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Abstract: We investigate a differential evasion game with multiple pursuers and an evader for the
infinite systems of differential equations in `2. The control functions of the players are subject to
geometric constraints. The pursuers’ goal is to bring the state of at least one of the controlled systems
to the origin of `2, while the evader’s goal is to prevent this from happening in a finite interval of
time. We derive a sufficient condition for evasion from any initial state and construct an evasion
strategy for the evader.

Keywords: differential game; control; strategy; infinite system of differential equations; geometric
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1. Introduction

The research on differential games started with the pioneering works of Isaacs and
Pontryagin. Since then the field has been a topic for extensive research studies. Numerous
monographs and collections, such as [1–12], have compiled the results in this field. In
recent years, there has been a growing interest in differential games, although most of the
research has focused on games in finite-dimensional spaces.

Many real-world problems can be modeled as control problems for partial differ-
ential equations (PDEs), which is a very active field that remains dynamic. The study
of control problems for PDEs began with [13] on the time-optimal control problem for
the parabolic equation; an up-to-date account of the theory can be found, for example,
in [14]. Differential game problems for processes described by PDEs have been considered,
for example, in refs. [15,16]. It turns out that studying differential game problems for
PDE is convenient, if it is reduced to an infinite system of ordinary differential equations.
This approach is called the decomposition method and has been used extensively, see for
example, [17–26].

Concerning evasion problems in the finite-dimensional case, the works [27,28] have
shown that one evader can avoid multiple slow pursuers in a finite-dimensional Euclidean
space. These results have been extended to cases where the pursuers’ control set is a subset
of the interior of the evader’s control set. In [29], a multi-pursuer–single-evader simple
motion differential game in Rn was studied. It was proved that if the evader’s initial
position lay in the interior of the convex hull of the pursuers’ initial positions, the evader
could be captured; otherwise, evasion was possible. Since then, several approaches have
been employed in the research of multi-pursuer–single-evader problems. For instance,
in [30], the authors assumed that the evader possessed complete information about the
pursuers’ positions and strategies, and they utilized optimal control theory to analyze

Games 2023, 14, 52. https://doi.org/10.3390/g14040052 https://www.mdpi.com/journal/games

https://doi.org/10.3390/g14040052
https://doi.org/10.3390/g14040052
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/games
https://www.mdpi.com
https://orcid.org/0000-0001-9370-7643
https://doi.org/10.3390/g14040052
https://www.mdpi.com/journal/games
https://www.mdpi.com/article/10.3390/g14040052?type=check_update&version=1


Games 2023, 14, 52 2 of 6

the problem. In [31], the authors considered a differential game involving an evader and
multiple pursuers moving in an external dynamic flow field, and they derived a simplified
capturing condition when the evader’s maximum speed was lower than that of each
pursuer. In a different context, [32] focused on high-speed-pursuit–evasion games with
multiple pursuers and a single evader in an open domain with holonomic constraints
and proposed an escape strategy for the evader based on the concept of the Apollonius
circle. Problems with integral constraints on the control functions are considerably difficult.
In [33], the authors considered such a problem and proved that evasion was possible from
multiple pursuers regardless of the initial positions of players, when the evader had an
advantage in energy over the pursuers. These works naturally introduced the question
of evasion problem studies in infinite dimensions. However, a simple motion pursuit
differential game in `2 with a finite number of pursuers, when players have identical
capabilities has not been studied, and no initial position has been identified from which the
pursuit can be completed. The pursuit differential game of one pursuer and one evader has
been studied in [34] for an infinite system of binary differential equations in the Hilbert
space `2. The general case of this problem was studied in [35]. Moreover, the papers [36–38]
relate to differential games with an infinite system.

In this paper, we investigate an evasion differential game involving multiple pursuers
and one evader in an infinite system of differential equations with a special operator (refer
to (3)), which gives a coupled system. In the this case, in contrast to [34,35] the dynamics
cannot be reduced to finite dimensional subsystems. We establish that if the evader’s
control set contains or overlaps with the control set of any pursuer, then evasion is feasible
regardless of the number of pursuers and the initial position of the game. Additionally, we
construct an evasion strategy for the evader. Our main result highlights that the infinite
dimensionality of the space `2 confers an advantage to the evader, enabling evasion from
any finite number of pursuers.

