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Abstract: The need to use renewable sources and matrices with energy potential is widely recog-
nized. The development of innovative technologies aimed at the improvement of energy conversion
processes and reducing environmental impacts is currently receiving increasing attention from the
scientific community and policymakers. The presence of sugars in airborne particle materials is
attributed to biomass combustion. For this reason, these compounds are considered markers of
biomass burning. The purpose of this work was to evaluate the emissions produced by agroforestry
biomass burning (citrus pruning) by simultaneously sampling both stack emissions and atmospheric
particulates in the area around a biomass boiler to understand the real contribution of biomass
burning to atmospheric pollution. The combustion tests were carried out by comparing the processes
with and without particulate abatement system to see how biomass combustion’s contribution to
particulate emission can be controlled and reduced. During the tests, the focus was on particulate
matter (PM) speciation in terms of sugar marker identification and determination. This study aims
to increase knowledge to better understand the contribution of biomass plants to air pollution and
differentiate it from the contributions of other sources, such as vehicular traffic or domestic heating.

Keywords: air pollution; PM; VOC; sugar; bioenergy; biomass disposal; biomass burning

1. Introduction

The growing demand for renewable energies has encouraged the installation of many
small-scale power plants using wood waste as combustion feedstock [1]. There are many
studies concerning the importance of biomass burning (BB) despite its relative atmospheric
impact [2,3].

BB represents a significant source of pollutants that enter into the atmosphere [4–6],
such as particulate matter (PM), volatile organic compounds (VOCs), polycyclic aromatic
hydrocarbons (PAHs), macropollutants (CO, CO2, NOx, SO2) [7–9]. These compounds
can potentially impact and have important consequences for human health, the climate,
biogeochemical cycles, ecosystems, and global radiation balance [10–12].

The emissions generated by BB strongly influence the physical and chemical com-
position of atmospheric aerosols, especially in cases of uncontrolled wood combustion
(open burning), which, unfortunately, is still frequently used as a waste disposal method in
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rural areas [2,13]. Numerous other studies have investigated the influence of BB emissions
on atmospheric aerosol compositions [14–18]. This practice is responsible for one third
to one half of global carbon monoxide (CO) emissions and 20% of nitrogen oxide (NOx)
emissions [19]. BB also represents the main source of primary fine carbonaceous particles
and the second largest source of trace gases in the global atmosphere [20,21]. Emissions
from BB have differ greatly based on the process dynamics, nature of the biomass, and the
abatement system and can be a result of incomplete combustion. Incomplete combustion
mostly produces soot, organic micropollutants, unburnt carbon, ash, and carbon monoxide.
Under bad combustion conditions, the percentage of unburnt particles can reach more
than 90% of the total particles, while the percentage is less than 1% if the best combustion
condition is reached [22]. Recent studies show that fossil charcoal and black carbon, derived
from the incomplete combustion of plants, are the tracers of forest fires [23–25]. The use of
biomass boilers allows us to burn biomass in controlled conditions to produce energy and
reduce the environmental impact of BB.

Levoglucosan is universally recognized as a specific molecular marker of biomass
combustion. This monosaccharide is produced from the thermal degradation of cellulose
during the pyrolysis phase at 300 ◦C by transglycosylation and fission reactions and subse-
quently emitted in particulate matter [26–28]. Levoglucosan is considered [29] relatively
stable in atmosphere, being emitted in large amounts [30], and it is usually preferred to
soluble potassium as a specific tracer, since the latter has other sources, such as meat
cooking, waste incineration, and coal usage [31].

Based on the several published studies investigating the presence of levoglucosan in
the atmosphere, it appears that the most commonly used techniques for its detection are
HPLC/MS [32] or HPLC coupled with an amperometric detector [26,33,34]. More recent
studies have proposed other innovative techniques, such as thermal desorption coupled
with gas chromatography mass spectrometry (TD-GC/MS) with in situ derivatization [35].
Levoglucosan is generally observed in atmospheric monitoring stations, and its presence is
usually attributed to all biomass combustion, both industrial and, above all, domestic [36].
Indeed, this marker sugar is also derived from other phenomena (forest fires; the use
of domestic fireplace; the burning of stubble and pruning the so-called open burning, a
practice that is still sadly widespread; etc.), which led to an overestimation of the PM gen-
erated by biomass boilers [36]. The described phenomena are in fact devoid of abatement
systems (unlike boilers) and therefore lead to overestimates of the amount of PM from
biomass conversion plants. The aim of this work was to monitor, by sampling and analysis,
emissions from biomass conversion processes and their contribution to the composition
of atmospheric PM. Also, this work aimed to determine the main sugars generated by BB
through dedicated sampling methods to identify the characteristic patterns that uniquely
define the controlled combustion impact. Unlike other works in the literature, here, for the
first time, the volatile fractions of sugars, determined by a method previously proposed by
the authors of [36], are also considered. The proposed work consisted of three monitoring
and analysis phases:

- The chemical and physical characterization of incoming biomass;
- The combustion and stack monitoring of CO, CO2, NOx, SO2, TOC, PM, PM10, PM2.5,

metals, VOC, and sugars;
- The sampling and analysis of environmental PM.

