
Vol.:(0123456789)

Quality & Quantity
https://doi.org/10.1007/s11135-023-01616-9

1 3

On pursuit and evasion game problems with Grönwall‑type 
constraints

Jewaidu Rilwan1 · Massimiliano Ferrara2,3   · Abbas Ja’afaru Badakaya1 · 
Bruno Antonio Pansera3

Accepted: 17 January 2023 
© The Author(s) 2023

Abstract
We study a fixed duration pursuit-evasion differential game problem of one pursuer and 
one evader with Grönwall-type constraints (recently introduced in the work of Samatov 
et al. (Ural Math J 6:95–107, 2020b)) imposed on all players’ control functions. The play-
ers’ dynamics are governed by a generalized dynamic equation. The payoff is the greatest 
lower bound of the distances between the evader and the pursuers when the game is termi-
nated. The pursuers’ goal, which contradicts that of the evader, is to minimize the payoff. 
We obtained sufficient conditions for completion of pursuit and evasion as well. To this 
end, players’ attainability domain and optimal strategies are constructed.
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1  Introduction

Differential game problem of many players has received attention from numerous 
researchers due to its applications in various field of study (see, for example Ibragimov 
and Salimi 2009; Badakaya et al. 2021; Ibragimov et al. 2012; Ibragimov 2002; Ibragi-
mov et al. 2018; Ibragimov et al. 2021b; Ibragimov 2005; Ibragimov and Hussin 2010; 
Levchenkov and Pashkov 1990; Alias et al. 2015; Ferrara et al. 2017; Ibragimov et al. 
2021a; Kornev and Lukoyanov 2016; Dar’in and Kurzhanskii 2003; Rilwan and Bada-
kaya 2018; Ivanov and Ledyaev 1981; Pashkov and Terekhov 1987; Sun and Tsiotras 
2014; Jin and Qu 2010). In most of the research works, players’ dynamics are governed 
by

where ui(⋅), vj(⋅) are the control functions of the ith pursuer Pi and jth evader Ej respectively, 
usually subjected to integral constraints (Ibragimov and Salimi 2009; Badakaya et al. 2021; 
Ibragimov et  al. 2012; Ibragimov 2002; Ibragimov et  al. 2018; Ibragimov et  al. 2021b), 
geometric constraints (Ibragimov 2005; Ibragimov and Hussin 2010; Levchenkov and 
Pashkov 1990; Alias et al. 2015; Ferrara et al. 2017; Ibragimov et al. 2021a), or mixed con-
straints (Kornev and Lukoyanov 2016; Dar’in and Kurzhanskii 2003; Rilwan and Badakaya 
2018). The function a(⋅) is a specified or arbitrary scalar function.

Simple motion differential games (i.e. the case a(t) = 1 ) were studied in Ivanov and 
Ledyaev (1981); Pashkov and Terekhov (1987); Sun and Tsiotras (2014); Jin and Qu 
(2010), and the conditions for completion of pursuit and also evasion was obtained by con-
structing optimal strategies of the players in each problem. The case a(t) = � − t ( � is the 
duration of the game) is studied in the papers (Ibragimov and Hussin 2010) and (Ibragimov 
and Salimi 2009) with geometric and integral constraints imposed on the player control 
functions respectively. The authors Ibragimov and Salimi (2009); Ibragimov and Hussin 
(2010) obtained sufficient conditions for the game value (which involves finding condi-
tions for completion of pursuit and also evasion) of the game using a certain half-space. 
Recently, Badakaya et al. (2021); Badakaya et al. (2022) extended the results in Ibragimov 
and Salimi (2009); Ibragimov and Hussin (2010) to the case of nth order dynamic equa-
tions (but reduced to the dynamics (1) with a(t) = (� − t)n−1∕(n − 1)!, i = m, j = 1 ). The 
authors (Badakaya et al. 2021) and (Badakaya et al. 2022) also obtained the game value 
of the game with integral constraints and geometric constraints (respectively) imposed on 
the players control functions. Following the works in Ivanov and Ledyaev (1981); Pashkov 
and Terekhov (1987); Sun and Tsiotras (2014); Jin and Qu (2010); Ibragimov and Salimi 
(2009); Ibragimov and Hussin (2010); Badakaya et  al. (2021); Ibragimov and Satimov 
(2012), where a(⋅) is specified, pursuit and evasion problems described by a more gen-
eral dynamic equations (1) have been studied by a handful of authors (Ahmed et al. 2019; 
Ibragimov and Satimov 2012; Ibragimov and Rikhsiev 2006; Rilwan et al. 2020; Rilwan 
et al. 2020) mostly with integral constraints. Moreover, pursuit and evasion problem with 
geometric constraints has received less attention compared to the integral constraints to the 
best of our knowledge. Hence the need for further research.

