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Abstract: In this paper, we study a variational problem with nonconstant gradient constraints. Several
aspects related to problems with gradient constraints have been studied in the literature and have
seen new developments in recent years. In the case of constant gradient constraint, the problem
is the well-known elastic–plastic torsion problem. A relevant issue in this type of problem is the
existence of Lagrange multipliers. Here, we consider the equivalent Lagrange multiplier formulation
of a nonconstant gradient-constrained problem, and we investigate the class of solutions having a
radial symmetry. We rewrite the problem in the radial symmetry case, and we analyse the different
situations that may arise. In particular, in the planar case, we derive a condition characterizing the
free boundary and obtain the explicit radial solution to the problem and the Lp Lagrange multiplier.
Some examples support the results.

Keywords: nonconstant gradient constraints; Lagrange multipliers; radial solutions

1. Introduction

In this paper, we deal with a nonconstant gradient-constrained problem and the
Lagrange multipliers associated with the problem.

In particular, we aim at studying the existence of radial solutions to its equivalent
Lagrange multiplier formulation and investigating the free boundary.

The gradient-constrained problem is a classical problem that was subject to intense
study a few decades ago. In its variational form, associated with the Laplacian, it reads

Find u ∈ K =

{
v ∈ H1,2

0 (Ω) : |Dv|2 =
n

∑
i=1

(
∂v
∂xi

)2
≤ G(x), a.e. in Ω

}
such that:

∫
Ω

n

∑
i=1

∂u
∂xi

(
∂v
∂xi
− ∂u

∂xi

)
dx ≥

∫
Ω

F(v− u)dx ∀v ∈ K, (1)

where Ω ⊂ Rn is an open bounded convex set with Lipschitz boundary ∂Ω, F ∈ Lp(Ω),
p > 1 (see [1,2] and references therein for several applications related to the problem).

An existence and uniqueness result in W2,p
loc (Ω) ∩W1,∞

0 (Ω), with 1 < p < ∞, for
general linear elliptic equations with a nonconstant gradient constraint G(x) ∈ C2(Ω)
is proved in [3]. Regularity results for the solutions to the same problem are contained
in [4–7].

A possible tool for studying this problem under a suitable condition for the constraint
G is to rewrite the problem as a bi-obstacle problem, where the obstacles solve a Hamilton–
Jacobi equation in the viscosity sense.

Following this method, in [8], the author studies a nonconstant gradient-constrained
problem formulated by means of the variational inequality:
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Find u ∈ K =

{
v ∈ H1,2

0 (Ω) : |Dv|2 =
n

∑
i=1

(
∂v
∂xi

)2
≤ G(x), a.e. in Ω

}
such that:

∫
Ω
Lu(v− u) dx ≥

∫
Ω

F(v− u) dx, ∀v ∈ K, (2)

where

Lu = −
n

∑
i,j=1

∂

∂xj

(
aij(x)

∂u
∂xi

)
+

n

∑
i=1

bi(x)
∂u
∂xi

+ cu

and G(x) ∈ C2(Ω), G(x) > 0. The author proves that the nonconstant gradient-constrained
problem admits a Lagrange multiplier, which is a Radon measure if the free term of the
equation f ∈ Lp, p > 1, whereas, if f is a positive constant and under a suitable condition
for G, the Lagrange multipliers belong to L2.

We refer to [9–12] for other studies on the Lagrange theory and its application to
variational models in which the existence of a Lagrange multiplier, that is always a relevant
issue in this type of problem, is investigated.

In [2], the author considers a stationary variational inequality associated with the
Laplacian, with nonconstant gradient constraint |Du| ≤ G(x), and proves the existence of
a Lagrange multiplier assuming that the bounded open not-necessarily-convex set Ω has a
boundary ∂Ω ∈ C2. In particular, the author proves that if F ∈ L∞(Ω), G ∈ C2(Ω), G > 0,
and ∆G2 ≤ 0, the problem

−∆u−
n

∑
i=1

∂

∂xi

(
µ

∂u
∂xi

)
= F a.e. in Ω

u = 0 on ∂Ω
|Du| ≤ G a.e. in Ω
µ ≥ 0 a.e. in Ω;
µ(G− |Du|) = 0 a.e. in Ω

(3)

has a solution (µ, u) ∈ Lq(Ω)×W1,∞(Ω), for any q > 1.
Let us stress that, in the case of G = 1, problem (1) is the well-known elastic–plastic

torsion problem (see [13–16] and the references therein).
An interesting issue in the field of partial differential equations is the investigation

of the class of solutions with symmetry. This study may provide some information on
the problem under consideration, and it is also justified by the applications of symmetric
solutions in problems that appear in mathematical physics.

The class of solutions with radial symmetry for the elastic–plastic torsion problem
associated with the Laplacian, was studied in [17], where the author finds the formal
explicit radial solution to the elastic–plastic problem in the case F = const > 0 and n = 2.

