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ABSTRACT. In this paper, we propose using a combination of two models, the Google
model, CasualImpact, and a Bidirectional LSTM, along with an Incremental Difference in
Difference model, to infer information from time series data in order to analyse the causal
impact of an event on a particular phenomenon over time. Our method identifies the causal
influence of a treatment on an outcome variable by comparing the difference in result seen
after “sham” therapy, but before genuine treatment. The models are regularly applied to
each period of the time series to assess not only the effect of the event that occurred at
a certain time t, but also the behaviour of the phenomenon around t. The Google model
(CausalImpact) is based on a Bayesian framework, whereas the Bidirectional LSTM model
use a neural network. The implementation of the two models in Python is easy to execute,
but the cost of data processing time can be substantial. The findings from these two models
must then be analysed in conjunction with the incremental difference in difference model in
order to assess if the target event at time t had a greater influence than the impact seen for
values close to time t. This study aims to integrate the use of these three models and iterate
this approach in order to give a thorough analysis of the temporal causal influence of an
event on a phenomena.

1. Introduction

Analysing the causal effect of an intervention or policy on a particular result of interest is
causal impact analysis. It is a statistical method used to determine the amount to which an
intervention or policy has caused a change in the outcome of interest, as opposed to changes
that would have occurred anyhow. Causal impact analysis is essential for comprehending
the efficacy of interventions and policies and making well-informed judgments regarding
future interventions and policies. For causal effect analysis, numerous procedures are
available, including randomized controlled trials (RCTs), propensity score matching (PSM),
and difference-in-differences (DiD) techniques (Caliendo and Kopeinig 2008; Wing, Simon,
and Bello-Gomez 2018). The choice of methodology is determined by the precise research
issue and the accessible data type. RCTs are regarded as the gold standard for causal
effect analysis because they permit random assignment of participants to a treatment or
control group, which helps to account for any potential confounding variables. However,
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RCTs are not always practicable or ethical, and alternate approaches such as PSM and
DiD may be employed when RCTs cannot be conducted. Persons in the treatment group
are matched with individuals in the control group based on their observed characteristics,
such as age, gender, and income. This helps to adjust for any potential confounders and
permits the estimation of the intervention’s or policy’s causal effect. DiD is a strategy that
compares, over time, the changes in the outcome of interest for a treatment group (i.e.,
the group exposed to the intervention or policy) and a control group (i.e., the group not
exposed to the intervention or policy). The incremental difference-in-differences (IDD)
(Dolton, Bondibene, and Wadsworth 2010) is a version of the difference-in-differences
(DiD) method that enables the assessment of treatment effects over time by employing
numerous pre-treatment and post-treatment periods. In general, causal impact analysis is
an excellent method for determining the efficacy of interventions and policies. It enables
researchers to evaluate treatment outcomes, account for potential confounding variables, and
make informed decisions regarding future treatments or policies. Combining the concepts of
Bayesian inference and causal inference, causal impact analysis with a Bayesian framework
estimates the causal influence of an intervention or policy on a particular outcome of interest
(Cervantes and Rambaud 2020). Bayesian inference is a statistical inference technique
that employs a prior probability distribution to revise the likelihood of a hypothesis in
light of fresh data. The process of evaluating the causal influence of an intervention or
policy on a particular result of interest is known as causal inference. A prior probability
distribution is used to model the uncertainty in the causal effect of an intervention or policy
in a Bayesian approach to causal impact analysis. The prior probability distribution is then
revised in light of fresh data to estimate the intervention’s or policy’s causal influence. The
Bayesian method permits the incorporation of prior information and the quantification of
uncertainty in the estimation of the causal impact. The usage of a Bidirectional LSTM
model is an additional method employed in this work. To integrate causal impact analysis
with Bi-LSTM for forecasting, one can use the Bi-LSTM model to estimate the causal effect
of the intervention on the time series outcome, and then incorporate the estimated causal
effect into the forecasting model. The forecasting model can then use the estimated causal
influence in conjunction with other pertinent data, such as previous values of the outcome
and exogenous factors, to predict future values of the outcome. In this work therefore,
through the creation of fictitious data, we want to test two different approaches, which do
not require a control group, Bayesian Causal Impact and the Bi-LSTM neural network, in
comparison with the Incremental Difference in Difference approach , which instead needs
one.