Recently, a generalization of the geometric constraint (the Grönwall-type constraint) is 
introduced in Samatov et al. (2020b), where the authors (Samatov et al. 2020b) considered 
a simple pursuit problem of one pursuer one evader in the space ℝn . The constraints are 
given as follows

(1)
ẋi(t) = a(t)ui(t), xi(0) = xi0, i = 1, 2,… ;

ẏj(t) = a(t)vj(t), yj(0) = yj0, j = 1, 2,…
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where a(t) = 1, � and � are given positive numbers, and k is a given non-negative number. 
They constructed optimal strategies for the players and obtained the optimal pursuit time 
of the game. The problems considered in Samatov et al. (2020a); Samatov et al. (2020b) 
brought forth interesting research questions such as: for an arbitrary scalar function a(t), 
can we find conditions for completion of pursuit in the game described by (1) with the 
Grönwall-type constraints (2–3)? what conditions can guarantee evasion in the game 
described by (1) with the constraints (2–3)?

The answers to these questions will indeed generalize the results on pursuit and evasion 
problems considered in Samatov et al. (2020b); Ibragimov and Hussin (2010); Alias et al. 
(2015); Ferrara et al. (2017); Ibragimov et al. (2021a).

Summarizing, the main objective of this research is to address the research questions 
stated above. That is, finding conditions for completion of pursuit and also for evasion. 
To this end, we will construct the players’ attainability domain and optimal Grönwall-type 
strategies.

2 � Problem formulation

Let the dynamics of the pursuer P and evader E be governed by the equations (1) (with 
i = j = 1) , where x, y, x0, y0, u, v ∈ ℝ

n , and also let the function a(⋅) be a positive scalar 
function on the interval [0,∞) . The duration of the game, denoted � , is fixed. The payoff 
function is the infimum of the distances between the evader and the pursuers at � :

The pursuer’s goal is to minimize the payoff, and the evader’s goal is to maximize it.

Definition 1  Samatov et  al. (2020b) Functions u(⋅) = (u1(⋅),… , un(⋅)) and 
v(⋅) = (v1(⋅),… , vn(⋅)) satisfying conditions (2) and (3) are called the admissible controls 
of the pursuer and evader respectively.

Given the players admissible controls u(⋅) and v(⋅) , the corresponding paths x(t), y(t),  at 
any time t > 0 of the players determined by u(⋅), v(⋅), for any initial positions x0, y0, (respec-
tively) are given by

(2)‖u(t)‖2 ≤ �
2 + 2k �

t

0

a(s)‖u(s)‖2ds;

(3)‖v(t)‖2 ≤ �
2 + 2k �

t

0

a(s)‖v(s)‖2ds,

(4)�(�) ∶= inf
u,v

‖x(�) − y(�)‖

(5)x(t) = x0 + ∫
t

0

a(s)u(s)ds;

(6)y(t) = y0 + ∫
t

0

a(s)v(s)ds.
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Lemma 1  Let �(t), t ≥ 0 be a measurable function, � and k be non-negative real numbers. 
Then

whenever

Proof  Let the assumptions of the lemma and (8) hold. Then

It follows that

or

The conclusion (7) follows by integrating both sides of (9) from s = 0 to s = t . 	�  ◻

According to the lemma 1, if u(⋅) and v(⋅) are admissible controls then we must have

Denote by B(O, r) the ball of radius r centered at the origin O.

Definition 2  A continuous function U(x0, y0, t, v),

such that the system

has a unique solution for an admissible control v(t) of the evader is called a strategy of the 
pursuer. The strategy U is said to be admissible if each control generated by this strategy is 
admissible.

Definition 3  A continuous function V(x0, y0, t, x, y),

is called a strategy of the evader if the following initial valued problem

(7)‖�(t)‖ ≤ �ek ∫ t

0
a(s)ds

(8)‖�(t)‖2 ≤ �
2 + 2k �

t

0

a(s)‖�(s)‖2ds.

a(s)‖�(s)‖2

�2 + 2k ∫ s

0
a(r)‖�(r)‖2dr

≤ a(s).

1

2k

d

ds
ln

�
�
2 + 2k �

s

0

a(r)‖�(r)‖2dr
�

≤ a(s)

(9)d ln

�
�
2 + 2k �

s

0

a(r)‖�(r)‖2dr
�

≤ 2ka(s)ds.

