, etc., are well fitted by a power-law function [9]. Since the first 
attempt of Bagley and Torvik [10–12] to provide a theoretical basis for 
fractional viscoelasticity, fractional-derivative modelling of the consti-
tutive behaviour of viscoelastic materials has become a well-established 
tool in continuum and structural mechanics. The power-law kernels of 
fractional operators are capable of capturing both relaxation and creep 
behaviors just by means of two parameters thus overcoming the limi-
tations of the classical Maxwell and Kelvin–Voigt rheological models of 
viscoelasticity. Comprehensive reviews on the applications of fractional 
calculus to dynamic problems of mechanics of solids were provided by 
Rossikhin and Shitikova [13,14] and Shitikova [15]. 

An application of prominent engineering interest lies in the use of 
fractional calculus to model the viscoelastic behaviour of continuous 

elastic beams. Starting from the local fractional viscoelastic relationship 
between axial stress and axial strain, Di Paola et al. [16] addressed the 
response evaluation of viscoelastic Euler–Bernoulli beams under 
quasi-static and dynamic loads. Taking advantage of the Mellin trans-
form method, Pirrotta et al. [17] determined the response of fractional 
Timoshenko beams in the time-domain. Both the procedures proposed in 
Refs. [16,17] avoid resorting to the commonly used Laplace Transform 
approach (see e.g., Ref. [18]) which is unable to unveil the physical 
implications of fractional hereditary behaviour. 

Nonlinear vibrations of viscoelastic beams have also been analyzed 
by using different fractional viscoelastic models. Assuming a fractional 
Zener rheological model, Lewandowski and Wielentejczyk [19] studied 
nonlinear steady-state vibrations of viscoelastic beams under harmonic 
excitation by combining the harmonic balance and finite element 
methods to obtain the amplitude equations which are then solved by a 
continuation method. More recently, Lewandowski [20] applied an 
exponential version of the harmonic balance method to analyze 
nonlinear steady-state vibrations of beams made of the fractional Zener 
material. Zhang et al. [21] investigated the nonlinear dynamic response 
of a simply supported viscoelastic beam subjected to transverse har-
monic excitations assuming a fractional Kelvin constitutive model. 
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Liakos et al. [22] derived implicit analytical solutions for the nonlinear 
fractional partial differential equation governing the dynamics of a 
deterministically excited nonlinear Euler-Bernoulli beam resting on a 
viscoelastic foundation. Javadi and Rahmanian [23] analyzed the 
nonlinear vibrations of fractional Kelvin–Voigt viscoelastic beams on a 
nonlinear elastic foundation under harmonic excitation by applying the 
Galerkin technique and the method of multiple scales. 

The analysis of linear [24,25] and nonlinear beams [26–28] with 
fractional derivative elements subjected to stochastic excitations has 
also been addressed over the last decades. By combining normal mode 
and Laplace transform techniques, Agrawal [24] derived analytical so-
lutions for the stochastic response of fractionally damped continuous 
beams. Liakos et al. [25] provided implicit analytical solutions for the 
linear stochastic partial differential equation with fractional derivative 
terms governing the dynamics of a stochastically excited 
Euler–Bernoulli beam resting on a viscoelastic foundation. Spanos and 
Malara [26] analyzed nonlinear random vibrations of a beam 
comprising a fractional derivative element by developing a statistical 
linearization approach based on an appropriate iterative representation 
of the stochastic response spectrum, which involves the linear modes of 
vibration of the beam. Moderately large vibrations of beams and plates 
endowed with fractional derivative elements excited by combinations of 
harmonic and random loads were analyzed in Ref. [27] by representing 
the system response as the superposition of the linear modes of vibra-
tion. Response statistics were estimated by employing the statistical 
linearization technique in conjunction with the harmonic balance 
method. More recently, Jao et al. [28] developed an iterative successive 
linearization approach based on energy optimization for estimating 
response statistics of beams undergoing moderately large vibrations, 
endowed with a fractional derivative, and subjected to combined har-
monic and random excitations. 

In several engineering applications, such as track dynamics, bridge 
design, etc, the response analysis of elastic beams subjected to moving 
loads is of interest. In this context, fractional calculus has been used to 
model the viscoelastic constitutive behaviour of beam material or to 
capture the rheological properties of viscoelastic foundations. By 
combining Laplace transform with classical modal analysis, Abu- 
Mallouh et al. [29] developed an analytical approach to determine 
transverse vibrations of Euler–Bernoulli beams with fractional deriva-
tive damping subjected to a load moving at a constant speed. In 
Ref. [30], the dynamic response of a simply supported Euler–Bernoulli 
beam with fractional derivative viscoelastic Kelvin-Voigt material 
model subjected to a load moving at a constant acceleration was studied 
by using fractional Green’s function. Praharaj and Datta [31] investi-
gated the dynamic behaviour of an Euler–Bernoulli beam resting on a 
fractional Kelvin–Voigt foundation subjected to a moving point load. 
The modal superposition method and Triangular strip matrix approach 
[32] were applied to solve the fractional differential equation of motion 
and determine dynamic response spectra. More recently, assuming a 
fractional Kelvin-Voigt constitutive model, the same authors [33] 
determined the response spectra of viscoelastic beams subjected to a 
moving load, as a function of the fractional derivative order. The dy-
namic analysis of Rayleigh beams resting on fractional viscoelastic 
Pasternak foundations subjected to moving loads was addressed in 
Ref. [34] by an analytical and numerical approach. Ouzizi et al. [35] 
performed nonlinear dynamic analysis of beams with geometrical non-
linearities resting on nonlinear fractional viscoelastic foundations sub-
jected to a moving load with variable speed. The set of coupled 
nonlinear fractional differential equations obtained by applying Galer-
kin method was solved by a numerical approach based on the central 
difference scheme and a discrete approximation of the fractional 
derivative. 