2. Related work

2.1. Incremental differences-in-differences (IDiD). Dolton, Bondibene, and Wadsworth
(2010) present a retrospective overview of the effects of the national minimum wage (NMW)
on labour market performance in the United Kingdom since its introduction in 1999. They
employ a ‘incremental differences-in-differences’ (IDiD) estimate to examine the effects
of the NMW in each year via its differential impact on local labour markets. The NMW
is related with a substantial decline in pay disparity in the lowest half of the distribution,
according to them findings. The pay inequality has decreased more in regions where the
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NMW has a greater impact than elsewhere. The benefit of employing the IDiD estimation
method is that it helps the estimation of the incremental effects of each year’s uprating from
year to year. Even though the average effect across all years is not statistically different
from zero, this does not imply that the effect of any given year’s adjustment in the minimum
wage is also zero. This assessment based on the differences-in-differences technique, allows
to estimate the marginal (interaction) effect of each year’s change in the NMW.

2.2. Causal impact Bayesian structure. State-space models differentiate between a state
equation, which explains the transition of a collection of latent variables from one time
point to the next, and an observation equation, which specifies how a given system state
translates into measurements. This distinction renders them highly adaptable and potent
(see Leeflang et al. 2009 for a discussion of this in the context of marketing research). The
state-space paradigm is inherited by the technique outlined by Brodersen et al. (2015) in
three significant ways. First, it allows to incorporate a variety of hypotheses regarding the
latent state and emission mechanisms underlying the observed data, such as local trends
and seasonality. Second, Brodersen et al. (2015) infer the time evolution of counterfactual
activity and incremental impact using a completely Bayesian methodology. The flexibility
with which posterior inferences can be summarized is an advantage of this method. Third,
Brodersen et al. (2015) employ a regression component that forbids a rigid commitment to
a particular set of controls by integrating out posterior uncertainty about the influence of
each predictor and uncertainty about which predictors to include in the first place, therefore
preventing overfitting. They also apply a Markov chain Monte Carlo-based stochastic
algorithm for posterior inference (MCMC). The CausalImpact R package provides an
implementation of this approach. Also, in Python is available a version of this package.

2.3. Bidirectional LSTM. Deep learning is a subcategory of machine learning that utilizes
neural network-based deep architectures for learning. One of the challenges of deep time se-
ries prediction problems is the ability to learn long-term dependencies. However, traditional
recurrent neural networks (RNNs) are not optimal for learning long-term dependencies due
to vanishing/exploding gradient concerns (Nielsen 2015). Hochreiter and Schmidhuber
(1997) proposed Long Short-Term Memory (LSTM) networks which are a type of deep
learning architecture that is well-suited for time series prediction tasks because they are
effective at capturing long-term dependencies (Goodfellow, Bengio, and Courville 2016).
LSTMs overcome the vanishing/exploding gradient problem by using gates within each
cell to control the flow of information, allowing them to store and process relevant past
information. LSTMs and Gated Recurrent Units (GRUs) are two types of RNNs that are
commonly used for time series prediction. While both LSTMs and GRUs are effective
for time series tasks, LSTMs are typically selected for larger datasets (Zhang, Bi, and Qiu
2019). Additionally, a variation of LSTMs known as Bidirectional LSTMs (BiDLSTMs)
can further improve prediction accuracy by considering both previous and future obser-
vations (Hu, Wang, and Ma 2015; Cui et al. 2018). BiDLSTMs process data in both the
forward and reverse directions, unlike traditional LSTMs which only process information in
one direction. This allows BiDLSTMs to extract additional features and improve overall
learning. The model can be implemented in Python using the Keras library.
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3. Methodology