2. Statement of the Problem

It is remembered that `2 is the set of all sequences of real numbers{
x = (x1, x2, . . . ), |

∞

∑
k=1

x2
k < ∞

}

with the inner product and norm given by

〈x, y〉 =
∞

∑
k=1

xkyk, ||x|| =
√
〈x, x〉, x, y ∈ `2.

We consider a differential game described by the following infinite system of differential
equations:

ẋik = λxik + a1xi,k+1 + a2xi,k+2 + · · ·+ aMxi,k+M + uik, xik(0) = x0
ik,

ẏk = λyk + a1yk+1 + a2yk+2 + · · ·+ aMyk+M + vk, yk(0) = y0
k ,

(1)

where xik, yk ∈ R, i = 1, 2, . . . , m, k = 1, 2, . . . , λ ∈ R and M ∈ N are given constants,
M
∑

j=1
aj = 1 for aj ≥ 0, and uik, vk are the control parameters of the i-th pursuer and the

evader, respectively. Moreover, it is considered that

x0
i = (x0

i1, x0
i2, ...) ∈ `2, y0 = (y0

1, y0
2, ...) ∈ `2, i = 1, 2, . . . , m.

Further, it is assumed that x0
i 6= y0 for all i = 1, 2, . . . , m.

With the notation ηik = xik − yk for i = 1, 2, . . . , m, k = 1, 2 . . . , we can write (1) in
the form

η̇i = Qηi + ui − v, ηi(0) = η0
i , i = 1, 2, ..., m, (2)
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where ηi = (ηi1, ηi2, . . . ), ui = (ui1, ui2, . . . ), v = (v1, v2, . . . ), and η0
i = x0

i − y0 for
i = 1, 2, . . . m, and η0

i 6= 0 is assumed as well. The linear operator Q : `2 → `2 is defined by
the following equation:

Qη = {ληk + a1ηk+1 + a2ηk+2 + ... + aMηk+M}k∈N. (3)

Further, we continue as

Q = λI +
M

∑
j=1

ajEj,

where I is the identity map, and E : `2 → `2 is the shift map whose action is defined as
[Ex]k = xk+1. It is easy to see that ‖Ej‖ = 1 for all j ∈ N; hence, Q is a bounded linear
operator. Indeed,

‖Q‖ = |λ|+
M

∑
j=1

aj‖Ej‖ ≤ |λ|+ 1.

This implies that etQ is a continuous semi-group, and the solution of (2) can be written as

ηi(t) = etQη0
i +

t∫
0

e(t−s)Q(ui(s)− v(s))ds. (4)

Definition 1. A function ui(t) = (ui1(t), ui2(t), . . . ), i ∈ {1, 2, . . . , m} with measurable coor-
dinates uik(t), k = 1, 2, . . . , which satisfy the constraint ||ui(t)|| ≤ ρi, 0 ≤ t ≤ T, is called the
admissible control of the i-th pursuer, where ρi > 0 and T > 0 are given numbers.

Definition 2. A function v(t) = (v1(t), v2(t), . . . ) with measurable coordinates vk(t), k =
1, 2, . . . , which satisfy the constraint ||v(t)|| ≤ σ, 0 ≤ t ≤ T, is called the admissible control of the
evader, where σ > 0 and T > 0 are given numbers.

Assume that σ ≥ ρi for all i = 1, . . . , m.

Definition 3. If there exists a control v(t) of the evader, such that ηi(t) 6= 0, i = 1, . . . , m,
0 ≤ t ≤ T, for any admissible controls ui(t), i = 1, . . . , m, 0 ≤ t ≤ T of the pursuers, then we say
that evasion is possible on the time interval [0, T].

The problem here is that to find a strategy for the evader, such that evasion is possible
in game (2).

3. The Main Result

In this section, we prove the following theorem.

Theorem 1. In game (2), evasion is possible for any initial states η0
i , i = 1, 2, . . . , m.

Proof. We can write (4) in the form

ηi(t) = etQξi(t), ξi(t) = η0
i +

t∫
0

e−sQ(ui(s)− v(s))ds. (5)

For any i = 1, 2, . . . , m, the equation ηi(t) = 0 is equivalent to ξi(t) = 0 since the matrix etQ

is not singular. Furthermore, proving the theorem only requires constructing an admissible
control v(t) for the evader during the time interval of 0 ≤ t ≤ T, which means that
ξi(t) = (ξi1(t), ξi2(t), . . .) 6= 0 holds for every i = 1, 2, . . . , m and 0 ≤ t ≤ T.

