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ABSTRACT Non-linearity arising from mutual interactions is one of the two main difficulties to be
addressed in inverse scattering. In this paper, we first review and describe under a common rationale
some approaches which have been introduced in literature in order to counteract non-linearity. In particular,
we focus on possible rewritings of the Lippman Schwinger basic equation such to reduce the ‘degree of
non-linearity’ of inverse scattering problem. In detail, three different rewritings are discussed and compared
by emphasizing similarities and differences, and in the same ‘rewriting’ spirit, we also summarize and
discuss the ‘Virtual Experiments’ framework. Then, some possible and effective joint exploitations of the
above concepts are introduced, discussed and tested against numerical examples.

INDEX TERMS Contrast source inversion, degree of non-linearity, inverse scattering problem, microwave
imaging, non-linearity, new integral equations, virtual experiments.

I. INTRODUCTION

NON-LINEAR inverse scattering [1]–[3] is a fascinating
area for at least two different reasons. First, successful

solution approaches to inverse scattering can be of help in
very many different applications such as biomedical imaging,
subsurface prospecting and non-destructive testing [4]–[6].
Second, because of its non-linearity and ill-posedness, it is
very challenging, thus stimulating the efforts and (partial)
success of very many researchers and scientists since many
years [7]–[11].
In this paper, by reviewing a number of activities per-

formed by some researchers in Southern Italy, we focus
our attention to issues arising from the non-linearity of the
scattering equations with respect to the parameters describ-
ing the electromagnetic characteristics of the target to be
retrieved. In fact, it is well known that non-linearity of
the problem can induce solution algorithms towards ‘false
solutions’ actually different or even very different from the
ground truth [12]. Of course, exploitation of any available
a priori information (or even partial information arising
from some pre-processing) can considerably reduce the false

solution occurrence through convenient starting points or reg-
ularization techniques. On the other side, we want to focus
herein on the case where no a-priori information is available,
so that the solution approach has to rely on pre-processing
(if any) and actual quantitative inversion. In fact, we are
confident that such an analysis will be indeed anyway of
help in all cases when a priori information is available, or
global optimization is used (see for instance [13]), or even
for the very recent machine learning based approaches (see
for instance [14]).
In particular, we focus on nonmagnetic isotropic scat-

terers. Moreover, as it is simpler to be discussed while
still containing (almost) all the relevant elements, we
focus herein on the 2D scalar (TM) inverse scattering
problem.
The paper takes advantage from two main tools which

have been introduced and developed during the last twenty
years or so, i.e.,:
- the concept of ‘degree of non-linearity’ (DNL) of scat-

tering problems with respect to parameters embedding the
electromagnetic characteristics of the target [15], and some
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simple strategies, based on a proper rewriting able to reduce
such a degree [16]–[19];
- the ‘Virtual Experiments’ (VE) framework, where

a proper rearranging and assembling of the equations cor-
responding to the different scattering experiments can allow
a conditioning of the internal fields (or contrast sources)
which can be then conveniently exploited in the quantitative
inversion [20]–[22].
In this paper, we first provide a unitary perspective for

the above different contributions. Then, we take advantage
from these latter to introduce new effective possibilities. In
particular, two different hybrid models and the derived con-
trast source inversion (CSI) methods [10] are introduced and
discussed.
The paper is organized as follows. In Section II, after

writing the basic equations in their more standard fashion,
we briefly summarize some results regarding the concept
of DNL [15] and false solutions [12] in non-linear inverse
problems, and limitations arising from the finite number of
the so called ‘degrees of freedom’ of scattered fields [23].
In Section III, a number of alternative rewriting of the

scattering equations, that are the contrast source extended
Born (CS-EB) model [16]–[17], the family of integral scat-
tering formulations known as NIE models [18], and the very
recent Y0 model [19] are reviewed, commented and com-
pared for the first time. Some comments on the so-called
Strong Permittivity Fluctuation model [24]–[25] (which only
can be applied to vector problems) is also given.
In Section IV, turning back to the standard writing of the

inverse scattering equations, the ‘virtual’ scattering experi-
ment framework is recalled [20]–[22]. Finally, in Section V
the Y0-NIE-CSI and VE-NIE-CSI hybrid methods are intro-
duced and discussed, while in Section VI numerical tests are
performed within a non-linear regime and against simulated
data. Then, we come to Conclusions.

II. INVERSE SCATTERING: BASIC EQUATIONS AND
ISSUES
Inverse scattering consists in retrieving the electromagnetic
properties of unknown targets by properly processing their
scattered fields when illuminated by given incident fields
Ei [1].

The basic equations underlying the problem are the data
and the state equations. The first one relates the scattered
field Es measured on a given measurement curve � to the
electromagnetic properties of the target, which are encoded
in the contrast function χ . The state equation, also known
as Lippman Schwinger equation, is instead the mathematical
expression of the total field (or the currents), induced in the
investigation domain D, in term of the contrast function χ .
This latter is expressed as χ = εx(r)

εb(r)
−1, being εb(r) and εx(r)

the complex permittivities of the background medium and the
unknown targets, respectively. By assuming and dropping the
time harmonic factor exp{jωt}, the mathematical expressions
of data and state equations for the 2D scalar problem are

respectively [1]–[3]:
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wherein r′ = (x′, y′) ∈ D, r = (x, y) ∈ D, rt and rm are the
transmitting and receiving positions on the curve �. Then,
W = χEt, and Et are respectively the so-called contrast
sources and the total electric fields in D, while Ae and Ai
are short notations of the external and internal radiation
operators, respectively. Finally, Gb(r, r′) = − j

4k
2
bH

(2)
0 (kb|r−

r
′ |) is the Green’s function pertaining to the background
medium, being H(2)

0 the zero order and second kind Hankel
function and kb = ω

√
μbεb the wavenumber in the host

medium.
In order to emphasize the differences with the ones

proposed in the following, let us identify the model (1)-(2) as
the H0 model.

