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Optimal Multicasting in Dual mmWave/µWave
5G NR Deployments with Multi-Beam

Directional Antennas
Olga Chukhno, Nadezhda Chukhno, Dmitri Moltchanov, Antonella Molinaro, Anna Gaydamaka,

Andrey Samouylov, Yevgeni Koucheryavy, Antonio Iera, and Giuseppe Araniti

Abstract—The design of multicast services in the fifth-
generation (5G) New Radio (NR) deployments is hampered
by the directional nature of antenna radiation patterns. This
complexity is further compounded by the emergence of new
deployment options, such as dual millimeter wave (mmWave)
and microwave (µWave) base station (BS) deployments, as well
as new antenna design solutions. In this paper, the resource
allocation task for multicast services in dual mmWave/µWave
deployments with multi-beam directional antennas is addressed
as a multi-period variable cost and size bin packing problem. We
solve this problem and characterize the globally optimal solution.
To decrease complexity, we then propose and test the simulated
annealing approximation and relaxation techniques, i.e., local
branching and relaxation-induced neighborhood search heuristic.
Our results show that for the considered system parameters,
the properties of the optimal solution depend on the density of
dual-mode BS deployment and BS deployment type. We observe
a transition point at which the system shifts from primarily
utilizing mmWave resources to exclusively using µWave BS.
Furthermore, the optimal number of beams is upper limited
by 3 for mmWave and by 2 for µWave BSs. The efficiency of
resource utilization is also affected by the utilized numerology
and technology selection priority. Finally, we show that the
simulated annealing technique allows for decreasing the solution
complexity at the expense of slightly overestimating the amount
of resources.

Index Terms—5G, New Radio, millimeter Wave, microwave,
multicast, dual base stations, multi-beam antennas, optimization.

I. INTRODUCTION

Nowadays, as the standardization of the fifth-generation
(5G) New Radio (NR) technology is over, many operators have
already deployed microwave (µWave) NR systems operating in
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3.5−7.125 GHz band. This band provides the so-called “cov-
erage” layer and is expected to carry most traditional cellular
mobile communication traffic. The next wave of NR rollout
is anticipated to happen in the millimeter wave (mmWave)
band, 24.25−52.6 GHz, focusing on short-range and high data
rate capabilities providing the so-called “capacity” layer [1].
Network operators are expected to deploy both technologies
to offer ubiquitous data rate services at the air interface [2].

Both µWave and mmWave NR deployments are expected to
rely on antenna arrays forming directional radiation patterns
to compensate for path losses and extend the coverage range
of NR base stations (BS). As a side effect, high antenna di-
rectivities utilized in these systems would efficiently suppress
interference in dense deployments [3]. However, this property
is also expected to drastically reduce the efficiency of multicast
services as the use of highly directional antenna radiation
patterns does not allow to serve all the users, which belong
to the same multicast session via a single transmission [4].
The provisioning of multicast services [5], [6] is further
complicated by the capabilities of modern antenna arrays
supporting multiple beams simultaneously with varying half-
power beamwidths (HPBW) as well as by the availability of
multiple radio access technologies (RAT) that can serve a
multicast group [7]. Finally, it can also be affected by the
mmWave propagation, including blockage [8].

With the increased usage of high-bandwidth applications
in mobile systems, efficient air interface utilization becomes
vital. 5G NR has evolved since its introduction in Release 15
and continues to expand both the availability and applicability
of 5G NR services [9]. Mainly, multicast functionality for
NR will be introduced in Release 17, emphasizing group-
scheduling mechanisms, among others [10]. However, despite
this interest, to the best of our knowledge, optimal multicasting
in new deployment options, such as dual mmWave and µWave
BS deployments with multi-beam directional antennas, has not
been investigated so far.

A. Related Work

Recently, there have been multiple attempts to address the
multicast problem in directional systems for both single- and
multi-beam designs. For the single-beam system, the optimal
solution of the multicast problem formulated in [11] has
super-exponential complexity in the number of users as it
requires solving a Markov decision process with large state
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and action spaces. Hence, a heuristic algorithm for optimal
multicasting with a single lobe antenna pattern by considering
delay-energy trade-off has been introduced in [11], [12].
Similarly, a heuristic resource management framework aimed
at simultaneously minimizing energy and maximizing network
throughput has been proposed in [13]. Heuristic approaches
for multicast grouping have also been proposed in [14], [15].
We may conclude that for single-beam directional multicast
systems, there are exact solutions proposed to date. However,
most of the solutions are heuristic in nature. Also, there are
no studies comparing the accuracy of heuristic approaches and
the exact solutions.

Several studies have also focused on multi-beam antenna
solutions, where, in addition to the group formation, the
power budget has to be properly split among the beams.
To this end, multicasting and switched beamforming trade-
offs have been addressed in [16], [17]. The authors consider
both continuous (Shannon capacity) and discrete rate func-
tions under two power allocation models, where the power
is either equally split (EQP) or asymmetrically split (ASP)
between the lobes. Under the more complex ASP model,
neither optimal nor approximate solutions exist. Differently
from [16], [17], adaptive beamforming techniques minimizing
the time required to serve multicast users have been offered
in [18]. The problem is stated to be non-convex NP-hard for
both discrete and continuous rate versions. Thus, obtaining
an optimal beamformer with general channel vectors is not
feasible, even for a small number of users. In view of this,
the authors propose heuristics suitable for a practical system
design.

Further, a cooperative multicast scheme for mmWave sys-
tems utilizing non-orthogonal multiple access (NOMA) has
been introduced in [19]. Then, analytical expressions for the
signal-to-interference-plus-noise (SINR) ratio coverage proba-
bility are derived to evaluate the performance of the proposed
heuristics. An analog-beam splitting heuristic approach for
mmWave D2D multicast system has been proposed in [20],
where the antenna elements are divided into groups composing
an analog beam to serve a receiver. A heuristic solution that
leverages an unsupervised machine learning algorithm for
multicast grouping and exploits the D2D technology to deal
with the blockages is proposed in [21]. By analyzing works
focused on multi-beam multicast systems, we may deduce that
those studies are plagued by a lack of optimal solutions. Our
work builds on top of the study in [22], where the globally
optimal solution for multicast with multi-beam antenna opera-
tion is presented. Unfortunately, the complexity of the solution
does not allow scaling it for a realistic number of multicast
users. Differently from [22], in this work, we consider a dual
deployment of mmWave/µWave systems, propose an exact
solution, extend it to the case of operators-specific priorities
for RAT usage, and evaluate suggested heuristic techniques
allowing to scale the system to the case of tens of users.

Integrated mmWave/µWave system deployments have been
addressed in just a few recent studies. In [23], a dual-
mode architecture has been investigated from the power and
bandwidth allocation point of view to maximize the achieving
sum rate and energy efficiency. The throughput and reliability

of dual-mode multi-beam operation systems have been studied
in [24]. More recently, in [25], [26], blockage mitigation,
prediction, and beam management issues have been addressed.
A cross-layer optimization for joint scheduling and transmit
precoding has been introduced in [27]. In [28], the dual
operation of mmWave/µWave system for unicast traffic has
been studied. We emphasize that there are no research studies
so far proposing solutions for optimal multicasting in dual
mmWave/µWave systems with multi-beam antennas.

B. Contribution

Despite several techniques proposed for single-beam mul-
ticast systems (that can be readily adapted for single-beam
in dual-mode systems), none of the authors addressed the
problem of optimal multicasting in dual mmWave/µWave
BS deployments with highly directional multi-beam antenna
design. Both dual-mode BSs and highly directional multi-beam
antennas offer improved efficiency potential and will certainly
continue to be utilized in various applications. Due to the
need to overcome the limitations of mmWave frequencies,
improve network capacity using microwave frequencies, and
optimize multicasting, research on optimal multicasting in
dual mmWave/µWave BS with highly directional multi-beam
antenna is imperative. Since these options are expected to be
essential in future NR deployments, and only a small part of
the literature analyzes them, we fill this gap in this work.

To this end, we adopt a general formalism of multi-
period variable cost and size bin packing problem [29] that
allows us to capture multi-beam antenna operation in both
considered bands. We provide both the exact solution and
approximations, including the simulated annealing approach,
which is pioneered in new 5G NR deployment options with
dual mmWave and µWave operations and multi-beam antenna
design solutions. The optimization criterion accounts for multi-
beam specifics and is selected as the fraction of utilized
resources to the overall available resources, while the ultimate
metric of interest is the density of dual mmWave/µWave BS
deployments.