This result is generalized in [18] to the case F ∈ Lp(Ω), p > 2.
In this paper, we investigate for n = 2 the existence of radial solutions to (3), that is,

the equivalent Lagrange multiplier formulation of the nonconstant gradient-constrained
problem (2). In particular, we show, under a suitable condition, the existence of solutions
(µ, u) ∈ Lp(Ω)×W2,p(Ω) to (3) that are of the radial type, namely µ(x) = µ(|x|) = µ(ρ),
u(x) = ϕ(|x|) = ϕ(ρ).

Moreover, by denoting

E = {ρ ∈ [0, 1] : |ϕ′(ρ)| < g(ρ)}

and
P = {ρ ∈ [0, 1] : |ϕ′(ρ)| = g(ρ)},

we determine a necessary and sufficient condition for the region P to exist, and we charac-
terize the free boundary.

Let us recall that in the case g ≡ 1, namely, when conditions (3) represent the elastic–
plastic torsion problem, the region E is the elastic region and P is the plastic region. Analo-
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gously, in the case of nonconstant gradient constraints, we again denote the plastic region
by P.

The paper is organized in the following way. In Section 2, we state the assumptions
and the main results of the paper. In Section 3, we determine, under condition (5), the
existence of two regions E = [0, ρ] and P = [ρ, 1], in which |Du| < G(x) and |Du| =
G(x), respectively. Moreover, we verify that the solution u(x) of (3) belongs to W2,p(Ω).
Condition (5) is a necessary and sufficient condition for the region P to exist. Indeed,
in Section 4, we study the cases in which condition (5) is not satisfied and show that, in this
situation, only the region E may exist. Moreover, in Section 5, we provide some examples
in different situations, and the explicit solutions are determined. Finally, in Section 6,
we highlight the relationship between the problem under consideration and the obstacle
problem, and in Sections 7 and 8 we summarize our results and consider future work.

2. Statement of the Problem

Now, we assume that Ω is the ball of Rn, n ≥ 2, of radius 1 centred at the origin,
F ∈ Lp(Ω), p > n, and G(x) ∈ C2(Ω), G > 0. Moreover, F and G are of radial type, namely
F(x) = f (|x|) = f (ρ) and G(x) = g(|x|) = g(ρ), with |x| = ρ, ρ ∈ [0, 1].

Our aim is to investigate the existence of solutions (µ, u) ∈ Lp(Ω)×W2,p(Ω) to (3)
that are of radial type, namely µ(x) = µ(|x|) = µ(ρ), u(x) = ϕ(|x|) = ϕ(ρ).

In these settings, since u(x) = ϕ(ρ), ∂u
∂xi

= ϕ′(ρ) xi
ρ , ∆u = ϕ′′+ n−1

ρ ϕ′(ρ), |Du| = ϕ′(ρ),
bearing in mind that |Du| ≤ G, conditions (3) become

|ϕ′(ρ)| ≤ g(ρ) a.e. in [0, 1];
µ(ρ) ≥ 0 a.e. in [0, 1];
µ(ρ)

(
g(ρ)− |ϕ′(ρ)|

)
= 0 a.e. in [0, 1];

−ϕ′′(ρ)− n− 1
ρ

ϕ′(ρ)−
n

∑
i=1

∂

∂xi

(
µ

∂u
∂xi

)
= f (ρ) a.e. in [0, 1].

(4)

Now, we are able to obtain our main results that hold for n = 2.
We suppose that there exists ρ ∈ (0, 1) such that∫ ρ

0
ρ f (ρ)dρ = ρg(ρ). (5)

We show that condition (5) is a necessary and sufficient condition for the plastic region
P to exist, and we characterize the free boundary.

For this purpose, we also assume that:
ρ f (ρ) ≥ 0 is a nondecreasing function in [0, 1];
g(ρ) is a nonincreasing function in [0, 1];
ρg(ρ)g′(ρ) ≤ 0 is a nonincreasing function in [0, 1].

(6)

Let us emphasize that the condition “ρg(ρ)g′(ρ) is a nonincreasing function” ensures
the extra assumption on G, ∆G2 ≤ 0, required for the existence of a Lagrange multiplier in
Lq(Ω) (see [2]).

The main results of the paper are formulated in the following theorems.

Theorem 1. Let Ω be the ball of R2 of radius 1 centred at the origin. Under conditions (5) and (6),
the region

E = {ρ ∈ [0, 1] : |ϕ′(ρ)| < g(ρ)} = [0, ρ]

and the region
P = {ρ ∈ [0, 1] : |ϕ′(ρ)| = g(ρ)} = [ρ, 1].
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Moreover, the solution ϕ to (4) is

ϕ(ρ) =


∫ ρ

ρ

1
t

∫ t

0
σ f (σ)dσdt +

∫ 1

ρ
g(t)dt ρ ∈ [0, ρ]

∫ 1
ρ g(t)dt ρ ∈ (ρ, 1],

and it results in u(x) = ϕ(|x|) ∈W2,p(Ω).
Finally,

µ(ρ) =

 0 ρ ∈ [0, ρ]
1

ρg(ρ)

∫ ρ

0
σ f (σ)dσ− 1 ρ ∈ [ρ, 1]

and µ(ρ) ∈ Lp(0, 1).