A further innovation proposed in this work is the fact that we chose to conduct
the proposed analyses in two different boiler operating conditions: with and without
the multicyclonic filter. This allowed us to obtain significant results that also show the
differences between the emissions of a controlled combustion and a combustion that
simulates the open burning phenomena. Although the use of biomass in thermochemical
processes is an excellent system for disposal and the production of renewable energy, it
is necessary to deepen our understanding of the impact that uncontrolled and controlled
combustion processes can have on the atmosphere. This paper helps bridge a gap in global
biomass utilization knowledge.
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2. Materials and Methods
2.1. Biomass Composition

To evaluate the emissions produced, it is important to observe the parameters and oper-
ative conditions of the combustion plant, the combustion process, and the physical and chem-
ical characterization of biomass (moisture content, ash content, particle size, and elemental
content) [37,38]. The biomass (pruning of citrus trees) was shredded and dried to reduce its size
and humidity, thus facilitating characterization. The moisture content was determined using a
Memmert UFP800 oven according to the ISO 18134-1:2022 (Solid biofuels—Determination of
moisture content. International Organization for Standardization. Geneva, Switzerland) stan-
dard. In particular, the biomass sample was dried at 105 ± 2 ◦C, and the moisture content was
calculated considering the weight loss of the sample due to the drying process after 24 h. For
the ash content test, the dried sample was first ground with the Retsch SM 100 knife mill for
preliminary size reduction and then put through the Retsch ZM 200 centrifugal mill. The ash
content was determined using a muffle furnace Lenton EF11/8B according to the ISO 18122:2023
(Solid biofuels—Determination of ash content. International Organization for Standardization.
Geneva, Switzerland). A sample of about 1 g was placed in a ceramic crucible and then placed in
the oven. The oven temperature was set with two different temperature ramps relating to two
steps: the first was up to 250 ◦C for one hour at 6 ◦C/min, and the second was from 250 ◦C to
550 ◦C for two hours at 10 ◦C/min. For the evaluation of the chemical and energy parameters, the
higher heating value (HHV); lower heating value (LHV); and carbon (C), hydrogen (H), nitrogen
(N), and sulfur (S) contents were determined. The HHV was determined using the Parr 6400
calorimeter according to the ISO 18125:2017 (Solid biofuels—Determination of calorific value.
International Organization for Standardization. Geneva, Switzerland). The LHV was calculated
by applying an algorithm, starting from the HHV value [39].

LHV = HHV − (206 × H/1000)

The elemental composition in terms of C, H, and N, was determined using a Costech ECS
4010 CHNS-O elemental analyzer according to the ISO 16948:2015 (Solid
biofuels—Determination of total content of carbon, hydrogen and nitrogen. International
Organization for Standardization. Geneva, Switzerland).

2.2. Experimental Tests and Biomass Combustion Plant

The combustion tests and the emission monitoring campaigns were carried out in two sites:
CREA-IT and ARSAC. At CREA-IT, in Monterotondo (Rome, Italy), combustion was carried
out by means of an 80 kWth boiler (GSA/80, D’Alessandro Termomeccanica. Miglianico, Italy)
without abatement systems to simulate open burning conditions. The biomass was conveyed in
the upper auger; the star valve served to regulate the supply chain of the fuel towards the cochlea
and break the continuity of the fuel, preventing the return of any flames. In the ARSAC site, in
San Marco Argentano (Cosenza, Italy), the biomass was burned into a 30 kWth boiler equipped
with a multicyclone for collecting fly ash to perform the combustion process under controlled
conditions with abatement systems (CSA 30–100 GM, D’Alessandro Termomeccanica. Miglianico,
Italy). The boiler we used is a hydronic (i.e., it uses water as a heat transfer medium), single-fuel
boiler that is able to consume 7.1 kg/h of combustible at max work condition. The feeding system
allowed for the use of solid biomass such as woodchips and crushed wood waste [40]. The two
systems’ operative parameters, detected using an isokinetic probe, are reported in Table 1.

Table 1. Experimental conditions and operative parameters of the two processes.

Sampling and Combustion Conditions

Open Burning
Simulation Boiler with Abatement System

Flue gas velocity at stack [m/s] 3.60 3.35
Stack temperature [◦C] 218.52 142.46
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Table 1. Cont.

Sampling and Combustion Conditions

Open Burning
Simulation Boiler with Abatement System

Stack pressure [kPa] 102.96 110.96
Velocity at nozzle [m/s] 3.567 3.353
Filter box temperature [◦C] 130.7 129.8
Outlet temperature [◦C] 99.3 95.6
Ambient pressure [kPa] 102.86 100.98