The main contributions of our study are:
• problem formalization and computation of the exact

(globally optimal) solution for multicast optimization in
dual-mode mmWave/µWave BS deployments with multi-
beam antenna design under different RAT selection cri-
teria (mmWave priority, µWave priority, and weighted
optimization function);

• application of simulated annealing to solve the multi-
casting problem in 5G NR dual-mode mmWave/µWave
systems in an efficient way;

• analysis of the exact optimal solution showing that for
considered deployment and system parameters, there is an
abrupt transition between the use of mmWave and µWave
technology for mmWave RAT priority scheme while the
maximum number of supported beams is 3 and 2 for
mmWave and µWave RATs, respectively;

• numerical results showing that local speed-up techniques
do not provide any noticeable impact on the exact solution
while simulated annealing allows preserving polynomial
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Fig. 1. Illustration of the considered dual-mode mmWave/µWave system.

time complexity for 30− 60 UEs in a multicast group at
the expense of 10− 40% degradation in resource usage.

The rest of the paper is organized as follows. In Section II,
we formulate the system model and assumptions. Further,
in Section III, we develop our optimization framework and
provide an exact solution algorithm. An approximate solution
based on the simulated annealing approach is further devel-
oped in Section IV. Numerical results are given in Section V.
Conclusions are drawn in the last section.

II. SYSTEM MODEL AND ASSUMPTIONS

This section presents our system model and assumptions
on deployment, traffic, propagation, blockage, and antenna
models. We also introduce our optimization criterion. The
notation used in the paper is provided in Table I.

A. Deployment and Traffic Models

We consider a tri-sector dual-mode co-located mmWave and
µWave (sub-6 GHz) NR system deployment shown in Fig. 1
and concentrate on a randomly chosen sector, i.e., “cell”. We
investigate a downlink single multicast session provisioning
to K user equipment (UE) devices. Locations of UEs are
assumed to be uniformly distributed in the cell. The UEs,
mmWave NR BS, and µWave NR BS heights are considered
to be constant and given by hU , hA,m, and hA,µ, respectively.

To narrow down the considered use cases, we assume
that the dual system operates in crowded open environments
such as city squares, with significant traffic demands from
pedestrian UEs during various happenings and festivals. This
assumption affects the choice of the blockage and propaga-
tion models in what follows. Specifically, we consider the
following radio part specifics: (i) small-scale blockage of the
propagation paths between BS and UEs in mmWave band by
small objects such as humans, (ii) large-scale blockage of
the propagation paths by accounting for line-of-sight (LoS)
and non-LoS (nLoS) conditions caused by buildings, (iii) BS
and UE antenna directionality in both bands, (iv) multi-beam
operation antennas in both bands via hybrid/digital beamform-
ing, (v) propagation specifics resulting in principally differ-
ent coverages in both bands. However, whenever addressing
a specific scenario, additional impairments and propagation
specifics can be added to the propagation model. Specifically,
by utilizing the 3GPP LoS and nLoS model in addition to
blockage and non-blockage states one can capture other types

of deployments, where the LoS path can also be blocked by
large-static buildings (nLoS/LoS states as defined by 3GPP).
An example of such a model is provided in [30].

The BS operates in both the mmWave, 28 GHz, and µWave,
3.5 GHz, frequency bands simultaneously by utilizing separate
antennas at transceivers. Each UE is also equipped with
corresponding interfaces and can receive in both frequency
bands. We assume the orthogonal frequency division multiple
access (OFDMA) schemes at both interfaces. The available
bandwidth is Wm MHz and Wµ MHz for mmWave and
µWave BS, respectively. The bitrate of the multicast session
is assumed to be C Mbps.

Definition. By following [31], we use the term subgroup
to denote the subset of UEs belonging to the multicast group
served by the same beam, whereas a multicast group contains
all UEs interested in receiving a multicast session (i.e., data
flow/content). With the term suit we imply a configuration
of multicast subgroups that covers all UEs (i.e., a multicast
group) without repetitions.

B. Blockage and Propagation Models

Compared to the mmWave band, µWave systems are much
less susceptible to human body blockage effects, i.e., the
induced human-body attenuation has been reported not to
exceed 2−4 dB [32]. For this reason, we neglect the blockage
effect in µWave band. In mmWave band, the human body
blockage attenuation is assumed to be 15 dB [33]. Here, the
blockers are modeled as cylinders with height hB and radius
rB , and their number follows a Poisson distribution with the
density of λB per square meter. The blockage probability at
the 3D distance y is determined according to [8]:

pB(y) = 1− exp
−2λBrB

[√
y2−(hA−hU )2

hB−hU
hA−hU

+rB
]
, (1)

where λB is the blockers density, hB and rB are the blockers’
height and radius, hU is the UE height, hB ≥ hU , hA is the
BS height (either mmWave or µWave BS). We denote by hA,m
and hA,µ mmWave and µWave BS heights, respectively.

To account for building blockage in city deployments, one
also needs a building blockage model. The LoS probability
for the 2D distance x between the mmWave BS and the UE,
pL(x), can be obtained by using the 3GPP UMi street canyon
model [34] as

pL(x) =

{
1, x ≤ 18m,
18 + xe−

x
36 − 18e−

x
36 , x > 18m.

(2)

To define a mmWave propagation model accounting for
blockage caused by both buildings and humans, one may
consider the UE in one of the four states: (LoS non-blocked),
(LoS blocked), (nLoS non-blocked), (nLoS blocked). Here,
nLoS state means that buildings can also block the path
between the BS and the UE. Then, the associated UMi path
loss measured in dB for four different states is given by [30]:

LdB(y) =


32.4 + 21 log10 y + 20 log10 fc, LoS nBl.,
47.4 + 21 log10 y + 20 log10 fc, LoS Bl.,
32.4 + 31.9 log10 y + 20 log10 fc, nLoS nBl.,
47.4 + 31.9 log10 y + 20 log10 fc, nLoS Bl.,

(3)
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where the first line corresponds to (4).
Following 3GPP, we adopt the 3GPP urban microcell (UMi)

street canyon path loss model in [34] for mmWave and µWave
frequency bands. For LoS non-blocked conditions, the path
loss is provided by

LdB(y) = 32.4 +21 log10 y + 20 log10 fc, (4)

where fc is the carrier frequency in GHz and y is the three-
dimensional (3D) distance between the BS and the UE. In
what follows, fc,m and fc,µ correspond to the mmWave and
µWave operating frequencies, respectively.

The path loss defined in (4) can be written in the linear
scale by utilizing the generic representation Ayζ , where A, ζ
are the propagation coefficients. Note that for both bands, the
main difference is in carrier frequency leading to

A = 102 log10 fc+3.24, ζ = 2.1. (5)

For the mmWave propagation impaired by both nLoS and
blockage, the coefficients in (5) read as

A1 = 102 log10 fc+3.24, ζ1 = 2.1,

A2 = 102 log10 fc+4.74, ζ2 = 3.19, (6)

where the coefficients (A1, ζ1), (A1, ζ2), (A2, ζ1), and
(A2, ζ2) correspond to LoS non-blocked, nLoS non-blocked,
LoS blocked, and nLoS blocked conditions, respectively. Note
that for µWave technology, we differentiate between LoS and
nLoS conditions only as human body blockage does not impact
path loss significantly [32].

Finally, we stress that assuming multi-beam antennas, one
also needs to account for sidelobe power leakage when using
the same band among either mmWave beams or µWave beams.
In general, this factor depends on array implementation. To
this aim, we capture it with a constant of 3 dB [35].

C. Antenna Array Model

We assume planar antenna arrays with the cone radiation
pattern at both BS and UEs. By following classic represen-
tation from [35], the HPBW of an array is determined as
θ = 2|θm−θ3db|, where θ3db represents the angle at which the
output power drops at a level of −3 dB from its peak value,
whereas θm corresponds to the location of the array maximum,
i.e., θm = arccos(−β/π), where β is the phase excitation
difference. The mean gain over the HPBW is calculated as

G =
1

θ+
3db − θ

−
3db

∫ θ+3db

θ−3db

sin(Nπ cos(θ)/2)

sin(π cos(θ)/2)
dθ, (7)

where N is the number of antenna elements, whereas the upper
and the lower 3-dB points are θ±3db=arccos[±2.782/(Nπ)].