The numerical integration of fractional differential equations like 
those governing the motion of beams with fractional derivative elements 
crossed by moving loads might be computationally intensive. Indeed, 
due to the non-local character of fractional operators, the fractional 

derivative of the relevant variables at each time step involves the whole 
past time-history. Therefore, the computational effort and the storage 
requirements escalate with time. The use of time steps of small size may 
lead to prohibitive computational burden, especially for long time- 
histories. Numerical integration schemes adopted in the literature rely 
on suitable discrete approximations of the fractional derivative (see e.g., 
Refs. [36–41]). The accurate and efficient numerical solution of frac-
tional differential equations is crucial to address the time-domain 
analysis of multi-degree-of-freedom systems with fractional derivative 
elements. 

This paper deals with the time-domain analysis of moderately large 
vibrations of beams endowed with a fractional derivative element 
crossed by moving loads. A Galerkin-type solution procedure is applied 
by representing beam transversal displacement as the superposition of 
the linear modes of vibration and time-dependent generalized co-
ordinates. The set of coupled nonlinear fractional differential equations 
governing the time-dependent generalized coordinates is solved 
numerically by developing a novel step-by-step scheme, labeled 
improved pseudo-force method (IPFM). This procedure may be viewed as 
the extension to nonlinear multi-degree-of-freedom systems of an inte-
gration scheme recently proposed for the time-domain analysis of frac-
tional oscillators [42]. The latter in turn stems from the extension of an 
unconditionally stable numerical method for the solution of classical 
differential equations [43–45], which is able to achieve the same degree 
of accuracy as classical step-by-step integration schemes, like the finite 
difference method (FDM), using larger time steps. 

Numerical results concerning a simply supported beam crossed by a 
load moving at constant speed are presented. The accuracy of the IPFM is 
assessed by comparison with the classical Newmark-β method. Para-
metric studies focusing on the influence of the order and coefficient of 
the fractional derivative on nonlinear beam vibrations are carried out. 

The rest of the paper is organized as follows: in Section 2, the 
equation of motion of a nonlinear beam endowed with a fractional de-
rivative element crossed by moving loads is derived and a Galerkin-type 
solution procedure is outlined; in Section 3, the proposed step-by-step 
integration scheme is developed; in Section 4, numerical results are 
presented; finally, in Section 5, some concluding remarks are given. 

2. Problem formulation 

2.1. Equation of motion 

Let us consider a homogeneous simply supported Euler-Bernoulli 
beam of length L with cross-sectional area A, Young’s modulus E, 
mass density ρ, and moment of inertia J. The beam is endowed with a 
fractional derivative element and is crossed by nv loads, Fi(t) (i = 1, 2,…,

nv) moving from left to right with arbitrary velocity. Under the 
assumption of moderately large vibrations, the equation of motion of the 
beam can be written as: 

ρ A
∂2v(z, t)

∂t2 + E J
∂4v(z, t)

∂z4 + cα
C
0 D

α
t 〈v(z, t)〉 − N

∂2v(z, t)
∂z2

=
∑nv

i=1
χ(zi(t) ) Fi(t) δ(z − zi(t) )

(1)  

where t and z denote the time and the spatial coordinate measured along 
the axis of the beam (see Fig. 1), respectively; v(z, t) is the transversal 
displacement positive if downward; N is the axial force derived under 
the assumption of negligible axial inertia forces and immovable end 
supports, i.e. (see e.g., Ref. [26]): 

N =
EA
2L

∫L

0

(
∂v(z, t)

∂z

)2

dz. (2)  

In Eq. (1), C
0D α

t 〈 ⋅〉 denotes Caputo’s fractional derivative of order α, 
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defined for a generic function f(t) as [1]: 

C
0 D

α
t 〈f (t)〉=

1
Γ(1 − α)

∫t

0

(t − τ)− α df (τ)
dt

dτ, 0 ≤ α < 1 (3)  

where Γ( ⋅) is the Euler’s gamma function. The main advantage of 
Caputo’s fractional differential operator in engineering applications is 
that it leads to physically meaningful initial conditions which take on 
the same form as for integer-order differential equations [1]. It is worth 
mentioning that, if the structural system is quiescent at time t = 0, or 
the system operates from t = − ∞, the Riemann–Liouville and Caputo’s 
fractional operators give the same result. 

The fractional derivative term in Eq. (1), with coefficient cα and 
derivative order 0 ≤ α < 1, can describe an externally distributed stiff-
ness/damping [26,27], including a viscoelastic foundation (see e.g., 
Refs. [14,24]). In the limiting cases when α = 0 and α = 1, the frac-
tional derivative term represents a restoring force and classical viscous 
damping, respectively. 

