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Abstract—MQTT has become the de facto standard in the IoT. Although standard MQTT lacks built-in security features, several
proposals have been made to address this gap. Unfortunately, no existing proposal aims to offer end-to-end data flow integrity in
the threat model of untrusted broker. Consider that, the broker has a privileged role, since it is in the middle of communication between
publishers and subscribers. Our paper attempts to bridge this gap by introducing a new protocol called MQTT-I, which achieves end-to-
end data flow integrity. Our solution is inspired by approaches based on Merkle Hash Trees, commonly used in the context of outsourced
data to guarantee data integrity. Our solution aligns with the specific nature of MQTT, in which: (1) publishers and subscribers dynamically
join and leave the system, (2) the decoupling principle holds, meaning that publishers and subscribers do not establish any form of
agreement, and (3) data, whose integrity should be protected, are multi-topic streams. Moreover, the proposed solution allows us to find
the right balance between performance and security. We perform both theoretical and experimental analysis to demonstrate that the
introduced security features come with an acceptable overhead in terms of computational and energy cost.

Index Terms—MQTT security, data flow integrity, IoT security, Merkle Hash Tree, malicious MQTT broker
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1 INTRODUCTION

THE Message Queuing Telemetry Transport (MQTT)
protocol [1] has become the de-facto standard in the

Internet of Things (IoT). It finds application in various
domains [2], such as asset tracking and management [3],
smart city [4], home automation [5], eHealth [6], in-vehicle
infotainment [7], and so on. MQTT is based on the pub-
lish/subscribe model. An MQTT broker acts as a central
server, collecting messages sent on various topics by pub-
lishers and distributing them to interested subscribers. This
model keeps the MQTT client implementation simple, shift-
ing system complexities to the broker [8]. An important
property of the publish/subscribe model is the decoupling of
senders and receivers [9], [10] allowing publishers to send
messages without knowing the interested subscribers.

Despite its popularity, MQTT lacks built-in security func-
tionalities. Indeed, MQTT is designed for devices with low
processing power, and by default, the protocol aims to
minimize the overhead needed to exchange messages [11].

While a considerable effort has been devoted to provid-
ing client-to-broker protection, to the best of our knowledge,
no approach has been proposed in the literature to achiev-
ing end-to-end data flow integrity in the threat model of
untrusted broker. Nevertheless, this issue is highly relevant,
as the architecture of MQTT itself induces a realistic threat
model. The MQTT broker sits in the middle between clients
and could potentially access, drop, or tamper with all the
exchanged messages, which, by design, are transmitted in
the clear.
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In this paper, we propose a new protocol, called MQTT-
I(ntegrity), to achieve end-to-end data flow integrity. By data
flow integrity, we mean not only ensuring the integrity of
individual messages but also guaranteeing the complete-
ness, correctness, and liveness [12] of the client-to-client
exchanged data flow as a whole.

It is worth noting that although the problem addressed
in this paper shares similarities with the data integrity
problem studied in the context of outsourced data [13], there
are specific features in the MQTT context that differentiate
the two problems, preventing a direct application of the
solutions from the former to the latter.

Specifically, as we analyze in detail in Section 5, the
combination of the following three aspects make previous
approaches not applicable:
(1) The dynamicity of the considered scenario, in which
clients exchange a data stream between them and they can
leave and join the system at any time.
(2) The existence of the decoupling principle, according to
which no agreement can be required between publishers
and subscribers.
(3) The fact that data are multiplexed (and then shuffled)
across multiple topics.

In fact, the above aspects become the design challenges
of our solution. It is based on a non-trivial application of
an existing data structure, called Merkle Hash Tree [14],
[15], typically used in the context of data outsourcing.
To capture the dynamic nature of data, we split the data
stream in rounds, identified by a suitable time slot. For each
round, the broker builds an Merkle hash tree, and, once
has provided each subscriber with the right portion (which
depends on the topics to which the subscriber is registered)
of the Merkle hash tree needed for integrity verification of
this round, the broker discards the Merkle Hash Tree, but
keeps and publishes only the signed root concatenated with
the root of the previous Merkle hash tree, to ensure the
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integrity of the entire data stream. Decoupling of publishers
and subscribers (possibly joining and leaving the system) is
supported, as neither key exchange is required nor separate
communication channels. Finally, multiple topics are man-
aged by aggregating the data labeled with the same topic
in a single digest forming a leaf of the Merkle Hash Tree.
This way, the Merkle Hash Tree is smaller than a single
multiple-topic Merkle Hash Tree (in which each message
should be verified individually), and all the data labeled
with the same topic can be verified by just computing the
root of the Merkle Hash Tree. In particular, the size of the
Merkle Hash Tree is independent of the number of messages
(it depends only on the number of topics).

We carefully analyze the security provided by our solu-
tion by formalizing the concept of data flow integrity. More-
over, we evaluate the overhead introduced by our solution
(compared to standard MQTT) both theoretically and exper-
imentally. Interestingly, our solution allows us to solve the
trade-off between performance (in terms of throughput and
energy consumption) and security, by suitably modulating
the round time (i.e., the time slot duration).

The structure of the paper is the following. In Section 2,
we provide an overview of the literature about end-to-end
security in MQTT and data outsourced integrity approaches.
In Section 3, we provide some background knowledge
concerning the MQTT protocol and Merkle Hash Tree data
structure. In Section 4, we formally describe the adversarial
model and the security properties we aim to achieve with
our solution. The motivations of our work are presented
in Section 5 in which we discuss why other approaches
are not applicable in our scenario, how our proposal ad-
dresses the design challenges, and a real-life example of
our solution. In Section 6, we first provide an approach
guaranteeing data flow integrity but at a price in terms of
efficiency. Then, in Section 7 we discuss an enhancement of
the previous approach. Section 8 and Section 9, are devoted
to a theoretical analysis of MQTT-I and a comparison with
other approaches, respectively. In Section 10, we analyze the
performances of our proposal. Then, we analyze the security
of the proposed approach in Section 11. Finally, in Section
12, we draw our conclusions.

2 RELATED WORK

In this section, we provide an overview of the main ap-
proaches in the literature related to our work.
End-to-end security in MQTT. In the following, we discuss
the main proposals aimed at guaranteeing end-to-end secu-
rity in MQTT. This is still an open research problem, and
very few proposals in the literature aim to address it. One
of the main goals of these works is to ensure end-to-end
confidentiality [10], [16], [17], [18], [19], [20]. These solutions
require the provision of a protocol to enable symmetric key
exchange between authorized publishers and subscribers.
For example, [16] focuses on proposing lightweight solu-
tions to enable message confidentiality and node authen-
tication for constrained devices. Conversely, [19] focuses
on describing an end-to-end key exchange protocol. [10],
[17], [18], [20] provide a framework to guarantee both
end-to-end authorization and message confidentiality. The
solutions proposed in these papers leverage third trusted

parties to ensure that only authorized subscribers can access
the content of exchanged messages. Besides confidentiality,
access control is also a topic investigated in the context of
MQTT. Among other solutions, a relevant class of proposals
is aimed at achieving access control through ciphertext-
policy attribute-based encryption (CP-ABE) schemes [21],
[22], [23], [24]. Specifically, such schemes allow a publisher
to encrypt messages so that only subscribers who meet a
certain policy can decrypt them. The main advantage of
this approach is that publishers themselves can enforce the
policy, without relying on third parties to do so. Moreover,
the set of subscribers allowed to decrypt messages does
not have to be known in advance, offering the decoupling
requirements of the publish/subscribe model. In [25], the
authors face the problem of integrity in CP-ABE in the case
of revocation of the users from the system. We observe that
the solutions employing CP-ABE achieve access control and
require a trusted party, called private key generator (PKG),
to generate and issue private keys.

Access control is not the focus of this paper. In our threat
model, the adversary is a malicious broker, and there are
no requirements from the publisher regarding which sub-
scribers can access the messages. However, achieving access
control is an orthogonal aspect and current approaches may
be combined with our solution. In addition, in our solution,
subscribers and publishers can join and leave at any time
without any authentication requirement. Similarly to access
control, authentication [26], [27] is an orthogonal feature that
can be integrated into our solution.

An interesting solution for achieving both access con-
trol and end-to-end confidentiality is [28]. However, this
approach is based on the presence of trusted entities that
delegate in a hierarchical way the access (through keys) to
data. Moreover, [28] uses Identity-based Encryption (IBE)
and then requires an entity (the highest in the hierarchy)
to distribute keys. These assumptions do not hold in our
proposal. Finally, [28] does not provide data flow integrity,
which is the aim of this paper.

The above-presented works propose security solutions
in which the communication is mediated by a potentially
untrusted broker. A different scenario is considered in [29].
Specifically, the authors propose addressing the problem of
malicious or compromised brokers by confining the broker
software to a trusted execution environment (TEE). This
measure would prevent malicious behavior by the broker.
However, as highlighted by [10], deploying such a solution
could be challenging, as TEEs are not available on every
server. Furthermore, there are known attacks on TEEs [30].
In general, a realistic threat model cannot assume that
brokers are fully trusted.

We observe that all the papers mentioned above rely
on trusted parties. In this paper, we consider a more se-
vere threat model since we cannot assume the presence
of trusted third parties. Indeed, we consider that all the
communications between publishers and subscribers should
be mediated by an untrusted broker, and no other party
is involved in our protocol. Moreover, the above proposals
pursue different goals (i.e., confidentiality and access con-
trol).

In this paper, we are interested in a different problem:
end-to-end data flow integrity. When we refer to data flow
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integrity, we mean not only the integrity of individual
messages but also the completeness and correctness of the
entire client-to-client data flow.

The above problem presents some similarities with the
problem of reaching data integrity in the context of out-
sourced data [13]. In the following section, we discuss the
main solutions proposed in this context.
Outsourced data integrity. Typically, in the context of out-
sourced data, data are handed over to an untrusted stor-
age entity (e.g., a cloud provider) that can misbehave, for
instance, by deleting all or part of the handed data. The
class of techniques applied in this context aims to preserve
data integrity. Provable data possession (PDP) [31], [32]
and Proof of Retrievability (POR) [33], [34] techniques fall
into this context. These techniques can be applied when
the legitimate owner of the data or a trusted party auditor
(TPA) needs to verify the integrity of the outsourced data
without retrieving them. However, PDP and POR are not
suitable for our scenario because they do not ensure that
the data received by the subscribers match the publisher’s
original data. A class of techniques closer to our context per-
tains to the query integrity domain [35]. These techniques
employ Authenticated Data Structures (ADS) [36], [37] for
data maintenance and retrieval. Specifically, through them,
a client can query a storage entity to obtain the desired data
along with proof of their authenticity (and thus integrity).
Generally speaking, since the client is not the legitimate
owner of the data, it needs some pieces of information from
the owner to be able to verify the proof of integrity provided
by the storage entity. Notice that, unlike PDP and POR,
the approaches mentioned above enable a client to verify
the integrity of the received data, rather than verifying
whether the storage entity maintains data integrity. In the
context of query integrity, there are some proposals oriented
toward data streams, called Streaming Authenticated Data
Structures (SADS) [38]. These approaches involve both the
verifier and the prover observing the data stream and per-
forming a real-time computation on the observed data. Sub-
sequently, the verifier can obtain a portion of this data from
the prover along with proof of its integrity. Then the verifier
can check the integrity of the queried data by employing the
result of the computation made while observing the stream.
In conclusion, approaches related to SADS share a similar
goal with ours. However, as demonstrated in Section 9, they
are not applicable in the MQTT context.