The technique employed in this work comprises of multiple phases in order to assess
the effect of a certain policy on a particular outcome. To test the model and replicate the
beneficial effects of a policy, we generated a collection of fictitious data. The data were
created on the assumption that the policy in question has a substantial positive effect on the
outcome of interest. Statistical methods were then applied to the simulated data to evaluate
the policy’s efficacy and quantify the policy’s impact. We utilized an Incremental Difference
in Difference model to examine the data. This methodology allows us to analyse the impact
of the policy by comparing the pre-intervention and post-intervention periods. We utilized a
Google-developed, Bayesian-structured causal effect model and applied it regularly during
the whole study period. This model employs the Bayesian Structural Time Series approach,
which permits us to estimate the causal effect of the policy by comparing the counterfactual
scenario (what would have occurred without the policy) to the observed data. After the
tuning phase, a Bi-LSTM model was executed. For the duration of the period, the same
approach was utilized to assure the reliability of our results. The Bi-LSTM model is an
effective deep learning technique that enables us to describe the temporal dependencies in
the data and increase prediction accuracy.

4. Libraries

The following libraries are used in the code for the model creation:
(1) pandas and numpy are popular Python libraries for data manipulation, frequently

used in machine learning and data science. While numpy offers support for arrays
and mathematical operations, pandas offers data structures and data analysis
tools.

(2) The functionality of the code is supported by four libraries: os, random, copy,
and warnings. The os library enables interaction with the operating system,
random creates random numbers, copy gives methods for duplicating objects, and
warnings alerts the user to potential problems. These libraries are utilized for a
variety of purposes, including dealing with file and directory paths, communicating
with the file system, generating random numbers, duplicating objects, and sending
warnings.

(3) matplotlib is a Python data visualization library that allows you to make plots,
charts, and other visualizations.

(4) Python’s statsmodels package has a sublibrary named
statsmodels.formula.api. It provides a high-level interface for fitting
statistical models with formulas written in the R language. The ols function is
used to fit linear regression models with ordinary least squares. The formula
parameter in ols is used to express the model in R-style formula notation, with the
response variable on the left and the predictor variables on the right of the symbol.
This library is utilized to estimate a variety of statistical models, such as linear
regression, extended linear models, robust linear models, etc.

(5) causalimpact is a Python library that compares the counterfactual scenario
(what would have occurred if the treatment hadn’t been applied) to the actual data
in order to estimate the causal impact of a treatment or intervention.
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(6) tensorflow and keras are libraries for deep learning development and training.
keras is a high-level neural networks API that provides a user-friendly interface
for constructing and training deep learning models, whereas tensorflow is a
numerical computation framework that can conduct large-scale calculations on
many devices. The keras.layers module offers the Bidirectional wrapper that
may be added to an LSTM layer to produce a bidirectional LSTM. This enables the
network to forecast based on both past and future context, making it an effective
tool for tasks such as natural language processing.

(7) tensorflow_probability is a Python library that provides probabilistic
modeling and inference in tensorflow.

These libraries are commonly used in data science, statistical modeling, machine learning,
and deep learning projects.

5. Dataset

We utilized a synthetic dataset to facilitate the controlled and reproducible evaluation and
illustration of the algorithm. By utilizing a fabricated dataset, we are able to precisely define
the fundamental patterns and characteristics, isolating and analyzing particular aspects of
the algorithm’s behavior. This artificial dataset provides a valuable basis for experimentation
and benchmarking, allowing us to gain insight into the capabilities and performance of the
algorithm under controlled conditions. We create two sets of random data and graph them
together. It begins by configuring the seed for the random number generator, ensuring that
the same random numbers are created each time the code is executed. Using the linspace
function, the code then generates two arrays, x and y. The x array consists of 200 values
ranging from 1 to 200, whereas the y array has 100 values ranging from 30 to 100. A
new array, yconc, is produced by concatenating an array of 100 values, all of which are
30, with the y array. The treated group’s yfinal array is then created by adding random
noise to each value in the yconc array. To represent the control group, the algorithm
additionally generates a 200-element array of ones with the value 20. The ycontrfin
array for the control group is created by adding random noise to each value in this array.
The code then presents both sets of data on the same graph (Appendix A), with yfinal
data displayed in red and ycontrfin data displayed in blue. In addition to x and y axis
labels, a caption, and a grid, the plot contains axis labels. We have generated two lists, A and
B, each containing 200 members, each of which is a string consisting of either "A" or "B."
The two lists are then joined to form a single list called ListAB. Then, the two NumPy
arrays, yfinal and ycontrfin, are concatenated into ylist, and the two arrays x are
concatenated into xlist. A pandas DataFrame, df, with three columns is then created:
AB includes the contents of ListAB, value contains the elements of ylist as a list, and
time contains the elements of xlist as a list. This DataFrame contains a record of all
the values and groups that were used in the plot, which can be useful for further analysis or
manipulation. For all information related to the code explained above, refer to Appendix A.