On the right-hand side of Eq. (1), zi(t) denotes the instantaneous 
position of the i − th moving force; and χ(z) is the so-called window 
function, given by: 

χ(z)=U (z) − U (z − L) (4)  

U (z) being the unit-step function, defined in such a way that U (z) = 0 
when z < 0; U (z) = 1/2 at z = 0; U (z) = 1 when z > 0; and δ(z) =
∂U (z) /∂z is the Dirac’s delta function, symmetric with respect to z = 0. 
For the simply supported beam, the boundary conditions read 
v(z, t)|z=0 = v(z, t)|z=L = 0 and ∂2v(z, t)/∂z2

⃒
⃒
z=0= ∂2v(z, t)/∂z2

⃒
⃒
z=L = 0. It 

is assumed that the beam is at rest for t ≤ 0 and that the first load enters 
the beam from the left-hand support at t = 0. Therefore, Eq. (1) is 
supplemented by homogeneous initial conditions. 

Step-by-step algorithms for the numerical integration of fractional 
differential equations rely on discretized forms of the fractional deriv-
ative (see e.g., Refs. [36–41]). If the time interval of interest [0,T] is 
subdivided into M small intervals of equal length Δt = T/ M, such that 
t0 = 0, t1 = Δt,…, tn = nΔt,…, tM = MΔt are the subdivision times, 
Caputo’s fractional derivative of the function f(t) at the time instant tn 
can be expressed in the following discretized form, known as Grün-
wald–Letnikov (GL) approximation or G1-algorithm [1,46]: 

GL
0 D

α
t 〈f (tn)〉 ≅

1
(Δt)α

∑n

j=1
λj(α) f

(
tn+1− j

)
(5)  

where the coefficients λj(α) may be evaluated in recursive form: 

λ1(α) = 1, λ2(α) = − α,…, λj(α) =
(

j − 2 − α
j − 1

)

λj− 1(α),…,

j = 3, 4,…, n.
(6) 

Equation (5) reflects the long tail memory or non-local character of 
fractional differential operators by expressing the fractional derivative 

of the function f(t) at the generic time instant tn as a summation of all 
past values of the function weighted by the GL coefficients λj(α). 

2.2. Galerkin method 

An approximate solution of Eq. (1) can be obtained by applying a 
Galerkin-type procedure. In this context, the transversal displacement 
field of the beam is expressed as: 

v(z, t) =
∑nb

k=1
φk(z)qk(t) = φT(z)q(t) (7)  

where φ(z) and q(t) are the vectors collecting nb basis functions, φk(z), 
and the associated time-dependent generalized coordinates, qk(t), 
respectively. 

An appropriate choice for the basis functions is represented by the 
eigenfunctions of the associated linear problem which are the solutions 
of the following eigenvalue problem: 

E J φIV
j (z)= ρAω2

j φj(z) (8)  

where ωj denotes the j − th natural circular frequency. Equation (8) has 
to be solved in conjunction with the pertinent boundary conditions. As 
known, for the simply supported beam, the j − th linear modal shape, 
orthonormal with respect to the mass per unit length ρ A, reads φj(z) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2/(ρAL)

√
sin(j π z/L), and the associated natural frequency is ωj =

(j π/L)2 ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
EJ/(ρA)

√
. 

Substituting Eq. (7) into Eq. (1), pre-multiplying the resulting 
equation by φj(z) and integrating with respect to z from 0 to L, the 
following set of nb coupled nonlinear fractional differential equations 
governing the time variation of the generalized coordinates is obtained: 

q̈j(t) +ω2
j qj(t) +

cα

ρA
C
0 D

α
t 〈qj(t)〉 −

EA
2L

∑nb

k=1

∑nb

s=1

∑nb

m=1
RjkSsmqk(t)qs(t)qm(t)

=
∑nv

i=1
χ(zi(t)) Fi(t) φj(zi(t)), j= 1, 2,…, nb

(9)  

where the over-dot denotes the total derivative with respect to time t; Rjk 

and Ssm are defined as 

Rjk =

∫L

0

φj(z)φ″k(z)dz (10a)  

Ssm =

∫L

0

φ′s(z)φ′m(z)dz (10b)  

where the apex denotes the total derivative with respect to the spatial 
variable z and the orthogonality condition of the linear modes of vi-
bration has been exploited i.e.: 

∫L

0

φj(z)φk(z)dz=
δjk

ρA
(11)  

δjk being the Kronecker delta. 
Equation (9) can be recast in matrix form as follows 

q̈(t)+Ω2 q(t) +
cα

ρA
C
0 D

α
t 〈q(t)〉 + pNL(q(t)) = fv(t) (12)  

where Ω2 is a diagonal matrix listing the squares of the first nb natural 
frequencies of the linear beam; pNL(q(t)) is the vector collecting the 
nonlinear restoring forces defined as: 

z

, ( , )y v z t

( )iF t

( )iz t

L

Fig. 1. Simply supported beam crossed by moving loads.  