We assume that up to Lm > 1 and Lµ > 1 beams can be
made simultaneously available at mmWave and µWave parts
of BS, respectively. We assume hybrid analog-digital or dig-
ital beamforming techniques to enable multi-beam operation,
i.e., more than one beam can be simultaneously generated
at NR BS (e.g., utilizing superposition of multiple steering
vectors [16]). Note that the possibility to form multiple simul-
taneous directional beams is subject to the fact that multiple

TABLE I
NOTATION USED IN THIS WORK.

Parameter Definition
hU Height of UEs, m
hA,m, hA,µ Height of mmWave/µWave BS, m
Wm,Wµ Available mmWave/µWave bandwidth, MHz
C Session data rate, Mbps
fc,m, fc,µ mmWave/µWave carrier frequency, GHz
LdB(y) Path loss in decibel scale
y Three-dimensional distance between UE and NR BS, m
x Two-dimensional distance between UE and NR BS, m
hB Height of blocker, m
rB Radius of blocker, m
N Number of planar antenna array elements
θ±3db Upper and lower 3-dB points of antenna array, rad
θm Location of array maximum, rad
β Antenna array orientation, rad
Pj,m, Pj,µ Transmit power for subgroup j, Watt
Pmax,m, Pmax,µ Total mmWave/µWave available power, Watt
GA, GU Antenna array gains at NR BS and UE ends, dBi
Mm,Mµ Number of time slots in mmWave/µWave time horizon
Lm, Lµ Number of beams in mmWave/µWave
Rb,mRb,µ Number of resource blocks in mmWave/µWave time slot
K Number of multicast UEs
N0 Power spectral density of noise, dB/Hz
A, ζ Propagation coefficients
Sth SNR threshold, dB
pB(y) Distance-dependent blockage probability
wPRB,m, wPRB,µ mmWave/µWave size of PRB, MHz
sj Spectral efficiency, bit/s/Hz
S(y) Signal-to-noise ratio at 3D-distance y, SNR
D BS intersite distance, m
R Service (cell) area radius, m

RF chains are utilized, thus requiring hybrid and/or digital
beamforming [36], [37]. The HPBW of the beams depends on
the number of the antenna elements forming a beam and is
upper bounded by the maximum number of antenna elements.
The total power at mmWave and µWave parts of BS is upper
bounded by Pmax,m and Pmax,µ.

In our work, we consider optimization on scales around a
transmission time interval (TTI) in NR – a subframe of 1 ms
(or multiple TTIs at most, depending on the practical scheduler
implementation). Furthermore, beamforming in NR happens
every 20 ms, i.e., the default synchronization signal block
(SSB) periodicity is set to 20 ms. Additionally, the authors
in [38] also demonstrated that even for highly directional
terahertz (THz, 0.3-3 THz) communications systems, the link
is stable for at least a few seconds, even for high rotational
mobility of UEs. Thus, we can assume that at the timescale
of interest, the impact of beam misalignment on the proposed
multicast grouping algorithm is rather limited. On the other
hand, UE arrivals and departures happen at a much larger
timescale (e.g., seconds) and thus also do not impact the
proposed approach.

D. Resource Allocation

In this work, we consider a resource allocation task over
a finite time horizon. All UEs subscribed to the multicast
session have to receive the service at the requested rate of
C Mbps in this time horizon. Note that in our framework,
this time horizon may or may not coincide with the NR
basic units, i.e., frame/subframe in NR numerology, and, in
general, may depend on the scheduler implementation, which
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is vendor-specific. In what follows, we utilize the NR subframe
of duration 1 ms as the time horizon of interest. In addition,
we also assume that BS knows the values of channel quality
indicators of all UEs at both mmWave and µWave interfaces
at the beginning of the resource allocation process.

To parameterize the OFDMA scheme, we introduce Mm

and Mµ to denote the number of time slots in the time
horizon (e.g., subframe) with the time slot indices tm and
tµ. The maximum number of primary resource blocks (PRBs)
available in the mmWave system is thus MmLmRb,m, where
Rb,m is the available number of PRBs for the beam at a
time slot in the mmWave time horizon. Observe that the
potential maximum number of subgroups is limited to MmLm.
Similarly, in the µWave system, the number of PRBs is limited
by MµLµRb,µ, whereas the number of subgroups is bounded
by MµLµ.

E. Optimization Criterion

Traffic engineering is one of the most challenging topics in
communication networks, which plays a key role in providing
the required network services with quality of service. The
term refers to applying scientific principles and strategies to
operational networks to achieve optimal performance [39]. In
other words, traffic is routed throughout the network to meet
traffic needs while achieving certain performance objectives.
Those objectives are usually congestion minimization, end-to-
end delay minimization, packet loss minimization, energy con-
sumption minimization, and resource utilization minimization.
However, from a network design standpoint, resource usage is
one of the most crucial perspectives for future systems [40].
Further, we note that the amount of studies addressing multi-
beam multicast systems is limited.

When the transmission can be performed over one beam at a
time at both technologies, the problem of optimal multicasting
can be formulated as the minimization of the amount of
utilized PRBs for each technology. However, for a system
with multiple beams, PRB minimization might not provide
actual resource minimization since the increase in the number
of beams adds new resources to the system. These resources
might not be fully utilized due to maximum emitted power
constraints per antenna. Thus, we propose our own criterion
that is a natural extension of the resource utilization often
considered in single beam systems [41]. Thus, we select the
ratio of occupied resources to the overall amount of available
resources, ρ, as the optimization criterion to account for multi-
beam operation. The motivation behind the proposed metric is
that the utilized resources in one beam depend on the allocated
power to this beam which is a part of the overall power that
needs to be distributed across all the beams.

We consider the following RAT selection criteria:
(i) mmWave priority, meaning that whenever possible
mmWave capacity layer is chosen to serve UEs, and the µWave
coverage layer is only employed when mmWave transmission
fails to deliver the service due to propagation restrictions,
(ii) µWave priority, and (iii) the weighted optimization func-
tion, where the RAT selection priority is explicitly controlled.
Note that RAT selection priority depends on different factors,

such as deployment area, as discussed in Section III-B2. For
example, the network operator may choose to use µWave
for longer distances and mmWave for short ones due to the
mmWave propagation properties (severe path loss) and the fact
that the data rate is higher at mmWave compared to sub-6 GHz
frequency band. Further, the weight of 0.5 sets up no priority.

III. OPTIMIZATION FRAMEWORK

In this section, we first mathematically formalize the prob-
lem of optimal multicasting in dual mmWave/µWave de-
ployments as a variable cost and size bin packing problem
(BPP). Then, we extend it to the case of weighted priorities
capturing operator-specific trade-offs in mmWave and µWave
RAT usage. Finally, we propose the solution algorithm and
two relaxation techniques.

A. Problem Formalization

In our task, a set of K UEs that make up a multicast group,
K = {1, ...,K}, is served by directional beams, implying that
each beam covers a subset of UEs, the so-called multicast
subgroup. There are 2K − 1 options to assign K UEs to
multicast subgroup(s) [11], i.e., Kj represents the subset of
UEs forming subgroup j, j ∈ J ,J = {1, 2, . . . , 2K−1}, and
|Kj | is the number of UEs in subgroup j.

The goal of the model is to determine the optimal grouping
of multicast UEs, which minimizes the total cost of service
in terms of the ratio of occupied PRBs to the total available
number of PRBs for the entire time horizon considering
the possibility of transmission using two technologies (i.e.,
mmWave/µWave) while meeting all the system requirements.

We assume the time slot horizon contains Mm time slots for
mmWave technology and Mµ time slots for µWave technol-
ogy. Similarly, let Lm and Lµ be the numbers of beams that
can be simultaneously swept during the given time horizon.

1) Suits of subgroups: We combine subgroups from set
J = {1, 2, . . . , 2K − 1} to form so-called “suits” Gk, k =
1, 2, ..., |Ω|. The following definition summarizes the term
“suit” used in this paper.