Moreover, we are able to prove that if condition (5) is not satisfied, namely, ∀ρ ∈ (0, 1)

1
ρ

∫ ρ

0
σ f (σ)dσ < g(ρ) or

1
ρ

∫ ρ

0
σ f (σ)dσ > g(ρ),

the region P does not exist.
Due to the gradient constraints |ϕ′(ρ)| < g(ρ), the case

1
ρ

∫ ρ

0
σ f (σ)dσ > g(ρ) ∀ρ ∈ (0, 1)

is not admissible in our framework, since it implies

ϕ′(ρ) < −g(ρ) ∀ρ ∈ (0, 1).

Then, we may state the following theorem.

Theorem 2. Under conditions (6), if

1
ρ

∫ ρ

0
σ f (σ)dσ < g(ρ) ∀ρ ∈ (0, 1),

then
|ϕ′(ρ)| < g(ρ) ∀ρ ∈ [0, 1],

namely,
E = [0, 1].

Moreover, the solution ϕ to (4) is

ϕ(ρ) =
∫ 1

ρ

1
t

∫ t

0
σ f (σ)dσdt ∀ρ ∈ [0, 1].

This results in u(x) = ϕ(|x|) ∈W2,p(Ω).

3. Investigation of the Free Boundary

This section contains the proof of Theorem 1.
In particular, first, for n = 2 we investigate, under condition (5), the existence of two

regions E = [0, ρ] and P = [ρ, 1], in which |ϕ′(ρ)| < g(ρ), µ(ρ) = 0 and |ϕ′(ρ)| = g(ρ),
µ(ρ) > 0, respectively.

Then, in [ρ, 1], we should have ϕ(ρ) =
∫ ρ

0
g(t)dt + c or ϕ(ρ) = −

∫ ρ

0
g(t)dt + c. Since

we are searching for solutions ϕ(ρ) ≥ 0 in [0, 1] (indeed, when f = const. > 0, ϕ(ρ) is
non-negative) and taking into account the fact that ϕ(1) = 0, it follows that
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ϕ(ρ) =
∫ 1

ρ
g(t)dt ≥ 0 in [ρ, 1]. (7)

Furthermore, since we are searching for ϕ(ρ) such that ϕ′(ρ) is continuous, this
results in

ϕ′(ρ) = −g(ρ). (8)

In [0, ρ] µ(ρ) = 0, then, from (4), we obtain

−ϕ′′(ρ)− n− 1
ρ

ϕ′(ρ) = f (ρ),

that is, for n = 2,

−ϕ′′(ρ)− ϕ′(ρ)

ρ
= f (ρ),

D(ρϕ′(ρ)) = −ρ f (ρ),

and by integration between ρ and ρ, requiring (8), we obtain

ρϕ′(ρ) =
∫ ρ

ρ
σ f (σ)dσ− ρg(ρ) ∀ρ ∈ [0, ρ]. (9)

If ρ = 0 we regain condition (5), whereas for ρ ∈ (0, ρ]

ϕ′(ρ) =
1
ρ

∫ ρ

ρ
σ f (σ)dσ− ρ

ρ
g(ρ) ∀ρ ∈ (0, ρ]. (10)

By virtue of (5), we have:

ϕ′(ρ) =

∫ ρ
ρ σ f (σ)dσ− ρg(ρ)

ρ

=

∫ ρ
0 σ f (σ)dσ−

∫ ρ
0 σ f (σ)dσ− ρg(ρ)
ρ

= −
∫ ρ

0 σ f (σ)dσ

ρ
.

(11)

Let us remark that, from the assumption F(x) ∈ Lp(Ω), p > 2, it follows that

lim
ρ→0+

ρ f (ρ) = 0. (12)

Then, ϕ′(ρ) is continuous in (0, ρ], ϕ′(ρ) ≤ 0 in (0, ρ]. Moreover, if we check the
behaviour for ρ = 0, we have

lim
ρ→0+

ϕ′(ρ) = lim
ρ→0+

−
∫ ρ

0 σ f (σ)dσ

ρ
=

= lim
ρ→0+

ρ f (ρ) = 0,

(13)

and ϕ′(ρ) is continuous in [0, ρ], assuming that ϕ′(0) = 0.
We must verify that

ϕ′(ρ) = −1
ρ

∫ ρ

0
σ f (σ)dσ ≥ −g(ρ) ∀ρ ∈ (0, ρ], (14)

namely,
1
ρ

∫ ρ

0
σ f (σ)dσ ≤ g(ρ) ∀ρ ∈ (0, ρ]. (15)
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The assumption (6) implies that the function 1
ρ