To conclude this section, we highlight that to the best
of our knowledge, our proposal is the first in the literature
addressing the data flow integrity problem in the MQTT
context. We further observe that our client-to-client solution
is not based on the preliminary sharing of secrets between
publishers and subscribers, which is, per se, little realistic
in open/dynamic scenarios. Additional arguments on this
aspect are provided in Section 5.1.

3 BACKGROUND

In this section, we provide some background notions con-
cerning the MQTT protocol and the Merkle Hash Tree data
structure.

3.1 MQTT
MQTT [1] is a client-server publish/subscribe messaging
transport protocol that involves two kinds of agents: MQTT
clients and MQTT brokers. In turn, MQTT clients can be
of two types: publisher (producer of information) and sub-
scriber (consumer of the provided information).

In the MQTT architecture, publishers and subscribers
do not communicate directly with each other but rather
through an MQTT broker. When a publisher sends a mes-
sage to the broker, it specifies the information and the topic
under which that information should be published. The
broker then forwards the published information to all the
subscribers interested in that topic.

In MQTT, topics are UTF-8 strings that can include one
or more levels separated by a forward slash (’/’). This way,
topics can be organized in a hierarchical structure. When
a client subscribes to a topic, it can subscribe to a single
topic or use wildcards to subscribe to multiple topics simul-
taneously. MQTT allows two different kinds of wildcards:
single-level (’+’), which can replace only a single topic level,
and multi-level (’#’), which can replace an arbitrary number
of topic levels. For instance, suppose that a client subscribes
to the topic temperature/#, it will receive all the messages
published on topics having ‘temperature’ as a prefix, such
as temperature/dining room or temperature/dining room/2.

Concerning MQTT messages, clients can choose the de-
sired Quality of Service (QoS) level. MQTT supports three
different Quality of Service (QoS) levels. In detail, level 0
implies that messages are delivered at most once. level 1
implies that messages are delivered at least once. level 2
implies that messages are delivered exactly once.

3.2 Merkle Hash Tree
A Merkle Hash Tree [14] is a data structure that allows for
the verification of data integrity. The concept behind it is to
hierarchically aggregate different data, potentially intended
for different recipients, into a single digest that is signed
just once by the owner. Each recipient can efficiently verify
the integrity of individual data blocks without necessarily
accessing all the data.

It works as follows. Suppose the data are organized into
blocks, so that each block can be verified individually by a
recipient. A Merkle Hash Tree is a binary tree in which the
leaves represent the digests of these individual blocks. The
rest of the nodes (internal nodes) are obtained by applying
a cryptographic hash function H to the concatenation of
their two children. For example, in Figure 1, we consider
8 blocks of data B1, . . . , B8. The leaves of the tree are
obtained as Hx = H(Bx) for x = 1, . . . , 8. Then, H1 and H2

are concatenated and hashed to obtain H12 = H(H1||H2).
Similarly, the other nodes of the tree are obtained. Then,
only the root HR is signed.

Suppose now a recipient wants to verify the integrity
of the block B3. It just needs three nodes of the tree,
namely H4, H12, and H58, to recompute the root. In-
deed, the recipient computes in this order H3 = H(B3),
H34 = H(H3||H4), H14 = H(H12||H34), and finally the
root as HR = H(H14||H58). Then, the signature of the
root is verified. Observe that just a logarithmic number of
hash computations (in the number of blocks) are required
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Fig. 1. Merkle Hash Tree with 8 leaves.

for the verification. For simplicity, the example reported in
this section considers a Merkle Hash Tree with a number of
leaves that is a power of 2. For a more general algorithm,
with any number of leaves, see function MerkleTree in
Algorithm 1.

4 THREAT MODEL

Through this section, we formally describe the adversarial
model and the security properties we aim to achieve via
our solution. We consider a scenario in which a publisher
p publishes messages on a given topic t and a subscriber s
receives messages on the topic t. We do not make any as-
sumption on t, then, all the security results obtained are still
valid for each topic t through which p and s communicate.

First, we provide some notations.
Let U be the universe of all possible messages. We denote

by Mp
t ⊂ U the (finite) set of messages published by p on the

topic t. We denote by Ms
t ⊂ U the (finite) set of messages

received by s on the topic t. We denote by Mp
t = U \ Mp

t

the complement set of Mp
t , i.e., the set of messages not

published by p on the topic t. Similarly, we denote by
Ms

t = U \ Ms
t the complement set of Ms

t , i.e., the set of
messages not received by s on the topic t. We denote by T
the set of all possible timestamps. We introduce an injective
function fp

t : Mp
t → T that associates each message of

Mp
t with a timestamp (representing the sending time of

the message). Similarly, we define an injective function
fs
t : Ms

t → T that associates each message of Ms
t with a

timestamp (representing the sending time of the message).
We formalize the notion of data flow integrity (on the

topic t) by describing the security properties to be satisfied.
These properties are borrowed from the domain of query
integrity [35], [39].
Completeness CM: All the messages sent by p should be
received by s. We formalize the completeness (on the topic
t) with a boolean predicate CMt. We define CMt ≡ (Mp

t ⊆
Ms

t ).
Correctness CR: All the messages received by s should be in
the set of messages sent by p. We formalize the correctness
(on the topic t) with a boolean predicate CRt. We define
CRt ≡ (Ms

t ⊆ Mp
t ).

Liveness L: The liveness property might be intended in a
weak sense (we call it weak liveness) or in a strong sense
(we call it strong liveness). The following definitions take
inspiration from [12]. It is easy to realize that this notion of
liveness extends the standard notion of freshness defined in
the query integrity domain [35], [39].

We say that the weak liveness WL property is satisfied
if the order of the messages published by p and received
by s is preserved. We formalize the weak liveness (on the
topic t) with a boolean predicate WLt. We define WLt ≡
∀ m,m′ ∈ (Mp

t ∩ Ms
t ), it holds (fp

t (m) < fp
t (m

′)) ⇐⇒
(fs

t (m) < fs
t (m

′)).
We say that the strong liveness SL property (over a

parameter ∆) is satisfied if the following two conditions
hold: (1) the weak liveness property is satisfied, and (2)
s receives each message sent at timestamp τ within the
deadline τ + ∆. We formalize the strong liveness (on the
topic t) with a boolean predicate SLt. We define SLt ≡
WLt ∧ (∀ m ∈ (Mp

t ∩Ms
t ) it holds fs

t (m) < fp
t (m) + ∆).

At this point, we define the data flow integrity DFI on
the topic t as: DFIt ≡ CMt∧CRt∧SLt. Observe that DFIt
implies also WLt (since it is implied by SLt).

We now formalize the adversarial model. Specifically, we
consider an adversary A that can actively interfere with the
execution of the protocol by performing one or more of the
following compromises.
C1: A can modify some messages sent by p. Formally, C1 ≡
(Mp

t ∩Ms
t ̸= ∅) ∧ (Mp

t ∩Ms
t ̸= ∅).

C2: A can inject some messages in Ms
t . Formally, C2 ≡

(Mp
t ⊂ Ms

t ).
C3: A can delete some messages originally sent by p. For-
mally, C3 ≡ (Ms

t ⊂ Mp
t ).

C4: A can change the order of the messages sent by
p. Formally, C4 ≡ ∃ m,m′ ∈ (Mp

t ∩ Ms
t ), such that

fp
t (m) < fp

t (m
′) and fs

t (m) > fs
t (m

′).
C5: A can delay the messages sent by p more than a time
threshold ∆. Formally, C5 ≡ ∃ m ∈ (Mp

t ∩ Ms
t ) such that

fs
t (m) > fp

t (m) + ∆.
In Section 11, we show that these compromises are all

and only the possible actions A can perform to break data
flow integrity.

Realistically, the adversary A with the capabilities to
perform the above compromises is a malicious (or compro-
mised) broker in the middle of the communication between
p and s.

5 MOTIVATIONS

In this section, starting from the design challenges high-
lighted in the introduction, we show that the problem ad-
dressed in this paper is effective. In other words, a straight-
forward application of existing techniques is not possible
and a new technique becomes necessary. Then, we discuss
in an intuitive fashion how we meet the design challenges.
Finally, we report a motivating example of application of
our proposal.

To help the reading of the section, we report here the
design challenges:
Challenge 1: We have to capture the dynamicity of the
considered scenario, in which clients exchange a data stream
between them and they can leave and join the system at any
time.
Challenge 2: The decoupling principle between publishers
and subscribers should be satisfied,
Challenge 3: We have to take into account the fact that data
are multiplexed across multiple topics.
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5.1 Existing approaches

In the following, we discuss why existing approaches cannot
be applied to the MQTT domain to reach end-to-end data
flow integrity.

A straightforward approach to achieve it is via
encryption-based solutions. Observe that, independently of
the type of encryption (between symmetric and public-key),
a publisher should send a different encrypted flow of data
per subscriber, as in our threat model encryption cannot be
delegated to the potentially untrusted broker. This would
lead to an intolerable overhead, aggravated by Challenge
1. Indeed, this approach would introduce an overhead in
terms of message size (and thus bandwidth) and computa-
tional cost (due to multiple encryptions) for the publisher
that grows linearly with the number of subscribers, which
can be arbitrarily high. On the contrary, the overhead in-
troduced by our solution is independent of the number of
subscribers. Moreover, Challenge 2 would not be fully ad-
dressed. Indeed, the publisher would become non-agnostic
with respect to subscribers. Without public-key encryption,
a preliminary agreement between publisher and subscriber
would be necessary to pre-share keys. This strongly pulls
us away from Challenge 2. Observe that, a shared group
key (shared by the subscribers and publisher) may prevent
the publisher from sending a different flow per subscriber.
However, any subscriber colluding with the broker may
impersonate the publisher and send altered messages to the
other subscribers (thus violating the integrity).