6. Incremental Difference in Difference

The code shown in Fig. 1, implements the Incremental Difference-in-Differences (IDID)
technique, which estimates the causal influence of a treatment on an outcome variable.
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The IDID function requires three parameters: a data frame df, a threshold time t, and a
treatment group c. The function produces a deep duplicate of the input dataframe df such
that the original dataframe is not modified. Then, three additional columns are added to
the duplicated dataframe: time1, treated, and did. The time1 column is a binary
variable whose value is 1 if the original dataframe’s time is higher than or equal to the
threshold time t, and 0 otherwise. The treated column is a binary variable whose value
is 1 if the treatment group in the original dataframe matches the specified treatment group
c, and 0 otherwise. The product of the time1 and treatment columns yields the did
column. The function then pulls the time1, treatment, and did columns from the
cloned dataframe, as well as the result variable value. It utilizes these variables to execute
an ordinary least squares (OLS) regression using the statsmodels package, a toolkit for
estimating different statistical models. The regression formula is y ~ didd + timed
+ treatedd, where y is the dependent variable and didd, timed, and treatedd

are the newly formed columns. The function takes the p-value of the did coefficient and
the model’s coefficients and saves them in the variables pv and cofidid, respectively,
after fitting the model. The function then returns the coefficient did and the p-value. The
code then iterates over the items of the list x[1:] and executes the IDID function for
each element, appending the did coefficient and p-value to the lists listalldid and
listpv, respectively.

import copy
import numpy as np
import pandas as pd
import statsmodels.formula.api as smf

def IDID(df, t, c):
df1 = copy.deepcopy(df)

df1[’time1’] = np.where(df1[’time’] >= t, 1, 0)
df1[’treated’] = np.where(df1[’AB’] == c, 1, 0)
df1[’did’] = df1[’time1’] * df1[’treated’]

timed = df1[’time1’]
treatedd = df1[’treated’]
didd = df1[’did’]
y = df1[’value’]

res = smf.ols(formula=’y ~ didd + timed + treatedd’, data
=df1).fit()

pv = res.pvalues[1]
cofidid = res.params.tolist()
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return cofidid[1], pv

listalldid = []
listpv = []

for i in x[1:]:
alldid = IDID(df, i, ’A’)
listalldid.append(alldid[0])
listpv.append(alldid[1])

FIGURE 1. Implementing the Incremental Difference-in-Differences technique
with OLS regression.

7. Causal impact

This code in Fig. 2 uses the CausalImpact class from the causalimpact package
to perform causal impact analysis on a dataset. The script starts by measuring the running
time using the time module. It then initializes an empty list called listci. The script
then loops over a range of values between 3 and 196 with a step of 1. For each iteration,
it creates a CausalImpact object, with the post_period starting from the current
iteration value, and appends the object to the listci list. The script then prints out the
current iteration value and the total running time of the loop at the end. After that, the script
loops over the listci, and for each element in the list, it extracts the summary of the
analysis, prints a specific part of the summary, and then prints another specific part of the
summary by calling the output = ‘report’ argument.

import time
from causalimpact import CausalImpact

start_time = time.time()

listci = []

for i in np.linspace(3, 196, 194):
print(i)
ci = CausalImpact(yfinal, [0, int(i)], [int(i) + 1, 199],

model_args={’fit_method’: ’hmc’})
listci.append(ci)

print("--- %s seconds ---" % (time.time() - start_time))
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z = 0
for ci in listci:

string = ci.summary()
print(string)

z = z + 1

z = 0
for ci in listci:

string = ci.summary(output=’report’)
print(string)

z = z + 1

for ci in listci:
ci.plot()

FIGURE 2. Performing Causal Impact Analysis with the CausalImpact
package

8. Bidirectional LSTM

The three supplied functions are incorporated into the development of a Bidirectional
LSTM (Long Short-Term Memory) model for causal effect analysis. The model is trained
to identify the appropriate analytical parameters.