∫ ρ
0 σ f (σ)dσ is also a nondecreasing

function in (0, ρ]. Indeed, it results in

D
(

1
ρ

∫ ρ

0
σ f (σ)dσ

)
=

1
ρ2

(
ρ2 f (ρ)−

∫ ρ

0
σ f (σ)dσ

)
,

and since ρ f (ρ) is a nondecreasing function in (0, 1), we obtain∫ ρ

0
σ f (σ)dσ ≤

∫ ρ

0
ρ f (ρ)dσ = ρ2 f (ρ),

namely,

D
(

1
ρ

∫ ρ

0
σ f (σ)dσ

)
≥ 0.

Then, by virtue of (5) and (6),

1
ρ

∫ ρ

0
σ f (σ)dσ ≤ 1

ρ

∫ ρ

0
σ f (σ)dσ = g(ρ) ≤ g(ρ) ∀ρ ∈ (0, ρ],

and (15) is achieved.
Now, we may derive the explicit solution ϕ(ρ) in [0, ρ].
From (11), we obtain ∀ρ ∈ (0, ρ]

ϕ(ρ) = −
∫ ρ

0

1
t

∫ t

0
σ f (σ)dσdt + c. (16)

By virtue of (7),

ϕ(ρ) =
∫ 1

ρ
g(t)dt = −

∫ ρ

0

1
t

∫ t

0
σ f (σ)dσdt + c, (17)

we have

c =
∫ 1

ρ
g(t)dt−

∫ 0

ρ

1
t

∫ t

0
σ f (σ)dσdt

and hence, in (0, ρ]

ϕ(ρ) =
∫ ρ

ρ

1
t

∫ t

0
σ f (σ)dσdt +

∫ 1

ρ
g(t)dt. (18)

Then, from (11) and (18) it follows that the solution ϕ(ρ) ≥ 0 in (0, ρ] is nonincreasing
in (0, ρ]. It remains to study the behaviour of ϕ at ρ = 0.

We have already verified that ϕ′(ρ) = − 1
ρ

∫ ρ
0 σ f (σ)dσ is continuous. Hence, we obtain

lim
ρ→0+

∫ ρ

ρ

1
t

∫ t

0
σ f (σ)dσdt =

∫ ρ

0

1
t

∫ t

0
σ f (σ)dσdt < +∞,

and ϕ(ρ) is continuous in [0, ρ].
Finally,

ϕ′′(ρ) =
1
ρ2

∫ ρ

0
σ f (σ)dσ− f (ρ) a.e in [0, ρ].

Let us observe that by virtue of (6),

ϕ′′(ρ) =
1
ρ2

∫ ρ

0
σ f (σ)dσ− f (ρ) ≤ 1

ρ2

∫ ρ

0
ρ f (ρ)dσ− f (ρ) = 0 a.e in [0, ρ].

In the same way as in [18], it is possible to verify that u(x) = ϕ(|x|) ∈ W2,p(Ω). It
can also be noted that this method is applicable to the study of evolutionary equations
(see [19]).



Symmetry 2022, 14, 1423 7 of 13

Let us now investigate the region P = [ρ, 1]. We have already found the explicit
solution in [ρ, 1], namely ϕ(ρ) =

∫ 1
ρ g(t)dt.

In the interval [ρ, 1], since ϕ′(ρ) = −g(ρ), ϕ′′(ρ) = −g′(ρ), ∂u
∂xi

= ϕ′(ρ) xi
ρ , we obtain

g′(ρ) +
n− 1

ρ
g(ρ) +

1
ρn−1 D(ρn−1µ(ρ)g(ρ)) = f (ρ) a.e. in [ρ, 1]

If we assume n = 2, we obtain

g′(ρ) +
1
ρ

g(ρ) +
1
ρ

D(ρµ(ρ)g(ρ)) = f (ρ) a.e. in [ρ, 1]

and
D(ρg(ρ) + ρµ(ρ)g(ρ)) = ρ f (ρ) a.e. in [ρ, 1].

By integration, since µ(ρ) = 0, we obtain

µ(ρ) =
1

ρg(ρ)

∫ ρ

0
σ f (σ)dσ− 1 a.e. in [ρ, 1].