Instead, with public-key encryption, the solution would
violate the agnostic property of decoupling more than the
necessary, thus partially compromising Challenge 2. In-
deed, the problem itself (i.e., data flow integrity) implies
data source authentication due to the assumption of untrust-
worthiness of the broker, so it is necessary that subscribers
need the public key of the publishers, but not vice versa
(i.e., it should not be necessary that publishers be aware
of subscribers). Unfortunately, any public-key encryption-
based solution would require this.

Other approaches in the literature share some similarities
with the goals of this paper and belong to the domain of
outsourced data integrity. Therefore, it is worth considering
whether these approaches can be applied in the MQTT
domain. We refer to the approaches identified in Section 2.
Regarding PDP and POR techniques, they typically involve
the owner or a trusted party (TPA) acting as a verifier, and
the storage entity acting as a prover, providing proof of
the integrity of the stored data to the verifier. In principle,
subscribers could act as TPA, and the broker could act as the
untrusted storage entity. Then, subscribers could challenge
the broker in order to verify that it has the publisher’s
original data. However, this approach does not guarantee
that what the subscriber receives from the broker actually
corresponds to the publisher’s original data, which is the
primary objective of our proposal. In sum, PDP and POR
have different objectives and are not applicable to solving
our problem, since they do not take into account the stream
of data exchanged between publishers and subscribers
(Challenge 1).

On the other hand, the class of techniques that employ
Streaming Authenticated Data Structures (SADS) to address

the query integrity problem shares the most similar objec-
tive with ours. Unlike PDP and POR, these techniques aim
at verifying the integrity of streaming data received by the
verifier. In principle, they could be applied in our domain
by letting the subscriber play the role of the verifier and the
broker play the role of the prover. However, both Challenge
2 and Challenge 3 would be not addressed.

Concerning Challenge 2, it happens that all SADS tech-
niques require the existence of a trusted direct channel
between the data owner and verifier. In our context, the
role of the data owner is played by the publisher, while the
role of the verifier is played by the subscriber, Therefore,
the existence of such a trusted channel is fully against
Challenge 2.

Concerning Challenge 3, we succinctly state here that
SADS are not designed for multi-topic streams and, then,
to take into account them, we would introduce a computa-
tional disadvantage, with respect to our technique, that is
measurable even in terms of asymptotic costs. We dedicate
an entire subsection to explain this point.

5.2 Addressing design challenges

Through this section, we discuss how the design challenges
introduced at the beginning of this section can be addressed.

To address Challenge 1, our approach proceeds by split-
ting the data streams into chunks exchanged in time rounds
in such a way that the integrity of each chunk is verified at
the end of the corresponding round. This leaves subscribers
free to join the system at any time since they can verify
the integrity of the flow of data starting from the next time
round. Observe that finding the optimal round duration
requires studying a trade-off. The shorter the round time,
the higher the security level reached, but it comes at a
performance cost. This aspect is analyzed in Section 10.

To address Challenge 2, we do not assume the presence
of any direct channel between publishers and subscribers.
Moreover, our protocol does not require any key exchange
between MQTT clients.

Consider now Challenge 3, i.e., topic multiplicity. To
explain this point, we recall that our approach takes inspi-
ration from the context of outsourced data. In this context,
data integrity (also called query integrity) is typically en-
sured through the construction of a Merkle Hash Tree [14].

The first problem is to understand whether this data
structure might introduce unnecessary overhead in our
case. Indeed, in the domain of data outsourcing, clients
typically need to extract a portion of data (through queries)
and verify their integrity (i.e., freshness, correctness, and
completeness of the query result). This operation can be
efficiently performed if the outsourced data are organized
in a Merkle Hash Tree since this data structure allows the
integrity verification of even a portion of data without the
need to download all the outsourced data.

It is easy to realize that, in the MQTT context, if a client
is subscribed to a single topic, then it will receive messages
just on that topic from each publisher. Then, it is interested
in verifying the completeness, correctness, and liveness of
the whole sequence of messages received in a round from
each publisher. Therefore, a Merkle-Hash-Tree data struc-
ture would introduce unnecessary overhead. Indeed, a hash
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chain (per publisher) of the messages sent, equipped with
the signature of the publisher of the last digest, would be
sufficient to ensure integrity.

Otherwise, in the general case of subscription to multiple
topics, two alternatives exist:
(1) The publisher follows the same approach as the case
of single-topic subscribers, i.e., it builds a hash chain per
topic. It is important to note that, in this case, subscribers do
not need to verify portions of the stream of messages, and,
consequently, there is no need to adopt a Merkle Hash Tree.
(2) The publisher builds a single hash chain by mixing all
the topics to which it publishes. In this case, subscriber-side
verification requires a similar approach as data outsourcing,
as the subscriber needs to extract from the entire hash
chain only the portions regarding the topics to which it is
registered. Therefore, the use of a Merkle Hash Tree seems
advantageous.

The advantage of (1) is that no extra hash computa-
tion arises from the Merkle Hash Tree construction. The
advantage of (2) is that each publisher performs only one
signature, and each subscriber only verifies one signature. In
contrast, in (1), the publisher generates a signature per topic,
and the subscriber verifies a signature per topic. Therefore,
the choice between (1) and (2) is not straightforward and
deserves further study. It should take into account that, in
the context of IoT, the required computational power and
energy consumption are critical aspects. This is the primary
focus of our paper, in which we conclude that the non-trivial
solution (2) is the better choice. In Section 6, we present
option (1) in detail, which we refer to as the baseline approach.
Then, in Section 7, we introduce the Merkle Hash Tree-based
solution (i.e., option 2), called MQTT-I. In Sections 8 and 10,
we compare the two solutions and conclude that MQTT-I is
the best solution, thus supporting the main proposal of this
paper. Additionally, in Section 10, we also explore the issue
of round frequency mentioned earlier, which is an integral
part of the complete definition of the MQTT-I protocol.

5.3 Motivating example

To conclude this section, we provide a real-life example to
show the relevance of the problem faced in this paper. One
of the main areas of applications of MQTT is smart cities
[4], [40], [41]. IoT devices, communicating via MQTT, can
be used in this context both for ubiquitous sensing and
actuation. In a smart city, it is necessary to track various
parameters of a city area (such as temperature, humidity,
pollution, traffic conditions, and the state of the power
grid) to remotely monitor the specific state of that area,
and also integrate monitoring devices with other distributed
applications that collect data [4] or control actuators [42].
Typically, an MQTT device is equipped with various sen-
sors/actuators or acts as an aggregator for different sen-
sors/actuators [8], [43]. The devices aggregating sensors act
as publishers, while the devices aggregating actuators act as
subscribers. MQTT topics enabled by a smart city environ-
ment can be various. Examples of topic names belonging to
the domain of sensing are “environment/air/temperature”
or “environment/air/carbonMonoxide” [44], just to give
a few. Instead, actuators may operate in areas such as
surveillance, smart electricity and water distribution, smart

transportation, smart healthcare, and smart infrastructure
[42], resulting in a large set of possible topics. In addition to
actuators, other examples of subscribers in smart cities in-
clude citizens who monitor events using their smartphones
[45] or facilities (e.g., emergency facilities) [46].

In this scenario, brokers (possibly placed in the cloud
[47], [48]), could collude with parties that have an interest
in manipulating, deleting, or shuffling data. Consider for
example the case of data coming from sensors that monitor
road or electrical infrastructures. Companies responsible
for maintenance could have an interest in altering these
data. Similar considerations can be made for sensors and
actuators related to homeland security, a scenario in which
criminal groups or terrorists could have an interest in
compromising the integrity of related data flows. For these
reasons, it is realistic to consider the threat model in which
the broker is untrusted, and can pursue the objective to alter
the integrity of data flows.

In the exemplified context, let us discuss now why data
flow integrity should be intended as defined in Section 4,
i.e., as the combination of four security requirements: com-
pleteness, correcteness, weak liveness, and strong live-
ness. The need for completeness and correctness can be
trivially explained. Generally speaking, these properties are
desired when a given parameter is monitored, to be able to
correctly reconstruct the evolution of a process over time.
Moreover, this becomes crucial when dealing with safety-
critical scenarios. Indeed, suppose a device is monitoring a
critical parameter (such as the level of carbon monoxide in
a certain area), it is crucial that all the data are delivered
intact to the interested subscribers. Indeed, the omission
of data (i.e., a compromise of the completeness property)
or tampered data (i.e., a compromise of the correctness
property) can lead to safety incidents. A similar reasoning
can be made concerning weak liveness. Indeed, chang-
ing the order of the MQTT packets (i.e., a compromise
of the weak liveness property) can obviously affect the
understanding of the evolution of a process over time. This
may also lead to safety incidents. Consider, for instance, a
device monitoring the temperature of a given area. If in that
area something wrong is happening (e.g., a fire), observing
an increasing temperature over time can help trigger the
emergency facility on time. On the contrary, if an attacker
can reverse the MQTT packet order, it may appear that
an anomalous situation (e.g., a high-temperature value) is
returning to normal. Finally, ensuring that MQTT packets
are not delayed over a chosen time window (i.e., strong
liveness) is a desirable feature. Indeed, while for periodic
monitoring, the absence of a message at a given time can be
detected as an anomaly, this is not true in the case of event-
based monitoring. For example, consider a sensor detecting
traffic incidents that notifies a central operative. In this case,
no periodic traffic is expected from the monitoring device
(but only in the case of an incident). Strong liveness ensures
that the integrity of the notification is verified within a fixed
time. In general, strong liveness gives strict guarantees
about the time window in which a certain phenomenon is
observed. Obviously, this is helpful in gaining a complete
understanding of the observed phenomenon.
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6 BASELINE APPROACH

In this section, we describe the baseline solution introduced
Section 5.2, denoted as option (1), in which no Merkle Hash
Tree is adopted and integrity is ensured through a simple
hash chain.

We introduce the notation that will be used throughout
the remainder of the paper.

Each publisher p owns a pair of public and private keys
(PBp, PRp) and is identified by the hash of its public key,
i.e., IDp = H(PBp). We denote by T the set of all the
topics of the system. We denote by T p ⊆ T the set of
topics on which a publisher p publishes data. Finally, we
denote by T s ⊆ T the set of topics to which a subscriber s
subscribes. We assume that T p and T s are sorted according
to the lexicographic order of the topics. Then, tpx (tsy ,resp.)
denotes the x-th (y-th, resp.) topic of the set T p (T s, resp.).

Our solution performs in rounds of duration RT config-
urable according to the security and performance require-
ments. The underlying idea of our approach is that during
each round, a flow of data is sent by publishers and, at the
end of the round, the integrity of this flow can be verified by
each subscriber. We want to stress that each publisher can
choose a different round time RT .
Publisher operations. For each topic, p maintains a se-
quence number and a digest.

Each time p wants to send a message m on the topic
tpx ∈ T p, it performs as follows.

First, p publishes the message m on the topic
tpx/ID

p/SNp[x], where SNp[x] is the current sequence
number associated with the topic tpx. The value SNp[x] is
increased by 1.