2.3. Emission Sampling and Characterization

Emission sampling and determination was carried out following the ISO 16911-1:2013
(Stationary source emissions—Manual and automatic determination of velocity and volume
flow rate in ducts—Part 1: Manual reference method. International Organization for
Standardization. Geneva, Switzerland) and UNI EN 13284:2017 (Emissions from fixed
sources—Determination of the mass concentration of dust in low concentrations—Part 1:
Manual gravimetric method. Ente italiano di normazione. Milano, Italy). Sugars, metals,
and VOCs were also sampled and characterized in the LASER-B laboratory of CREA-IT.
At the same time as when the emission monitoring campaign was being carried out at the
ARSAC site, the atmospheric concentrations of PM, metals, and sugars were evaluated. For
this purpose, 4 Skypost Tecora environmental samples were used for PM10 (A, B, C, and D).
Points A (north), B (east), C (south), and D (west) were positioned as shown in Figure 1.
Furthermore, the use of continuous samplers for the whole campaign duration (three days)
made it possible to observe the variations in PM, even when the boiler was switched off.
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Daily sampling of PM10 was carried out following the UNI EN 12341:2014 (Ambient
air—Gravimetric reference method for the determination of the mass concentration of
suspended particulate matter PM10 or PM2.5. Ente italiano di normazione. Milano, Italy).
For this purpose, was used a PM10 autosampler (Skypost TCR Tecora, Cogliate, Italy) at a
flow rate of 2.3 m3/h (Figure 2). The PTFE filters (47 mm diameter) were preconditioned at
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a controlled temperature and humidity (48 h at 20 ◦C and 50% humidity) in a hood with an
ionizing system (Climatic Cabinet, Hannover, Germany) to reduce electrostatic charges. For
gravimetric analysis, the filters were weighed before and after sampling using an electronic
microanalytical balance (Sartorius, Gottingen, Germany) with an accuracy of 0.001 mg, and
each weighing was averaged over five repetitions.
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2.3.1. Sampling and Determination of Macropollutants

Gaseous macropollutant determination was carried out according to UNI EN 14791
(Emissions from fixed sources—Determination of the mass concentration of sulfur
oxides—Standardized reference method. Ente italiano di normazione. Milano, Italy),
14792 (Emissions from fixed sources—Determination of the mass concentration of nitrogen
oxides—Standardized reference method: chemiluminescence. Ente italiano di normazione.
Milano, Italy) and 15058 (Emissions from fixed sources—Determination of the mass concen-
tration of carbon monoxide (CO)—Reference method: non-dispersive infrared spectrometry.
Ente italiano di normazione. Milano, Italy). The flue gas sampling system consisted of two
180 ◦C line heaters connected to the boiler’s stack and two gas analyzers: a Ratfisch model
RS 53-T heated flame ionization detector (FID) for the detection of TOC (Total Organic
Carbon) and a multiparametric analyzer (Horiba PG250) for the detection of NOx, SO2,
CO2, CO, and O2. Flue gas sampling was carried out with a HP1 (DADO LAB Cinisello B.,
Milano, Italy) heated sampling probe with a PTFE filter. A chiller was placed between the
probe and the Horiba PG 250 to avoid the condensation of the gaseous effluents.

2.3.2. Sampling and Determination of Volatile Organic Compounds (VOCs)

Volatile organic compounds were sampled according to the CEN/TS 13649:2014 stan-
dard, applying a dilution with zero air equal to 1/10 thanks to the use of the Dynamic
Dilution Sampler for VOC Emission Sampling (DDS TCR Tecora, Cogliate, Italy). The sam-
plings were performed using a heated probe and a self-made adsorbent tube in Activated
Porous Carbon Fiber (APCF Labtech SRL, Rome, Italy) [41,42] placed downstream and
followed in series by a backup tube. VOC sampling was performed simultaneously with the
measurement of the Total Organic Carbon (TOC). The adsorbent tubes were subsequently
thermally desorbed and analyzed using a TD-100xr (Markes Int. Bridgent, Wales, UK)
coupled with the Agilent 7000 triple quadrupole GC/MS system (Santa Clara, CA, USA).
GC/MS analysis was performed in splitless mode with the parameters specified in Table 2.
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Table 2. Optimized parameters for the analysis of VOCs in GC/MS.

Operative Parameters

Carrier gas He
Column DB 502.2
Flow 1.2 mL/min
Mode (GC) Constant Flow
Oven ramp 35 ◦C (5 min) + 5 ◦C/min to 230 (5 min)
Ion source EI
Inlet 200 ◦C
MS source 230 ◦C
MSD transfer line 240 ◦C
Mode (MS) Full Scan 35–450 m/z

2.3.3. Methods for Sampling and Determining Fixed-Source Sugars

The use of the isokinetic sampling system was followed by the use of impinger systems
to collect both the solid fraction and the volatile fraction (Figure 3). Only the solution in the
first two impingers were considered for determination; the third was defined as a backup
that was exclusively used to validate the sampling: if the analyte investigated exceeds
10% in concentration compared to the sum of the concentration in the first two impingers,
the sampling is not considered valid. The impingers were filled with different solutions
depending on the sampling. A MilliQ water solution was used to sample the sugars, while
a solution of HNO3 and H2O2 in milliQ water was used to sample the metals (method:
UNI EN 14385:2004. Emissions from fixed sources—Determination of the total emission of
As, Cd, Cr, Co, Cu, Mn, Ni, Pb, Sb, Tl and V. Ente italiano di normazione. Milano, Italy).
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Figure 3. Sugar sampling system: DADOLAB HP5 probe containing the fiber glass filter for the solid
component and the thermostated impingers for the sampling of the volatile fraction.