A. Sofi                                                                                                                                                                                                                                             



International Journal of Non-Linear Mechanics 159 (2024) 104567

4

pNL(q(t))= −
EA
2L

qT(t)Sq(t)Rq(t) (13)  

where R and S are (nb ×nb) matrices whose elements are defined in Eqs. 
(10 a,b) . Finally, the vector fv(t) in Eq. (12) is given by: 

fv(t) =Φ(t)Х(t)F(t) (14)  

where 

Φ(t) = [φ(z1(t)) φ(z2(t)) … φ(znv (t)) ];

Х(t) = Diag[ χ(z1(t)) χ(z2(t)) … χ(znv (t)) ];

F(t) = [F1(t) F2(t) … Fnv (t) ]
T
.

(15)  

2.3. State variables formulation 

Equation (12) can be rewritten in terms of state variables as follows: 

ż(t)=DLz(t) + Vα
C
0 D

α
t 〈z(t)〉 + PNL(q(t)) + Fv(t) (16)  

where 

z(t) =

{
q(t)

q̇(t)

}

; DL =

[
0 Inb

− Ω2 0

]

; Vα =

⎡

⎢
⎣

0 0

−
cα

ρA
Inb 0

⎤

⎥
⎦;

PNL(q(t)) =

{
0

− pNL(q(t))

}

; Fv(t) =

{
0

fv(t)

}
(17)  

with Inb denoting the identity matrix of order nb. 
Let the motion start at t0 = 0 and be z0 = z(0) the vector collecting 

the initial conditions. The solution of Eq. (16) can be formally written as: 

z(t)=ΘL(t − t0)z0 +

∫t

t0

ΘL(t − τ) Fα(τ;q(τ)) dτ (18)  

where 

ΘL(t)= exp(DL t)=
[
− g(t)Ω2 h(t)
− h(t)Ω2 ḣ(t)

]

(19)  

is the transition matrix of the undamped linear system with g(t), h(t), and 
ḣ(t) denoting diagonal matrices whose j − th elements read: 

gj(t) = −
1

ω2
j

cos
(
ωjt

)
;

hj(t) = ġj(t) =
1
ωj

sin
(
ωjt

)
;

ḣj(t) = cos
(
ωjt

)
.

(20) 

The vector Fα(τ; q(τ)) in Eq. (18), defined as 

Fα(t; q(t)) =Vα
C
0 D

α
t 〈z(t)〉 + PNL(q(t)) + Fv(t) (21)  

may be viewed as a pseudo-force vector. Indeed, in Eq. (21) Fv(t) is the 
known force vector due to the moving loads, while the first two terms on 
the right-hand side are a priori unknown since they depend on the un-
known system response. 

3. Time-domain numerical integration 

3.1. Improved pseudo-force method 

In this section, a novel step-by-step integration procedure for the 
numerical solution of the set of coupled nonlinear fractional differential 
equations in Eq. (16) is proposed. The procedure is derived by extending 
the step-by-step integration scheme recently developed by Sofi and 
Muscolino [42] for the time-domain response analysis of nonlinear 

fractional oscillators subjected to arbitrary dynamic excitation. In turn, 
this approach stems from the extension of a method originally proposed 
in Refs. [43,44] for classical linear differential equations to the solution 
of equations involving nonlinearities and fractional derivatives. 

Let the time interval of interest [0,T] be subdivided into small in-
tervals of equal length Δt = T/M, with 
t0 = 0, t1 = Δt,…, tn = nΔt, tn+1 = (n+1)Δt,…, tM = MΔt denoting the 
subdivision times. 

By assuming tn as initial time instant of the motion in the interval [tn,
tn+1], Eq. (18) yields the state variable vector at the time instant tn+1 in 
the following form: 

z(tn+1)=ΘL(Δt)z(tn) +

∫tn+1

tn

ΘL(tn+1 − τ) Fα(τ;q(τ)) dτ (22)  

where the first term on the right-hand side depends on the solution at tn; 
the second term involves a convolution integral which represents the 
aliquot of the solution due to the pseudo-force vector (see Eq. (21)). The 
evaluation of this convolution integral requires a suitable interpolation 
of the pseudo-force vector within the time interval [tn, tn+1]. 

By assuming that the pseudo-force vector, Fα(t;q(t)), is piecewise 
linear in each time interval, Eq. (22) yields the following expression of 
the state variable vector at the time instant tn+1 [45]: 

z(tn+1) = ΘL(Δt)z(tn) + γ0(Δt)Fα(tn; q(tn) )

+γ1(Δt)Fα(tn+1; q(tn+1) )
(23)  

where 

LL(Δt)=
[
ΘL(Δt) − I2nb

]
(DL)

− 1 (24a)  

γ0(Δt)=
[

ΘL(Δt) −
1

Δt
LL(Δt)

]

(DL)
− 1 (24b)  

γ1(Δt)=
[

1
Δt

LL(Δt) − I2nb

]

(DL)
− 1 (24c)  

where I2nb is the identity matrix of order 2nb. 
Since the set of coupled nonlinear fractional differential equations 

(16) has homogeneous initial conditions, Caputo’s fractional operator 
can be replaced by the GL operator [38]. As a result, the pseudo-force 
vector (see Eq. (21)), at the two successive time instants tn and tn+1, 
reads: 

Fα(ti;q(ti))=Vα
GL
0 D

α
t 〈z(ti)〉+PNL(q(ti))+Fv(ti), i= n, n + 1. (25) 

By using the GL approximation in Eq. (5), with the same discretiza-
tion of the time interval of interest as the one adopted for numerical 
integration purposes, the term depending on the fractional derivative in 
Eq. (25), evaluated at the time instants tn and tn+1, is expressed as 
follows: 

GL
0 D

α
t 〈z(tn)〉 =

1
(Δt)α

∑n

j=1
λj(α)z

(
tn+1− j

)
(26a)  

GL
0 D

α
t 〈z(tn+1)〉 =

1
(Δt)α

∑n+1

j=1
λj(α) z

(
tn+2− j

)

=
1

(Δt)α z(tn+1) +
1

(Δt)α

∑n+1

j=2
λj(α)z

(
tn+2− j

)
.