Since η0
i 6= 0, we can conclude that there exists a unit vector α = (α1, α2, ...) ∈ `2,

where ‖α‖ = 1, such that the inner product 〈η0
i , α〉 ≥ 0 for all i = 1, . . . , m. We can choose
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the vector α to be an orthonormal vector to the hyperplane that passes through the points
η0

i , where i = 1, 2, . . . , m.
Now, we set the evader’s control as follows

v(t) = − e−tQ∗ασ

‖e−tQ∗α‖
, (6)

where Q∗ stands for the transpose of the matrix Q. We show that evasion is possible by
using the control (6) of the evader on the time interval [0, T]. Note that since α = (α1, α2, ...)
is a unit vector, the denominator in (6) is not equal to zero, i.e.,

‖e−tQ∗α‖ 6= 0, t ≥ 0.

To obtain a contradiction, suppose that there exist admissible controls of pursuers,
such that ξp(θ) = 0 for some p ∈ {1, . . . , m} and θ > 0, while the evader applies the control
(6). From 〈η0

i , α〉 ≥ 0, i = 1, 2, . . . , m, we then have

〈η0
p, α〉 ≥ 0, i = 1, 2, . . . , m. (7)

Thus,

〈ξp(θ), α〉 =

〈
η0

p +

t∫
0

e−sQ(ui(s)− v(s))ds, α

〉
(8)

= 〈η0
p, α〉+

θ∫
0

〈
e−sQ(up(s)− v(s)), α

〉
ds (9)

≥
θ∫

0

〈
e−sQup(s), α

〉
ds−

θ∫
0

〈
e−sQv(s), α

〉
ds. (10)

Using the Cauchy–Schwartz inequality, the first term of the right side of Equation (8)
can be bounded as follows

θ∫
0

〈
e−sQup(s), α

〉
ds =

θ∫
0

〈
up(s), e−sQ∗α

〉
ds (11)

≥ −ρp

θ∫
0

∥∥∥e−sQ∗α
∥∥∥ds. (12)

In (11), equality holds at

up(t) = −
e−tQ∗αρp

‖e−sQ∗α‖
, 0 ≤ t ≤ θ. (13)
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From (6) and (11), we have 〈ξp(θ), α〉 ≥ 0 for σ ≥ ρp. Indeed,

〈ξp(θ), α〉 ≥
θ∫

0

〈
up(s), e−sQ∗α

〉
ds−

θ∫
0

〈
v(s), e−sQ∗α

〉
ds (14)

≥ −ρp

θ∫
0

∥∥∥e−sQ∗α
∥∥∥ds−

θ∫
0

〈
− e−tQ∗ασ

‖e−tQ∗α‖
, e−sQ∗α

〉
ds (15)

= −ρp

θ∫
0

∥∥∥e−sQ∗α
∥∥∥ds + σ

θ∫
0

∥∥∥e−sQ∗α
∥∥∥ds (16)

= (σ− ρp)

θ∫
0

∥∥∥e−sQ∗α
∥∥∥ds ≥ 0. (17)

The assumption ξp(θ) = 0 shows that 〈ξp(θ), α〉 = 0. However, in (14), the equality
sign is only true for ρp = σ. By comparing (6) and (13), we can conclude that up(t) = v(t),
for 0 ≤ t ≤ θ. By substituting this into (4), we have

ξp(θ) = η0
p.

This implies that
ξp(θ) = (ξp1(θ), ξp2(θ), ...) = (η0

p1, η0
p2, ...) 6= 0.

This contradicts our assumption ξp(θ) = 0. From this, we conclude that ξi(t) 6= 0, for
all t ∈ [0, T], and i = 1, 2, . . . , m. This completes the proof.

4. Conclusions

In the present paper work, we studied a multi-pursuer evasion differential game
problem for an infinite system of differential equations with a special operator Q = λI +
∑M

i=1 aiEi on the right hand side, where ai ≥ 0 and ∑M
i=1 ai = 1.

We considered a differential game with geometric constraints and showed that evasion
is possible from any initial position under natural conditions in `2. In the construction of
the evasion strategy, the fact that a finite number of points lies on a hyperplane played the
key role.

A similar result can be obtained in the case of an infinite (countable) number of
pursuers, if the initial states of all objects lie on a hyperplane. In general, for the countable
number of pursuers, this problem is open.
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