Then, p updates the current digest Dp[x] associated with
the topic tpx with the value H(m||Dp[x]). In other words, p
builds a hash chain for each topic so that the integrity of
the entire message flow in each round can be verified by
checking the integrity of the last digest.

At the end of the round, p performs the following
operations.

For each topic tpx ∈ T p, p retrieves the associated digest
Dp[x] and binds it with the current timestamp τp, by com-
puting a signature σp

x.
Then, p publishes Dp[x]||τp||σp

x on a dedicated topic
named tpx/ID

p/signature, where signature is just a fixed
string used to notify the subscriber that the received mes-
sage on the topic tpx is a signature for verifying data integrity.
Subscriber operations. We assume s has previously sub-
scribed to each topic in T s using the wildcard mechanism,
i.e., s subscribes to tsy/# for each tsy ∈ T s. Each subscriber
s maintains, for each topic tsy ∈ T s, a list of digests and a
list of sequence numbers. Each list associated with a topic
contains an entry for each publisher on that topic.

Each time s receives a message m on the topic
tpx/ID

p/SNp[x], it proceeds as follows.
First, s retrieves the index y of the topic tsy ∈ Ts such

that tsy = tpx.
Then, s checks if the sequence number SNp[x], reported

in the topic, is equal to SNs[y][IDp], which is the sequence
number associated with the topic tsy and the publisher
p. If this is not the case, s should temporarily store m
while waiting for a message with the expected sequence

number (further details are provided in Section 7). Then,
SNs[y][IDp] is increased by one.

Finally, s updates the value Ds[y][IDp] in the list of
digests (associated with the topic tsy and the publisher p)
with H(m||Ds[y][IDp]). In other words, it recomputes the
same chain of digests as the publisher p.

At the end of the round for the publisher p, s will
receive the message Dp[x]||τp||σp

x labeled with the topic
tpx/ID

p/signature.
s will perform the following operations.
First, s checks if τp is equal to its local timestamp modulo

a given threshold δ, to take into account different time basis
between p and s and any possible network delay.

Then, s verifies the signature σp
x of Dp[x]||τp. This en-

sures the integrity of the data flow received from p on the
topic tpx up to this point.

We point out that s may not verify the signature at each
round, thus waiting for subsequent rounds for signature
verification. This leaves the subscriber free to choose the
time interval between two successive verifications. Indeed,
since the hash chain built at each round is linked to the
previous round, the last signature ensures the integrity of
all the previous rounds.

To conclude this section we highlight that new sub-
scribers may freely enter the system at any time with the
only price that they can verify the integrity of the data flow
starting from the next round of each publisher. Indeed, they
have to wait for the next Dp[x] provided by the publisher to
compute the correct hash chain.

7 MQTT-I: THE PROPOSED APPROACH.

The main drawback of the baseline approach is that both
publishers and subscribers have to compute/verify a signa-
ture for each topic (per round) they are interested in. In this
section, we introduce a more sophisticated technique, called
MQTT-I, that improves upon the baseline approach.

The idea behind MQTT-I is to aggregate all the digests
associated with the topics (publisher-side) and perform an
aggregate signature. This approach reduces the number
of signature computations to just one per round for each
publisher. Likewise, on the subscriber side, there is only one
signature verification per round for each publisher.

The most effective way to aggregate different topics is
by constructing a Merkle Hash Tree (see Section 3.2) on the
publisher side. Indeed, this requires a linear number of hash
computations (as opposed to a linear number of signatures)
in the number of topics.

Similarly, concerning subscribers, the computational ef-
fort moves from a linear number of signature verifications
in the number of topics (for each publisher) to a logarithmic
number of hash computations in the number of topics of the
publishers. A detailed discussion of the computational com-
plexity of MQTT-I and the baseline approach is provided in
Section 8.

As a preliminary observation, we highlight that, to guar-
antee the integrity of the data flow, at least QoS 1 must be
adopted in MQTT. Indeed, by definition, QoS 0 does not
ensure message delivery.

We enter into the details of MQTT-I.
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7.1 Publisher operations
Each publisher p maintains two arrays Dp and SNp, both
of length |T p|, which contain a digest and sequence number,
respectively, for each topic in T p. Dp and SNp are initialized
with default values (e.g., all values set to 0). We assume
that each topic is associated with a position of the array
according to its order in the set T p, so that Dp[x] (or SNp[x])
represents the x-th element of the array and is associated
with the topic tpx.

Along with the arrays SNp and Dp, each publisher p
maintains a variable pr to store the root of the Merkle Hash
Tree computed in the previous round. This root will be used
to link the current round with the previous round.

Each time p wants to send a message m on the topic
tpx ∈ T p, it performs as follows.
• p publishes the message m on the topic tpx/ID

p/SNp[x]
and increments SNp[x] by 1. The introduction of the se-
quence number is necessary to guarantee message ordering
and prevent duplicate messages. Indeed, as observed in [49],
even though QoS 2 guarantees single message delivery with
no duplicates, it does not guarantee message ordering.
• p updates the current value of Dp[x] with H(m||Dp[x]).

At the end of the round, p performs as follows.
• p builds a Merkle Hash Tree by using the digests contained
in the array Dp as leaves. We consider an in-place algorithm
to reduce the amount of memory required by our solution.
This algorithm is described in the function MerkleTree
reported in Algorithm 1. This function returns the current
root of the tree, say cr.
• p signs Hr = H(pr||cr||τp) with its private key PRp. We
denote this signature by σp.
• Hr||τp||σp is published on the topic IDp/signature,
where signature is just a fixed string included in the topic
name used to notify the subscriber that the received message
is a signature to verify data integrity.
• The previous root pr is updated with Hr , and Dp and
SNp are restored to the default value.

Observe that the broker forwards the root of the tree
to the subscriber (according to the decoupling principle of
MQTT). However, the signature of the publisher ensures
that no entity can tamper with such a root.

7.2 Broker changes
Each subscriber, to verify the integrity of the data published
by p, needs to recompute the root of the tree.

Observe that signature verification is not a straightfor-
ward operation for subscribers since they are not typically
subscribed to all the topics of a publisher. Then, a proper
mechanism should be implemented.

To recompute the root of the Merkle Hash Tree, sub-
scribers need the digests forming the paths from the leaves
of the tree to the root (see Section 3.2). These paths may be
computed by the publisher itself and provided to the sub-
scribers. However, it is more efficient to delegate this task
to the broker since it is less resource-constrained and has
higher computational power (compared to the publishers).

Then, we require some changes in the broker. In detail,
for each publisher p, the broker maintains an array Dp

(the same as maintained by p) to store the hash chains
associated with the topics in T p. When the broker receives

Algorithm 1: Publisher p (MQTT-I)
for tpx ∈ T p do

SNp[x]←− 0 ;
Dp[x]←− 0 ;

pr ←− 0 ;
while Data to send are available do

m, tpx ←− ObtainData();
ProcessAndSendData(m, tpx);
if Round Time is expired then

EndRound();

Function ProcessAndSendData(m,tpx):
MQTTPublish(m, tpx/IDp/SNp[x]);
SNp[x]←− SNp[x] + 1;
Dp[x]←− H(m||Dp[x]);

Function EndRound():
τp ←− getCurrentTime();
cr ←− MerkleTree();
Hr ←− H(pr||cr||τp);
σp ←− Sign(Hr, PRp);
MQTTPublish(Hr||τp||σp, IDp/signature);
pr ←− Hr ;
for tpx ∈ T p do

SNp[x]←− 0 ;
Dp[x]←− 0 ;

Function MerkleTree():
size←− |T p| − 1 ;
do

z ←− 0;
for (i←− 0; i <= size; i←− i+ 2) do

if i = size then
Dp[z]←− Dp[i];
break;

Dp[z]←− H(Dp[i]||Dp[i+ 1]);
z ←− z + 1;

if size is even then
size←− size/2 ;

else
size←− (size− 1)/2 ;

while size >= 1;

Hr||τp||σp on the topic IDp/signature, it does not im-
mediately publish this message, but it first performs the
following operations.

It computes the Merkle Hash Tree to obtain the root cr.
However, differently from the publisher, when the broker
builds the tree, it stores, for each leaf, a sequence of digests
that allows a subscriber to recompute the root starting from
such a leaf. We denote by Lp

x, the list of digests enabling
the computation of the root starting from the leaf associated
with the topic tpx (i.e., Dp[x]). Furthermore, along with Lp

x,
the broker stores a sequence of bits Bp

x, which is of the
same length as Lp

x, that indicates whether the elements of
Lp
x should be concatenated to the left or right to recompute

the root. We assume that bit “0” means “left-concatenation”
and bit “1” means “right-concatenation”.

For example, consider Figure 1 in Section 3.2. Suppose
H3 is the leaf of the tree associated with the topic tpx. In this
case, Lp

x = (H4, H12, H58) and Bp
x = (0, 1, 0). Finally, for

each topic tpx ∈ T p, the broker publishes Lp
x||Bp

x on the topic
tpx/ID

p/path, where path is a fixed string. Then, it publishes
the message of p, Hr||τp||σp, on the topic IDp/signature.

7.3 Subscriber operations
We discuss the procedure followed by subscribers.
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Each subscriber s maintains two arrays Ds and SNs,
each of length |T s|. Ds and SNs will contain a list of digests
and sequence numbers, respectively, for each topic in T s.
The length of each list (for each topic) may be different.
Specifically, the list of digests (or sequence numbers) asso-
ciated with the topic tsy ∈ T s will contain an entry for each
publisher on that topic. Formally, ∀ tsy ∈ T s, the length of the
associated list will be |{p : tsy ∈ T p}|. Each entry of the list
is indexed by the identifier IDp of a publisher p. We denote
by Ds[y][IDp] (SNs[y][IDp], resp.) the element of Ds (SNs,
resp.) associated with the topic tsy and the identifier IDp of
p.

s also locally stores an additional array, say Rs of length
equal to the number of publishers whose topics are of inter-
est for s. Formally, the length of Rs is |{p : T s∩T p ̸= ∅}|. Rs

is indexed by the identifiers of the publishers and contains
the previous roots provided by publishers.

We assume s has previously subscribed to each topic
in T s using the wildcard mechanism, i.e., s subscribes to
tsy/# for each tsy ∈ T s. Furthermore, s subscribes to the
topic IDp/signature for each of p such that T s ∩ T p ̸= ∅.
This topic prevents s from receiving the signature of the
publishers multiple times.