(26b) 

By substituting Eqs. (25) and (26 a,b) into Eq. (23), the following 
expression of the state variable vector at the time instant tn+1 is obtained: 
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z(tn+1) = ΘL(Δt)z(tn)

+γ0(Δt)

[
Vα

(Δt)α

∑n

j=1
λj(α) z

(
tn+1− j

)
+ PNL(q(tn)) + Fv(tn)

]

+γ1(Δt)

[
Vα

(Δt)α z(tn+1) +
Vα

(Δt)α

∑n+1

j=2
λj(α) z

(
tn+2− j

)

+PNL(q(tn+1)) + Fv(tn+1)].

(27) 

By solving the previous equation with respect to the state variable 
vector z(tn+1), the following step-by-step integration scheme is obtained: 

z(tn+1) = Θ
∼

L(Δt)z(tn)

+γ∼0(Δt)

[
Vα

(Δt)α

∑n

j=1
λj(α) z

(
tn+1− j

)
+ PNL(q(tn) ) + Fv(tn)

]

+γ∼1(Δt)

[
Vα

(Δt)α

∑n+1

j=2
λj(α) z

(
tn+2− j

)
+ PNL(q(tn+1) ) + Fv(tn+1)

]

(28)  

where 

Ψ(Δt)=
[

I2nb −
1

(Δt)αγ1(Δt)Vα

]− 1

(29a)  

Θ̃L(Δt)=Ψ(Δt)ΘL(Δt) (29b)  

γ̃0(Δt)=Ψ(Δt)γ0(Δt) (29c)  

γ̃1(Δt)=Ψ(Δt)γ1(Δt). (29d) 

It can be observed that the state variable vector z(tn+1) at the time 
instant tn+1 depends on the unknown generalized coordinates q(tn+1)

through the vector PNL(q(tn+1)) resulting from the nonlinear bending 
behavior of the beam. It follows that an iterative procedure is needed to 
evaluate z(tn+1) by means of Eq. (28). At the first iteration, it is assumed: 

P(1)
NL(q(tn+1))=PNL(q(tn)). (30) 

At the second iteration: 

Table 1 
Geometrical and mechanical properties of the beam 
crossed by the moving load.  

Parameter Value 

E 2.1× 1011N/m2 

ρ 2355 kg/m3 

cα 104 Nsα/m2 

L 20 m 
A 0.03m2 

J 2.25× 10− 4 m4  

Fig. 2. Maximum normalized midspan (a) displacement and (b) velocity of the 
beam versus the number of linear vibration modes nb for different values of the 
fractional derivative order α (VF = 10 m/s, Δt = 0.001 s). 

Fig. 3. Time-history of beam normalized midspan displacement obtained by 
the IPFM and Newmark-β method: a) α = 0.25; b) α = 0.50 (VF = 10 m/s). 
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P(2)
NL(q(tn+1))=PNL

(
q(1)(tn+1)

)
(31)  

and so on. The (i+1) − th iteration, with i ≥ 1, is carried out by setting: 

P(i+1)
NL (q(tn+1))=PNL

(
q(i)(tn+1)

)
(32)  

where the superscript in parenthesis denotes the iteration number. 
Iterations can be stopped when the following condition is satisfied: 

⃒
⃒
⃒
⃒

⃦
⃦z(i+1)(tn+1)

⃦
⃦

2 −
⃦
⃦z(i)(tn+1)

⃦
⃦

2

‖z(i+1)(tn+1)‖2

⃒
⃒
⃒
⃒ ≤ δc (33)  

where |⋅| and ‖⋅‖2 denote the absolute value and the Euclidean norm, 
respectively; δc is a preset tolerance. 

It is worth emphasizing that, under the assumption of small ampli-
tude vibrations, nonlinear terms in the equation of motion of the beam 
are negligible and Eq. (28) takes the following form: 

z(tn+1)= Θ̃L(Δt)z(tn)+ γ̃0(Δt)

[
Vα

(Δt)α

∑n

j=1
λj(α) z

(
tn+1− j

)
+Fv(tn)

]

+γ̃1(Δt)

[
Vα

(Δt)α

∑n+1

j=2
λj(α) z

(
tn+2− j

)
+Fv(tn+1)

]

.

(34) 

Equation (34) provides an explicit step-by-step integration scheme 
which does not require any iteration. 