We must verify that µ(ρ) ≥ 0, namely,

1
ρg(ρ)

∫ ρ

0
σ f (σ)dσ ≥ 1. (19)

Repeating the same arguments as above, we may prove that the function 1
ρ

∫ ρ
0 σ f (σ)dσ

is nondecreasing in [ρ, 1]. Then, by virtue of (5) and (6), it results in

1
g(ρ)

(
1
ρ

∫ ρ

0
σ f (σ)dσ

)
≥ 1

g(ρ)

(
1
ρ

∫ ρ

0
σ f (σ)dσ

)
=

g(ρ)
g(ρ)

≥ 1 ∀ρ ∈ [ρ, 1],

that is, the desired condition (19).
It is easily seen that µ(ρ) ∈ Lp([0, 1]).
In order to complete the investigation of the free boundary, let us check whether it

could happen that the region P = [0, ρ] and the region E = [ρ, 1]. In this case, from (4), it
follows that

g′(ρ) +
n− 1

ρ
g(ρ) +

1
ρn−1 D(ρn−1µ(ρ)g(ρ)) = f (ρ) a.e. in (0, ρ]

If we assume n = 2, we obtain

g′(ρ) +
1
ρ

g(ρ) +
1
ρ

D(ρµ(ρ)g(ρ)) = f (ρ) a.e. in (0, ρ]

and
D(ρg(ρ) + ρµ(ρ)g(ρ)) = ρ f (ρ) a.e. in (0, ρ]. (20)

Integrating (20) in [ρ, ρ], ρ ∈ [0, ρ], and assuming µ(ρ) = 0, since µ(ρ) = 0 in [ρ, 1],
we have

µ(ρ) =
1

ρg(ρ)

[
ρg(ρ)−

∫ ρ

ρ
σ f (σ)dσ

]
− 1 =

=
1

ρg(ρ)

[∫ ρ

0
σ f (σ)dσ−

∫ ρ

ρ
σ f (σ)dσ

]
− 1 =

=
1

ρg(ρ)

∫ ρ

0
σ f (σ)dσ− 1.

(21)
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Since the function 1
ρ

∫ ρ
0 σ f (σ)dσ is nondecreasing in (0, ρ] and by virtue of (5) and (6),

this results in

1
g(ρ)

(
1
ρ

∫ ρ

0
σ f (σ)dσ

)
≤ 1

g(ρ)

(
1
ρ

∫ ρ

0
σ f (σ)dσ

)
=

g(ρ)
g(ρ)

≤ 1 ∀ρ ∈ (0, ρ],

namely,
µ(ρ) ≤ 0 ∀ρ ∈ (0, ρ].

In conclusion, if we assume (5), the case P = [0, ρ] and E = [ρ, 1] cannot happen.

4. Proof of Theorem 2

In this section we investigate, for n = 2, what happens if Equation (5) does not admit
any solution ρ ∈ (0, 1], namely ∀ρ ∈ (0, 1]

1
ρ

∫ ρ

0
σ f (σ)dσ < g(ρ) or

1
ρ

∫ ρ

0
σ f (σ)dσ > g(ρ). (22)

Let us stress that due to the gradient constraints |ϕ′(ρ)| < g(ρ), the case

1
ρ

∫ ρ

0
σ f (σ)dσ > g(ρ) ∀ρ ∈ (0, 1] (23)

is not admissible in our framework, since it implies

ϕ′(ρ) < −g(ρ) ∀ρ ∈ [0, 1]. (24)

From now on, we suppose that

1
ρ

∫ ρ

0
σ f (σ)dσ < g(ρ) ∀ρ ∈ (0, 1]. (25)

As a consequence of the investigation of the free boundary in Section 3, in this case we
obtain the result that the region P does not exist.

In the same way as in [18], we obtain that

ϕ′(ρ) =
1
ρ

∫ 1

ρ
σ f (σ)dσ +

ϕ′(1)
ρ

∀ρ ∈ (0, 1]. (26)

Assuming

lim
ρ→0+

∫ 1

ρ
σ f (σ)dσ =

∫ 1

0
σ f (σ)dσ = −ϕ′(1), (27)

ϕ′(ρ) ∈ Lp([0, 1]).
Indeed, by virtue of (27), we have

lim
ρ→0+

ϕ′(ρ) = lim
ρ→0+

∫ 1
0 σ f (σ)dσ−

∫ ρ
0 σ f (σ)dσ + ϕ′(1)
ρ

= lim
ρ→0+

−
∫ ρ

0 σ f (σ)dσ

ρ
= 0.

Then,

ϕ′(ρ) = −1
ρ

∫ ρ

0
σ f (σ)dσ ∀ρ ∈ (0, 1] (28)

is continuous in [0, 1], assuming ϕ′(0) = 0. Moreover,

|ϕ′(ρ)| < g(ρ) ∀ρ ∈ [0, 1],
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that is, E = [0, 1].
It follows, since ϕ(1) = 0, that

ϕ(ρ) =
∫ 1

ρ

1
t

∫ t

0
σ f (σ)dσdt. (29)

5. Examples

Example 1. Let us consider a first example, namely, f = const = k > 0 and g(ρ) = e−
ρ
2 .