A. ISSUES RELATED TO INVERSE SCATTERING
PROBLEMS
In inverse scattering problems, the solution can be proved to
exist in case of noise-free data [23], and, provided a number
of hypotheses on the collected data hold true, theoretical
uniqueness can be proved in both the tridimensional and
bidimensional cases [26], [27].
On the other side, even when the solution exists and it is

unique, another element comes into play, so that the problem
is anyway ill-posed. In fact, one can easily prove that the
solution does not depend continuously on data, which comes
essentially from the fact that the operator Ae is compact so
that it cannot be inverted. Moreover, another consequence of
the compactness of Ae is that there is no hope of extending at
will the number of independent scattering experiments, but
only a finite number of receivers and transmitters actually
bring independent information. In fact, care has to be taken
in choosing the positions (rt and rm) and the number (NT
and NR) of transmitting and receiving probes, in such a way
to collect all the available information in a non-redundant
fashion. This can be efficiently done by adopting the mea-
surement strategies proposed in [23], wherein a Nyquist
criterion is essentially suggested for the case at hand.
Unfortunately, the inverse scattering problem is also non-

linear, because of the dependence of W or Et on the unknown
contrast function χ [1], [3]. In a first instance, non-linearity
can be attributed to the mutual (or even self) interactions
amongst the different parts of the scatterer. A generalized
solution of inverse scattering is usually looked for by mini-
mizing a suitable cost functional, which takes into account
misfits in both the data and state equations. Due to the non-
linearity of the underlying problem, this cost functional is
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a non-quadratic one, so that it may have many local min-
ima which are ‘false solutions’ of the problem [12]. The
more the problem departs from a linear one, the larger the
chance of incurring into a false solution. In fact, if the initial
guess does not belong to the attraction region of the actual
solution, the minimization scheme could be trapped into local
minima completely different from the actual ground truth.
As discussed in [12], a possible key to avoid the occur-

rence of false solutions is to have a sufficiently large ratio
amongst the number of independent information and num-
ber of unknowns. Unfortunately, (see above) the number
of independent data cannot be increased at will because
of the limited number of degrees of freedom of scattered
fields [23], so that additional care and tools are needed, as
discussed in the following.

B. DEGREE OF NON-LINEARITY
In order to quantify the Degree of Non-Linearity (DNL) of
the relationship between the unknown permittivity profile
and scattered field, a useful and effective key is reasoning
in terms of the norm of the operator χAi. In fact, if this
norm is lower than 1, the inverse operator formally solving
eq. (2) can be expanded into a Neumann series, that is:

(I − χAi)
−1 = I + χAi + (χAi)

2 + · · · + (χAi)
n + · · · (3)

Notably, the condition χAi < 1 is just a sufficient condi-
tion for the convergence of the above series, so that series
(3) can eventually converge even if the above condition is
not satisfied.
By evaluating the norm of χAi, one can also foresee what

is the number of series terms to be adopted in order to
achieve a given approximation accuracy [15]. Moreover, one
can understand that the overall DNL, and hence the com-
plexity and difficulty of the inverse scattering problem at
hand, increases with the norm of the operator χAi.

Then, understanding the factors affecting ‖χAi‖ is key
to understand and eventually reduce the occurrence of false
solutions. In this respect, let us consider that, by applying
the Schwarz’s inequality, an upper bound to the norm of
interest can be obtained as:

‖χAi‖ < ‖χ‖‖Ai‖ (4)

In such a way, the role played by the internal radiation
operator Ai, which only depends on the kernel of the inte-
gral operator and on the considered domain, is separated by
the one played by contrast function χ . Hence, for a fixed
contrast function, the non-linearity of the problem depends
on the structure of internal radiation operator Ai in the state
equation. On the other hand, for a fixed structure of the radi-
ation operator in the state equation, the DNL only depends
on the norm of χ .

III. EVALUATING THE DEGREE OF NON-LINEARITY OF
DIFFERENT REWRITINGS OF THE SCATTERING
EQUATIONS
In the following, three different rewritings of the scattering
equations are reviewed, that are the contrast source extended

Born (CS-EB) model (and the related family of equa-
tions) [16], [17], the family of new integral equations known
as NIE model [18], and the very recent Y0 model [19].

A. CS-EB MODEL
By exploiting the Green’s function peaked behavior in
the presence of losses in the background medium and
by using similar concepts as the ones adopted for deriv-
ing the extended Born approximation of [28], in [16], [17]
a rewriting of the traditional H0 model was proposed. This
approximation-free model hinges on the extraction of some
dominant contribution to the integral in (2) (as written in
terms of the contrast source). In fact, after simple manipu-
lations (see [16], [17] for more details) one can rewrite the
state equation (2) as follows:
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wherein:
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being I the identity operator. Equation (5) together with
(1) identifies the CS-EB model, wherein the fundamental
quantities are the contrast sources W and the auxiliary func-
tion p, which is the one now encoding the properties of the
scatterer. Note the structure of the state equation (5) is iden-
tical to the one of the H0 model, where the integral internal
operator Ai and the function χ have been now replaced by
ACS−EBi and p, respectively.

The function fD(r) can be evaluated in a closed form
in many cases of practical interest. For example, in case of
a circular cylinder of radius a, its expression is given as [17]:

fD
(
r
) = − jπkba

2
H(2)

1 (kba)J0
(
kb

∣∣r
∣∣) − 1 (7)

wherein H(2)
1 is the Hankel function of first order and second

kind while J0 is the Bessel function of zeroth order.
If the radius a is assumed as a parameter, apart from the

domain D at hand, the CS-EB model can be interpreted as
a family of equivalent equations. So, for a given domain
D wherein the operator Ai[ · ] is evaluated, a proper choice
of a can be eventually exploited in order to optimize the
performance of inversion procedures. By exploiting such
a further degree of freedom, it is worth to note that the
CS-EB model, although introduced for the case of lossy
scenarios, is indeed of interest also for the lossless case
(see [17] for more details).
A comparison between the H0 model (1)-(2) and the CS-