import tensorflow as tf

def custom_loss(y_true, y_pred):
max1 = tf.math.maximum(y_true, y_pred)
max2 = tf.reduce_sum(max1)
min1 = tf.math.minimum(y_true, y_pred)
min2 = tf.reduce_sum(min1)
jaccard = (1 - (min2 / max2)) * 100

return jaccard

FIGURE 3. Custom loss function based on Jaccard Similarity Index for model
training.
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The custom loss in Fig. 3 is a loss function used to train the model. The function accepts
two parameters, y_true and y_pred, which represent the true and predicted values,
respectively. Within the function, it computes the Jaccard similarity index, a measure of
the similarity between two datasets, between the true and predicted values. The Jaccard
index is calculated as (1 - (min2 / max2))* 100, where min2 is the sum of the
minimum values between the true and predicted sets, and max2 is the total of the highest
values. Higher values of the Jaccard index indicate a greater degree of similarity between
the true and predicted sets.

import numpy as np

# split a univariate sequence into samples
def split_sequence(sequence, n_steps):

X, y = list(), list()
for i in range(len(sequence)):

% find the end of this pattern
end_ix = i + n_steps
% check if we are beyond the sequence
if end_ix > len(sequence)-1:

break
% gather input and output parts of the pattern
seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]
X.append(seq_x)
y.append(seq_y)

return np.array(X), np.array(y)

FIGURE 4. Split sequence function for dividing univariate time series into sam-
ples.

The split_sequence function in Fig. 4 is used to divide a univariate sequence into
samples. sequence is the sequence to be divided, while n_steps specify the number of
time steps needed to separate the series. The function divides the sequence into samples,
each of which consists of n_steps time steps. X is a list of input samples, whereas y is
a list of output samples. This code of Bi-LSTM model for forecasting time series is in
Appendix B. The function for the model accepts the parameters treatment_period,
seed, and data. The variable treatment_period is used to provide the range of
data that will be utilized for training the model. The variable seed is used to initialize
the random number generator in order to ensure repeatability of the findings. The function
begins by defining two periods, pre_period and post_period, where pre_period
is the range of data used for model training and post_period is the range of data used
for model testing. It also initializes the list list_steps variable, which contains the
number of steps the model will employ while producing predictions. The function then
populates a number of empty lists with values for future use: bestepochvalue: will

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 101, No. 2, A12 (2023) [19 pages]



A12-10 P. FOTIA AND M. FERRARA

be used to hold each iteration’s minimal validation loss. bestepochcicle: will be
used to hold the index of each iteration’s smallest validation loss. listvalmaelist:
will be used to keep each iteration’s validation mean absolute error. This variable will
be used to hold the model’s final predictions for each iteration. The code then enters a
for loop that iterates through each step in the list_steps list. The function sets the
seed values for the Python hash seed environment variable within the loop. It then defines
the input sequence by slicing the data array from the start to the treatment_period,
selects the number of time steps (n_steps) equal to the current step in the iteration, and
separates the sequence into samples (X,y) using the split_sequence function. Then, it
transforms the samples from [samples, timesteps] to [samples, timesteps
, features] and sets the variable n_features to 1 to indicate that the model will
only use one feature. The method then constructs an early stopping callback that checks
validation loss and terminates training if validation loss does not improve after a defined
number of iterations (patience = 40). The model is then defined as a sequential model
that consists of a bidirectional LSTM layer and a dense layer. The LSTM layer has 50
units and is activated with LeakyReLU. The Bidirectional wrapper is utilized to make
the LSTM layer bidirectional, allowing it to handle input in both the forward and reverse
orientations. The model is then built with an Adam optimizer and a custom loss function
(custom_loss), which is not specified but is presumably used to provide a custom
loss function for the model’s compilation. The model is also constructed with a mean
absolute error (MAE) measure that will be used to evaluate the model’s performance. The
model is then fitted to the data using the specified number of epochs (epochs = 100),
a validation split of 0.33, and the previously stated early termination callback. The fit’s
history is recorded under the variable history. The code then takes the validation loss
and validation mean absolute error from the history object and puts them accordingly in
the listvaloss and listvalossmae. The minimal validation loss and its index are
subsequently stored in the xmin and yindex variables, respectively. This value is added to
listvalmaelist. yindex is added to bestepochcicle, whereas xmin is added
to bestepochvalue. This is accomplished by setting the number of epochs in the fit
function to yindex+1. The function then refits the model using the number of epochs that
corresponds to the smallest validation loss. This upgraded version is stored in model1.
The predictions are then stored in the variable yhat using the adjusted model and input
data. The code then initializes a prediction list that will be used to hold the model’s final
predictions. The code then starts a 10-iteration loop in which, for each iteration, a prediction
is made on the current batch using the model and added to the prediction list. The latest
forecast is then applied to the current batch. The prediction list is thereafter appended to the
listaresultfin list. After the for loop, the function returns the listaresultfin
list containing the final predictions.
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listann = x[33:-15]