PM sampling made it possible to collect the Total Suspended Particles (TSPs) and PM
fractions (PM10, PM10-2.5, PM2.5). TSP sampling was carried out by using an isokinetic
probe ST5 DADO LAB according to UNI EN 13284-1:2017 and subsequently determining
the quantity in ng/Nm3 present in the fumes by a gravimetric method. The use of a new
prototype of an inertial impactor developed by DADO LAB (Figure 4) in compliance with
ISO 23210:2009 (Stationary source emissions Determination of PM10/PM2.5 mass concen-
tration in flue gas Measurement at low concentrations by use of impactors. International
Organization for Standardization. Geneva, Switzerland) allowed us to sample the three
different fractions of PM.
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Figure 4. Multistage inertial impactor for PM fraction sampling.

For the determination of PM and sugars, glass fiber filters (47 mm diameter) were
conditioned at 400 ◦C and subsequently brought to a constant weight by keeping them for
48 h at constant temperature and humidity in the conditioning chamber. After sampling,
the filters were reweighed and compared with a blank filter. For sugar determination,
in accordance with Paris et al. [36], the filters and the impingers, kept in the dark and
refrigerated, were analyzed by Ionic Chromatography (IC) using the 945 Professional
Vario Amperometric Detector. The impinger solutions were directly analyzed, while the
particulate was extracted three times with 1 mL H2O MQ using an ultrasonic bath for
30 min in three cycles. The separation of the single sugars was carried out out using
a Metrosep Carb 2-250/4.0 analytical column, the relative pre-column, and the trap for
carbonates (Metrosep CO3 Trap 1-100/4.0). The mobile phase was an aqueous solution of
18 mM sodium hydroxide (NaOH). The chromatographic run was conducted at a flow rate
of 0.8 mL/min. The calibration lines were made using standard sugars with a degree of
purity over 99% (Labmix24- Hamminkeln. Germany). Finally, as we knew the sampling
volumes of the fumes that have passed through the filter and impingers, it was possible to
obtain the emission values of every sugar detected by IC. Figure 5 shows a chromatogram
of the construction of the calibration line:
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2.3.4. Sampling and Determination of Metals

For metal sampling, quartz filters and impingers were used during the sampling
campaign. We used impingers containing a 1:1 solution of H2O2 at 30% v/v and HNO3
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at 65% v/v diluted with 1:10 H2O MilliQ following the same system for the isokinetic
sampling according to the EN 14385:2004. The sampled filters were mineralized with a
microwave (Milestone START D. Sorisole, Italy), and the impinger solution was diluted
to 1:10. Then, the solutions were analyzed in the ICP-MS 7700 Agilent (Santa Clara, CA,
USA) according to UNI EN ISO 17294-2:2016 (Water quality—Application of inductively
coupled plasma mass spectrometry (ICP-MS)—Part 2: Determination of selected elements,
including uranium isotopes. Ente italiano di normazione. Milano, Italy).

3. Results and Discussion
3.1. Biomass Characterization

The biomass characterization results about the moisture and other parameters that
represent important factors for the dynamics and efficiency of the processes are listed in
Table 3 [17,40,43,44]. A non-negligible concentration of water and ash was determined;
these factors inevitably lead to worse combustion conditions [45]. As regards the metal
contents, a high concentration of Na, Mg, K, and Ca was observed. These metal compounds
are commonly present in large quantities in woody biomass because they represent the
main ionic species in soil absorbed in the growing biomass phase. Ca, Mg, K, and Na
oxalates are typical minerals of plants [46]. These bio-minerals are end products of plant
metabolism and commonly present in cytoplasm [47]. It is also known that annual and
fast-growing crops, including fruit crops, show high contents of elements such as K, Mg,
Na, and Ca [46]. For other metals, the concentrations are all below mg/kg, except for Fe
and Sr. Their presence is probably due to the type of soil in which the citrus was cultivated.

Table 3. Chemical and physical characterization of biomass.

Citrus Pruning

Moisture content % 10.19
Ash % 4.95

HHV [MJ/kg] 17.75
LHV [MJ/kg] 16.59

C % 46.69
H % 5.58
N % 0.44

Metal content [mg/kg]

Na 13.33
Mg 21.73
Al 6.28
K 239.82
Ca 155.01
Cr 0.03
Mn 0.24
Fe 3.97
Ni 0.06
Cu 0.21
Zn 0.25
Ga 0.05
Sr 5.39
Ag 0.001
Cd 0.001
In 0.0004
Ba 0.91
Tl 0.001
Pb 0.01
Bi 0.02
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3.2. Emission Characterization
3.2.1. Macropollutant Emissions

The data concerning the emission production were monitored, and the average values
of the macropollutants (CO, NOx, SO2, CO2, and TOC) recorded during the combustion
process are shown in Table 4. The results were normalized to a 6% oxygen content, in
compliance with the Italian Legislative Decree 183/17 about the limits for boiler emissions
from biomass burning.

Table 4. Concentrations of macropollutants in emission.