Definition 1. A “suit” is a collection of subgroup’s indices
Gk ∈ J satisfying the following conditions:⋃

j∈Gk

Kj = K, k = 1, 2, ..., |Ω|,

Kj1
⋂
Kj2 = ∅, j1 6= j2, ∀j1, j2 ∈ Gk, (8)

where Ω is the set of all such suits, each covering all the UEs
without repetition. Thus, each UE belongs to one and only one
subgroup contained in the suit Gk. For example, for K = 2
UEs, we have K1={1},K2={2},K3={1, 2} with G1 = {1, 2},
G2 = {3}. That is, G1 ∼ K1

⋃
K2 and G2 ∼ K3, Ω = {1, 2},

|Ω| = 2.
Note that Kj preserves the directionality of the beam since

all HPBWs are selected based on the UE locations. For
example, when Kj contains one UE, a narrow beam can
be utilized to serve that UE in a unicast way, whereas a
wider beam can be necessary to serve a subgroup with several
multicast UEs.
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We define subsuits Glmk and Glµk as subsets of subgroup’s
indices from Gk, which are planned for beams lm = 1, ..., Lm
and lµ = 1, ..., Lµ by the scheduler, Glmk ⊆ Gk,G

lµ
k ⊆ Gk,

k = 1, 2, ..., |Ω|. Therefore, we have

Gk =

(
Lm⋃
lm=1

Glmk

)⋃ Lµ⋃
lµ=1

Glµk

 , (9)

that satisfies the constraints of serving a multicast UE via one
technology and only ones, i.e.,

Glm1

k

⋂
Glm2

k = ∅, lm1
6= lm2

, ∀lm1
, lm2

∈ {1, ..., Lm},

Glµ1k

⋂
Glµ2k = ∅, lµ1

6= lµ2
, ∀lµ1

, lµ2
∈ {1, ..., Lµ},

Glmk
⋂
Glµk = ∅, ∀lm ∈ {1, ..., Lm}, lµ ∈ {1, ..., Lµ}. (10)

2) Decision variables: We introduce two binary indicators,
gtmj,m ∈ {0, 1} and gtµj,µ ∈ {0, 1}, that represent decision vari-
ables of serving subgroup j, j ∈ J , through mmWave/µWave
beams at time slots tm ∈ Tm, Tm = {1, . . . ,Mm} and
tµ ∈ Tµ, Tµ = {1, . . . ,Mµ}. Let gtmj,m = 1, if subgroup j

is served in time slot tm by a mmWave beam, gtmj,m = 0

otherwise. Similarly, gtµj,µ = 1, if subgroup j is served in time
tµ by a µWave beam, gtµj,µ = 0 otherwise.

Therefore, we have the matrices-indicators for the two tech-
nologies, Gm and Gµ, where a row gj,m/gj,µ shows the time
slot of serving subgroup j by mmWave/µWave technology
during the time horizon Tm/Tµ, whereas a column gtm /gtµ
shows the subgroups that are served at time slot tm/tµ by
mmWave/µWave beams.

3) Constraints on Beams and subgroups: First, observe that
the system should comply with the constraint on the maximum
number of subgroups to be served at time slots tm and tµ. This
implies that at a time slot at most Lm and Lµ beams can be
simultaneously swept, leading to∑

j∈Glmk

gtmj,m ≤ Lm,∀tm ∈ Tm,

∑
j∈Glµk

g
tµ
j,µ ≤ Lµ,∀tµ ∈ Tµ. (11)

Recall that the time horizon in our system is the NR sub-
frame, which is fixed at 1 ms for all considered numerologies.
Therefore, the suit service time should not exceed the subframe
duration. Thus, for any lm = 1, ..., Lm and lµ = 1, ..., Lµ,
k = 1, ..., |Ω|, we have the following constraints to be satisfied∑

j∈Glmk

∑
tm∈Tm

gtmj,m ≤Mm,

∑
j∈Glµk

∑
tµ∈Tµ

g
tµ
j,µ ≤Mµ. (12)

4) Power budget constraints: The constraints on the trans-
mit power budget per antenna that serves subgroup j ∈ Glmk ,
j ∈ Glµk over mmWave/µWave bands must be satisfied at any
tm∈Tm and tµ∈Tµ. That is, we have∑

j∈Glmk

gtmj,mPj,m ≤ Pmax,m,∀tm ∈ Tm,

∑
j∈Glµk

g
tµ
j,µPj,µ ≤ Pmax,µ,∀tµ ∈ Tµ, (13)

where Pj,m and Pj,µ represent the transmit power of the beam
that serves subgroup j via mmWave and µWave, respectively.
These powers can be determined by utilizing the path loss
models defined in Section II.

5) Constraints on resource utilization: We introduce costs
of the service in terms of PRBs, aj,m and aj,µ, required for
serving subgroup j by a beam over mmWave and µWave
bands, which take into account session bitrate, C, spectral
efficiency, sj,m/sj,µ, and PRB sizes of the subgroup j, wPRBm
and wPRBµ , i.e.,

aj,m =
C

sj,mwPRBm
, aj,µ =

C

sj,µwPRBµ
. (14)

We should then impose resource constraints by assigning a
beam to the subgroup for all the service time. For any j ∈ J
we, therefore, have

aj,m ≤MmRb,m, aj,µ ≤MµRb,µ, (15)

and also the following must be satisfied for k=1, . . . , |Ω|∑
j∈Glmk

aj,m≤LmMmRb,m,

∑
j∈Glµk

aj,µ ≤LµMµRb,µ. (16)

We emphasize that time slot assignment in the system is
reflected in two vector-indicators, gj,m = (g1

j,m, . . . , g
Mm
j,m ),

gj,µ = (g1
j,µ, . . . , g

Mµ

j,µ ). i.e., rows of matrices Gm and Gµ.
The elements of these vectors give time interval duration for
serving subgroup j by mmWave and µWave technologies and
are written as ∑

tm∈Tm

gtmj,m =

⌈
aj,m
Rb,m

⌉
,

∑
tµ∈Tµ

g
tµ
j,µ =

⌈
aj,µ
Rb,µ

⌉
, j ∈ J . (17)

B. Objective Functions
1) No Service Priorities: In our objective function, ρ, we

determine the optimal grouping of multicast UEs, i.e., obtain
the suit Gk of multicast subgroup’s indices that covers all UEs
without their repetition, taking into account (9). We consider
minimizing the ratio of occupied PRBs to the total available
number of PRBs for the time horizon. That is, the optimization
problem takes the following form

min
k∈1,...,|Ω|

∑
j∈Gk

[
aj,m

MmLmRb,m
+

aj,µ
MµLµRb,µ

]
, (18)

s.t. (8), (9), (10), (11), (12), (13), (15), (16).

Note that (18) can also be used to induce service priorities
between RATs. In the case of mmWave priority, the system
selects mmWave band to serve a set of UEs Kj , j ∈ J ,
if Pj,m ≤ Pmax,m. This means that the mmWave BS is
utilized up to its maximum coverage distance. Similarly,
µWave priority ensures that set Kj is served by µWave BS, if
Pj,µ ≤ Pmax,µ.
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2) Weighted Priority Service: Note that the problem in (18)
assumes that either mmWave or µWave are assigned priority
in service. Particularly, when supposing the priority is given
to mmWave technology, then the solution algorithm will try
to use it whenever possible, and µWave technology is only
utilized when some UEs are outside the coverage of mmWave
one. However, in practice, an operator may consider the choice
of technology related to the available spectrum, deployment
area, traffic conditions, etc. To cover these specific needs, we
suggest the following weighted objective function:

min
k∈1,...,|Ω|

∑
j∈Gk

[
w

aj,m
MmLmRb,m

+ (1− w)
aj,µ

MµLµRb,µ

]
, (19)

s.t. (8), (9), (10), (11), (12), (13), (15), (16),

where w is the weight parameter.
The weight factor w in (19) can be utilized to provide

weighted priority in technology selection. For example, when
considering the coexistence of unicast and multicast traffic,
one may want to make w proportional to the coverage distance
by setting w = min(1, R2/R2

m), where R is the service area
radius and Rm is the mmWave cell radius. The rationale
is that when the geometric locations of unicast sessions are
uniformly distributed in the dual-mode BS coverage area, the
objective function in (19) maximizes the resources that will be
available for a new session. Alternatively, the weight w can
be set proportionally to the operator’s utility, depending on
the abovementioned factors. Since these factors are operator-
dependent, we leave them outside the scope of this work.

C. More Than Two RAT Deployment

Different from the single-RAT networks, both multicast UE
grouping that minimizes total service cost and mapping of
these subgroups onto multiple RATs for parallel transmission
in the multi-RAT networks should be determined. In our
framework, the multi-RAT technologies can minimize the ratio
of utilized to available resources while satisfying the service
requirements. Thus, similarly to the two-RAT scheme, the
scheduler aims to maximize total delivery cost in terms of the
ratio of occupied PRBs to the available PRBs during the entire
time horizon considering the possibility of transmission over
all available technologies. For more than two RATs, one may
use the formulation provided above by adding more compo-
nents associated with all available technologies. Alternatively,
the optimization criteria can be latency minimization, data rate
maximization, etc. By combining multiple technologies, the
effective service area of a multi-RAT solution will be extended
to the coverage of all technologies onboard. Moreover, the
reliability can be significantly improved compared to any
single RAT connectivity. Note that, in general, the choice of
technology depends on the application/service the UEs are
involved in.