Three types of MQTT messages can be received by s.
First, s can receive a message m on the topic

tpx/ID
p/SNp[x]. In this case, it performs as follows:

• s retrieves the index y of topic tsy ∈ Ts such that tsy = tpx.
• s checks if the sequence number SNp[x], reported in the
topic, is equal to SNs[y][IDp]. If this is not the case, s should
temporarily store m while waiting for a message with the
expected sequence number (more details are provided in
Section 7). We use another list to store possible out-of-order
messages. Nevertheless, we want to point out that this case
is very uncommon, hence the size of this list is expected to
be very small. This list can be efficiently implemented as a
hash map using the sequence number received in the topic
(i.e., SNp[x]) as the key and the message and the topic itself
(i.e., m, tpx/ID

p/SNp[x]) as the value. This operation is per-
formed in Function ProcessReceivedData in Algorithm
2.
• s increments SNs[y][IDp] by one.
• s updates the value Ds[y][IDp] with H(m||Ds[y][IDp]).

In the second case, s receives a message in the form
Lp
x||Bp

x on the topic tpx/ID
p/path.

When s receives this message:
• s retrieves the index y of the topic tsy ∈ Ts such that tsy =
tpx.
• Starting from Ds[y][IDp] (corresponding to a leaf of the
Merkle Hash Tree of p), s computes the root of the tree
by leveraging Lp

x and Bp
x, as described in the function

ComputeRoot in Algorithm 2. This root will be stored in
Ds[y][IDp].

In the third case, s receives the message Hr||τp||σp on
the topic IDp/signature. It performs as follows:
• s checks if the τp is equal to its local timestamp modulo
a given threshold δ, to take into account different time basis
between p and s and any possible network delay.
• s retrieves the previous root associated with p, i.e.
Rs[IDp].
• s needs to retrieve the current root cr associated with p.
This root is stored in Ds. Observe that, since this root is

unique for IDp, s checks that Ds[y][IDp] contains the same
value (i.e., cr) for each possible y associated with the same
IDp.
• s computes Hs = H(Rs[IDp]||cr||τp) and verifies the
signature σp of Hs

• Finally s updates Rs[IDp] with Hs.
Observe that, if multiple data are provided to s by the

same publisher on different topics, the signature can be
verified just once while the paths are verified for each topic.
However, the computational effort required to recompute
the root is negligible compared to the effort required for
signature verification.

Finally, we would like to highlight the following
concerning the chunk-based mechanism implemented by
MQTT-I. We recall that MQTT-I works by slicing the data
flow into chunks by setting a time period (called round
time). For each chunk, MQTT-I requires the construction of
a Merkle Hash Tree, whose number of leaves is equal to the
number publisher’s topic. Indeed, each leaf (associated then
with a given topic) consists of a hash chain including all the
packets belonging to that chunk tagged with that topic. As
a result, the size of the Merkle Hash Tree is not dependent
on the size of the chunk (i.e., the round-time duration and
the number of messages exchanged within that interval),
because the number of leaves coincides with the number
of topics. Additional details on the cost derived from the
Merkle Hash Tree construction are reported in Section 8. The
entire procedure followed by the subscriber is summarized
in Algorithm 2.

8 COMPUTATIONAL OVERHEAD

Through this section, we analyze the computational over-
head introduced by the baseline approach and MQTT-I
compared to the standard MQTT protocol (which does not
offer end-to-end integrity).

We introduce some notations.
We recall that the most common hash functions follow

the Merkle–Damgård construction [50] so that the input
message is split into blocks of fixed size B (e.g., for SHA256,
B = 64 bytes). The total time required to compute a digest
is linear in the number of blocks forming the message to
hash. We denote by CH the time required to perform a hash
computation on a block of size B. Then, to compute a hash
on a message of size M , the required time is M

B · CH .
We denote by CS the time to compute a digital signature

and by CV the time to verify the digital signature. Observe
that the input of the signature computation and verification
procedure is equal to the dimension of a digest and does not
depend on other factors. Once performing the computation,
in both the baseline approaches and MQTT-I, the signature
(along with a digest and a timestamp) has to be published
through MQTT. We denote by CP this publication time.

The other operations (assignments, concatenations, com-
parisons, and so on) are negligible compared to the previous
ones. This is also confirmed by the experiments performed
in Section 10. Finally, we denote by M the size of the MQTT
messages transferred by the publishers to the subscribers.

We start by analyzing the computational overhead of
each publisher.
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Algorithm 2: Subscriber s (MQTT-I)
for tsy ∈ T s do

for p ∈ {p : tsy ∈ T p} do
SNs[y][IDp]←− 0 ;
Ds[y][IDp]←− 0 ;

tempList←− ∅; Rs ←− ∅;
while Data to read are available do

m∗, t∗ ←− ReceiveMQTTData();
if t∗ = tpx/ID

p/SNp[x] then
ProcessReceivedData(m∗,t∗);

if t∗ = IDp/signature then
EndRound(m∗, t∗);

if t∗ = tpx/ID
p/path then

ComputeRoot(m∗, t∗);

Function ProcessReceivedData(m, t∗):
tpx, ID

p, SNp[x]←− splitTopic(t∗) ;
y ←− findIndex(tpx);
if SNp[x] = SNs[y][IDp] then

SNs[y][IDp]←− SNs[y][IDp] + 1;
Ds[y][IDp]←− H(m||Ds[y][IDp]);
while tempList.contains(SNs[y][IDp]) do

m, t∗ ←− tempList.get(SNs[y][IDp]) ;
tpx, ID

p, SNp[x]←− splitTopic(t∗) ;
y ←− findIndex(tpx);
SNs[y][IDp]←− SNs[y][IDp] + 1;
Ds[y][IDp]←− H(m||Ds[y][IDp]);

else
tempList.add(SNp[x],m, t∗);

Function EndRound(m∗, t∗):
IDp ←− splitTopic(t∗); τs ←− getCurrentTime() ;
τp, σp ←− splitMessage(m∗)
if |τs − τp| > δ then

return ERROR;

cr ←− Ds[0][IDp];
for tsy ∈ T s do

if Ds[y][IDp] ̸= cr then
return ERROR;

Hs ←− H(Rs[IDp]||cr||τp);
if Verify(σp, Hs, PBp) then

Rs[IDp]←− Hr ;
for tsy ∈ T s do

SNs[y][IDp]←− 0 ;
Ds[y][IDp]←− 0 ;

return SUCCESS;
else

return ERROR;

Function ComputeRoot(m∗, t∗):
tpx, ID

p ←− splitTopic(t∗) ;
y ←− findIndex(tpx);
Lp
x, B

p
x ←− splitMessage(m∗)

for (i←− 0, i < |Bp
x|, i←− i+ 1) do

if Bp
x[i] == 0 then
Ds[y][IDp]←− H(Ds[y][IDp]||Lp

x[i]);
else

Ds[y][IDp]←− H(Lp
x[i]||Ds[y][IDp]);

In both the baseline approach and MQTT-I, this overhead
is introduced during two phases: (i) the message transmis-
sion and (ii) the end of the round.

Concerning (i), for each message to send, the publisher
computes a digest and the input of the hash function (i.e.,
m||Dp[x]) has size M plus the size of a digest. In the most
common hash functions (e.g., SHA256), the size of the digest
is half the size of the block B. However, since the messages

are padded until they have a size multiple of B, we can
assume that the time to compute a hash function with input
less than B is still CH . Then, the overhead introduced in
this phase is

(
M
B + 1

)
· CH in both the baseline approach

and MQTT-I.
We want to highlight that in practical terms this over-

head is negligible compared to the time needed to complete
the transmission of the MQTT message (see Table 3 in
Section 10). Indeed, since obtaining integrity requires at least
QoS level 1, the transmission time includes at least the time
to transmit the message to the broker and the time to receive
the MQTT acknowledgment from the broker.

Consider now the overhead introduced by the baseline
approach at the end of the round. Three operations have
to be considered, i.e., a hash computation (requiring a time
CH ), the computation of the signature (requiring a time CS),
and its publication (along with a digest and a timestamp)
through MQTT (requiring a time CP ).

Since these operations are performed for each topic in
T p of the publisher, in the baseline approach, we have a
computational overhead per round of |T p| ·(CH+CS+CP ).

On the other hand, in the MQTT-I protocol, three op-
erations are performed just once. They are the signature
computation (with time CS), the MQTT publication (with
time CP ), and the Merkle Hash Tree construction. The latter
operation requires a linear number of hash computations in
the number of topics. It is easy to realize that this number of
hash computations is strictly less than |T p| (corresponding
to the number of leaves of the tree). The input of each
hash computation is composed of two concatenated digests
with a total size of B. Then each hash computation takes
CH . By including the last hash computation (assuming the
size of a timestamp less than B), we have that, at most,
the time required for the Merkle Hash Tree construction is
(|T p|+ 1) · CH .

We conclude that the overhead per round of MQTT-I is
CS + CP + (|T p|+ 1) · CH .

By comparing the baseline approach and MQTT-I, we
observe that the baseline approach performs better only for
|T p| = 1. For |T p| > 1, it is easy to realize that MQTT-
I overcomes the baseline approach. Indeed, in any realistic
device and application CH << CS and CH << CP (see
Table 3 in Section 10).

At this point, we analyze the overhead subscriber-side
introduced per each publisher p sending data on the topics
T s in which s is interested. We assume T s ⊆ T p, repre-
senting the worst case for the subscriber (otherwise fewer
signatures can be verified).

Again this overhead is introduced during two phases: (i)
the message reception and (ii) the end of the round of the
publisher p.

For each received message, both in the baseline approach
and MQTT-I, the subscriber computes a digest requiring a
time

(
M
B + 1

)
· CH .

However, we make the following consideration. In real
applications, the time between two consecutive messages
received by the broker is much greater than

(
M
B + 1

)
· CH ,

so this computation is negligible and can be performed
between the reception of two consecutive messages.

Concerning the overhead introduced during the end of
the round of p, we distinguish the baseline approach from
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TABLE 1
Computational overhead.

Publisher Subscriber
/ Baseline MQTT-I Baseline MQTT-I

Transmission
of messages

(
M
B

+ 1
)
· CH

(
M
B

+ 1
)
· CH

(
M
B

+ 1
)
· CH

(
M
B

+ 1
)
· CH

End Round |T p| · (CS + CP + CH) CS + CP + (|T p|+ 1) · CH |T s| · (CV + CH) CV + CH + |T s| · CH · log2|T p|

MQTT-I.
In the baseline approach, for each topic in T s, a signature

verification and a hash computation are performed. This
requires a cost of |T s| · (CH + CV ).

In MQTT-I, the computational overhead is CV + CH +
|T s| ·CH · log2|T p|. The first two terms represent the cost of
a signature verification and a hash computation. The third
term counts, for each topic in T s, the cost of the number
of hash computations needed to recompute the root of the
Merkle Hash Tree built by p. This number is logarithmic in
the number of topics |T p| of the publisher.