Once the state variable vector z(tn+1) in the generalized coordinate 
space at the time instant tn+1 is known, the state variable vector of beam 
response y(z, tn+1) = [ v(z, tn+1) v̇(z, tn+1) ]

T at the same time instant can 

be determined as follows: 

y(z, tn+1)=

[
φT(z) 0

0 φT(z)

]

z(tn+1) (35)  

for any value of the spatial coordinate z. 
Summarizing, the proposed procedure for the time-domain analysis 

of moderately large vibrations of beams endowed with fractional de-
rivative elements involves the following main steps: i) to represent beam 
transversal displacement as the superposition of the linear modes of 
vibration and time-dependent generalized coordinates; ii) to approxi-
mate the fractional derivative of the solution at each time instant by 
means of the GL representation which involves the whole past history; 
iii) to treat terms depending on the unknown solution at the current time 
instant, which result from the GL representation as well as from non-
linearities, as pseudo-forces; iv) to perform iterations at each time step to 
handle nonlinear terms resulting from moderately large vibrations of the 
beam; v) to determine beam transversal displacement at each time step 
once the time-dependent generalized coordinates are known. 

From the computational point of view, a notable feature of the IPFM 
is that the matrices in Eqs. (29 a-d) need to be computed only once since 
they depend on the time step size Δt and do not change over the inte-
gration process. Furthermore, unlike the classical Newmark-β method 
(see Appendix A), the IPFM does not require the evaluation of the 
tangent stiffness matrix at each time step. 

It is worth remarking that the proposed procedure, based on the 
linear mode superposition approach and the IPFM, can be applied to 
determine the time-domain response of nonlinear beams endowed with 
fractional derivative elements subjected to arbitrary dynamic 

Fig. 4. Time-history of beam normalized midspan velocity: a) comparison be-
tween the IPFM and Newmark-β method; b) enlargement (α = 0.25; VF =

10 m/s). 

Fig. 5. Time-history of beam normalized midspan velocity: a) comparison be-
tween the IPFM and Newmark-β method; b) enlargement (α = 0.50; VF =

10 m/s). 
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excitations. 

3.2. Truncation of the Grünwald–Letnikov approximation 

Due to the non-local nature of the fractional differential operator, the 
time-domain integration of fractional differential equations by step-by- 
step algorithms is time-consuming. The evaluation of the response at the 
generic time step tn+1 by the proposed integration scheme in Eq. (28) 
requires the onerous summation of all past values of the response. As 
time increases, a larger number of terms is involved, and the computa-
tional cost of the whole time-integration process may become prohibi-
tive for long time-histories. 

The computational efficiency of step-by-step integration procedures 
for the numerical solution of fractional differential equations, including 
the proposed IPFM, can be enhanced by applying the “short memory” 
principle [1] which stems from the observation that the absolute value 
of the GL weights λj(α) (see Eq. (6)) tends to zero as the number j of the 
time step increases. This feature is consistent with the fading memory 
property of the fractional derivatives and allows one to truncate the GL 
approximation of the fractional derivative of the solution at the generic 
time instant by retaining only the contribution of the most recent 
time-history which largely affects the response at each time step (see e. 
g., Refs. [39,41,42]), i.e. 

GL
0 D

α
t 〈z(tn)〉=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
(Δt)α

∑n

j=1
λj(α)z

(
tn+1− j

)
, if n ≤ nT

1
(Δt)α

∑nT

j=1
λj(α)z

(
tn+1− j

)
, if n > nT

(36)  

where nT is the number of time instants that must be retained to achieve 
good accuracy. 

4. Numerical application 

The selected case-study concerns a simply supported beam crossed 
by a load of intensity F = 25 kN moving with constant speed VF =

10 m/s, unless otherwise specified. The geometrical and mechanical 
properties of the beam are listed in Table 1 [26]. The normalized mid-
span displacement, v(L /2, t)/

̅̅̅̅̅̅̅̅
J/A

√
, and velocity, ∂v(z, t)/∂t|z=L/2/VF, of 

the beam are selected as response quantities of interest. Different values 
of the fractional derivative order, α, are considered. The tolerance to 
assess convergence of iterations of the IPFM is set equal to δc = 10− 4 (see 
Eq. (33)). 

As a first step, the number of linear vibration modes nb needed to 
obtain accurate predictions of the response has to be defined. Fig. 2 
shows the maximum normalized midspan displacement and velocity of 
the beam, vmax/

̅̅̅̅̅̅̅̅
J/A

√
and Vb,max/VF, over the time interval [0, 3]s versus 

the number of vibration modes obtained by applying the IPFM with a 
time step Δt= 0.001 s. Five different values of the fractional derivative 
order are considered. It can be observed that the solution does not 

Fig. 6. Time-history of beam normalized midspan (a) displacement and (b) 
velocity for different values of the fractional derivative order α (VF = 10 m/s). 

Fig. 7. Time-history of beam normalized midspan (a) displacement and (b) 
velocity for different values of the fractional derivative order α (VF = 20 m/s). 

A. Sofi                                                                                                                                                                                                                                             



International Journal of Non-Linear Mechanics 159 (2024) 104567

8

significantly change when more than five mode shapes are retained, 
whatever the order of the fractional derivative is. Thus, the transversal 
displacement of the beam is expressed by means of Eq. (7) considering 
the first nb = 5 linear vibration modes. 