In general, when more than two RATs are considered, the
optimization function takes the following form

min
k∈1,...,|Ω|

∑
j∈Gk

∑
γ∈Γ

wγ
aj,γ

MγLγRb,γ
, (20)

where γ represents index of RAT, γ ∈ Γ, Γ is a set of RATs.

Algorithm 1: Optimal Solution

1 Input: (XU (i), YU (i), hU ), i ∈ K
2 Output: Optimal solution G∗k for multicast grouping in

form of (9)
3 Create 2K − 1 multicast subgroups of UEs
4 for each subgroup Kj do
5 find the farthest UE i and the distance from BS to

this UE: y ← max
i∈Kj

yi;

6 find horizontal HPBW needed to cover the
subgroup Kj :
θj = arccos

(
(XU (i)XU (i′)+YU (i)YU (i′)+h2

U

y(i)y(i′)

)
; . θj

as the angle between two edge UEs i and i′

7 calculate Pj ; . Pj = Pmax is fixed for L = 1
8 find the cost aj,m, aj,µ from (14);
9 end

10 Solve by exerting (18) with the exhaustive search.

D. Exact Solution and Relaxation Techniques

The formalized optimization problem can be classified as a
special class of BPP, where items of various sizes are packed
into the smallest number of unit capacity bins to minimize the
cost of assigning the items to the particular bins. The pseudo-
code in Algorithm 1 describes the globally optimal solution
according to (18), i,e., suit G∗k of multicast subgroup’s indices
in the form of (9). Here, in Algorithm 1 and also further in
Algorithm 2, we consider the antennas having a sufficiently
wide beam in the vertical direction, which allows covering all
the UEs along the entire service radius of the BS. However,
if the antennas have high vertical directivity, one can still use
the beam with high directivity in both planes and utilize the
proposed framework just by finding the HPBW in both planes.

Note that the problems (18), (19), (20) are NP-hard,
while the associated complexities are exponential. Indeed, the
multicast problem is formalized as a special class of BPP –
allocating varying resources into multiple beams, each having
finite capacity. Thus, the statement we make directly follows
from a class of the problem as BPP is known to be NP-hard.
The proof is provided in classic textbooks on optimization
theory and operations research, e.g., [42].

For a limited number of UEs in the coverage area of
BS, the direct solution of the problems in (18) and (19)
can be adopted by utilizing, e.g., branch-and-cut or branch-
and-bound techniques [43]. Some of these solutions allow
controlling heuristic behavior with an emphasis on solution
integrity instead of its optimality. In this work, we consider
techniques known to provide significant improvements in the
heuristic behavior of mixed-integer programming (MIP, [44]).

1) Local Branching Heuristic: Metaheuristics, which are
general frameworks to build heuristics, often use combinatorial
formulations. Heuristics for solving mathematical program-
ming problems can be developed based on metaheuristic rules.
One possible option, local branching (LB), is based on the idea
of switching neighborhoods during the search to obtain the
best possible solution [45]. LB is a technique developed based
on the exact method. The difference is that the LB has the
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time allotted to solve a given instance. If this time is reached
before the optimal solution is found, LB stops and returns the
best-known solution.

2) Relaxation Induced Neighborhood Search Heuristic:
Relaxation-induced neighborhood search heuristic (RINS) is
a heuristic that explores the neighborhood of a valid solution
to discover an improved one [46]. The construction of a
promising neighborhood is achieved by continuous relaxation
of the MIP model and is formulated as another MIP (known as
the subMIP). The subMIP optimization is truncated by limiting
the number of nodes in the search tree.

IV. APPROXIMATE SOLUTION

The use of the proposed algorithm at the TTI timescale
places severe constraints on the execution time. Since the for-
mulated problem is NP-hard, we propose adopting a heuristic
simulated annealing solution, which is known to be efficient
for BPPs [47]. We specify the initialization and implementa-
tion parts as well as parameterize the technique.

A. Simulated Annealing Approach

Stochastic heuristic methods [48] applicable to the MIP
problem formulations are: local search, simulated annealing,
evolutionary algorithm, simulated allocation, genetic algo-
rithm, tabu search, etc. Out of these techniques, simulated
annealing has been shown to achieve the best performance
for combinatorial problems such as BPP [49], [50]. For this
reason, we utilize this approach in this section to produce an
approximate solution algorithm.

The idea of simulated annealing consists in randomizing
the local search procedure and accepting changes that worsen
the solution with some probability [51]. More specifically, it
imitates the annealing of metals in thermodynamics, where
metal is exposed to a very high temperature and then left to
slowly cool down to form the desired shape with a defect-free
structure [52]. Thus, a key concept in simulated annealing is
to use an appropriate temperature cooling schedule. Several
modifications of the simulated annealing algorithm differ in
the distribution and the temperature reduction law, producing
particular shortcomings and advantages, such as speed, com-
plexity, and the guarantee of finding the global minimum.

In this work, we utilize the standard simulated annealing
methodology [43], see Algorithm 2 to obtain heuristic solution
G̃k. First, we determine problem-specific choices, including the
form of the objective function c(S) and the way solution S
is obtained. Theoretically, the initial solution does not affect
the final result. However, several experiments have shown
that sometimes the initial solution obtained employing a good
heuristic may result in faster convergence to the optimal
solution [53], [54] due to the fact that the heuristic-based
solution is more likely to be close to the optimal one. In
Section V, we consider random-based simulated annealing
(SA) with a random choice of the initial solution and heuristic-
based simulated annealing (SA-H) with guided choice of the
initial solution, as well as discuss the convergence speed of
the two configurations of simulated annealing. The latter is

implemented according to Algorithm 2 (Modified Incremental
Multicast Grouping) provided in [22].

To achieve the global minimum, the number of steps,
MaxIt, in the inner loop of Algorithm 2 must be larger than
the number of points in the solution space, i.e., MaxIt > |Q|,
leading to the futility of the exact approach [43].

B. Implementation

To obtain a good initial solution, we use the following
heuristic from [22] proven to provide close to optimal results
and capture multicast properties in directional systems. First,
the farthest UE from the BS is selected. Then, by iterating
through the set of predefined beamwidths θ, one is selected to
provide the lowest number of utilized resources per UE. Note
that all UEs covered by the selected beam are included in the
multicast subgroup. The selected multicast subgroup is then
deleted from the set of UEs, and the algorithm again selects
the farthest UE from the remaining set of UEs. The algorithm
stops when there are no UEs left.

We now describe the general logic that governs the opera-
tion of the Algorithm 2 itself. Here, the initial temperature
is set in the temperature parameter, while the temperature
reduction is a function of cooling α, 0 < α < 1. At each
iteration k, the temperature is cooled down by α. We define
the number of neighbors, MaxIt, to visit at each iteration. A
stopping criterion can be the condition T = 1 or the lack of
significant improvement in two consecutive executions of the
objective function of the outer loop. Also, achieving a solution
that does not exceed a predetermined cost may be utilized to
stop the procedure. We use condition T = 1. The objective
function c(S) represents the ratio of occupied to available
resources, ρ, required by solution S, where S is a set that
includes all the multicast UEs only once.

Algorithm 2: Simulated Annealing Solution

1 Input: (XU (i), YU (i), hU ), i ∈ K
2 Output: Heuristic solution G̃k for multicast grouping

in form of (9)
3 Generate a feasible initial solution S;
4 Setup initial temperature T = 10;
5 Setup the cooling rate α;
6 while T > 1 (stopping criterion T = 1) do
7 k ← 0; . number of iterations
8 while k < MaxIt do
9 Select a neighbor S′ of S;

10 ∆c = c(S′)− c(S);
11 if ∆c ≤ 0 then
12 S ← S′;
13 else
14 S ← S′ if random(0, 1) < exp(−∆c

T );
15 end
16 k ← k + 1;
17 end
18 T = Tα;
19 end
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After defining the initial solution and setting up the general
execution parameters, the algorithm runs the outer “while”
loop with fixed temperature (lines 6-19 of Algorithm 2). In
the inner “while” loop, which executes MaxIt times, the
algorithm selects a random neighbor S′ and performs the
Metropolis test to accept the move from S to S′ or not (lines
8-17). In the algorithm, the process of the random neighbor
selection is as follows: (i) randomly generate set S′ such
that it covers all the UEs, (ii) calculate the required transmit
power for S′ based on the most robust SNR, (iii) perform
water-filling for those multicast subgroups that can be served
simultaneously at a time slot considering the power budget
per antenna, Pmax, and (iv) compute c(S′) = ρ. Note that
if the cost function ∆c = c(S′) − c(S) is non-positive, the
move is always accepted. Otherwise, the move is accepted with
probability P = e−∆c/T . Once MaxIt steps are completed, the
temperature decreases (line 18), and the inner loop starts again.
The algorithm works until the stop criterion is met.