By comparing MQTT-I and the baseline approach, the
latter may realistically outperform the former only in the
case |T s| = 1. On the other hand, if |T s| > 1, the baseline

approach may outperform MQTT-I only if |T p| > 2
CV
CH

+1.
By taking as an example the values reported in Table 3,
|T p| should be greater than 22658, which is definitively an
unrealistic number of topics. Then the benefits of MQTT-
I compared to the baseline approach are confirmed also
for the subscribers. The results of this analytical evaluation
are summarized in Table 1. We experimentally confirm
these results in Section 10, in which we also show that the
overhead introduced by MQTT-I compared to the standard
MQTT protocol is acceptable.

9 COMPARISON WITH EXISTING APPROACHES

As discussed in Sections 2 and 5, the only approaches in
the literature that share some similarities with our proposal
are the SADS, used in the domain of streaming data out-
sourcing. In SADS, a data owner generates a stream of data
and sends it to a prover (typically, a cloud provider) and a
verifier. Subsequently, the verifier submits some queries to
the prover to obtain part of these data along with a proof
of their integrity. The verifier can then check the integrity of
the retrieved data using the result of the computation made
while observing the stream.

By comparing this scenario with ours, we can iden-
tify the following similarities: (i) the roles of data owner,
prover, and verifier are played by the publisher, broker,
and subscriber, respectively; (ii) the goal is the same: the
subscriber verifies the integrity of the data originating from
the publisher and provided by the broker. However, we
highlight two (main) differences: (iii) SADS are designed to
support query integrity for specific queries; (iv) SADS rely
on the presence of a trusted direct communication channel
between the data owner and the verifier.

Regarding the first difference, it holds significant im-
portance in the case of data outsourcing because, often,
the entity hosting data is the cloud, which also serves as
query provider. This is not the case of MQTT, where the

TABLE 2
Comparison between SADS and MQTT-I

Technique Publisher/Broker
(Data Structure Construction)

Subscriber
(Verification)

[38] O(|Mp| · log2(|Mp|)) O(|Ms| · log|Mp|)
[52] O(|Mp| · log(|Mp|)) O(|Ms| · log|Mp|)
[53] O(|Mp| · log(|Mp|)) O(|Ms| · log|Mp|)
[54] O(|Mp| · log(|Mp|)) O(|Ms| · log|Mp|)

MQTT-I O(|Mp|+ |T p|) O(|T s| · log|T p|)

broker’s sole role is to suitably forward data by interme-
diation (in other words, the broker remains fully agnostic
regarding how data is used by the subscriber). Therefore,
the only objective we can pursue is to support the integrity
of the entire data flow. Based on this consideration, MQTT-
I can be compared with SADS by considering the case of
the simplest query i.e., “select all”, once a topic is fixed.
However, the second difference makes SADS not applicable
to MQTT. Indeed, it is not realistic to assume the existence
of a trusted direct channel in the context of MQTT, due to
the decoupling principle of MQTT between publisher and
subscriber [51].

Nevertheless, in the following, we perform an analytical
comparison between SADS and MQTT-I to demonstrate that
even in terms of asymptotic costs our approach offers clear
advantages over SADS. This is just a further argumentation
to highlight the intrinsic efficiency of our approach, but,
we remark that it remains the non-applicability of SADS
to the context of MQTT explained above. We consider the
following SADS in our comparison: [52], [53], [38], [54].

Table 2 reports the result of our comparison in terms
of asymptotic costs per round for constructing the data
structure (performed by publisher and broker) and for ver-
ifying the integrity of the data received by the subscriber.
We denote by |Mp| and |Ms| the total number of messages
sent by the publisher and received by the subscriber, re-
spectively. Observe that they may not coincide since they
can publish/subscribe on/to different topics. We denote by
|T p| and |T s| the number of topics in which the publisher
sends messages and the subscriber receives messages, re-
spectively. Since, it is realistic to assume |T p| << |Mp| and
|T s| << |Ms|, our approach proves to be more advanta-
geous for both publisher/broker and subscriber.

Intuitively, the advantage of our approach derives from
the fact that all the SADS are based on hash trees, as is
MQTT-I. However, unlike MQTT-I, SADS do not consider
the concept of topic (Challenge 3), and the hash trees are
built using the messages as leaves instead of the topics as
in MQTT-I. This leads to higher costs. This outcome is ex-
pected, as they support different features, including specific
queries that are not meaningful in the MQTT context.
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10 EXPERIMENTS

In this section, we experimentally validate our proposal.
As previously highlighted in Section 5.1, there is no

existing solution in the literature applicable to our scenario,
so an experimental comparison with other proposals is not
possible. However, to give a measure of the advantages
introduced by our solution we compare our technique with
two “baselines”. The first is the baseline approach presented
in Section 6, which supports the same security goals as
MQTT-I. The second is standard MQTT, which represents
the ideal solution from the performance point of view, since
no extra computation is required to guarantee integrity. The
aim of the last comparison is to understand if the overhead
introduced by MQTT-I is acceptable.

10.1 Experimental Environment
Our experimental campaign was carried out by implement-
ing the standard MQTT protocol, the baseline approach, and
MQTT-I on physical devices to measure their performance.

Specifically, we used a Raspberry Pi Pico W device to im-
plement publishers and subscribers. It is a very recent (2022)
and cheap (6$) device with low computational capabilities
(dual-core ARM Cortex-M0+ with frequency 133Mhz), low
RAM storage (256 Kb), and low flash memory (2 Mb). This
choice is made to show that our protocol is fully sup-
ported even in domains where high-performance hardware
resources are not available. Concerning the broker, it was
deployed on a standard laptop equipped with a 1.8 GHz
Intel i7-8850 CPU and 16 GB of RAM.

Publishers, subscribers, and the broker were connected
to the network via Wi-Fi.

As software tools, we used the ArduinoMQTT library
to implement the publisher and subscriber components of
MQTT in the three protocols. As for the cryptographic
functions (used only in the baseline approach and MQTT-
I) we relied on the Arduino Cryptography Library.
Specifically, we used SHA256 as the hashing algorithm and
Ed25519 as the public-key digital signature algorithm.

The broker component was implemented by customiz-
ing the Java library HiveMQT to include the MQTT-I func-
tionalities, such as the Merkle Hash Tree construction.

In Table 3 we report the time required to perform some
basic operations, which are obtained in the considered
network environment, using the aforementioned hardware
and software. The notation used is the same as Section 8.
Observe that CP is the time required to publish an MQTT
message of 100 bytes with QoS level 1 and receive the
corresponding ACK from the broker. Since the employed
digital signature and hashing algorithms produce signatures
of 64 bytes and digests of 32 bytes, CP is also the time
required to publish the digital signature at the end of each
round. In the table, we also report the time CM needed for
the publisher to build a Merkle Hash Tree.

10.2 Publishers Performance
We start by analyzing the performance of the publishers. We
choose as a measure of performance the throughput, defined
as the number of messages (of 100 bytes) that the publisher
can transmit in unity of time. For unity of time we use
seconds (denoted by s).

TABLE 3
Basic Operation times.

Operation Time (ms)
Hashing time of a message (CH) 0.147

Signature computation (CS) 244.993
Signature Verification (CV ) 390.775

Publish time of a message (Qos 1) (CP ) 50.551
Merkle Hash Tree construction

with 100 topics (CM )
14.684

In the standard MQTT protocol, since no overhead is
present, the publisher can reach a throughput equal to 1

CP
,

corresponding to about 20 messages per second.
On the other hand, in both the baseline approach and

MQTT-I, as discussed in Section 8, an overhead is intro-
duced during the transmission of the messages and at the
end of each round. Consequently, a lower throughput is ex-
pected. However, the first contribution is definitely negligi-
ble, given that the hashing time is minimal in comparison to
the publish time. On the other hand, the second contribution
may have an impact. Two main parameters may influence
the performance of the baseline approach and MQTT-I: the
number of topics |T p| in which the publisher publishes and
the round time RT .

We evaluated how the throughput varies as |T p| and RT
vary. The results are depicted in Figures 2 (with RT = 15s)
and 3 (with |T p| = 20).
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Fig. 2. Throughput of publishers as a function of the number of topics.
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Fig. 3. Throughput of publishers as a function of the round time.

Concerning Figure 2, clearly, in MQTT the throughput
does not depend on the number of topics. As for MQTT-
I, theoretically, the throughput decreases linearly with the
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number of topics since a Merkle Hash Tree (requiring a
linear number of hash computations) has to be built at
the end of each round. However, this decrease is very
slow since the signature time is prevalent (about 250 ms)
compared to the Merkle Hash Tree construction (14 ms with
100 topics). Then, no appreciable difference was experimen-
tally observed as |T p| increases. A slight difference (less
than 1, 7%) is observed between the throughput of MQTT-
I and the standard MQTT. On the other hand, concerning
the baseline approach, since a linear number of signatures
(instead of hash computations) has to be performed at each
round, the effect on the throughput is relevant. Indeed,
when |T p| = 50, the publisher computes and publishes 50
signatures, which takes more time than the round time (15
seconds), so that no more messages can be sent and the
throughput is 0.

At this point, we investigate the effect of the round
time on the throughput. Obviously, again the throughput
of MQTT does not depend on RT . In both the baseline ap-
proach and MQTT-I, as expected, the throughput increases
as the round time increases. Indeed, the time to perform
the operations at each round is fixed (by fixing the number
of topics), then an improvement is expected when these
operations are performed less frequently. However, it is
clear that RT is a security parameter that defines when the
integrity can be verified (see Section 11), then it should not
be too high. In Figure 3, we observe that MQTT-I reaches the
throughput of the standard MQTT very quickly (it reaches
6 messages per second with RT =0.45s and 16 messages
per second with RT =2s). On the other hand, the increase
in throughput for the baseline approach is much slower (it
requires RT =6.5s to obtain a throughput of 1 message per
second).

In conclusion, from the perspective of publishers, be-
yond its relevant benefits in terms of security, the overhead
of MQTT-I is negligible compared to the standard MQTT.
On the other hand, the baseline approach does not present
advantages (compared to MQTT-I) and may be adopted
only in restricted cases (a single-topic scenario).

10.3 Subscribers Performance

Now, we study the performance of the subscribers when
implementing the three protocols. Again, we consider the
maximum throughput each subscriber may support, which
is defined as the maximum number of messages that can
be received (and processed) within a unit of time. However,
unlike publishers, the throughput of the subscribers does
not depend only on the device hardware and network
limitations, but also on the number of publishers and their
sending rate.

Now, observe that, in general, the throughput of a
subscriber cannot exceed the sum of the sending rates of
the publishers. On the other hand, if the throughput were
significantly less than this sum, it would imply that the
messages are being enqueued at some point (in the broker
queue, or in the subscriber queue). However, in the long run,
this situation cannot be sustained, as the size of the queues
is limited. Then, the maximum throughput supported by the
subscriber is very close to the sum of the sending rates of
the publishers.