result_final = []
for j in listann:

range_seed = [123]
result_seed = []
for i in range_seed:

print(j, ’
---------------------------------------------------
’)

best_ep, best_cicle, val_mae_best, list_result_fin =
bi_lstm_iteration(int(j), i, listadd)

print(list_result_fin)
parameter = list_result_fin.index(min(list_result_fin)

)
min_best_loss = best_ep[parameter]
mi_val_mae_best = val_mae_best[parameter]
best_cicle_select = best_cicle[parameter] + 1
list_cod_step = [8, 9, 10, 11, 12, 13, 14, 15, 16]
best_step_select = list_cod_step[parameter]
print(min(list_result_fin), min_best_loss,

mi_val_mae_best, best_cicle_select,
best_step_select, i, j)

result_seed.append([min(list_result_fin),
min_best_loss, mi_val_mae_best, best_cicle_select,
best_step_select, i, j])

best_i = []
for i in result_seed:

best_i.append(i[0])

re = best_i.index(min(best_i))
result_final.append(result_seed[re])

FIGURE 5. Post-processing results of LSTM iteration function for time series
prediction optimization.

This code, in Fig. 5, does extra processing on the preceding lstm_iteration func-
tion’s output. The first line constructs the list listann by slicing the array x from index
33 to the second-to-last element (-15). This list contains the values that will be used
as the treatment period in the lstm_iteration function. The code then initializes a
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list resultfinal that will be used to hold the processing’s final results. It begins a
for loop that iterates over each element in listann. For each element, it initializes a
list rangeseed with a single element, 123, and a list resultseed containing noth-
ing, which will be used to hold the results of the lstm_iteration function for each
seed value. In each iteration, the lstm_iteration function is called using the current
value of j from the outer loop as the treatment period, the current value of i from the
inner loop as the seed, and the listadd array as the data. Four values are returned
by the function: bestep, bestcicle, valmaebest, and listresultfin. The
code then retrieves the index of the minimal value in listresultfin and puts it in
the variable parameter. The index is then used to retrieve the respective values of
minbestlost, mivalmaebest, bestcileselect, and beststepselect from
the bestep, valmaebest, bestcicle, and listacodstep lists. The code then
displays minbestlost, mivalmaebest, bestcileselect, beststepselect,
the current seed value i, and the current treatment period value j. Then, a list con-
taining these values is appended to the resultseed list. After the inner loop, the
code produces a new list containing just the minimal values from the resultseed list
and puts the index of the minimum value in the variable re. Finally, the element at
index re in the resultseed list is appended to the resultfinal list. After the
outer loop, the resultfinal list will include the processing’s final results, includ-
ing the minimum value from the listresltfin, minbestlost, mivalmaebest,
bestcileselect, beststepselect, the seed value, and the treatment period value
for the best result. This is used to establish the optimal parameters for the Bi-LSTM model
to be utilized in a causal impact study; it assists in locating the most accurate prediction
results.