C. Choice of Initial Parameters

For fixed T , the acceptance probability P is an exponen-
tially decreasing function of ∆c. Hence, as ∆c increases,
the acceptance probability quickly becomes very small. The
Metropolis test [55] allows for leaving the local minimum
encountered while wandering around the solution space within
the inner loop. After performing MaxIt steps, the temperature
is declined according to the temperature reduction function,
and the inner loop is started again. For fixed ∆c, the ac-
ceptance probability decreases with T , so in the consecutive
execution of the inner loop, the uphill (accepted) moves are
rarer.

The algorithm is relatively simple to implement, but its
efficient implementation requires tinkering with parameters
and figuring out ways to reduce the run-time associated with
computing the solution for values in the search space. The
initial temperature typically is a large number. Then the
inner while-end loop is executed MaxtIt times, which is
another parameter of the algorithm. Choosing the proper initial
temperature, cooling rate, and the number of neighbors to visit
is crucial for balancing convergence speed and complexity.
The optimal values of these parameters are problem-dependent
and are typically determined through experimentation. As
simulated annealing is a heuristic solution, in Section V,
we explore the optimality and complexity of the simulated
annealing algorithm when the number of neighbors to be
explored, MaxIt, is 15, and the initial temperature is T = 10.
We select a cooling rate α = 0.8 that better controls the speed
at which the algorithm explores the search space and reduces
the temperature.

D. Computational Complexity

The SA method is stochastic in the sense that there is a
random element guiding the sequence of generated solution
points. By design, SA inherently operates with polynomial
complexity [56]. The complexity of Algorithm 2 depends on
many factors, such as initial temperature, cooling rate, the

TABLE II
DEFAULT PARAMETERS FOR NUMERICAL ASSESSMENT.

Parameter Value
mmWave operating frequency, fc,m 28 GHz
µWave operating frequency, fc,µ 3.5 GHz
mmWave bandwidth, Wm 100 MHz
µWave bandwidth, Wµ 50 MHz
mmWave PRB size, wPRB,m 1.44 MHz
µWave PRB size, wPRB,µ 0.18 MHz
Height of mmWave/µWave BS, hA,m, hA,µ 10 m
Height of blocker, hB 1.7 m
Height of UE, hU 1.5 m
SNR threshold, Sth -9.47 dB
mmWave/µWave power budget, Pmax,m, Pmax,µ 33 dBm
Power spectral density of noise, N0 -174 dBm/Hz
Number of UE planar antenna elements, N 4 el
UE receive gain, GU 5.57 dBi
Session data rate, C 5 Mbps
BS antenna array 32×4
BS transmit gain, GA 14.58 dBi
Service area radius, R 400 m
Number of UEs, K 2-30
Subframe duration 1 ms
mmWave slot duration 125µs
µWave slot duration 1 ms
5G NR numerology, mmWave, κm 3
5G NR numerology, µWave, κµ 0
Number of time slots in a subframe, mmWave, Mm 8
Number of time slots in a subframe, µWave, Mµ 1
Number of available resource blocks, mmWave, Rb,m 66
Number of available resource blocks, µWave, Rb,µ 270
Number of beams available in the system, Lm, Lµ 5

number of neighbors to visit, solution acceptance probability,
and temperature reduction function, among others.

Note that a key component that plays a crucial role in the
performance of SA is the criteria under which the temperature
changes, namely, the cooling rate. To provide the complexity in
O(·) notation, let us denote the length of the cooling schedule
as m. Then, the computational complexity of the SA algorithm
is given by O(m ·MaxIt), where MaxIt is the complexity
due to the “while” cycle over the number of neighbors to
be visited before cooling the temperature (lines 8-17), and m
depends on the temperature reduction function (lines 6-19).
The first component is executed inside the second “while”
cycle, leading to the resulted O(m · MaxIt), complexity.
To assess further the computational complexity, in the next
section, we provide Table III, which contains execution times
and discusses it in detail.

We can also construct mathematical solutions to model the
trends of the execution time as a function of the number of
users, K. SA has polynomial complexity. Hence, we use a
polynomial regression model built in a Python environment.
Based on the data from Table III for SA, the trend can be
described by the following expression: f(K) = −1.203 +
0.521K1 + 0.067K2− 0.001K3. The optimal solution’s trend
is exponential, and a mathematical model can be written as
f(K) = 0.899 · exp(0.350K). We provide Fig. 2 to show the
accuracy of the mathematical models.

V. NUMERICAL RESULTS

To assess the performance of our mmWave/µWave system
with the multi-beam directional antennas and reveal engi-
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Fig. 2. Execution time vs. number of users.

neering design choices, we adopt the following procedure.
We initially analyze the scenario when priority is given to
mmWave technology. Here, we first consider the case of the
limited number of UEs, K = 10, and compare the results in
terms of utilized/available PRBs for globally optimal solution
(Algorithm 1), two relaxations applied to the optimal solution,
namely, LB and RINS using ILOG CPLEX, and two versions
of simulated annealing (heuristic- and random-based initial
solution generations). We then proceed to emphasize the im-
portance of NR numerology utilized at µWave BS. Further, we
consider the case when priority is given to µWave BS. We then
examine the weighted priority case in (19). Finally, by utilizing
the simulated annealing approach, we report the optimal dual-
mode BS deployment density. To run the simulations, we use
a standard laptop with 8 GB of RAM and an Intel Core i5-
7200U with 2 hyper-threaded cores running at a base clock of
2.50 GHz.

The default system parameters are gathered in Table II. The
utilized path loss model is defined in (3) and (6), where fc,m
and fc,µ correspond to 28 GHz and 3.5 GHz for mmWave and
µWave BSs, respectively. To produce the numerical results,

we consider the deployment with human blockers only. The
transmit power budget is fixed at 33 dBm, and the session rate
C is assumed to be 5 Mbps.

By default, we assume the available bandwidths of Wm =
100 MHz and Wµ = 50 MHz, and consider numerologies
κm = 3 (with PRB size of 1.44 MHz) for mmWave technology
and κµ = 0 and κµ = 2 (with PRB size of 0.18 MHz
and 0.72 MHz, respectively) for µWave. For both RATs, we
utilize similar antenna arrays with {32, 16, 8, 4, 2, 1} and 4
elements forming directional beam patterns in vertical and
horizontal dimensions, e.g., 32H×4V. We note that, in general,
arbitrary antenna array configurations can be utilized. We
note that the choice of antenna arrays is operator-specific and
depends on the equipment capabilities. Typically, the array
size at mmWave BSs is larger than that of µWave BSs. We
also note that the antenna array size induces the upper limit
on the HPBW. The actual HPBW values required to serve
multicast subgroups are selected as explained in Algorithm 1
by mapping aj to the available antenna beams.

Note that for the sake of understandability in Fig. 3, Fig. 4,
Fig. 6, and Fig. 7, we move apart the curves that show the
same value by using [ , ] signs.

A. mmWave Priority

The results of the performance analysis, when mmWave re-
sources are utilized whenever possible, are shown in Fig. 3 for
mmWave numerology κm = 3, µWave numerology κµ = 0,
K = 10 UEs, C = 5 Mbps, Wm = 100 MHz, Wµ = 50 MHz,
Lm = Lµ = 5 beams. Here, we start by analyzing the ratio
of occupied to available resources, ρ, as a function of cell
radius, R, illustrated in Fig. 3(a). As a general trend, one
may notice that ρ grows with the increase in the service
area radius until it reaches the distance at which the use of
mmWave resources becomes ineffective. At this point, the
system starts selecting µWave as a transmission technology.
For example, in the case of the optimal solution, R = 300 m
can be considered as a threshold that defines the change in
the utilized transmission technology. Once this threshold is
exceeded, the optimal solution always chooses the subgroup
containing all K UEs for µWave transmission.