EB model (1)-(5) can be performed in terms of DNL. By
virtue of the inequality (4), one can compare the right-hand
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factors of (4) model and the corresponding ones regarding
the CS-EB model, that is:

∥
∥∥pACS−EBi

∥
∥∥ < ‖p‖

∥
∥∥ACS−EBi

∥
∥∥ (8)

In particular, paper [17] proves that ‖ACS−EBi ‖ ≈ ‖Ai‖ (see
also Section III-D for more details) and, hence, the CS-EB
and H0 models are almost equivalent as far as the involved
integral operators are concerned. Then, one can argue that the
CS-EB model has a reduced DNL with respect to H0 model
when ‖p‖ < ‖χ‖, which allows to establish ‘convenience
maps’ for using one of the two models for given categories of
scatterers [17]. For instance, as explained in [17], provided
a is properly chosen, the CS-EB model can be conveniently
adopted in case of completely lossless scenario and contrast
having a positive real part.
As for the model described in the following subsection,

the contrast function is embedded into an auxiliary unknown
function, so that some care has to be taken into the additional
step requiring the extraction of the actual unknown function
from the auxiliary one.

B. NIE MODEL
In the same line of reasoning of the CS-EB model and moti-
vated by the contraction integral equation [29] in tackling
forward problems with strong conductivities, in [18], [30]
a family of new integral equations (NIE) is proposed, which
are also derived by rewriting in a different fashion the stan-
dard state equation (2). By extracting a local effect of the
induced currents [18] and introducing a new convenient aux-
iliary unknown, the amount (and the effects) of non-linearity
can be alleviated. In particular, in the NIE model the state
equation is rewritten1 (again, without any approximation) as
follows:
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where:
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is the modified contrast function and β is such that the
denominator of R

(
r
)
is different from zero.

The term R(r)β(r)W(r, rt) represents the local effect of
the induced currents. The equation (9) can be rewritten such
that it exhibits the same structure of the state equation (2),
i.e.,:
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wherein:

ANIEi [·] = I + Ai[·]
β
(
r
) (12)

1. In short, eq. (9) can be derived by adding the term βχW at both
sides of eq. (2) and, then, by normalizing the resulting equation to the term
βχ + 1.

With respect to equation (2), the integral internal operator
Ai, the induced currents and the function χ have been now
replaced by ANIEi , βW and R, respectively. Note that different
functions β(r) lead to different NIE integral equations. By
properly selecting β(r), the local term R(r)β(r)W(r, rt) can
be predominant and it is possible to reduce the associated
DNL with respect to the H0 model (1)-(2).
As the structure of (11) is still the same as for the

H0 model and for the CS-EB model, the DNL of the NIE
model can be analyzed according to the norm of RANIEi .
Then, as

∥∥∥RANIEi

∥∥∥ < ‖R‖
∥∥∥ANIEi

∥∥∥ (13)

one can separately evaluate the role played by the new aux-
iliary unknown R and by the involved operator, by means
of ‖R‖ and ‖ANIEi ‖, respectively. If β(r)χ(r) has a positive
real part, the norm ‖R‖ is always less than 1. As a conse-
quence, in case of high contrast targets with positive real
part and non-positive imaginary part of χ (lossless or lossy
target in the assumed time convention), this condition holds
true with β(r) having a positive real part and a non-negative
imaginary part [18]. On the other side, this is just a part of
the story, as the norm of ANIEi has to be checked as well
(see the Section III-D below for more details).
Note that, as β increases, the auxiliary contrast tends to

1 and plays the role of a support indicator. Unfortunately,
this has an impact on the step leading from the auxiliary
unknown to the actual contrast. In fact, very large β implies
a kind of binary behavior of R(r), so that one would have
to extract a generically varying function from a binary one.

C. Y0 MODEL
The very recent Y0 model [19] is based on a convenient
decomposition of the pertaining Green’s function, which
allows to extract the main contribution of the radiating cur-
rents to the total field from the internal integral operator. In
detail, the Y0 model hinges on the following rewriting of
the state equation:
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As discussed in [19], −j k2
b
4 F

v
J0

can be understood as the
contribution to the total field inside D by the main spec-
tral component of the radiating currents, which are indeed
peaked in the spectral domain along the circle of radius kb.
Notably, this contribution can be easily computed from the
data (see [19] for more details).
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Together with (1), the state equation (14) identifies the
Y0 model, wherein the unknowns are again the induced
sourcesW and the contrast function χ . However, with respect
to the H0 model, the integral internal operator Ai has been
now replaced by AY0

i and the incident field Ei by a new
known ‘modified incident’ field Êi.
Again, by virtue of the inequality (4), one can separately

analyze the roles of the contrast profile and of the relevant
integral operator with respect to the DNL of the problem
at hand. In particular, one can compare the quantities at the
right-hand side of (4) and of the corresponding inequality
which holds true for the Y0 model, i.e.,

∥
∥∥χAY0

i

∥
∥∥ < ‖χ‖

∥
∥∥AY0

i

∥
∥∥ (16)

As the factor ‖χ‖ is the same in the two inequalities (4)
and (16), the DNL of the two formulations can be eventually
compared by just evaluating ‖AY0

i ‖ and ‖Ai‖. As shown
in [19] and discussed in the following Subsection, in case
of homogeneous and lossless background, the Y0 model
exhibits a lower DNL than the H0 model.

D. COMPARISONS OF THE THREE MODELS
All the above models are based on a convenient rewriting of
the state equation which lead to the same structure, that is:

WMOD(
r, rt

) = χMOD(
r
)
EMODi

(
r, rt

)

+ χMOD(
r
)
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wherein, depending on the adopted model, the function
χMOD, WMOD, EMODi and the operator AMODi assume the
proper meaning, that are:

WMOD =
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⎧
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p in CS− EB model
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AMODi [·] =
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Ai[·] − fDI in CS− EB model
Ai[·]
β

+ I in NIE model

− k2
b
4

∫
DY0

(
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∣r − r′
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∣)[·]dr′ in Y0 model

(18.d)

Some comments are now in order. In the three models, the
internal operator is modified in order to hopefully reduce the
corresponding norm, while the unknown function of (17) keeps
unchanged with respect to H0 model only in the Y0 formulation.
On the other hand, the ‘contrast sources’ are re-defined (actually,
scaled) only in the NIE model, thus implying a trivial formal
modification of the external radiation operator.