The accuracy of the proposed IPFM is assessed by performing 
appropriate comparisons with the classical Newmark-β method based on 
the constant average acceleration assumption (see Appendix A), for two 
different orders of the fractional derivative, α = 0.25 and α = 0.50. As 
shown in Fig. 3, the time-histories of beam normalized midspan 
displacement provided by the IPFM and Newmark-β method assuming a 
time step Δt = 0.001 s are in excellent agreement. The dashed vertical 
line marks the time instant tf = L/VF in which the moving force exits the 
beam crossing the right-hand support. It is worth mentioning that only a 
few iterations are required to fulfil the convergence condition in Eq. 
(33). 

Figs. 4 and 5 display a similar comparison in terms of beam 
normalized midspan velocity. A good match is found over the whole 
time-history. By inspection of the enlargements in Figs. 4b and 5b, 
however, it can be observed that Newmark-β method requires a time 
step ten times smaller to achieve the same level of accuracy as the IPFM. 
Analogous results, omitted for conciseness, are obtained for different 
fractional derivative orders. Based on the comparison with Newmark-β 
method, it is concluded that the IPFM with a time step Δt = 0.001 s 
provides accurate estimates of both displacement and velocity. 

Once the accuracy has been assessed, the IPFM is applied to inves-
tigate the influence of the fractional derivative order, α, and coefficient, 
cα, on beam response. In Fig. 6, the time-histories of the normalized 

midspan displacement and velocity of the beam for five different values 
of the fractional derivative order are plotted. Fig. 6a shows that both the 
maximum normalized midspan displacement and the time instant tmax at 
which it occurs are affected by the fractional derivative order. In 
particular, the maximum displacement does not occur at the time instant 
tm = 0.5L/VF in which the moving load reaches the midspan section. For 
the limiting value α = 0.00, the fractional derivative term in the equa-
tion of motion represents a restoring force and the beam undergoes 
undamped vibrations. It can be observed that, as the fractional deriva-
tive order increases, the time-history of midspan displacement exhibits 
less oscillations [29]. Similar results are obtained for a larger moving 
load velocity i.e., VF = 20 m/s, as shown in Fig. 7. 

The influence of the fractional derivative coefficient, cα, is displayed 
in Fig. 8 for α = 0.25. It can be observed that, when larger fractional 
derivative coefficients are considered, the amplitude of beam vibrations 
decreases and the time instant at which the maximum displacement 
occurs increases. 

The influence of nonlinearities can be inferred from Fig. 9 which 
shows the comparison between the time-histories of beam normalized 
midspan displacement obtained retaining and neglecting the nonlinear 
term in the equation of motion for two different values of the fractional 
derivative order, α = 0.25 and α = 0.50. The linear and nonlinear so-
lutions are also contrasted in Fig. 10 where the deformed configurations 
of the beam at the time instant tm = 0.5L/VF in which the moving load 
reaches the midspan section are plotted. It is noted that the proposed 
procedure is able to capture the appreciable deviation from the linear 
solution. 

Fig. 8. Time-history of beam normalized midspan (a) displacement and (b) 
velocity for different values of the fractional derivative coefficient cα (α =

0.25, VF = 10 m/s). 

Fig. 9. Time-history of beam normalized midspan displacement obtained 
neglecting and retaining nonlinearities: a) α = 0.25; b) α = 0.50 (VF = 10 m/s). 
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5. Conclusions 

The determination of the time-domain response of nonlinear beams 
endowed with a fractional derivative element crossed by moving loads 
has been addressed. Within the framework of a Galerkin-type solution 
procedure, beam transversal displacement has been represented as the 

superposition of linear modes of vibration with time-dependent ampli-
tudes. A novel step-by-step scheme, labeled improved pseudo-force 
method (IPFM), has been developed for the numerical integration of 
the set of coupled nonlinear fractional differential equations governing 
the time-dependent modal amplitudes. The IPFM relies on the use of the 
Grünwald–Letnikov (GL) approximation of the fractional derivative. The 
key idea of the method is to treat terms depending on the unknown 
values of the response at the current time step as pseudo-forces. Such 
terms result from the nonlinear restoring forces as well as from the GL 
approximation of the fractional derivative which involves all past values 
of the response at discrete time instants. Nonlinearities are handled by 
performing iterations at each time step. 

The proposed procedure can be applied to determine the time- 
domain response of nonlinear beams endowed with fractional deriva-
tive elements subjected to arbitrary dynamic excitations. A notable 
feature of the IPFM is that the matrices involved in the step-by-step 
integration scheme need to be computed only once since they depend 
on the time step size. Furthermore, unlike the classical Newmark-β 
method, the IPFM does not require the evaluation of the tangent stiffness 
matrix at each time step. The computational effort can be significantly 
reduced by performing a suitable truncation of the GL approximation of 
the fractional derivative i.e., retaining at each time step only terms 
associated with the most recent time-history. 

The accuracy of the IPFM has been assessed by comparison with 
Newmark-β method. An excellent agreement between the two methods 
has been found for various values of the fractional derivative order. 
Numerical results have demonstrated that the time-domain response of 
the nonlinear beam under moving loads is significantly affected by the 
order and coefficient of the fractional derivative. 
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APPENDIX A. Newmark-β method 

The set of coupled nonlinear fractional differential equations governing the generalized time-dependent coordinates of the beam (Eq. (12)) can be 
written in the following incremental form [47]: 

Δq̈n+1 +Ω2 Δqn+1 +
cα

ρA
[ GL

0 D
α
t 〈q(tn+1)〉 − GL

0 D
α
t 〈q(tn)〉

]
+ΔpNL,n+1(q(tn),q(tn+1))=Δfv,n+1 (A.1)  

where 

Δqn+1 = q(tn+1) − q(tn);
Δq̈n+1 = q̈(tn+1) − q̈(tn);
ΔpNL,n+1(q(tn), q(tn+1)) = pNL(q(tn+1)) − pNL(q(tn));
Δfv,n+1 = fv(tn+1) − fv(tn).