Compound Open Burning Test Boiler with Abatement System

CO [mg/Nm3] 1132.418 587.88
NOx [mg/Nm3] 528.12 473.70
SO2 [mg/Nm3] 38.03 39.76
TOC [mg/Nm3] 35.26 47.19

CO2 [%] 6.55 4.62

Observing Table 4, in the two types of tests, the only value identical in both cases is
SO2, whose formation depends exclusively on the sulfur present in the biomass, which is
present in very low concentrations (<LOQ).

A large divergence in CO concentrations is observed, with the CO concentration
being almost double in the case of the open burning tests. This is a symptom of low-
grade combustion with an uneven or insufficient intake of oxidizer. Although the NOx
amounts are similar, they are slightly higher in the case of the open burning tests, which
probably indicates that, in this case, higher temperatures have been reached, which favor
the production of this pollutant [48].

3.2.2. VOC Emission

The analysis of the adsorbed tubes through active sampling at the stack highlighted
the presence of numerous VOCs (Table 5). In this paper, only the main compounds are
reported, with a pick area of at least 5% compared to the highest one or present in the
analytical standard.

Table 5. VOCs in emissions.

VOCs [mg/Nm3] Open Burning Boiler with Abatement System

Propene 0.72 0.21
Methane, chloro- 1.03 2.11

Methane, dimethoxy- 0.02 <LOQ
2-Butanone <LOQ <LOQ

Benzene 4.13 1.75
Toluene 0.57 0.48

Benzene, chloro-1 0.10 0.05
Ethylbenzene 0.11 0.03
m,p-Xylene 0.22 0.21

o-Xylene 0.08 0.18
D-Limonene 0.26 0.09

Undecane 0.55 0.47
Cyclododecane 0.82 0.20

∑VOC 8.61 5.78

Combustion in a boiler with an abatement system generally produced lower VOC
concentrations (the only exception is chloromethane, whose concentration is considerably
lower in the open burning emission). The lower VOC concentrations could be due to
two reasons:
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- The best combustion conditions (Table 4) resulting in a lower probability of incomplete
combustion products production (including VOC).

- Some of the produced VOCs adsorb at the PM which is captured by the multicyclone.

3.2.3. Sugar Emission

As regards sugar analysis, the calibration line was made using standards of the main
sugar typically found in emissions produced by BB based on literature data [26,33,34,49–52].
Table 6 reports the analytes detected in the PM filter, MilliQ H2O impinger, and backup
impinger (Dadolab srl. Cinisello B. Mialno, Italy).

Table 6. Sugar in emissions while under open burning conditions and using multicylone filter.

[mg/Nm3]
Open Burning Boiler with Abatement System

Filter Impinger Backup Filter Impinger Backup

Inositol 1.11 0.16 <LOQ 1.12 0.32 <LOQ
Glycerol <LOQ 13.46 1.58 <LOQ 3.47 0.09
Erythritol 2.06 0.07 <LOQ <LOQ <LOQ <LOQ
Ribitol <LOQ 0.55 <LOQ <LOQ <LOQ <LOQ
Mannitol 1.47 1.27 <LOQ <LOQ <LOQ <LOQ
Levoglucosan 11.23 29.03 <LOQ 3.52 5.91 <LOQ
Mannosan 1.14 1.1 <LOQ 1.05 0.80 <LOQ
Arabinose 6.74 4.55 <LOQ <LOQ <LOQ <LOQ
Arabitol 0.99 0.69 <LOQ <LOQ <LOQ <LOQ

In open burning conditions, inositol, erythritol, mannitol, levoglucosan, mannosan,
arabinose, and arabitol were detected in both the PM filter and the impingers. The im-
pingers were particularly rich in sugars, suggesting that in addition to levoglucosan, the
high volatility is also typical of other sugars generated by biomass combustion. In tests
where a multicyclonic abatement system was used, the results obtained were very different
and showed the determination of only four sugars (inositol, glycerol, levoglucosan, and
mannosan). In addition to levoglucosan, one of the main analytes detected was glycerol,
both in the filter and in the bubbled fractions. Another important parameter that can be
seen is the extreme volatility of glycerol. In both cases, in fact, it did not settle on a filter but
was determined exclusively in the volatile fraction. Excluding levoglucosan and mannosan,
the others all belong to the category of sugar alcohols. These data particularly indicate that
abatement systems avoid an enrichment of PM sugars (Figures 6 and 7), and therefore, it is
possible to distinguish the PM obtained from boilers with dedicated abatement systems, as
well as the PM obtained from the open burning process.
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The determined data allow us to make some important considerations: First of all, the
volatile fraction (that is, the one that can be sampled only by the bubbling of the fumes)
represents a not negligible fraction of sugars and, therefore, simple filter sampling, often
performed in similar works in the literature, is not enough because it greatly underestimates
the real contribution of markers to the PM. Moreover, through comparing an uncontrolled
combustion process and one with a multi cyclonic abatement system, it can be deduced that
the latter, being an effective system in breaking down only relatively large particle material
(the abatement efficiency drops dramatically for particles below 5 microns), allows us to
subtract a large part of the particle material that is usually released into the atmosphere and
to adhere and trap even sugars of reduced size during the swirling motion of abatement.
The quantification of sugars on the outdoor samplers filters appeared complex and not
very significant, probably because in order to have appreciable quantities of analytes, it
would have been more appropriate to use a larger boiler or sample for longer. In any case,
it was chosen to consider the sum of the sugars in the filter. The authors observed that
the Kaverage/∑Sugars ratio shows indicative values that are very different between the day
in which the boiler was off and the two following days in which the biomass was burned
(Table 7).