The NIE model, which can be seen as a generalization of the
CS-EB model, includes the latter as a special case. Indeed, if

β(r) = −fD(r) the NIE model for the state equation becomes
essentially identical to the CS-EB model. As already stated, care
has to be taken in selecting both β(r) and fD(r), respectively, as
they could significantly imperil the reverse mapping from mod-
ified contrast function to physical contrast χ . As also discussed
at the end of Section III-B, the lower the dynamic of p and R, the
more difficult the extraction of the electromagnetic properties of
the targets.

Differently from CS-EB model, wherein fD(r) is given as
a function of r [17], in [18] a constant real value of β(r) is
selected by considering that all small cells in the domain of
interest are equivalent in terms of the possibility of being a scat-
terer or not. As discussed in [18], this can be a reasonable choice,
whereas the optimal selection of β(r) remains anyway an open
problem. Note that, the choice of a constant real β also allows
to transform a piecewise constant contrast profile χ(r) into
piecewise constant behavior of R(r), which can be an advan-
tage in regularized inversions based on total variation and/or
compressive sensing (see for instance [31], [32]).

Differently from CS-EB and NIE, in the Y0 model the geo-
metrical and electromagnetic properties of the targets are still
encoded in the contrast function χ . As a consequence, there is
no need to adopt further procedures to extract the target features.
Finally, it is worth to note that, while CS-EB and NIE models
can also be used for the solution of the forward problem, the
Y0 model is instead a data driven model, wherein the ‘modified
incident’ field includes a term which is (easily) computed from
the data.

In order to quantitative compare the DNL of the three models,
a numerical analysis has been performed by following the same
reasoning as in [17], [19] and by considering a circular domain
D of radius rD. Note that, to the best of authors knowledge, this
is the first time that the norm of ANIEi is analyzed, as well as
a comparison is performed among the three models. The plots of
the norm of the relevant operators as a function of rD/λ, where
λ is the wavelength in the background medium, are shown in
Figure 1. By the sake of simplicity, just the case of lossless back-
ground is considered. As can be seen, whatever the model, the
norms are monotonically increasing functions of rD/λ.

Interestingly, one can notice that AY0
i is always lower than Ai,

as also shown in [19]. As such, for a fixed scattering problem,
the Y0 model exhibits a lower DNLwith respect to the H0 model
and, hence, a smaller occurrence of false solutions.

As far as ANIEi , as expected from its expression, it starts
from 1, which is not a very favorable condition in view of the
condition for the convergence of the corresponding Neumann
expansion (3). On the other side, this is just one of the factors
at the right-hand side of (13). Moreover, the condition on the
norm of the overall operator entering the state equation is just
a sufficient condition, so that the series can converge anyway.2

As can be seen from Figure 1(a), a key role is played by the
parameter β. By following [18], β has been selected as a real

2. In inverse scattering problem, in one of the authors experiences, a
rule of thumb for successful (false solutions free) inversion (for full aspect
experiments) is ‖χMOD‖‖AMODi ‖ < 2.
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FIGURE 1. Evaluating the DNL of the three different rewritings. The norms of the internal radiation operators. (a) Ai versus ANIE
i in case of β = 0.5, β = 1, β = 2 and β = 6.

(b) Ai versus ACS−EB
i in case of a = 0.3, a = 0.6, a = 0.9 and a = 1.2. (c) Ai versus A

Y0
i . (d) A

Y0
i versus AY 0−NIE

i in case of β = 0.5, β = 1, β = 2 and β = 6. Norms of the
auxiliary contrast functions in case of homogeneous circular cylinder of radius 1λ and different lossless χ values. (e) R versus β. (f) p versus a. Note that in (f) a zoom in on
a portion of a curve is displayed.

constant value belonging to the interval [0.5, 6]. As can be seen,
in case of β > 1 the NIE model exhibits a lower norm of
‖AMODi ‖ with respect to the H0 model.

Finally, in case of CS-EB model, as already recalled in
Section III-A, the two norms ‖Ai‖ and ‖ACS−EBi ‖ are quite sim-
ilar (except for the case of rD < 0.5λ). As a consequence,
the actual choice amongst CS-EB model and the traditional and
more widespread H0 model depends on a comparison amongst
the expected values of p and χ .

As these norms are just a part of the story, the correspond-
ing norm of the auxiliary contrast variables, whose maximum
also enters in the evaluation of the bound of ‖χMODAMODi ‖,
are reported in Figures 1(e)-(f). These norms are evaluated as
max |χMOD| according to [17]. In particular, the norms of the
auxiliary contrast functions R(r) and p(r) in case of homoge-
neous circular cylinder of radius 1λ and different lossless χ

values are shown by changing both β in eq. (10) and a in (7). As
can be seen, in case of NIE model, R is monotonically increas-
ing functions of β and χ . In particular, if β increases, R tends
quickly to 1. On the other hand, in case of CS-EB model, the p is
an oscillating function of a. Also, some points can exist wherein
the term 1 − χ(r)fD(r) � 1, which is the reason for the peaks in
Figure 1(f).

Note that even in case of large (positive) contrast, and large
β, the maximum norm of R is less than 1 (and of the corre-
sponding ‖χ‖). Such a circumstance, and results in Figure 1(a),
justifies the remarkable performance of NIE in inverse scat-
tering. As already argued, a price is somehow paid in an

increased difficulty is the final mapping from the modified con-
trast function to the actual physical contrast χ . In this respect,
let us also note that very large β implies that the state equa-
tion (9) becomes an identity, where the internal radiation oper-
ator Ai in eq. (12) (and hence the overall state equation) just
disappears (see also the footnote 2 at the previous page).