‖u(t)‖ ≤ �ek ∫ t

0
a(s)ds, ‖v(t)‖ ≤ �ek ∫ t

0
a(s)ds, t ≥ 0.

U ∶ ℝ
n ×ℝ

n ×ℝ
+ × B

(
O, �ek ∫ t

0
a(s)ds

)
→ B(O, �ek ∫ t

0
a(s)ds),

(10)
ẋ(t) = a(t)U(x0, y0, t, v), x(0) = x0, ;

ẏ(t) = a(t)v(t), y(0) = y0,

V ∶ ℝ
n ×ℝ

n ×ℝ
+ ×ℝ

n ×ℝ
n
→ B(O, �ek ∫ t

0
a(s)ds),
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has a unique solution (x(t), y), t ≥ 0 . The strategy V is said to be admissible if each control 
generated by this strategy is admissible.

Definition 4  The strategy U = U(x0, y0, t, v(t)) guarantees the completion of pursuit at time 
� if, for any admissible control of the evader v(t), t ≥ 0 , we have x(�) = y(�) at some time 
� ∈ [0, �] , where (x(⋅), y(⋅)) is the solution of the initial value problem

Definition 5  The strategy V(x0, y0, t) guarantees evasion in the game (1)-(3) with an ini-
tial positions x0, y0, if, for any admissible control of the pursuer u(t), t ≥ 0 , the relation 
x(t) ≠ y(t) holds for all t ≥ 0.

3 � Main results

3.1 � The extended 5
Gr
−strategy

Given x0 ≠ y0 , let �0 =
x0−y0

‖x0−y0‖
 and � = �

2 − �
2 . The following is an extension of the ΠGr−

strategy constructed in Samatov et al. (2020a) for the simple motion differential game of 
one-pursuer-one-evader

where v(⋅) ∈ ℝ
n is an admissible control of the evader. It can be verified that the strategy 

(13) satisfies

where �(t) = a(t)

�
⟨v(t), �0⟩ ±

�
�e2k ∫ t

0
a(s)ds + ⟨v(t), �0⟩2

�
 . The following lemma is crucial 

in establishing the admissibility of the strategy (13).

Lemma 2  The relation

holds for all positive real-valued function a(s).

Proof  Proof Setting

(11)
ẋ(t) = a(t)u(t), x(0) = x0, ;

ẏ(t) = a(t)V(x0, y0, t, x, y), y(0) = y0,

(12)
ẋ(t) = a(t)U(x0, y0, t, v(t)), x(0) = x0, ;

ẏ(t) = a(t)v(t), y(0) = y0.

(13)UGr(t, v) ∶= v(t) − ⟨v(t), �0⟩�0 +
�

�e2k ∫ t

0
a(s)ds + ⟨v(t), �0⟩2�0,

(14)a(t)UGr(t, v) = a(t)v(t) − �(t)�0,

(15)‖UGr(t, v)‖2 = ‖v(t)‖2 + �e2k ∫ t

0
a(s)ds, for all t ≥ 0,

(16)e2k ∫ t

0
a(s)ds = 1 + 2k �

t

0

a(s)e2k ∫ s

0
a(r)drds

F(s) ∶= e2k ∫ s

0
a(r)dr
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yields

The relation in the lemma 2 follows by integrating both sides of (17) from s = 0 to s = t .  
From (14), (15) and the lemma 2, we obtain the admissibility of (13) as follows.

That is, ‖UGr(t, v)‖2 ≤ �
2 + 2k ∫ t

0
a(s)‖UGr(s, v(s))‖2ds.

3.2 � Attainability domains of players

The attainability domain of the pursuer P at any given time � from the initial state x0 is the 
closed balls B(x0, rP(0, �)) , where

Based on the classical method of showing players attainability domain (see, for example 
Ibragimov and Salimi 2009), we must establish the following i. ‖x(�) − x0‖ ≤ rP(0, �);

ii. given any point x̄ in B(x0, rP(0, �) there exists an admissible control of the pursuer P 
that guarantees x(𝜃) = x̄ . We show (i) using (5) as follows.

Thus, ‖x(�) − x0‖ ≤ rP(0, �) . Note that to obtain the third inequality, we truncated some 
negative terms resulting from the integral in the second inequality. To show (ii), let 
x̄ ∈ B(x0, rP(0, 𝜃)) . That is,

(17)dF(s) = 2ka(s)e2k ∫ s

0
a(r)drds.