9. Discussion of the results

The findings indicate that the three utilized models (Incremental Difference in Difference,
CausalImpact, and Bidirectional LSTM) predict the treatment’s causal effect for each period
(Fig. 6). The values appear to grow steadily over time, indicating that the treatment group is
exerting a greater influence with time. The fact that the trend shifts after 100 periods shows
that there is a change point or threshold in the data at which the treatment’s causal effect
begins to rise. Given that the three models employ distinct methodologies for estimating
causal effects, it is probable that each model captures the trend shift in a somewhat different
way. For example, the incremental difference in difference model may be more sensitive
to changes in the early periods, while the CausalImpact model might be more sensitive to
changes in the later periods and the Bidirectional LSTM might be more accurate in general.
This study’s objective was to assess the efficacy of several models for evaluating the impact
of actions on a system. In this study, the Incremental Difference in Difference approach
serves as a benchmark for the other analytical techniques. As indicated by the low p-values
(Fig. 7) for each period in the report, this strategy offers excellent insights into the effects
of treatments. Nonetheless, locating an appropriate control group for the research is one
of the obstacles of using real-world data. In spite of this difficulty, the incremental change
in difference methodology provides a useful method for evaluating the genuine impact of
interventions in real-world circumstances.
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FIGURE 6. Comparison of predicted causal effects from Incremental Difference
in Difference, CausalImpact, and Bidirectional LSTM models for time series data.

FIGURE 7. Assessing the significance of treatment effects through p-value analy-
sis in Incremental Difference in Difference model.

In the context of causal impact analysis, the results of the Google Causal Impact model
and the Bi-LSTM model provide important insights on the efficacy of various methodologies
for evaluating the impact of interventions on a particular system. With a probability of 0
for all periods (Fig. 8), the findings of the GoogleCausal Impact model indicate that the
model can properly reflect the causal effect of interventions on the investigated system.
This makes the Google Causal Impact model a helpful tool for applications that demand
a clear knowledge of an intervention’s causal impact. In contrast, the results of the Bi-
LSTM model based on the metrics for training the neural network for each period of the
Time Series Data (Fig. 9), show that it may be better appropriate for situations when the
objective is not to exactly capture the causal influence of an intervention but rather to offer
a broad knowledge of the system’s trends and patterns. In addition to their accuracy, the
findings of the Google Causal Impact model and the Bi-LSTM model also provide the
time necessary to conduct a causal impact study using each technique. In this instance, the
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FIGURE 8. Significance of causal effect: Results of CausalImpact analysis.

FIGURE 9. Evaluating the performance of Bi-LSTM for causal impact analysis:
a comparison of next 10 period prediction MAE with test set MAE for each period
of time series data.

Google Causal Impact model required around 9 hours, but the Bi-LSTM model required
approximately 4 hours. It is crucial to note that the Bi-LSTM model’s training period
may be lengthened by adding additional parameters to the neural network, resulting in
a more accurate prediction. However, this enhanced precision may need more time and
processing resources. In summary, the findings of the Google Causal Impact model and the
Bidirectional LSTM model give important information on the precision and time necessary
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for causal impact analysis. The decision between the two approaches will rely on the
analysis’s particular criteria and objectives, as well as the available resources and limits.

10. Conclusion

This study finishes with a thorough evaluation of two unique Causal Impact Analysis
techniques. The first technique is based on a Google software that leverages a Bayesian
framework, which offers a precise confidence assessment but limits parameter adjustment.
The second technique is based on a Bidirectional LSTM, which provides greater flexibility
in parameter adjustment and enhances forecasting. The findings of this study suggest that
both techniques are capable of detecting the onset of therapy, and that the strategy used will
depend on the application and the user’s priorities. One of the key advantages of adopting
the Google package is that it is based on a Bayesian framework that offers a clear level of
confidence; this is especially advantageous when you want a clear understanding of the
results’ certainty. In contrast, the Bidirectional LSTM may be a preferable choice when
more parameter change flexibility is required, which is crucial when striving to improve
prediction. Notably, these two approaches are not mutually exclusive, and the combination
of numerous procedures might yield more exact and complete results. The results of this
study demonstrate the need of studying several approaches for Causal Impact Analysis and
the potential benefits of merging multiple methods for more precise and thorough results.
This study offers valuable insights into the numerous approaches for Causal Impact Analysis,
as well as the advantages and disadvantages of each strategy. In addition, it emphasizes the
need of studying several approaches and the possible benefits of integrating them for more
accurate and complete results.