The given graphs for the three models and the corre-
sponding expressions for the (auxiliary) variables can give
guidelines in the choice of the most convenient model to be
used in the inversion for given classes of expected contrast
profiles.

An interesting and possibly fruitful direction to be pursued
is the possible hybridization of the different models, which is
partially addressed in Section V below.

E. STRONG PERMITTIVITY FLUCTUATION
Even if we focus our attention on 2D scalar TM inverse scat-
tering problem, it is worth to note that also the so-called
Strong Permittivity Fluctuation (SPF) model [24], [25] (which
is applied to vector problems) can be interpreted as a rewrit-
ing of relevant scattering equations. In particular, according to
SPF model, the singularity of the dyadic Green’s function is
extracted and the TE state equation is rewritten in an alternative
fashion as:

W
(
r, rt

) = χSPF(
r
)
Ei

(
r, rt

) + χSPF(
r
)
ASPF
i

[
W

(
r′, rt

)]
(19)
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wherein:

χSPF(r) = 2χ(r)

2 + χ(r)
; (20.a)

ASPF
i

[·] = P.V.

∫

D

G
b

(
r, r′

)
[·]dr′ (20.b)

with P.V. denoting the principal value integral.
The new TE state equation (19) has the same structure of the

previous ones but for the vector nature. The target properties are
now encoded in the variable χSPF of eq. (20.a), while the internal
radiation operators are now replaced with the corresponding
principal value integral ASPF

i
in eq. (20.b).

As the CS-EB and NIE ones, the SPF model can be adopted
for the solution of both forward and inverse problems, and pro-
vided the corresponding norms are evaluated the expressions
above also may serve to compare the degree of non-linearity of
the TE equations as compared to the TM ones.

IV. REWRITING EXPERIMENTAL DATA IN TERMS OF
VIRTUAL EXPERIMENTS
In Section III we have discussed how different rewritings of
the relevant state equation allow to understand and possibly
reduce the DNL. In this section we focus on possible rewritings
of the equations describing the different scattering experiments
through proper superpositions of the data. In a nutshell, the
‘virtual experiments’ (VE) framework [20]–[22] acts on the
data in order to condition the (implicit) scattering phenomenon
and enforce peculiar and hopefully useful properties of the
unknown contrast sources (or total fields) induced in the imaging
domain D.

By assuming linear constitutive relationships for a fixed con-
trast function, the scattering phenomenon is linear with respect
to the primary sources. Then, a superposition of the incident
fields coming from the NT different transmitters located in rt,
with known coefficient α:

Ei
(
r
) =

NT∑

t=1

α
(
rt

)
Ei

(
r, rt

)
(21)

gives rise to a scattered field and contrast source which are
nothing but the superposition with the same coefficients of the
corresponding scattered fields and contrast sources, respectively,
so that:

W(
r
) =

NT∑

t=1

α
(
rt

)
W

(
r, rt

)
(22.a)

Es
(
rm

) =
NT∑

t=1

α
(
rt

)
Es

(
rm, rt

)
(22.b)

According to (21) and (22), the original data can be reorga-
nized in a possibly more convenient way by means of a linear
superposition of the incident fields. However, the amount of
information carried by VE cannot exceed that of the original
ones, and some information could be actually lost if they are
not properly designed.

By acting on the coefficients α, one can perform several re-
arrangements of the original experiments and thus build a set
of virtual experiments [20]–[22]. These new experiments do not
require additional measurements and are derived from a- poste-
riori software procedures. Also, no a priori information on the
contrast function is needed to generate VE.

In the VE framework, the H0 model can be recast as:

W(
r
) = χ

(
r
)Ei

(
r
) + χ

(
r
)
Ai

[W(
r′

)]
(23)

Es
(
rm, rt

) = Ae
[W(

r′
)]

(24)

With respect to model (1)-(2), the above equations have the
same structure. Moreover, the integral operators as well as the
function encoding the target proprieties are the same. However,
the electromagnetic variables, that are the scattered data, the
incident fields and the induced currents are now replaced with
Es, Ei andW .

Amongst the different possibilities and considering the case
when the scatterers are hosted in a homogeneous background,
a convenient VE design is represented by the rearrangement
of the original data in such a way to enforce a set of contrast
sources focused on a set of different ‘pivot points’ rp. Provided
some hypotheses (for instance, on the shape of the target) hold
true [20]–[22], such request implies a localization of the scatter-
ing phenomenon so that the mutual interactions, which are one
of the causes of the non-linearity of the problem, are minimized.

The VE framework has opened the way to innovative,
convenient and effective solution procedures. For instance,
a new data-driven linear approximation has been developed,
which has an extended validity range as compared to the
traditional Born approximation [20]. Moreover, effective non-
linear inversion methods based on algebraic (non-iterative and,
hence, very fast) inversion formulas [21] or peculiar forms
of regularization [22] have been proposed. Other interesting
realizations of the basic ‘Virtual Experiments’ idea imply
‘Distorted Virtual Experiments’ [33] and ‘Distorted Iterated
Virtual Experiments’ [34]. Another example of non-iterative
linear inversion method based on VE is proposed in [35].

In the following, we briefly recall one of them, namely the
iterative approach in [22], as it is going to be used it in Section V.

A. REGULARIZED VE - CSI
Let us consider the contrast source inversion (CSI) method [10],
where the inverse problem is cast as the minimization of a cost
functional accounting for both the misfit in the data and state
equations. Such a functional depends on both the unknown con-
trast and the auxiliary unknown, which is the contrast source
therein induced.