Table 7. Potassium and total sugar ratios detected during outdoor sampling.

Day Total Sugars [mg/Nm3] K [g/Nm3] K/∑Sugars [g/mg]

1 0.015 386.99 26.55
2 0.026 207.83 8.07
3 0.007 64.05 9.80

The results could suggest a characteristic correlation pattern between the two main
biomass combustion markers (sugars and K). Although the tests refer to a limited number
of days (1 day of the boiler being off and 2 days of the boiler in operation), it seems clear that
a ratio of about 8–9 is indicative of a particulate produced by the combustion of biomass in
the boiler, while a ratio of about 26 is indicative of standard environmental conditions. This
ratio, obtained at the emissive source (chimney), is 6.75. Since the relationship between
these two BB markers is being theorized in this article for the first time, there are no data in
the literature to compare with. This ratio is influenced by the fact that K is a BB marker
but not a unique one, as it is already present in the atmosphere, while sugars (especially
Levoglucosan, mannosan, and galactose) are unique markers of BB.

3.2.4. PM Emission

As regards the sampling of PM, for both tests, considering the biomass burned with
and without abatement systems, the PM2.5 component is always dominant in the com-
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bustion fumes. The tests with the CREA-IT boiler GSA80 in the open burning condition
show a higher presence of PM in the combustion fumes, with concentrations of PM2.5 of
170.2 mg/Nm3 (Table 8), approximately twice as many as those observed with the multiple
cyclone scrubber (Table 9).

Table 8. PM fractions from CREA-IT boiler in absence of abatement system simulating “open burning”.

PM Fractions Citrus Pruning [mg/Nm3] Citrus Pruning [% w/w?]

PM10 5.3 2.5
2.5 < PM < 10 38.5 18.0

PM2.5 170.2 79.5

Table 9. PM fractions from ARSAC with multicylone scrubber as abatement system.

PM Fractions Citrus Pruning [mg/Nm3]
Citrus Pruning

[% w/w?]

PM10 0.95 1.48
2.5 < PM < 10 2.39 3.73

PM2.5 61.06 94.79

The data obtained regarding the PM fraction distributions from citrus pruning com-
bustion by the two different systems (Tables 8 and 9) show a general decrease in the overall
PM concentrations in the fumes when the multicyclone is used. The presence of the filtering
system leads to a higher coarser PM abatement respect to PM2.5, which, in turn, increases
its percentage.

As can be deduced from the TSP results shown in Table 10, open burning produces
more PM. In fact, the sum of the PM fractions in Tables 8 and 9 is different based on the
data reported in Table 10. One explanation for this difference is due to the type of sampling:
the PTS sampling is continuous, while the PM fractions were sampled for time intervals
(15 min). This inevitably influenced the sampling and the relative averages obtained.
The other reason is gravimetric; in the case of the calculation of the PTS, obviously, the
relative error for the filter weighing is referred to a single filter, while in the case of the PM
fractions, the weight measurements are related to three different filters, which multiplies
the relative errors of the weighings. From the filters’ gravimetric measurements of the
outdoor autosamplers A, B, C, and D, it was possible to compose distribution maps of
PM10 in the studied area (Figure 8). During the first day (Figure 8 (left)) with the boiler off,
the ambient air autosamplers were in continuous operation from 13:00 to 10:00 the next
day. In this phase, despite the inactivity of the boiler, the highest values of PM10 per m3

of sampled volume are observed due to the greater stability conditions at night, which
favored the fall of the particulate present in the atmosphere. A significant contribution
to the PM concentration on the first sampling day (with the boiler off, Sunday) could
be attributable to vehicular traffic from the highway less than one km away from the
sampling point. In the following days, with the boiler on, the autosamplers were active
only during the day, when winds with greater intensity were recorded. On the third day
(Figure 8 (right)), lower concentrations of PM were reported, possibly due to the shorter
operating time of the boiler and higher wind speeds, which transported the PM to outside
of the studied area. A comparison with local meteorological variables (Table 11) was
made possible thanks to the weather station on the ARSAC site. The anemometer was
not functional, and the neighboring stations of Acri (WGS84; 16.404836 east; 39.502161
north) and Corigliano Calabro (WGS84; 16.448522 east; 39.736805 north) were taken into
consideration for the wind data alone. As mentioned, the north–north/west wind direction
during the night of the first day was predominant in the distribution of the PM. The map
shows a greater concentration in the autosampler C located to the south. During the second
day (Figure 8 (center)), the anemometers in the reference stations detected variable origins
and dynamics in the winds, with predominant north–north/west–south/West directions,
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which led to a distribution of the PM along the north–south axis. On that day, during the
sampling, near station A (north), an agricultural machine had begun plowing, which meant
that sampling had to be promptly suspended. This phenomenon may have influenced
the sampling at point A, increasing the PM concentration. Finally, regarding the last day
(Figure 8 (right)), the winds from north–north/west led to a higher concentration of PM
in the south–south/east area. The following figure and table show the PM10 distribution
maps and the meteorological values recorded during the sampling days, respectively.