(A.2a-d) 

Furthermore, by applying the GL approximation (Eq. (5)), the third term on the left-hand side of Eq. (A.1) can be expressed as: 

cα

ρA
[ GL

0 D
α
t 〈q(tn+1)〉 − GL

0 D
α
t 〈q(tn)〉

]
=

cα

ρA
1

(Δt)α

[

λ1(α)Δqn+1 +
∑n

j=2
λj(α)Δqn− j+2 + λn+1(α)q(t1)

]

. (A.3) 

Fig. 10. Deformed configuration of the beam at the time instant tm in which the 
moving load reaches the midspan section obtained retaining and neglecting 
nonlinearities: a) α = 0.25; b) α = 0.50 (VF = 10 m/s). 
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The increment of the nonlinear restoring forces can be approximated in terms of the tangent stiffness matrix KT,n at the beginning of the time step: 

ΔpNL,n+1(q(tn),q(tn+1))≃
∂pNL(q)

∂q

⃒
⃒
⃒
⃒

t=tn

Δqn+1 =KT,nΔqn+1. (A.4) 

Taking into account the definition of the nonlinear restoring forces pNL(q(t)) in Eq. (13), the tangent stiffness matrix takes the following form: 

KT,n =
∂pNL(q)

∂q

⃒
⃒
⃒
⃒

t=tn

= −
EA
2L

[
2Rq(tn)qT(tn)S+qT(tn)Sq(tn)R

]
. (A.5) 

Substituting Eqs. (A.3) and (A.4), and rearranging terms, Eq. (A.1) can be recast as: 

Δq̈n+1 +Ω2 Δqn+1 +
cα

ρA
1

(Δt)αλ1(α)Δqn+1 +KT,nΔqn+1 = Δfv,n+1 −
cα

ρA
1

(Δt)α

[
∑n

j=2
λj(α)Δqn− j+2 + λn+1(α)q(t1)

]

. (A.6) 

The Newmark − β method is based on the following relationships: 

q(tn+1)=q(tn)+Δtq̇(tn)+
Δt2

2
[(1 − 2β)q̈(tn)+ 2βq̈(tn+1)] (A.7a)  

q̇(tn+1)= q̇(tn)+Δt[(1 − γ)q̈(tn)+ γq̈(tn+1)] (A.7b)  

where the parameters β and γ define the variation of acceleration over a time step and determine stability and accuracy characteristics of the method. 
As known, γ = 1/2 and β = 1/4 correspond to the assumption of constant average acceleration which leads to an unconditionally stable integration 
scheme; γ = 1/2 and β = 1/6 correspond to the assumption of linear variation of acceleration. 

By simple mathematical manipulations, Eqs. (A.7a,b) yield the following expressions: 

Δq̈n+1 =
Δqn+1

βΔt2 −
q̇(tn)

βΔt
−

q̈(tn)

2β
(A.8a)  

Δq̇n+1 =
γ

βΔt
Δqn+1 −

γ
β

q̇(tn)+Δt
(

1 −
γ

2β

)

q̈(tn). (A.8b) 

Replacing Eq. (A.8a) into Eq. (A.6), the following relationship is obtained: 

Keff,nΔqn+1 =Peff,n (A.9)  

where 

Keff,n =Ω2 +

[
cα

ρA
λ1(α)
(Δt)α +

1
βΔt2

]

Inb + KT,n (A.10)  

and 

Peff,n= Δfv,n+1 −
cα

ρA
1

(Δt)α

[
∑n

j=2
λj(α)Δqn− j+2 + λn+1(α)q(t1)

]

+
1

βΔt
q̇(tn)+

1
2β

q̈(tn). (A.11) 

By solving Eq. (A.9), the increment Δqn+1 is obtained: 

Δqn+1 =
(
Keff,n

)− 1Peff,n. (A.12) 

Substituting Eq. (A.12) into Eqs. (A.8a,b), the increments of Δq̇n+1 and Δq̈n+1 can be derived. Then, the solution at the time step tn+1 can be 
evaluated as: 

q(tn+1)=q(tn)+Δqn+1; (A.13a)  

q̇(tn+1)= q̇(tn)+Δq̇n+1. (A.13b) 

The acceleration at the end of the time interval, q̈(tn+1), can be computed from the equation of motion at the time instant tn+1 to guarantee dynamic 
equilibrium (see Eq. (12)), i.e.: 

q̈(tn+1)= − Ω2 q(tn+1) −
cα

ρA
C
0 D

α
t 〈q(tn+1)〉 − pNL(q(tn+1)) + fv(tn+1) (A.14)  

where the fractional derivative term can be expressed by using the GL approximation in Eq. (5). 
Newton-Raphson iterations can be readily incorporated into the above-described incremental procedure. 
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