In the VE framework, if r(1)
p , . . . , r(P)

p is a set of P pivot points
inside the target support, the first step amounts to design vir-
tual experiments such that a circular symmetry of the contrast
sources (around each pivot point) is enforced (see [22] for more
details). Then, it is possible to recast the standard CSI scheme in
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terms of the thus designed VE as the minimization of [22]:


VE

(
χ,W (p)

)
=

P∑

p=1

∥∥
∥W(p) − χE (p)

i − χAi
[W(p)

]∥∥
∥

2

D∥
∥∥E (p)

i

∥
∥∥

2

D

+
P∑

p=1

∥
∥∥E (p)

s − Ae
[W(p)

]∥∥∥
2

�∥
∥∥E (p)

s

∥
∥∥

2

�

+ 
W
(
W(p)

)
(25)

With respect to the standard CSI method, the cost functional is
equipped with the additional regularizing term 
W . In partic-
ular, given the VE design criterion which has been used, the
additional term is given by:


W
(
W(p)

)
=

P∑

p=1

τp

∥
∥
∥∥
∂W(p)

∂φp

∥
∥
∥∥

2

D

, r ∈ IR
(
r(p)p

)
(26)

where φp is the angular coordinate of a local polar reference
system centered in r(p)p which spans the circular neighborhood
IR(r(p)p ), and {τp}P1 are non-negative parameters controlling the
relative weight of such a regularization term [22].

The penalty term (26) is a way to enforce the expected contrast
sources properties by minimizing the angular variation of each
W(p) around the pertaining pivot point rp. Indeed, the functional

W encourages the research of circularly symmetric sources,
while angularly varying contrast sources are penalized.

Note that, differently from most of the regularization schemes
adopted in conjunction with CSI method (see for instance [10]),
the non-linearity of the problem is herein tackled by acting on the
contrast sources rather than by relying on a priori information on
the contrast function.

V. POSSIBLE HYBRIDIZATIONS OF THE ABOVE
CONCEPTS
All the above (equations or data) rewritings have proved their
usefulness. Interestingly, one can indeed combine two (or even
more) different methods, thus hopefully giving rise to even more
powerful inversion methods. Notably, such a simple considera-
tion opens the way to a wealth of new possible solution methods
in inverse scattering.

In this section, we introduce two new inversion procedures,
whose interest and effectiveness are then proved in the numerical
analysis in Section VI.

A. Y0 – NIE MODEL
As a first possible hybridization, one can consider summing
up the advantages offered by the Y0 model and the NIE fam-
ily of possible formulations. As discussed above, the Y0 model
can offer the benefit of reducing the DNL of the problem by
extracting the contribution of the dominant part of the radiat-
ing currents. On the other hand, by means of a redefinition of
both the contrast function and of the operator entering the state
equation, NIE allow for a (different) way of reducing the DNL.

As already argued, in NIE model the higher β, the higher the
norm of R, and the harder the inversion procedure to retrieve
the electromagnetic properties of the targets from the auxiliary

variable. Hence, one can reasonably combine the advantages
of NIE and Y0 models to come to a hybrid ‘Y0-NIE’ model.
In particular, in such model the state equation can be recast as
follows,

β
(
r
)
W

(
r, rt

) = R
(
r
)
Êi

(
r, rt

)

+ R
(
r
)
AY0−NIE
i

[
β
(
r
)
W

(
r′, rt

)]
(27)

wherein:

AY0−NIE
i [·] = I + AY0

i [·]
β
(
r
) (28)

In eq. (27) not only the local effect of the induced currents (as
discussed in [18]) but also the contribution of the radiating cur-
rents is isolated (as discussed in [19]), thus further reducing the
DNL of the inverse scattering problem.

In order to quantitative evaluate the above advantages,
a numerical analysis is performed (as in Section III-D) by con-
sidering a circular domain D of radius rD. The plots of the norm
of the Y0 and Y0-NIE operators as a function of rD/λ are shown
in Figure 1(d). As expected, the norm of the relevant opera-
tor is further reduced with respect to the norms in Figures 1(a)
and 1(c).

B. VE – NIE MODEL
A different hybridization can be obtained by jointly rewrit-
ing the scattering equations and conveniently rearranging the
data experiments. In particular, let us develop here a hybridiza-
tion of the NIE model(s) with the VE framework in order to
hopefully benefit from both concepts. In such a hybridization,
the state equation can be recast (for each pivot point r(p)p ) as
follows:

β
(
r
)W(p)(r

) = R
(
r
)E (p)

i

(
r
) + R

(
r
)
ANIEi

[
β
(
r
)W(p)(r′

)]
(29)

which, together with (24), identifies the VE-NIE model. Note
in eq. (29) the local effect of the induced currents is isolated
by means of the rewriting of equation (1) according to [18].
Moreover, this local effect is emphasized by designing circularly
symmetric VE [20]–[22].

The model could be exploited and valorized in conjunc-
tion with all the different methods introduced in the VE
framework [20]–[22]. Herein, let us focus our attention on the
regularized VE – CSI of Section IV-A [22]. Then, by a straight-
forward correspondence, the inverse scattering problem can be
recast as the minimization of the functional:


VE−NIE
(
χ,W (p)

)

=
P∑

p=1

∥
∥∥βW(p) − RE (p)

i − RANIEi

[
βW(p)
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∥

2

�

+ 
W
(
W(p)

)
(30)

which is equipped by the same penalty term (26) used before, as
we are still looking for circularly symmetric currents.
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FIGURE 2. Y0-NIE model. Assessment against numerical data: B shaped target χ = 1.9. Real (a) and imaginary (b) parts of the R reference profile. Real (c) and imaginary
(d) parts of the retrieved R function (NMSE = 0.17). Real (e) and imaginary (f) parts of the reference contrast profile. Real (g) and imaginary (h) parts of the retrieved contrast
function (NMSE = 0.18).

VI. NUMERICAL ASSESSMENT
Performance of the hybrid models proposed in Section V have
been tested within a non-linear regime. In particular, the CSI
method has been adopted to solve the relevant inverse scatter-
ing equations. In the following, we referred to these strategies as
Y0-NIE-CSI and VE-NIE-CSI, respectively.