Table 10. Total Suspended Particles.

TSP Open Burning [mg/Nm3]
Boiler with Abatement

System [mg/Nm3]

PM 103.05 83.10Atmosphere 2024, 15, x FOR PEER REVIEW 14 of 20 
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Table 11. Meteorological values.

Sampling Period Air Temperature [◦C] Precipitations [mm] Moisture [%] Soil Temperature [◦C] Wind Direction

4th October 2020
Day 27.8 0 43.09 20.58 NW

Night 18.73 0 77.9 20.92 NW

5th October 2020
Day 26.04 0 48.28 20.62 NW—SW

Night 22 0 62.4 20.9 SW—N

6th October 2020
Day 24.29 0 54.42 20.82 NW

Night 19.13 0 65.8 20.98 SW

3.2.5. Metal Emission

The results about the metal contents in the emissions obtained from metal sampling at
the stack were divided for the PM filter, the impingers with H2O2 + HNO3, and the backup
impinger. The results are shown in Table 12.

Table 12. Metal contents in emissions.

Citrus pruning combustion in boiler with abatement system

[mg/Nm3] Na Mg Al K Ca Cr Mn Fe Ni Cu

PM filter 5.50 0.73 3.59 110.10 0.99 0.01 0.10 1.78 3 × 10−3 0.05
Impingers 0.89 0.26 0.42 1.76 1.23 1 × 10−3 0.01 0.30 6 × 10−3 0.05
Backup 0.03 0.02 0.04 0.03 0.02 <LOQ 8 × 10−4 0.04 1 × 10−4 3 × 10−3

[mg/Nm3] Zn Ga Sr Ag Cd In Ba Tl Pb Bi

PM filter 0.33 6 × 10−3 0.06 5 × 10−4 3 × 10−4 1 × 10−4 0.07 1 × 10−3 0.07 0.18
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Table 12. Cont.

Citrus pruning combustion in boiler with abatement system

Impingers 0.31 3 × 10−4 0.02 4 × 10−5 3 × 10−3 <LOQ 0.01 7 × 10−4 0.03 2 × 10−3

Backup 0.01 <LOQ 4 × 10−4 <LOQ 5 × 10−3 <LOQ 3 × 10−3 2 × 10−5 0.06 <LOQ

Citrus pruning combustion in boiler without abatement system (Open Burning)

[mg/Nm3] Na Mg Al K Ca Cr Mn Fe Ni Cu

PM filter 4.00 1.86 4.51 351.90 1.05 0.06 0.23 2.78 9E-04 2E-03
Impingers 1.20 0.55 0.73 0.74 1.66 0.04 0.02 0.89 0.03 0.02
Backup 0.62 0.29 0.38 0.38 0.85 0.02 0.01 0.45 0.01 0.01

[mg/Nm3] Zn Ga Sr Ag Cd In Ba Tl Pb Bi

PM filter 0.01 1 × 10−3 0.03 3 × 10−3 4 × 10−4 5 × 10−5 9 × 10−4 2 × 10−3 2 × 10−5 0.02
Impingers 0.17 3 × 10−3 0.01 0.09 5 × 10−5 <LOQ 4 × 10−4 3 × 10−3 <LOQ <LOQ
Backup 0.09 1 × 10−3 2 × 10−3 0.05 3 × 10−3 <LOQ 2 × 10−4 1 × 10−3 <LOQ <LOQ

The results show very high concentrations of K distributed almost exclusively on the
PM filter, while Na, Mg, and Ca show a different trend; in fact, they were found to be
present also in the volatile fraction collected in the impingers.

The use of the multicyclone resulted in a strong reduction in the metals released
into the atmosphere. In fact, they are often transported by the PM, which facilitates the
transport; therefore, in the tests with the multicyclone, we noted negligible concentrations
in the backup bubbler. Cd and the Pb show a different behavior, with high concentrations
being detected in the backup bubblers by virtue of their high volatility. These data are more
recognizable in Figure 9, which represents the values listed in Table 12 as percentages of
the distribution.
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being detected in the backup bubblers by virtue of their high volatility. These data are 
more recognizable in Figure 9, which represents the values listed in Table 12 as percent-
ages of the distribution. 
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The values of the metals obtained from environmental sampling in the various sites
on the various days are reported in Table 13.

Table 13. Metal concentrations in environmental sites A, B, C, and D.