By trial and error, we found that a subscriber (on a
Raspberry Pi Pico W device) implementing the standard
MQTT protocol may support 12 simultaneous publishers
(also implemented on the same typology of devices) each
transmitting at the rate of 5 messages per second (for such
a subscriber). Then, in MQTT, the maximum supported
throughput for subscribers is about 60 messages per second.

In the baseline approach and MQTT-I, the signature
verification at the end of the publishers’ rounds leads to
lower throughput. Indeed, during the round, the messages
are processed at the same throughput of MQTT (the hash
computation does not affect the throughput). However,
when a signature is being verified, other messages coming
from the same or other publishers are enqueued at the
subscriber but cannot be immediately processed. They will
be processed at the end of the signature verification. If this
processing occurs before the end of the next round, the
corresponding throughput can be measured; otherwise, we
need to reduce the number of publishers, thus resulting in a
lower throughput.

Again, the performance of MQTT-I depends on the num-
ber of topics of the subscribers and the round time of the
publishers. As worst-case conditions for MQTT-I and the
baseline approach, we consider 12 (or fewer) synchronized
publishers in which T p = T s, i.e., they send messages
simultaneously (as much as possible) on all the topics of
the subscriber.

The results of our analysis are reported in Figures 4 (with
RT = 15 seconds) and 5 (with |T s| = 20).
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Fig. 4. Throughput of subscribers as a function of the number of topics.

0

10

20

30

40

50

60

0 5 10 15 20Th
ro

ug
hp

ut
[m

es
sa

ge
s/

s]

RT

MQTT
MQTT-I
Baseline

Fig. 5. Throughput of subscriber as a function of the round time.

These results are aligned with those in Section 10.2.
MQTT-I requires a logarithm number (in |T s|) of hash
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computations at the end of each round, but this cannot be
appreciated compared to the single signature verification.
Then the throughput remains nearly constant in |T s| and
very close to that of MQTT (with a percentage difference of
approximately 5%). On the other hand, the performance of
the baseline approach degrades rapidly as |T s| increases.

Concerning the plot of Figure 5, the baseline approach
exhibits slow growth with an increase in round time. On the
other hand, MQTT-I approaches MQTT when RT > 6s.

10.4 Power Consumption
We analyzed the overhead in terms of power consump-
tion introduced by our proposal compared to the standard
MQTT protocol. In particular, we measured the energy re-
quired to transmit n = 2000 packets in the three approaches.
To do this, we leveraged a high-precision USB multimeter,
with a sampling rate equal to 1000sps. From some prelimi-
nary measurements, we drew some considerations.

First, to send data and receive acknowledgements, the
Wi-Fi module has to be enabled. This absorbs a current
of about 60 mA excluding the instant in which data are
sent and received. Concerning the cryptographic operations
(hashing and signature computations), we observe a very
slight increment of the required current (about 1 mA). Fi-
nally, we observe some peaks of currents (80-140 mA) when
the packets are sent and their acknowledgements are re-
ceived. Since the number of transmitted packets is the same
for the three protocols, the impact of these peaks in terms of
energy will be the same. Furthermore, the overhead to per-
form the hash computations in terms of current is negligible.
However, since the throughput achieved in MQTT-I and the
baseline approach is smaller than the throughput of MQTT,
the devices need more time to transmit the same number of
packets. This leads to higher power consumption.

Given that the core proposal of this work is MQTT-I
(and not the baseline approach), we focus on a scenario
in which some differences between MQTT-I and MQTT
can be appreciated. Specifically, we considered the second
scenario outlined in Section 10.2 where we fixed 20 topics
and analyzed the energy consumption to transmit 2000
packets as the round time varies.

As previously discussed, the number of topics, in prac-
tice, does not influence the performance of MQTT-I. The
results of these measurements are reported in Figure 6.
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Fig. 6. Energy consumption for the transmission of 2000 packets.

As expected, this plot is mirrored with respect to the plot
of Figure 3. Specifically, MQTT always requires less energy

consumption. However, MQTT-I rapidly approaches MQTT,
so MQTT-I does not require high values of RT . In contrast,
the baseline approach performs well only with high round
times. We conclude that, even from an energy consumption
perspective, MQTT-I is applicable.

10.5 Discussion

In this section, we summarize the results of the previous
sections and discuss the trade-offs in terms of security,
throughput, and energy consumption of MQTT, MQTT-
I, and the baseline approach. Furthermore, we provide
some considerations related to the configuration of MQTT-
I parameters. Finally, we discuss some limitations of our
approach.

We briefly compare MQTT-I and the baseline approach.
Essentially, no trade-off exists. MQTT-I offers the same secu-
rity guarantees as the baseline approach (for the same round
time) but outperforms it in terms of throughput and energy
consumption for any round time and any non-degenerate
case. Indeed, the baseline approach slightly outperforms
MQTT-I only in the case of a single topic shared by the
publisher and subscriber, which represents a degenerate
case of use of MQTT. Concerning the comparison between
MQTT and MQTT-I, we observe that a trade-off exists in
terms of security and performance. Although MQTT offers
better throughput and energy consumption, it provides no
guarantee of data integrity.

In our experimental campaign, we investigated the main
parameters potentially affecting the performance of MQTT-
I, i.e., the number of topics and the round time. It arises
that the number of topics does not appreciably affect the
performance of MQTT-I, making it suitable for use in a
scenario with high number of topics [55], [56].

Then, the only parameter to set properly is the round
time RT . The performance of MQTT-I improves with higher
values of RT . However, the round time also defines a
sort of vulnerability window during which the integrity of
received messages is not yet verified. In other words, the
subscriber has to wait the completion of the round to check
the integrity of the data received in this round. Then, from
a security standpoint, RT should be maintained as short as
possible, as it represents a delay imposed on the subscriber
that intends to process data only after their verification.

The experimental results show that acceptable perfor-
mance (comparable to standard MQTT) can be achieved
for both publishers and subscribers in terms of throughput
and energy consumption with RT > 6s. The presence of a
vulnerability window is a limitation of MQTT-I, which may
make it unsuitable for those hard real-time applications in
which data integrity should be guaranteed within millisec-
onds. However, these applications [57] rely on hardware
with no limited capability as that typically considered in
MQTT. However, this aspect would merit further investiga-
tion (which we plan as future work). Indeed, in the current
configuration of our method, the reduction of the round
time is hindered by the cost of digital signatures, whose
frequency increases inversely with respect to the round time
(actually, we require one digital signature per round time).
Therefore, in a high-speed application, we could think of
some highly efficient signature schemes (such as [58]) to
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make this source of inefficiency acceptable. Obviously, this
aspect does not impact the outcomes of this paper, in which
we aim to demonstrate the advantages of our methods
and its general applicability to the MQTT context. There-
fore, we used standard Elliptic curves for digital signatures
whose advantage is the availability of secure cryptographic
libraries and hardware implementations.

11 SECURITY ANALYSIS

Through this section, we provide a security analysis of the
proposed approach according to the threat model presented
in Section 4. Since the baseline approach does not present
any advantage from the performance point of view, we
perform our analysis only on MQTT-I, which is the actual
proposal of this work. On the other hand, it is easy to see
that they are equivalent from the security point of view.
Security Properties. In Section 4, we formalized the notion
of data flow integrity (on the topic t) as DFIt ≡ CMt ∧
CRt ∧ SLt, where:
• CMt ≡ (Mp

t ⊆ Ms
t )

• CRt ≡ (Ms
t ⊆ Mp

t )
• SLt ≡ WLt ∧ (∀ m ∈ (Mp

t ∩ Ms
t ) it holds fs

t (m) <
fp
t (m) + ∆), where WLt ≡ ∀ m,m′ ∈ (Mp

t ∩Ms
t ), it holds

(fp
t (m) < fp

t (m
′)) ⇐⇒ (fs

t (m) < fs
t (m

′))
Adversarial Model. We consider the adversary A presented
in Section 4 which performs the following compromises:
• C1 ≡ (Mp

t ∩Ms
t ̸= ∅) ∧ (Mp

t ∩Ms
t ̸= ∅).

• C2 ≡ (Mp
t ⊂ Ms

t ).
• C3 ≡ (Ms

t ⊂ Mp
t ).

• C4 ≡ ∃ m,m′ ∈ (Mp
t ∩Ms

t ), such that it holds fp
t (m) <

fp
t (m

′) and fs
t (m) > fs

t (m
′).

• C5 ≡ ∃ m ∈ (Mp
t ∩Ms

t ) such that fs
t (m) > fp

t (m) + ∆.
The first part of this analysis is devoted to proving that

these compromises are all and only the possible actions
leading to a breaking of data flow integrity.

In the following lemma, we show for each of the four
identified security properties which are the compromises
that can break them.

Lemma 11.1. The following claims hold.
Claim 1: ¬CMt ⇐⇒ C1 ∨ C3
Claim 2: ¬CRt ⇐⇒ C1 ∨ C2
Claim 3: ¬WLt ⇐⇒ C4
Claim 4: ¬SLt ⇐⇒ C4 ∨ C5

Proof. We prove the four claims.
Claim 1: By the double implication, proving ¬CMt ⇐⇒
C1 ∨ C3 is equivalent to proving that ¬(C1 ∨ C3) ⇐⇒
CMt. By definition C1 ≡ (Mp

t ∩Ms
t ̸= ∅)∧ (Mp

t ∩Ms
t ̸= ∅)

and C3 ≡ Ms
t ⊂ Mp

t . Since Ms
t ⊂ Mp

t ⇐⇒ (Mp
t ∩

Ms
t ̸= ∅) ∧ (Mp

t ∩Ms
t = ∅), we have that C3 ⇐⇒ (Mp

t ∩
Ms

t ̸= ∅) ∧ (Mp
t ∩ Ms

t = ∅). We say A ≡ (Mp
t ∩ Ms

t = ∅)
and B ≡ (Mp

t ∩ Ms
t = ∅). Then, C1 ⇐⇒ ¬A ∧ ¬B

and C3 ⇐⇒ ¬A ∧ B. By applying De Morgan’s laws
¬(C1 ∨ C3) ⇐⇒ ¬(C1) ∧ ¬(C3) and ¬(C1) ⇐⇒ A ∨B
and ¬(C3) ⇐⇒ A ∨ ¬B.

Then, ¬(C1∨C3) ⇐⇒ (A∨B)∧(A∨¬(B)) ⇐⇒ (A∧
A)∨(A∧¬(B))∨(B∧A)∨(B∧¬(B)) ⇐⇒ A∨(A∧¬(B))∨
(B ∧ A) ⇐⇒ A ⇐⇒ (Mp

t ∩Ms
t = ∅) ⇐⇒ Mp

t ⊆ Ms
t .