As we are just interested herein in understanding the effects
of combining different methods, we are going to exploit here
very simple (or no) regularization techniques. In fact, the addi-
tional equipping of the proposed techniques with more sophis-
ticated regularization techniques, which is very interesting,
would probably confuse the effects of the different actors
(i.e., regularization techniques and rewriting of the scattering
equations).

As a matter of fact, in order to defeat ill-posedness, herein the
unknown contrast profile is just projected onto a finite number of
spatial Fourier harmonics [12]. In particular, the number Narm of
sought unknown Fourier coefficients is set equal to the ‘degrees
of freedom’ of scattered fields corresponding to the given region
of interest [23].

Also note that in both approaches, once the profile R is
estimated, the properties of the encoded target are simply deter-
mined by considering a point-wise inversion of eq. (10). This
inversion can be troublesome as possible errors in R can be
amplified in determining χ . Of course, more robust inver-
sion procedures can be adopted by eventually enforcing some
expected properties of the targets, but description and adop-
tion of these techniques would further weigh this already long
contribution down.

The test targets, depicted in Figures 2 and 3, belong to the
MNIST data set [36], which contains both handwritten numer-
als and letters and is a standard benchmark for machine learning
based approaches [14], [37], [38]. Before any numerical calcula-
tion, all above equations have been discretized using the method

of moments [39]. We choose a square domain of side L = 2λb
discretized into Nx×Ny small cells, wherein the induced currents
and the electromagnetic properties are assumed to be constant,
being Nx and Ny the number of cells along the x and y direc-
tion. In case of the lossless B shaped target of Figure 2 Nx = 42
and Ny = 42 have been adopted, while in case of lossy I shaped
target of Figure 3 we have used Nx = 46 and Ny = 46.

Both targets are probed by means of NT = NR = 18 receivers
and transmitters [23], modelled as line sources located on a cir-
cumference � of radius R = 3.75λb. The scattered field data,
simulated at the frequency of 300 MHz by means of a full wave
in-house forward solver based on MoM, have been corrupted
with a random Gaussian noise with a SNR = 30dB.

The normalized mean square errors between the retrieved
contrast function χ̃ and the actual one χ , defined as:

NMSE = ‖χ − χ̃‖2

‖χ‖2
(31)

have been evaluated in order to quantitatively evaluate the
different reconstruction performance. In all cases, the back-
propagation solution has been used as starting guess of the
iterative minimization.

A. Y0 – NIE – CSI RESULTS
Figure 2 shows the Y0-NIE-CSI results against the B shaped tar-
get, both in term of auxiliary contrast function R and of contrast
function χ . The results are obtained by considering a number of
unknown Fourier coefficients Narm equal to 13x13 and β = 1
(this latter has been chosen according to Figure 1(e)). Note that
all the standard NIE-CSI, H0-CSI (that is the standard CSI) and
Y0-CSI (that is the method discussed in [19]) completely fail
in retrieving the B shaped target for this specific example with
maximum χ = 1.9. Moreover, we have also tested the tradi-
tional distorted Born iterative method (DBIM), only equipped
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FIGURE 3. Y0-NIE model. Assessment against numerical data: lossy I target χ = 2.1 − j0.6. Real (a) and imaginary (b) parts of the R reference profile. Real (c) and imaginary
(d) parts of the retrieved R function (NMSE = 0.15). Real (e) and imaginary (f) parts of the reference contrast profile. Real (g) and imaginary (h) parts of the retrieved contrast
function (NMSE = 0.11 − #iter = 1886).

TABLE 1. Y0-NIE-CSI convergence analysis for the B shaped target with different
lossless χ values.

with a truncated singular value decomposition regularization
(wherein the truncation index is heuristically set at the cutoff
value of −15 dB below the relevant maximum singular value
of the operator, as this is in the order of the noise on the data).
DBIM also completely fails in retrieving the B target in case of
χ = 1.9.

The reconstructions in Figure 2 as well as the corresponding
NMSEs prove that the Y0-NIE-CSI is more convenient than the
standard NIE-CSI. Indeed, NIE-CSI is not able to retrieve the
target, while the Y0-NIE-CSI corresponds to a reconstruction
error of 0.18.

Besides the advantages in accuracy, the hybrid model shows
advantages in term of convergence. In order to show this remark-
able advantage offered by the new model, we have considered
different values of the maximum of the contrast functions χ for
the B shaped target. By observing Table 1,3 one can infer that
a significant number of iterations is saved when Y0-NIE-CSI is

3. In Table 1, the symbol ‘DIV’ indicates that the optimization procedure
diverges from the actual solution and the NMSE > 1.

adopted. Moreover, one can note that in case of maximum con-
trast lower than 1.7, it is possible to retrieve the relevant target
without adopting any regularization technique (but for the start-
ing point). On the other hand, when higher values of contrast are
considered, it is necessary to adopt some form of regularization.
In this paper, we just used the projection onto a finite number of
spatial Fourier harmonics.

In order to test the Y0-NIE-CSI with a different shape as well
for a lossy target, the I shaped target shown in Figure 3 has
been considered. The target has a complex contrast equal to
χ = 2.1 − j0.6 and, as the B shaped target, is embedded in
free space. The results, shown in term of R (Figures 3(a)-(d))
as well as χ (Figures 3(e)-(h)) functions, are again obtained
by considering a number of unknown Fourier coefficients Narm
equal to 13x13 and β = 1. Moreover, the standard NIE-
CSI completely fails in retrieving the target, while the Y0-CSI
for this specific example reaches an NMSE equal to 0.53.
On the other hand, the Y0-NIE-CSI is able to accurately
retrieve both the real and imaginary parts of the contrast pro-
file, as witnessed by the NMSE which is equal to 0.11. Note
that in some regions both the real and the imaginary parts
of χ are overestimated. This circumstance can be eventually
circumvented by adopting more sophisticated regularization
techniques.