[ng/Nm3] Na Mg Al K Ca Cr Mn Fe Ni Cu

A1 747.30 152.40 1.51 489.987 109.70 0.10 2.12 1.84 0.23 0.48
A2 867.27 199.42 2.38 344.55 175.05 0.13 3.11 2.71 0.34 0.71
A3 504.30 72.76 0.19 107.73 10.38 0.05 0.56 0.47 0.06 0.12
B1 1122.17 226.48 25.18 301.16 362.76 0.13 9.76 8.37 0.29 1.22
B2 681.73 126.88 1.48 103.37 100.53 0.11 3.10 2.50 0.19 0.03
B3 1105.50 106.60 0.23 63.65 16.32 0.05 0.81 0.03 0.07 0.07
C1 4608.35 404.65 19.81 397.91 461.84 0.13 10.42 8.67 0.52 2.06
C2 1494.04 204.44 11.54 220.74 187.15 0.18 4.84 6.14 0.15 0.13
C3 612.26 87.54 0.31 49.73 12.39 0.05 0.61 0.38 0.10 0.07
D1 1584.62 254.87 42.64 358.89 406.57 0.08 11.64 14.10 0.34 1.24
D2 772.96 146.87 13.59 162.67 129.55 0.07 4.13 3.36 0.14 0.12
D3 403.49 57.25 0.42 35.07 7.20 0.01 0.32 <LOQ 0.08 0.18

[ng/Nm3] Zn Ga Sr Ag Cd In Ba Tl Pb Bi

A1 11.41 0.09 5.56 0.01 0.39 0.05 1.76 0.00 0.56 0.22
A2 16.55 0.15 8.88 0.02 0.58 0.07 2.84 0.01 0.81 0.34
A3 3.29 0.01 0.51 0.00 0.09 0.01 0.14 0.00 0.15 0.04
B1 3.21 0.12 10.34 <LOQ 0.10 0.00 2.51 0.14 0.27 0.03
B2 3.13 0.03 3.71 <LOQ <LOQ 0.00 0.91 0.01 0.10 0.00
B3 1.67 0.01 0.80 0.00 <LOQ <LOQ 0.18 0.01 0.03 0.01
C1 12.70 0.16 16.41 <LOQ <LOQ <LOQ 3.66 0.16 0.23 0.00
C2 4.90 0.07 7.35 0.02 <LOQ <LOQ 1.79 0.05 0.14 <LOQ
C3 3.35 0.01 0.73 0.00 <LOQ <LOQ 0.23 0.01 0.02 <LOQ
D1 2.95 0.17 11.81 0.00 <LOQ <LOQ 3.73 0.20 0.30 <LOQ
D2 5.05 0.08 5.74 0.02 <LOQ <LOQ 1.87 0.03 0.08 <LOQ
D3 2.54 0.00 0.43 0.01 <LOQ <LOQ 0.18 0.01 0.04 <LOQ

4. Conclusions

This paper reports the results of a comparison between the emissions produced by the
combustion of biomass in a boiler without an abatement system (simulating open burning)
and that in a boiler with a multicyclonic abatement system. In the second case, atmospheric
PM10 monitoring stations were also installed at a radius of about 40 m from the emissive
source (stack).

Regarding macropollutants (CO, CO2, NOx, SO2, TOC), there were profound differ-
ences that indicate how combustion in “open burning” took place under worse oxidizer
supply conditions, with the concentration of CO being about twice as high as that of the
other tests in the boiler. The concentration of NOx was also higher in the “open burning”
tests, where it was therefore deduced that higher temperatures were reached. Only the
concentration of SO2 is similar in both cases. As regards the emitted PM, it is obvious that
the presence of the multicyclone filter has a positive effect on emissions and reduces the
atmospheric impact. This effect, however, is closely related to the size of the particulates,
and the abatement system gradually becomes less effective since the aerodynamic diameter
of the PM considered decreases. PM sampling on the surrounding area showed higher
concentrations even in the day before testing, showing that a boiler with an effective abate-
ment system did not adversely affect the atmosphere. The sampling of the sugars in the
chimney and the environmental filters showed how open burning leads to the production
of a higher number of markers and with higher concentrations. It has been noted that there
seems to be a characteristic ratio on atmospheric sampling between K(g/Nm3) and ∑Sugars

(mg/Nm3); this ratio, in fact, seems to be about 26 under standard conditions, while it is
about 8–9 in the area surrounding combustion. At the chimney, this ratio drops to 6.75. This
comprehensive study represents a significant step forward in our quest for a more thor-
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ough comprehension of air pollution dynamics, particularly concerning the contribution of
biomass plants. By meticulously examining the emissions generated by these facilities, this
research discerns their unique impact on air quality amidst the complex interplay of various
sources. Through sophisticated analysis and data interpretation, it enables us to disentangle
the specific pollutants attributable to biomass combustion from those originating from
distinct sources like vehicular emissions or residential heating activities.

A crucial aspect facilitating this attribution is the thorough sampling and analysis
of the levoglucosan marker. Levoglucosan provides a comprehensive view of the emis-
sions produced at the biomass plant without underestimation, which can occur in am-
bient sampling, wherein levoglucosan tends to degrade in the atmosphere. This meticu-
lous approach ensures a more accurate assessment of biomass plant emissions and their
environmental impact.

Such granular insights are invaluable for crafting targeted policies and interventions
aimed at mitigating air pollution hotspots and safeguarding public health and environmen-
tal integrity. Ultimately, this study lays a crucial foundation for informed decision-making
and sustainable management practices in our ongoing battle against air pollution.
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