Appendix A. Dataset code and graph

import numpy as np
import matplotlib.pyplot as plt

np.random.seed(10)

x = np.linspace(1, 200, 200)
y = np.linspace(30, 100, 100)
oney = np.ones(100) * 30
yconc = np.concatenate([oney, y])
ycontroll = np.ones(200) * 20
noise = np.random.uniform(-5, 5, size=200)
yfinal = np.add(yconc, noise)
ycontrfin = np.add(ycontroll, noise)

cm = 1 / 2.54
fig3, ax3 = plt.subplots(figsize=(80 * cm, 40 * cm))
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ax3.plot(yfinal, linewidth=2.5, color=’red’, label=’Treated
group’)

ax3.plot(ycontrfin, linewidth=2.5, color=’blue’, label=’
Control group’)

plt.legend(fontsize=30, loc="best")
ax3.set_xlabel("200-period", fontsize=17)
ax3.set_ylabel("Value", fontsize=17)

ax3.grid()

fig3.savefig(’fig1.png’)
plt.show()

Generating and plotting random data for experimental and control groups.

FIGURE 10. Plot of treated and control group time series data with random noise.

Appendix B. Bidirectional LSTM Model code

def bi_lstm_iteration(treatment_period, seed, data):
pre_period = [0, treatment_period]
post_period = [treatment_period + 1, 199]

list_steps = [8, 9, 10, 11, 12, 13, 14, 15, 16]
best_epoch_value = []
best_epoch_cicle = []
list_val_mae = []
lista_result_fin = []

for step in list_steps:
seed_values = seed
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os.environ[’PYTHONHASHSEED’] = str(seed_values)
random.seed(seed_values)
tf.random.set_seed(seed_values)

PaAn = pre_period[1]
parametro_inizio = pre_period[0]

raw_seq = data[0:treatment_period]
n_steps = step

X, y = split_sequence(raw_seq, n_steps)
n_features = 1
X = X.reshape((X.shape[0], X.shape[1], n_features))

callback = tf.keras.callbacks.EarlyStopping(monitor=’
val_loss’, restore_best_weights=True, patience=40)

model = Sequential()
model.add(Bidirectional(LSTM(50, activation=’LeakyReLU

’), input_shape=(n_steps, n_features)))
model.add(Dense(1))
model.compile(optimizer=’Adam’, loss=custom_loss,

metrics=’mae’)

history = model.fit(X, y, epochs=100, validation_split
=0.33, callbacks=[callback], verbose=0)

list_val_loss = history.history[’val_loss’]
list_val_loss_mae = history.history[’val_mae’]

xmin = min(list_val_loss)
yindex = list_val_loss.index(xmin)
val_mae_val = list_val_loss_mae[yindex]
list_val_mae.append(val_mae_val)
best_epoch_cicle.append(yindex)
best_epoch_value.append(xmin)

os.environ[’PYTHONHASHSEED’] = str(seed_values)
random.seed(seed_values)
tf.random.set_seed(seed_values)

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 101, No. 2, A12 (2023) [19 pages]



A12-18 P. FOTIA AND M. FERRARA

model1 = Sequential()
model1.add(Bidirectional(LSTM(50, activation=’

LeakyReLU’), input_shape=(n_steps, n_features)))
model1.add(Dense(1))
model1.compile(optimizer=’Adam’, loss=custom_loss,

metrics=’mae’)

history1 = model1.fit(X, y, epochs=yindex+1,
validation_split=0.33, verbose=0)

yhat = model1.predict(X, verbose=1)

prediction = []
current_batch = np.array(yhat[:PaAn])[-n_steps:]
current_batch = current_batch.reshape(1, n_steps,

n_features)

for i in range(10):
current_pred = model1.predict(current_batch,

verbose=0)[0]
prediction.append(current_pred)
current_batch = np.append(current_batch[:, 1:, :],

[[current_pred]], axis=1)

observed = listadd[PaAn:PaAn+10]

resultfin = np.mean(np.array(observed) - np.array(
prediction))

listaresultfin.append(abs(resultfin))

return best_epoch_value, best_epoch_cicle, list_val_mae,
listaresultfin

Bidirectional LSTM Model with custom Loss and MAE Evaluation for time Series
prediction.
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