B. VE – NIE – CSI RESULTS
Figure 4 shows the VE-NIE-CSI results against the B shaped
target, both in term of auxiliary contrast function R and of con-
trast function χ . A number of unknown Fourier coefficients Narm
equal to 13x13 and β = 1 have been considered. In particular,
both the results obtained by equipping the VE-CSI cost func-
tion (30) with and without the penalty term (26) are shown. As
stressed above, the results obtained by means of the standard
NIE-CSI are not shown as it completely fails in retrieving the
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FIGURE 4. VE-NIE model. Assessment against numerical data: B shaped target χ = 1.9. Real (a) and imaginary (d) parts of the R reference profile. Real (b) and imaginary (e)
parts of the retrieved R function (NMSE = 0.43). Real (c) and imaginary (f) parts of the retrieved R function (NMSE = 0.23) by using the penalty term in (26). Real (g) and imaginary
(j) parts of the reference contrast profile. Real (h) and imaginary (k) parts of the retrieved contrast function (NMSE = 0.27 − #iter = 11687). Real (i) and imaginary (l) parts of the
retrieved contrast function (NMSE = 0.19 − #iter = 1178) by using the penalty term in (26). Real parts of the retrieved contrast functions by exploiting a priori information on the
target: (m) and (n) correspond to (h) and (i), respectively.

target with the maximum contrast χ = 1.9. As can be seen from
Figure 4, the use of NIE model in conjunction of the VE frame-
work allows instead to ensure reliable reconstruction of the target
at hand, even if no a priori information on the unknown target is
exploited in the CSI optimization.

Obviously, the additional use of a priori information can fur-
ther improve the results. In this respect, we have exploited some
a priori information on the target in the inversion procedure for
the extraction of the target properties from the R profile. For
instance, by taking into account that the profile is lossless and
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FIGURE 5. VE-NIE model. Assessment against numerical data: Lossy I shaped target χ = 2.1 − j0.6. Real (a) and imaginary (b) parts of the R reference profile. Real (c) and
imaginary (d) parts of the retrieved R function (NMSE = 0.24). Real (e) and imaginary (f) parts of the reference contrast profile. Real (g) and imaginary (h) parts of the contrast
function retrieved by using the penalty term in (26) (NMSE = 0.15 − #iter = 3134).

is piecewise constant via sparsity regularization [31], it is pos-
sible to improve the results in Figures 4(h) and (i) and obtain
NMSE equal to 0.09 and 0.16, respectively. The corresponding
images are shown in Figures 4(m) and (n).

As for the Y0-NIE-CSI case, the above described I shaped
lossy scatterer has also been considered. The corresponding
reconstructions are shown in term of R (Figures 5(a)-(d)) as well
as χ functions (Figures 5(e)-(h)). The results are again obtained
by considering a number of unknown Fourier coefficients Narm
equal to 13x13 and β = 1. As can be seen, the VE-NIE-CSI is
able to accurately retrieve both the real and imaginary parts of
the contrast profile, as witnessed by the NMSE, which is equal
to 0.15 when CSI functional is equipped by the penalty term
in (26). Note that in some regions the real part of χ is slightly
underestimated, while the imaginary part of χ is overestimated,
and this can certainly overcome by adopting more sophisticated
regularization techniques.

For all the examples in the two subsections above, the com-
putational time required from the reported numerical validation
is in the order of some minutes. For instance, in the third exam-
ple, whose results are reported in Figure 4, the computational
time involved by VE – NIE – CSI is 832 sec, while it is 104 sec
when the cost functional is equipped with the penalty term (26).
This computational time includes the VE design, herein pursued
by means of the linear sampling method [22]. All the numerical
calculations have been run on a workstation equipped with one
Intel i7 (2.5 GHz) processor and 16 GB RAM.

VII. CONCLUSION
In this paper, different strategies to counteract non-linearity of
inverse scattering problems are reviewed and discussed under
a unified point of view. First, attention has been devoted to
different possible rewritings of the Lippman Schwinger basic

equation. Then, we briefly reviewed how a suitable rearrange-
ment of the original data can contribute to condition the scatter-
ing phenomenon and simplify the inversion procedure. Finally,
effective hybridizations of the above concepts and tools have
been proposed and tested.

For the first part, three different (recent or anyway unusual)
rewritings of the scattering equations in homogeneous back-
grounds have been reviewed and for the first time compared
in term of their ‘degree of non-linearity’ (DNL) [15]–[19]. In
particular, their DNL and, hence, the corresponding difficulties
in inversion are analyzed in term of the function encoding the
electromagnetic properties of the targets and of the norm of the
corresponding operator entering the state equation. Then, some
considerations are given in order to evaluate which model can be
more convenient depending on the scenario at hand.

Second, we briefly summarized and discussed (under
the same ‘rewriting’ spirit) the ‘Virtual Experiments’ (VE)
framework [20]–[22]. In particular, we reviewed the possibility
to design scattering experiments such to give rise to focused
total fields (or contrast sources), or to circular symmetric con-
trast sources, which can be done according to several different
strategies [20]–[22], [40]. Notably, whenever the focusing of
the contrast source is actually possible, the inverse scattering
becomes a kind of ‘local’ interrogation, so that the effects of
non-linearity are alleviated.

Last, but not least, a couple of possible joint exploitations
of the above concepts are introduced, discussed and tested.
In particular, the hybrid models and the derived CSI meth-
ods, named Y0-NIE-CSI and VE-NIE-CSI, are introduced and
tested against two test targets which belongs to the MNIST
data set [36]. Reconstruction results using very simple regular-
ization techniques, as well as very simple techniques to extract
the unknown contrast function from the auxiliary unknowns,
confirm the interest and the potentialities of the proposed
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approaches. Moreover, the results (both in case of lossy and loss-
less targets) suggest that other hybridizations are also worth to
be investigated.

Present work is aimed to confirm the usefulness of the
proposed hybridizations when, by virtue of a priori information
which is eventually available, more sophisticated regulariza-
tion techniques can be used. Present efforts are devoted to the
analysis of existing approaches [41]–[43] and further possible
effective rewritings of the scattering equations for the (vector)
3D case, wherein the implications of the reduction of the DNL
can be even more significant.
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