We emphasize that the relaxation techniques (LB, RINS)
show a perfect match with the globally optimal solution. On
the other hand, the simulated annealing algorithms demon-
strate slightly worse results but with better optimality vs.
complexity trade-offs than optimal solutions. By comparing
the simulated annealing algorithms, we may learn that starting
with a good solution (compared to the random one) at some
points brings us a better value of ρ. This can be explained
by the fact that heuristic-based simulated annealing can find
a better solution by the time the stopping criterion is met. As
our additional observation, we note that the fewer multicast
subgroups are chosen, the fewer resources they demand.

Despite the simulated annealing technique leading to sub-
optimal solutions as discussed above, it allows to drastically
reduce the complexity of the solution as indicated in Table III
providing a comparison of execution times for all the con-
sidered solutions, where SA-H and SA stand for simulated
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Fig. 3. Performance metrics when mmWave resources are utilized whenever possible (mmWave RAT priority): mmWave – κm = 3, µWave – κµ = 0.

TABLE III
ALGORITHMS’ EXECUTION TIME, MINUTES.

Time/K 2 5 7 10 12 15 17 20 22 25 27 30
Optimal 0.15 0.89 14.37 29.50 60 (limited) - - - - - - -
LB 0.13 0.88 14.2 28.70 60 (limited) - - - - - - -
RINS 0.13 0.88 14.25 29.20 60 (limited) - - - - - - -
SA-H 1

(0.091 s)
2.29
(0.060 s)

3.12
(0.053 s)

11.01
(0.066 s)

13.19
(0.050 s)

17.49
(0.059 s)

21.51
(0.039 s)

25.58
(0.091 s)

29.65
(0.060 s)

33.70
(0.056 s)

37.75
(0.040 s)

41.79
(0.044 s)

SA 1
(0.025 s)

2.29
(0.013 s)

3.12
(0.007 s)

11.01
(0.042 s)

13.19
(0.242 s)

17.49
(0.062 s)

21.51
(0.019 s)

25.58
(0.025 s)

29.65
(0.041 s)

33.70
(0.038 s)

37.75
(0.058 s)

41.79
(0.197 s)

*In brackets, the time to generate an initial solution is shown in seconds.
*SA and SA-H stand for simulated annealing with random and heuristic choice of the initial solution, respectively.

annealing with heuristic and random choice of initial solu-
tions, respectively, see Section IV-A for details. By analyzing
the presented data, one may observe that both considered
relaxation techniques provide no performance improvements
in solution time. Furthermore, all three exact solutions cannot
solve the problem in a reasonable time when the number of
UEs in a multicast group is higher than approximately 12.
On the other hand, both simulated annealing solutions are
characterized by linearly increasing solution time when the
number of UEs grows. Note that the time to create an initial
solution for both cases is short (less than a second), which
does not impact the time to find a final solution (in minutes).
In addition, by analyzing the results, we may deduce that the
type of initial solution does not affect the computational time,
due to the equal number of iterations, but impacts the final
solution performance. More precisely, a good initial solution
(the one in SA-H) offers slightly better final results compared
to a random one (SA). The reason is that the stopping criterion
is T = 1 that depends on the number of iterations, MaxIt,
and cooling rate, α, which are the same for both SA and SA-
H. However, the convergence speed of heuristic-based SA-H
is faster, which can explain better final results.

Getting back to performance metrics, we further comment
on the optimal number of beams utilized in the multi-beam
dual system as a function of the cell radius illustrated in
Fig. 3(b). The optimal number of mmWave beams, Lm, starts
with one beam (when UEs form a single subgroup) and then
increases up to 3 beams. On the contrary, up to one µWave
beam can be swept at a time (and up to 2 µWave beams
for random simulated annealing). As one may notice, µWave

transmissions are utilized when mmWave fails to provide
the service due to propagation conditions and blockage. We
emphasize that µWave BS sweeps one beam as, first, it is
possible to provide a multicast service to all UEs by using
the wide beam (small propagation losses) and, second, it
ensures the best ratio of occupied to available resources, ρ.
We also note that the utilized HPBWs for µWave antennas
are larger than those of mmWave technology as the former
technology is employed for multicast subgroups having UEs
located farther away from each other. In contrast, mmWave
technology typically serves individual UEs in the unicast way
or very clustered subgroups.

To complement the discussion, we show the percentage
of utilized resources by each of the two technologies for
all considered algorithms in Fig. 3(c). This metric shows
a breakdown in the amount of utilized resources between
considered technologies as a function of distance, R. Observe
that, for the optimal solution, up to the distance of around
300 m, 100% of resources used to serve the multicast group are
taken from the mmWave band. Once this boundary is passed,
the role of mmWave and µWave technologies is reversed, and
all the resources are taken from the µWave band.

B. Effects of µWave Numerology

The set of numerologies defined for NR provides an addi-
tional degree of flexibility and adaptivity. We now proceed
with assessing the system performance when utilizing nu-
merology κµ = 2 instead of κµ = 0 for µWave band. In
this configuration, a subframe has 4 slots with the length of
0.25 ms. By analogy with Fig. 3, in Fig. 4 we demonstrate
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Fig. 4. Performance metrics when mmWave resources are utilized whenever possible (mmWave RAT priority): mmWave – κm = 3, µWave – κµ = 2.
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(a) mmWave (κm = 3) priority, µWave – κµ = 0
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(b) mmWave (κm = 3) priority, µWave – κµ = 2

5 10 15 20 25 30
Number of Users, K

0

0.005

0.01

0.015

0.02

O
c
c
u
p
ie

d
/a

v
a
ila

b
le

 r
e
s
o
u
rc

e
s
 r

a
ti
o
, 

�

 

Optimal

LB

RINS

SA

SA (heuristic)

(c) µWave (κm = 0) priority, mmWave – κµ = 3

Fig. 5. Ratio of occupied to available resources, ρ, as a function of the number of UEs.

(a) the ratio of occupied to available resources, ρ, (b) optimal
number of beams in the system, and (c) percentage of utilized
mmWave/µWave resources for K = 10 UEs, C = 5 Mbps,
Wm = 100 MHz, Wµ = 50 MHz, Lm = Lµ = 5 beams.

As one may observe, Fig. 4 demonstrates qualitatively
similar results to those illustrated for µWave numerology
κµ = 0 in Fig. 3. Nevertheless, there is a numerical difference
between considered numerologies. More precisely, differently
from κµ = 0, the simulated annealing solutions start utiliz-
ing µWave band at shorter distances, i.e., at approximately
R = 200 m. The optimal solution provides the same results
when mmWave technology is selected. Here, one multicast
subgroup and, respectively, one beam is selected when µWave
is utilized. One may also observe that for numerology κµ = 2,
the gap between optimal and approximate solutions becomes
less visible due to the number and size of available PRBs that
the system can provide. The reason is that numerology κµ = 2
provides more flexibility in terms of (i) PRBs size as the
bandwidth occupied by a PRB depends upon the numerology
being used (1 PRB = 12 subcarrier spacing (SCS) [kHz]) and
(ii) time slots available for scheduling, M = 2κµ .

The increase in the service area of dual-mode BSs, R, makes
the solution more complex in the case of the simulated anneal-
ing algorithms, which affects the system performance. It can
be observed in Fig. 4(b) at R = 400 m, where random-based
simulated annealing selects two subgroups as compared to just
one subgroup in the case of the optimal solution. This can be

explained by the fact that the algorithms do not converge to the
optimal solution due to the increased complexity. To deal with
these situations, one needs to increase the number of algorithm
iterations. However, it is not reasonable to do that for smaller
radii of the service area due to the complexity-accuracy trade-
off. Therefore, the advantages of SA include its polynomial
time complexity and the ability to adjust the quality and
complexity by selecting appropriate initial parameters.

We note that, in our numerical evaluation, by way of
example, we provide the effect of the selected numerology
on the µWave band. One can utilize the proposed framework
to change the numerology for all considered technologies.

C. Dependence on Number of Users

So far, we focused on the performance comparison of
different solution algorithms under different parameter settings
for a rather limited number of UEs in a multicast group. In
Fig. 5, we investigate the behavior of the ratio of occupied
to available resources as a function of the number of UEs
K. Note that for the number of UEs higher than 12, we
utilize quadratic extrapolation to construct the curves for the
optimal solution, LB, and RINS. The rest of the parameters are
R = 400 m, C = 5 Mbps, Wm = 100 MHz, Wµ = 50 MHz,
Lm = Lµ = 5 beams.