This ends the proof.

Claim 2: By replacing Ms
t with Mp

t , it follows immediately
by Claim 1. This ends the proof.
Claim 3: It immediately follows from the definitions of WLt

and C4. This ends the proof.
Claim 4: We say A ≡ (∀ m ∈ (Mp

t ∩Ms
t ) it holds fs

t (m) <
fp
t (m)+∆). By the double implication, proving ¬SLt ⇐⇒
C4 ∨ C5 is equivalent to proving that ¬(C4 ∨ C5) ⇐⇒
SLt. By De Morgan’s laws, ¬(C4 ∨ C5) ⇐⇒ ¬(C4) ∧
¬(C5). By Claim 3, ¬(C4) ⇐⇒ WLt. By definition of
C5, it holds that ¬(C5) ⇐⇒ A. Then, ¬(C4 ∨ C5) ⇐⇒
¬(C4) ∧ ¬(C5) ⇐⇒ WLt ∧ A ⇐⇒ SLt. This ends the
proof.

At this point, we can prove the data flow integrity can be
broken if and only if at least one of the compromises occurs.

Theorem 11.1. ¬DFIt ⇐⇒ C1 ∨ C2 ∨ C3 ∨ C4 ∨ C5

Proof. By definition of DFIt, ¬DFIt ⇐⇒
¬(CMt ∧ CRt ∧ SLt). By De Morgan’s laws,
¬DFIt ⇐⇒ ¬CMt ∨ ¬CRt ∨ ¬SLt. By Lemma
11.1, it follows ¬DFIt ⇐⇒ C1∨C2∨C3∨C4∨C5. This
ends the proof.

At this point, the rest of the analysis is devoted to
showing that MQTT-I ensures data flow integrity.

We start with some assumptions.
Assumptions. In this analysis we will assume the following.
A1: H is a secure cryptographic hash function (i.e., it offers
preimage resistance, second preimage resistance, and colli-
sion resistance).
A2: the private key (i.e., PRp) is in the exclusive possession
of p.
A3: ∆ ≥ RT + δ.

The first two assumptions are basic assumptions
adopted for any integrity protocol. The third assumption, as
discussed in Lemma 11.6, refers to the fact that a temporal
shifting of a message can be detected when it is greater than
a round time plus a network delay.

In MQTT-I, all the security properties are verified by
the subscriber when invoking the EndRound function of
Algorithm 2. We call current round, the round in which this
function is invoked by the subscriber.

We recall that the EndRound takes as input m∗ =
Hr||τp||σp and t∗ = IDp/signature.

The following Lemmas ensures that if EndRound returns
SUCCESS, then the compromises C1, C2, C3, C4, and C5
do not occur.

Lemma 11.2. (EndRound(m∗, t∗) = SUCCESS) ⇒ ¬C1

Proof. By contradiction, suppose C1 occurs. This implies
that there exists a message received by s but not sent by p.
Say m′ such a message. m′ is received either in the current
round or in the previous rounds.

The function EndRound(m∗, t∗) returns SUCCESS if
and only if the signature σp of Hs = H(Rs[IDp]||cr||τp) is
verified.

By Assumption A2, σp cannot be forged by A, then
EndRound(m∗, t∗) returns SUCCESS if and only if Hs is
equal to H(pr∗||cr∗||τ̂p) where pr∗,cr∗, and τ̂p are values
computed by p.

By Assumption A1, this happens if and only if pr∗ =
Rs[IDp], cr∗ = cr, and τ̂p = τp.
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Considering cr∗ = cr, it means that the root of the
Merkle Hash Tree obtained in the current round by p (i.e.,
cr∗) is the same as the current root obtained by s (i.e., cr). We
recall that cr∗ is obtained by performing a given number of
hash computations including all the messages sent by p in
the current round. Similarly, cr is obtained by performing
the same number of hash computations including all the
messages received by s in the current round. Then, by
Assumption A2, if cr∗ = cr, then m′ cannot be included
in the current round.

Then, consider m′ belonging to a previous round, say
R such a round. By applying the above reasoning, the root
computed by p in the round R will be different from the
root computed by s in the round R. We recall that pr∗ is
obtained by applying several hash computations including
all the roots obtained in the previous rounds (among which
R) by p. Similarly, Rs[IDp] is obtained by applying several
hash computations including all the roots obtained in the
previous rounds (among which R) by s. Then, if in the
round R, the roots computed by p and s are different, then
Rs[IDp] ̸= pr∗. Therefore, Rs[IDp] = pr∗ and cr∗ = cr
only if m′ belongs to neither the current round nor the pre-
vious rounds. This contradicts the hypothesis and concludes
the proof.

Lemma 11.3. (EndRound(m∗, t∗) = SUCCESS) ⇒ ¬C2

Proof. This proof is the same as the proof of Lemma 11.2.
Indeed, if C2 occurs, then there exists a message m′ received
by s but not sent by p. This concludes the proof.

Observe that C1 and C2 are indistinguishable from the
point of view of the subscriber since they result in the same
effect (i.e., a message not sent by p is received by s).

Lemma 11.4. (EndRound(m∗, t∗) = SUCCESS) ⇒ ¬C3

Proof. By contradiction, suppose C3 occurs. This implies
that there exists a message m′ sent by p but not received by
s. m′ is sent either in the current round or in the previous
rounds.

The reasoning is similar to the proof of Lemma 11.2.
Indeed, if m′ is sent during the current round, by As-
sumption A1, the root computed in the current round by
p (including the hash computation of m′) is different from
the root computed by s (in which the hash computation of
m′ is not performed). On the other hand, if m′ was sent in
a previous round, by Assumption A1, the roots computed
by p and s in such a round are different. Then, the values
stored in pr∗ and Rs[IDp] are different.

By Assumption A2, this proves that if m′ exists, the
signature cannot be verified and the EndRound function
does not return SUCCESS. This concludes the proof.

Lemma 11.5. (EndRound(m∗, t∗) = SUCCESS) ⇒ ¬C4

Proof. By contradiction, suppose C4 occurs. This implies
that there exist two messages m′ and m′′ such that m′ is
sent by p before m′′ and m′ is received by s after m′′.

Two cases may occur: (i) m and m′ belong to different
rounds and (ii) m and m′ belong to the same round, say R.

Considering (i), it means that there exists a round R∗

in which a message not sent by p is received by s. Then, by
applying the same reasoning of Lemma 11.2, by Assumption

A1, the roots computed by p and s in the round R∗ are
different. Then, by Assumption A2, the signature cannot be
verified (in the current round) and the EndRound function
does not return SUCCESS.

Consider now case(ii). We recall that the hash computa-
tions including m and m′ are performed by p in the same
order in which the messages are sent and by s in the same
order in which the messages are received.

Since this order is different, by Assumption A1, the roots
computed by s and p in the round R are different. As before
(with R in place of R∗), by Assumption A2, the signature
cannot be verified (in the current round) and the EndRound
function does not return SUCCESS.

This contradicts the hypothesis and concludes the proof.

Lemma 11.6. (EndRound(m∗, t∗) = SUCCESS) ⇒ ¬C5

Proof. By contradiction, suppose C5 occurs. This implies
that there exists a message m′ sent by p at time τ̂p and
received by s at time τ̂s > ∆+ τ̂p.

Suppose m′ is sent by p at the round R. We denote by
τp, the timestamp in which p sends the signature at the end
of the round R.

Two cases may occur: (i) the adversary A does not delay
the transmission of the signature, and (ii) the adversary
delays the transmission of the signature.

Consider case (i). By Assumption A3, since ∆ > RT + δ,
the message m′ is received by s after receiving the signature
message of the round R.

This means that m′ is not included in the round R and
then, by Lemma 11.4, the signature cannot be verified and
the EndRound function does not return SUCCESS.

In case (ii), the signature message is delayed so that the
message m′ is included in the round R from the point of
view of the subscriber (otherwise we fall in case (i)).

This means that the signature message is received at a
time τs > τ̂s > ∆+ τ̂p.

The signature message also includes the timestamp τp

generated by p. Since τp is included in the hash computation
performed in the round R by p, by Assumptions A1 and A2,
the signature can be verified only if the value τp received by
is the original one sent by p.

Since τp − τ̂p < RT (the signature is sent within the
round in which m′ is sent), we have that τs > ∆ + τ̂p >
∆+ τp −RT .

By Assumption A3, τs > RT + δ + τp − RT = δ + τp.
In this case, the EndRound function returns ERROR.

This concludes the proof.

We conclude our security analysis with a theorem stating
that MQTT-I guarantees data flow integrity.

Theorem 11.2. (EndRound(m∗, t∗) = SUCCESS) ⇒
DFIt

Proof. By Lemmas 11.2, 11.3, 11.4, 11.5, and 11.6, we have
that (EndRound(m∗, t∗) = SUCCESS) ⇒ ¬C1 ∧ ¬C2 ∧
¬C3 ∧ ¬C4 ∧ ¬C5.

By De Morgan’s laws, ¬C1 ∧ ¬C2 ∧ ¬C3 ∧ ¬C4 ∧
¬C5 ⇐⇒ ¬(C1 ∨ C2 ∨ C3 ∨ C4 ∨ C5). By Theorem
11.1 ¬(C1 ∨ C2 ∨ C3 ∨ C4 ∨ C5) ⇐⇒ DFIt. Then,
(EndRound(m∗, t∗) = SUCCESS) ⇒ DFIt. This con-
cludes the proof.
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12 CONCLUSIONS

In this paper, we propose MQTT-I, a solution to provide
MQTT with end-to-end data flow integrity. The proposed
solution consists of the non-trivial application of the notion
of Merkle Hash Tree (used in the field of data outsourcing)
to the context of MQTT. This was accomplished by address-
ing two specific problems: the dynamic nature of the sce-
nario and the presence of multiple topics. Additionally, we
rigorously considered the critical aspects of computational
overhead and energy consumption to guide us toward the
chosen solution. The security of MQTT-I is proven through
a formal framework in which we formalize the concept of
data flow integrity. In addition to experiments, which aim
to carefully analyze the protocol’s performance in terms
of throughput and power consumption, we also provide
a computational complexity analysis of the overhead in-
troduced by MQTT-I. The outcomes validate the proposal,
showing that, under a wide range of conditions, MQTT-
I includes the desired security features with a very small
impact on performance compared to standard MQTT.

As a future work, we plan to better investigate the
limitations of our approach, discussed in Section 10.5. As
explained there, we can argue that MQTT-I (in its current
configuration) seems not suitable for high-rate hard real-
time applications. It could be interesting to better study
this limitation by defining more exactly the boundary of
application of our technique in real-life settings and evaluate
the application of highly efficient digital signature schemes
to our technique.
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