Obviously, condition (6) is verified.
If we consider a first case, f = k > 2e−

1
2 , the region P exists, since Equation (5)∫ ρ

0
kσdσ = ρg(ρ),

namely,
k
2

ρ = e−
ρ
2 ,

admits a solution ρ ∈ (0, 1).
Then, by (18), we obtain the continuous function

ϕ(ρ) =


∫ ρ

ρ

1
t

∫ t

0
kσdσdt +

∫ 1

ρ
e−

t
2 dt =

k
4
(ρ2 − ρ2) + 2(e−

ρ
2 − e−

1
2 ) in E = [0, ρ)

∫ 1
ρ e−

t
2 dt = 2(e−

ρ
2 − e−

1
2 ) in P = [ρ, 1].

It is easily seen that u, Du ∈ Lp(Ω) and

∫
Ω
|D2u|p dx =

∫ 1

0

∣∣∣∣∣ 2

∑
i,j=1

ϕ′′(ρ)
xixj

ρ2 +
2

∑
i,j=1

ϕ′(ρ)
δijρ

2 − xixj

ρ3

∣∣∣∣∣
p

ρ dρ

≤ c(p)
[∫ ρ

0
kpρdρ +

∫ 1

ρ
ρ1−pdρ

]
< ∞.

Finally, the Lagrange multiplier µ(ρ) exists and belongs to Lp([0, 1]):

µ(ρ) =


1

ρe−
ρ
2

∫ ρ

0
kσdσ − 1 =

k
2

ρe
ρ
2 − 1 ≥ 0 in P = [ρ, 1]

0 in E = [0, ρ).

If we consider the other case, f = const = k, 0 < k ≤ 2e−
1
2 , the region P does not exist, since

ρ ≥ 1 is the solution to Equation (5).
Then, E = [0, 1]. In fact, from (28) we obtain

ϕ′(ρ) = − k
2

ρ ∀ρ ∈ [0, 1],

then
−e−

ρ
2 ≤ ϕ′(ρ) ≤ e−

ρ
2 ∀ρ ∈ [0, 1]

and (27) is verified.
Then, from (29), we obtain the continuous function

ϕ(ρ) =
k
4
(1− ρ2). (30)

Here, ϕ(ρ) as in (30) and µ = 0 verify conditions (4) in [0, 1].
Moreover, u ∈W2,p(Ω). In fact, it is easily seen that u, Du ∈ Lp(Ω) and



Symmetry 2022, 14, 1423 10 of 13

∫
Ω
|D2u|p dx =

∫ 1

0

∣∣∣∣∣ 2

∑
i,j=1

ϕ′′(ρ)
xixj

ρ2 +
2

∑
i,j=1

ϕ′(ρ)
δijρ

2 − xixj

ρ3

∣∣∣∣∣
p

ρ dρ

≤ c
∫ 1

0
ρdρ < ∞.

Example 2. Let us now consider problem (4) with f (ρ) =
k

ρα
, 0 < α < 1.

The condition α < 1 ensures that F(x) ∈ Lp(Ω), 2 = n < p < 2
α . Moreover, condition (6) is

verified.
If we consider the case k > 2−α

e
1
2

, the region P exists, since Equation (5)

∫ ρ

0
σ

k
σα

dσ =
∫ ρ

0
kσ1−αdσ = ρg(ρ),

namely,
k

2− α
ρ1−α = e−

ρ
2 ,

admits a solution ρ ∈ (0, 1).
Then, from (18), we obtain the continuous function

ϕ(ρ) =


k

(2− α)2

(
ρ2−α − ρ2−α

)
+ 2(e−

ρ
2 − e−

1
2 ) in E = [0, ρ)

2(e−
ρ
2 − e−

1
2 ) in P = [ρ, 1].

It is easily seen that u, Du ∈ Lp(Ω) and

∫
Ω
|D2u|p dx =

∫ 1

0

∣∣∣∣∣ 2

∑
i,j=1

ϕ′′(ρ)
xixj

ρ2 +
2

∑
i,j=1

ϕ′(ρ)
δijρ

2 − xixj

ρ3

∣∣∣∣∣
p

ρ dρ

≤ c
∫ ρ

0
ρ1−αpdρ < ∞.

Moreover, the Lagrange multiplier µ(ρ) exists and belongs to Lp([0, 1]):

µ(ρ) =


1

ρe−
ρ
2

∫ ρ

0
kσ1−αdσ − 1 =

k
2− α

ρ1−α

e−
ρ
2
− 1 ≥ 0 in P = (ρ, 1]

0 in E = [0, ρ].