‖UGr(t, v)‖2 = ‖v(t)‖2 + �e2k ∫ t

0
a(s)ds

≤ �
2 + �e2k ∫ t

0
a(s)ds + 2k �

t

0

a(s)‖v(s)‖2ds

= �
2 + � + 2k �

t

0

a(s)�e2k ∫ s

0
a(r)drds + 2k �

t

0

a(s)‖v(s)‖2ds

= �
2 + 2k �

t

0

a(s)
�
‖v(s)‖2 + �e2k ∫ s

0
a(r)dr

�
ds

= �
2 + 2k �

t

0

a(s)‖UGr(s, v(s))‖2ds.

(18)rP(0, �) ∶=

�
�
2 + 2k ∫

�

0

a(s)‖u(s)‖2ds
� 1

2

∫
�

0

a(s)ds.

‖x(�) − x0‖ ≤ �
�

0

a(r)‖u(r)‖dr

≤ �
�

0

a(r)

�
�
2 + 2k �

r

0

a(s)‖u(s)‖2ds
� 1

2

dr

≤
�
�
2 + 2k �

r

0

a(s)‖u(s)‖2ds
� 1

2

�
�

0

a(r)dr

≤
�
�
2 + 2k �

�

0

a(s)‖u(s)‖2ds
� 1

2

�
�

0

a(r)dr =∶ rP(0, �).
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We now establish x(𝜃) = x̄ using the pursuers’ control

as follows.

Hence x(𝜃) = x̄ . Moreover, the admissibility of (20) follows easily from (19). That is

Using similar argument, it can be shown that the attainability domain of the evader E at 
time � from the initial state y0 is the closed ball B(y0, rE(0, �)) , where

3.3 � Conditions for completion of pursuit

To state the conditions, we introduce the following notations. Consider the game problem 
(1–3) and let:

and the half space X be defined as follows

Theorem 1  If � ≥ 0 and y(�) ∈ X , then the ΠGr-strategy (13) guarantees the completion of 
pursuit in the game (1)-(3) for the pursuer.

Proof  Let the assumptions of the theorem hold and the strategy (13) be defined for all t in 
the interval [0, �] . For t in (�, �], we set

(19)‖x̄ − x0‖ ≤ rP(0, 𝜃), .

(20)u(t) ∶=
x̄ − x0

∫ 𝜃

0
a(s)ds

, 0 ≤ t ≤ 𝜃, .

x(𝜃) = x0 + �
𝜃

0

a(r)u(r)dr = x0 +
x̄ − x0

∫ 𝜃

0
a(s)ds �

𝜃

0

a(r)dr = x̄.

‖u(t)‖2 =
‖x̄ − x0‖2

�∫ 𝜃

0
a(s)ds

�2
≤ 𝜌

2 + 2k �
t

0

a(s)‖u(s)‖2ds.

(21)rE(0, �) ∶=

�
�
2 + 2k ∫

�

0

a(s)‖v(s)‖2ds
� 1

2

∫
�

0

a(s)ds.

(22)

Δr ∶= r2
P
(0, �) − r2

E
(0, �)

=

�
(�2 − �

2) + 2k �
�

0

a(s)(‖u(s)‖2 − ‖v(s)‖2)ds
��

�
�

0

a(s)ds

�2

= �

�
ek ∫ �

0
a(s)ds �

�

0

a(s)ds

�2

,

(23)X ∶=
�
z ∈ ℝ

n ∶ 2⟨y0 − x0, z⟩ ≤ Δr + ‖y0‖2 − ‖x0‖2
�
.

(24)UGr(t, v) = v(t),
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where � is the time instant at which x(�) = y(�) . Indeed, the strategy (24) is admissible in 
the time interval (�, �] since

Now let x0 ≠ y0 . By (5) and (6) we have y(t) − x(t) = �0f (t) where

Since f (0) = ‖y0 − x0‖ > 0 , then the conclusion of the Theorem 1 follows if we can estab-
lish f (�) ≤ 0 . That is, f (�) ≤ 0 implies the existence of � ∈ [0, �] such that f (�) = 0 . To 
this end, we further introduce the function

Observe that

where K ∶= �

�∫ �

0
a(s)ek ∫ s

0
a(r)drds

�2

+
�∫ �

0
a(s)⟨v(s), �0⟩ds

�2

.

It follows that

The assumption y(�) ∈ X implies

Since y(�) = y0 + ∫ �

0
a(s)v(s)ds and y0 − x0 = ‖y0 − x0‖�0 , then we have

Hence

‖UGr(t, v)‖2 ≤ �
2 + 2k �

t

�

a(s)‖v(s)‖2ds

≤ �
2 + 2k �

t

0

a(s)
�
‖UGr(s, v)‖2 − �e2k ∫ s

0
a(r)dr

�
ds

≤ �
2 + 2k �

t

0

a(s)‖UGr(s, v(s))‖2ds.

f (t) ∶= ‖y0 − x0‖ + �
t

0

a(s)⟨v(s), �0⟩ds − �
t

0

a(s)
�
⟨v(s), �0⟩2 + �e2k ∫ s

0
a(r)dr

� 1

2

ds.