We start analyzing the dependence on the number of UEs
for mmWave numerology κm = 3 and µWave numerology
κµ = 0 illustrated in Fig. 5(a). First of all, observe that for a
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Fig. 6. Performance metrics when µWave resources are utilized whenever possible (µWave RAT priority): mmWave – κm = 3, µWave – κµ = 0.
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Fig. 7. Performance metrics for weighted optimization function: mmWave – κm = 3, µWave – κµ = 0.

smaller number of UEs, e.g., K = 7, mmWave band is utilized
up to 400 m (and up to 300 m for K = 10). This allows us to
conclude that the radius of the service area and the number of
UEs affect the choice of technology. We note that for optimal
solutions at R = 400 m, the system chooses µWave BS when
the number of UEs is more than 10. Although simulated
annealing solutions also mainly utilize µWave technology, the
number of subgroups can be higher than in the case of the
optimal solution.

By analyzing Fig. 5(b), showing the dependence of ρ on the
number of UEs for mmWave numerology κm = 3 and µWave
numerology κµ = 2, one may notice a dissimilar trend to the
one demonstrated in Fig. 5(a). Here, we consider a service
area radius of 400 m. For this radius and numerology κµ = 2,
optimal solutions utilize µWave BS for any range of UEs
differently from κµ = 0. As one may observe, approximate
solutions match the optimal solutions at lower K value, i.e.,
5 − 7 UEs. For K ≥ 10, simulated annealing algorithms
choose two subgroups (see Fig. 4(b)) and, hence, there is a gap
between the optimal solution (one subgroup) and heuristics.

D. Effect of Different Objectives

Having considered the system, where mmWave resources
are utilized to serve multicast UEs whenever possible, we
now study the effect of different types of objective functions.
Particularly, we first consider the system response to the case

when µWave technology is prioritized and then address the
weighted structure of the optimization function.

We start with the effect of µWave priority. The correspond-
ing performance results are displayed in Fig. 6 for mmWave
numerology κm = 3, µWave numerology κµ = 0, K = 10
UEs, C = 5 Mbps, Wm = 100 MHz, Wµ = 50 MHz,
Lm = Lµ = 5 beams. As expected, µWave priority promotes
the use of µWave band while completely eliminating the
use of mmWave resources, see Fig. 6(c). Furthermore, as
can be deduced from Fig. 6(b), for the considered range
of values for cell radius R, the service is performed by
utilizing just a single beam at µWave technology. Then, as
one may observe in Fig. 6(a) and Fig. 6(b), heuristic-based
simulated annealing perfectly matches the optimal solutions
for all the considered values of R. However, the random
simulated annealing solution demonstrates a higher ρ value
due to the utilization of two beams.

Getting back to Fig. 5, we are now in a position to
compare mmWave and µWave priority strategies by discussing
the effect of the total number of UEs requesting multicast
traffic in the system as illustrated in Fig. 5(c). Addressing
the choice of the solution algorithm for optimization, we note
that similarly to Fig. 5(a) and Fig. 5(b), at a lower number of
UEs, all schemes demonstrate the same performance. Then,
starting from K = 7, the performance of the random-based
simulated annealing solutions begins to degrade, producing a
gap with the other approaches. By comparing absolute values
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Fig. 8. Dual NR BS intersite distance.

of ρ, we notice that both mmWave and µWave priorities
return quantitatively similar results. A notable exception is the
mmWave priority scheme with mmWave numerology κm = 3
and µWave numerology κµ = 0 that is characterized by a
higher amount of utilized resources until approximately 7−10
UEs.

Observe that µWave priority completely excludes mmWave
resources, thereby loading µWave technology. A network
operator may want to avoid it as µWave technology needs to
be utilized in those areas not accessible for mmWave. On the
other hand, the mmWave priority scheme exclusively utilizes
mmWave resources up to a certain distance and then switches
to µWave technology. In practice, an operator might have dif-
ferent preferences for balancing resource utilization between
considered RATs. To this end, we continue by investigating the
impact of the weighted optimization function on the system
performance. The corresponding results are shown in Fig. 7 for
mmWave numerology κm = 3, µWave numerology κµ = 2,
K = 10 UEs, C = 5 Mbps, Wm = 100 MHz, Wµ = 50 MHz,
Lm = Lµ = 5 beams.

By analyzing the data presented in Fig. 7, we emphasize
that the increase in w leads to the shift in the priority from
mmWave to µWave. Particularly, one may learn that at lower
distances R, weights w = 0.2, 0.8, 0.5, do not affect the
performance and provide results similar to the mmWave pri-
ority scheme. This can be explained by the fact that mmWave
ensures more efficient resource utilization at smaller distances.
Further, note that the choice of w = 0.5 produces a similar
effect to mmWave priority; thereby utilizing µWave band
resources only when mmWave service is infeasible due to
propagation and blockage conditions. Alternatively, w = 0.2
increases the range of mmWave technology up to 280 m
(compared to 240 m in the case of mmWave priority), whereas
w = 0.8 shortens R to 200 m, thereby allowing µWave band
usage. Therefore, we can conclude that depending on the
operator’s preferences, weights can be properly adjusted to
achieve a particular goal with respect to resource usage in
dual-mode mmWave/µWave systems.

E. Dual mmWave/µWave Deployment Analysis

Finally, as an example, in Fig. 8, we present the inter-
site distance (ISD) between BSs (estimated based on both

mmWave/µWave coverage ranges) as a function of multicast
session bit rate C for different antenna arrays, mmWave
priority RAT selection criteria, mmWave numerology κm = 3,
µWave numerology κµ = 0, K = 30, Wm = 100 MHz,
Wµ = 50 MHz, Lm = Lµ = 5 beams. Recall that for tri-sector
antenna deployment, the ISD corresponds to 3R [57]. We note
that the ISD of the dual mmWave/µWave system (measured
using µWave band as this technology provides larger coverage)
is increased insignificantly as compared to a mmWave system.
For instance, for 32x4 BS antenna array and C = 20 Mbps,
ISDs of µWave and mmWave correspond to 1476 m and
1428 m, respectively. The reason is that µWave requires a
large number of PRBs due to the utilized numerology κµ = 0
with SCS of 15 kHz and one time slot available for the
scheduling. It means that at 1476 m for C = 20 Mbps and 32x4
antenna array, the system has insufficient resources available
to serve all the UEs. Note that the operator can use its
own parameters in realistic deployments while exploiting the
proposed methodology to calculate the optimal coverage range
of dual-mode BSs.

VI. CONCLUSIONS

Inspired by the prospective 5G NR integrated
mmWave/µWave deployments and advanced antenna systems
designs capable of simultaneously supporting multiple
directional beams, in this work, we have provided a globally
optimal solution for multicast grouping. Accounting for the
NP-hard nature of the problem, we have then proposed and
characterized the approximate simulated annealing approach
as an efficient solution methodology. The proposed approach
is characterized by polynomial time complexity, potentially
allowing for practical implementation.

Our numerical results illustrate that properties of the optimal
solution, such as resource utilization and the type of utilized
technology, heavily depend on the density of dual-mode BS
deployments, RAT priority, and considered system parameters.
There is a clear turning point for small dual-mode BS densities
when the system switches from the regime when mmWave
resources are utilized for service to the case when µWave
technology is exclusively utilized. This point is dictated by the
mmWave blockage and propagation conditions. The number
of beams associated with optimal solution is upper limited by
3 for mmWave and by 2 for µWave technologies across all
the considered densities of dual BS deployment. Moreover, in
most cases, only one beam is utilized at µWave technology.
Further, the utilized numerology may quantitatively affect the
abovementioned conclusions, but the overall qualitative trends
remain unchanged. The investigated RAT selection priorities
reveal that when µWave RAT is prioritized for multicast
service, mmWave resources are not utilized at all. However,
by utilizing weights for mmWave and µWave resources, the
operator might achieve the desired balance by fitting its needs
in a particular deployment. Finally, we note that the efficiency
of resource utilization for multicast service may also be
affected by the number of UEs and utilized numerologies.

Concluding, we also note that the exact solution is feasible
for up to 10-15 UEs in a multicast group, while relax-
ation techniques, such as LB and RINS heuristics, although
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producing a perfect match with the exact solution, do not
reduce the solution time. The approximate simulated annealing
techniques decrease the complexity leading to a linear increase
in the solution time with the number of UEs. However, this
happens at the expense of allocating 10-40% of more resources
to serve the multicast group.
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