Finally, if we consider the other case 0 < k ≤ 2−α

e
1
2

, the region P does not exist, since the

hypotheses of the zero theorem are not satisfied in [0, 1] and ρ ≥ 1 is the solution to (5).
Then, E = [0, 1]. In fact, from (28), we obtain

ϕ′(ρ) = − k
2− α

ρ1−α ∀ρ ∈ [0, 1],

then
−e−

ρ
2 ≤ ϕ′(ρ) ≤ e−

ρ
2 ∀ρ ∈ [0, 1]

and (27) is verified.
Then, from (29), we obtain the continuous function

ϕ(ρ) =
k

(2− α)2 (1− ρ2−α) ∀ρ ∈ [0, 1]. (31)
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Here, ϕ(ρ) as in (31) and µ = 0 verify conditions (4) in [0, 1].
Moreover, u ∈W2,p(Ω). In fact, it is easily seen that u, Du ∈ Lp(Ω) and

∫
Ω
|D2u|p dx =

∫ 1

0

∣∣∣∣∣ 2

∑
i,j=1

ϕ′′(ρ)
xixj

ρ2 +
2

∑
i,j=1

ϕ′(ρ)
δijρ

2 − xixj

ρ3

∣∣∣∣∣
p

ρ dρ

≤ c
∫ 1

0
ρ1−αpdρ < ∞,

since p < 1
α .

6. Relationship with the Obstacle Problem

In this section, we highlight the relationship between the radial solutions to the non-
constant gradient-constrained problem under consideration and to the obstacle problem.

In the case F = const > 0 in [8], the author proves, under the extra condition

−
n

∑
i,j=1

∂

∂xi

(
aij

∂G
∂xj

)
≥ 0 in Ω, (32)

the equivalence between the problem

Find u ∈ K =

{
v ∈ H1,2

0 (Ω) : |Dv|2 =
n

∑
i=1

(
∂v
∂xi

)2
≤ G(x), a.e. in Ω

}
such that:

∫
Ω
Lu(v− u) dx ≥

∫
Ω

F(v− u) dx, ∀v ∈ K,

and the obstacle problem
Find u ∈ KW =

{
v ∈ H1,2

0 (Ω) : |v(x)| ≤W(x) a.e. in Ω
}

such that:

∫
Ω
Lu(v− u) dx ≥

∫
Ω

f (v− u) dx, ∀v ∈ KW . (33)

According to the definition by P.L. Lions in [20], the obstacle W ∈ H1,∞(Ω) is the
viscosity solution to the Hamilton–Jacobi equation{

|DW| =
√

G(x) a.e. in Ω
W = 0 on ∂Ω

(34)

defined by

W(x) = in fx0∈∂ΩL(x, x0) (35)

with

L(x, x0) = in f
{∫ T0

0

√
G(ξ(s))ds : ξ : [0, T0]→ Ω,

ξ(0) = x, ξ(T0) = x0, |ξ ′(s)| ≤ 1 a.e. in [0, T0]
}

.

(36)

In our settings, that is, the gradient constraint |Du| ≤ G(x), condition (6) implies that
the extra condition on G is verified, namely ∆G2 ≤ 0. Then, from Theorem 1 in [8], it
follows that the solution u to the gradient-constrained problem coincides with the solution
to the obstacle problem, with the obstacle function

W(x) = w(ρ) =
∫ 1

ρ
g(t)dt.

In the case g = 1, that is, the elastic–plastic torsion problem, the obstacle is w(ρ) =
1− ρ, namely, the distance function.
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Let us remark that in [8], the author provides an example that shows that the obstacle
problem is not always equivalent to problem (2), even for n = 1.

7. Discussion

In this paper, we studied a nonconstant gradient-constrained problem. In this context,
several results have been obtained in the literature, concerning different aspects such as
the existence and regularity of solutions, the relationship with the obstacle problem, the
existence of Lagrange multipliers, and so on.

Moreover, in the framework of partial differential equations, an interesting research
direction is the study of solutions with symmetry.

In this paper, we focused on the existence of solutions with radial symmetry to the
Lagrange multiplier formulation of a nonconstant gradient-constrained problem.

We rewrote the Lagrange multiplier problem in the radial setting and analysed all the
possible cases.

We investigated the free boundary and determined a necessary and sufficient condition
that ensures the existence of an elastic region and a plastic region. If this condition is not
satisfied, we verified that the plastic region does not exist.

The results were supported by some numerical examples. Finally, we provided some
comments on the relationship with the obstacle problem in the radial setting.

8. Conclusions

In the literature, the nonconstant gradient-constrained problem has been deeply
investigated and has seen some recent developments. As it concerns the interesting issue
of the existence of radial solutions, only the elastic–plastic torsion problem in the planar
case was investigated, i.e., when the gradient constraint is constant.

We studied the case of nonconstant gradient constraint and found the explicit Lagrange
multiplier and the explicit solution in the possible cases, that may arise.