�(t) ∶=
�
�

1

2 a(t)ek ∫ t

0
a(s)ds, a(t)⟨v(t), �0⟩

�
.

(25)

�
�

0

a(s)
�
⟨v(s), �0⟩2 + �e2k ∫ s

0
a(r)dr

� 1

2

ds = �
�

0

‖�(s)‖ds

≥ ������
�

0

�(s)ds
�����

=
√
K,

(26)f (�) ≤ ‖y0 − x0‖ + �
�

0

a(s)⟨v(s), �0⟩ds −
√
K.

(27)2⟨y0 − x0, y(�)⟩ ≤ Δr + ‖y0‖2 − ‖x0‖2.

(28)⟨�0, y(�)⟩ =
1

‖y0 − x0‖
⟨y0 − x0, y(�)⟩ ≤ Δr + ‖y0‖2 − ‖x0‖2

2‖y0 − x0‖
=∶ d.

⟨�0, y(�)⟩ = ⟨�0, y0⟩ + ∫
�

0

a(s)⟨v(s), �0⟩ds
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implies

In view of the fact that the function �(t) = ‖y0 − x0‖ + t − (Δr + t2)1∕2 is an increasing 
function of t, then it follows from (26) and (29) that

It can be verified that (‖y0 − x0‖ + d − ⟨�0, y0⟩)2 = Δr + (d − ⟨�0, y0⟩)2 using the 
equations.

Hence f (�) ≤ 0 . Consequently f (�) = 0 for some �, 0 ≤ t ≤ � . That is, x(�) = y(�).
Since we already have UGr(t, v) = v(t), 𝜏 < t ≤ 𝜃 then it follows that

That is, x(�) = y(�) . 	�  ◻

3.4 � Conditions for evasion

Theorem 2  If 𝛿 < 0 for all ,  then evasion is possible in the game (1–3).

Proof  Let the hypothesis hold. Consider the evader’s strategy

Indeed, the strategy (32) is admissible since from lemma 2 we have

Let u(⋅) ∈ ℝ
n be any admissible control of the pursuer, we show evasion using lemma 1 as 

follows.

(29)�
�

0

a(s)⟨v(s), �0⟩ds ≤ d − ⟨�0, y0⟩.

(30)f (�) ≤ ‖y0 − x0‖ + d − ⟨�0, y0⟩ −
�
Δr + (d − ⟨�0, y0⟩)2

�1∕2
.

(31)

‖y0 − x0‖2 = ‖y0‖2 + ‖x0‖2 − 2⟨y0, x0⟩
2‖y0 − x0‖2 = Δr + ‖y0‖2 − ‖x0‖2

2‖y0 − x0‖⟨y0, �0⟩ = 2‖y0‖2 − 2⟨y0, x0⟩.

x(�) = x(�) + ∫
�

�

a(s)UGr(s, v(s))ds = y(�) + ∫
�

�

a(s)v(s)ds = y(�).

(32)V(t) ∶= −�ek ∫ t

0
a(s)ds

�0.

‖V(t)‖2 = �
2e2k ∫ t

0
a(s)ds

= �
2

�
1 + 2k �

t

0

a(s)ek ∫ s

0
a(r)drds

�

= �
2 + 2k �

t

0

a(s)�2e2k ∫ s

0
a(r)drds

= �
2 + 2k �

t

0

a(s)‖V(s)‖2ds.
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Hence, x(t) ≠ y(t) for all t ≥ 0. This completes the proof. 	�  ◻

4 � Concluding remarks and suggestions for further research

We have studied a fixed duration pursuit-evasion differential game problem with the Grön-
wall-type constraints on players control functions. By virtue of the constraints on the play-
ers control functions, we constructed the players attainability domains. For the pursuit 
problem, we constructed the admissible ΠGr strategy which is an extension of the well-
known P−strategy, and proved under mild conditions on a certain half-space that the ΠGr 
strategy can guarantee completion for pursuit. For the evasion problem, we proved that 
if the total energy resources of the pursuer is less than that of the evader, then evasion is 
guaranteed through out the game. The problem studied in this paper with multiple players, 
and also estimating the game value for the game (1) with the Grönwall-type constraints (2)-
(3) are open problems for further research.
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