In the future, we would like to generalize the result of the existence of radial solutions
to the problem under investigation in a ball of Rn, n > 2. Moreover, we will investigate the
class of solutions to the same problem with axial symmetry, as in [21].
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read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This research was partly supported by GNAMPA of the Italian INdAM (National
Institute of Higher Mathematics).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Figalli, A.; Shahgholian, H. An overview of unconstrained free boundary problems. Philos. Trans. Roy. Soc. A 2015, 373, 20140281.

[CrossRef] [PubMed]
2. Santos, L. Lagrange multipliers and transport densities. J. Math. Pures Appl. 2017, 108, 592–611.
3. Evans, L. A second order elliptic equation with gradient constraint. Comm. Part. Diff. Equ. 1979, 4, 555–572. [CrossRef]
4. Cimatti, G. The plane stress problem of Ghizetti in elastoplasticity. Appl. Math. Optim 1976, 3, 15–26. [CrossRef]
5. Ishii, H.; Koike, S. Boundary regularity and uniqueness for an elliptic equation with gradient constraint. Comm. Partial Diff. Equ.

1983, 8, 317–346. [CrossRef]
6. Jensen, R. Regularity for elastoplastic type variational inequalities. Indiana Univ. Math. J. 1983, 32, 407–423. [CrossRef]
7. Wiegner, M. The C1,1-character of solutions of second order elliptic equations with gradient constraint. Comm. Part. Diff. Equ.

1981, 6, 361–371. [CrossRef]
8. Giuffrè, S. Lagrange multipliers and non-constant gradient constrained problem. J. Differ. Equ. 2020 269, 542–562. [CrossRef]
9. Daniele, P.; Giuffrè, S.; Lorino, M. Functional inequalities, regularity and computation of the deficit and surplus variables in the

financial equilibrium problem. J. Glob. Optim. 2016, 65, 575–596. [CrossRef]

http://doi.org/10.1098/rsta.2014.0281
http://www.ncbi.nlm.nih.gov/pubmed/26261367
http://dx.doi.org/10.1080/03605307908820103
http://dx.doi.org/10.1007/BF02106188
http://dx.doi.org/10.1080/03605308308820271
http://dx.doi.org/10.1512/iumj.1983.32.32030
http://dx.doi.org/10.1080/03605308108820181
http://dx.doi.org/10.1016/j.jde.2019.12.013
http://dx.doi.org/10.1007/s10898-015-0382-4


Symmetry 2022, 14, 1423 13 of 13

10. Giuffrè, S.; Idone, G.; Maugeri, A. Duality Theory and Optimality Conditions for Generalized Complementary Problems.
Nonlinear Anal. 2005, 63, e1655–e1664. [CrossRef]

11. Giuffrè, S. ; Marcianò, A. Duality Minimax and Applications. Minimax Theory Appl. 2021, 6, 353–364.
12. Santos, L. Variational problems with non-constant gradient constraints. Port. Math. 2002, 59, 205–248.
13. Brezis, H. Moltiplicateur de Lagrange en Torsion Elasto-Plastique. Arch. Rational Mech. Anal. 1972, 10, 32–40. [CrossRef]
14. Brezis, H. Problèmes Unilatéraux. J. Math. Pures Appl. 1972, 51, 1–168.
15. Brezis, H.; Stampacchia, G. Sur la régularité de la solution d’inéquations elliptiques. Bull. Soc. Math. France 1968, 96, 153–180.

[CrossRef]
16. Von Mises, R. Three remarks on the theory of the ideal plastic body. In Reissner Anniversary Volume; Edwards: Ann Arbor, MI,

USA, 1949.
17. Rodrigues, J.F. Obstacle Problems in Mathematical Physics; Mathematics Studies n. 134; Elsevier Science Publishers B.V.:

Berlin/Heidelberg, Germany, 1987.
18. Giuffrè, S.; Pratelli, A.; Puglisi, D., Radial solutions and free boundary of the elastic-plastic torsion problem. J. Convex Anal. 2018,

25, 529–543.
19. Shang, Y. The Limit Behavior of a Stochastic Logistic Model with Individual Time-Dependent Rates. J. Math. 2013, 2013, 1–7.

[CrossRef]
20. Lions, P.L. Generalized Solutions for Hamilton-Jacobi Equations; Research Notes in Mathematics, Volume 69; Pitman Advanced

Publishing Program: Boston, MA, USA, 1982.
21. Talenti, G. Soluzioni a simmetria assiale di equazioni ellittiche. Ann. Mat. Pura Appl. 1966, 73, 127–158. [CrossRef]

http://dx.doi.org/10.1016/j.na.2004.12.019
http://dx.doi.org/10.1007/BF00281472
http://dx.doi.org/10.24033/bsmf.1663
http://dx.doi.org/10.1155/2013/502635
http://dx.doi.org/10.1007/BF02415085

	Introduction
	Statement of the Problem
	Investigation of the Free Boundary
	Proof of Theorem 2
	Examples
	Relationship with the Obstacle Problem
	Discussion
	Conclusions
	References

