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Abstract: The number of older people needing healthcare is a growing global phenomenon. The
assistance in long-term care comprises a complex of medical, nursing, rehabilitation, and social
assistance services. The cost is substantial, but technology can help reduce spending by ensuring
efficient health services and improving the quality of life. Advances in artificial intelligence, wireless
communication systems, and nanotechnology allow the creation of intelligent home care systems
avoiding hospitalization with evident cost containment. They are capable of ensuring functions
of recognition of activities, monitoring of vital functions, and tracking. However, it is essential to
also have information on location in order to be able to promptly intervene in case of unforeseen
events or assist people in carrying out activities in order to avoid incorrect behavior. In addition,
the automatic detection of physical activities performed by human subjects is identified as human
activity recognition (HAR). This work presents an overview of the positioning system as part of an
integrated HAR system. Lastly, this study contains each technology’s concepts, features, accuracy,
advantages, and limitations. With this work, we want to highlight the relationship between HAR and
the indoor positioning system (IPS), which is poorly documented in the literature.

Keywords: human activity recognition; indoor localization; human tracking; signal measurement;
positioning algorithms; GPS; IPS

1. Introduction

Human activity recognition (HAR) is the scientific field that studies the identification
of movements or actions performed by a person through the detection of signals sent by
wearable sensors or smartphones or through video frames or images. The activities are
carried out indoors, such as walking, sitting, stairs, and standing. It is also essential to know
where the practical activities are carried out. In interpreting human movement, computer
technology and artificial vision are used [1]. HAR has multiple applications such as
surveillance, anti-terrorist security, lifelogging, and assistance. These systems have proven
very useful in providing efficient home care for the elderly and indoor tracking systems.
The percentage of older adults currently continues to grow, consequently determining a
need for assistance for those subjects who, losing autonomy and wanting to continue living
in their own home, require continuous support in real time. Therefore, it becomes essential
to note what the older adult does regarding daily activities. The basic principle is to monitor
older people at home or in a nursing home. The system must be able to detect anomalies
or deviations in daily activities that are indicative of a decline in people’s capabilities.
It should also be able to detect emergencies [2]. A positioning system is necessary to
ensure these systems’ effectiveness. The developments in artificial intelligence, wireless
communication systems, and nanotechnologies have allowed the creation of intelligent
home care systems, avoiding hospitalization, with an evident reduction in healthcare costs.
The HAR system has three main components:
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• The sensing module continuously collects information through sensors on the activities
carried out.

• The processing and selection module extracts features that help discriminate between
activities.

• The classification module uses the features to identify the individual’s activity.

The exact position of the subject can be associated with improving the system’s
accuracy. Internal positioning systems are used to acquire this information.

The indoor positioning system (IPS) provides continuous real-time localization of
objects or people within an enclosed space in different environments, using a network
of transmitters and receivers. The value of these systems is identified in the following
performances:

• Know in real-time how people move within a structure.
• Identify where a particular subject is.
• Activate alarms when particular situations are identified.
• Support security and emergency services to direct them where their intervention is

needed.
• Track personnel at risk when they reach designated collection points in the event of an

evacuation.

The technologies available today are different and allow a wide range of positioning
accuracy from meters to millimeters. These techniques cover a wide range of applications:
to ensure assistance to patients in need of assistance, for real-time home tracking of physical
assets within industrial facilities or identification of assets in supermarkets, museums, or
galleries, for the identification of a specific work of art, or, in the field of transportation and
logistics, identification of the position of the objects to be shipped [3]. With the proliferation
of the Internet of things (IoT) devices in the home, various IoT service scenarios have been
proposed, including IPS [4]. In addition, IoT is a heterogeneous set of technologies and
communication that makes it possible to connect any intelligent device, favoring human
subjects’ connection for exchanging information.

Current positioning techniques are divided into systems for external and internal
positioning. Regarding external positioning, with current techniques, good results in the
accuracy of the position obtained have been achieved. For indoor positioning, the following
issues must be taken into account in order to obtain precise results:

• The presence of obstacles weakens the signal (fast fading);
• The presence of obstacles creates the problem of signals not being in a direct line (not

line of sight (NLOS));
• The structure and nature of the construction materials of the indoor environment may

create the problem of reflection and refraction (multipathing), making it difficult to
determine the correct origin of the signal;

• The climatic changes in the signal’s means of transport affect the propagation speed.

These conditions affect the propagation of electromagnetic waves; therefore, position-
ing techniques must consider this to improve indoor position performance.

For the outdoor environment, the most widely used system is the GPS (Global Posi-
tioning System) [5], a satellite-based global geolocation system.

In addition to the GPS, there are other satellite navigation systems such as GLONASS
(Global Orbiting Navigation Satellite System) developed in the Soviet Union [6], BDS
(Bei Dou Navigation Satellite System) developed in China [7], and Galileo, developed in
Europe [8].

GPS satellites emit radio signals from which information is obtained relating to the
distance between the satellite and a receiver on Earth and the time it takes for the signal to
reach it.

From a structural point of view, the GPS consists of the following components:

• The space segment consists of a constellation of satellites.
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• The control segment comprises ground stations with the task of synchronizing the
clocks of all the satellites, knowing their position, and possibly correcting them.

• The user segment comprises an antenna capable of acquiring signals and a receiver
capable of decoding and processing them.

However, GPS is an excellent system for obtaining the position of a receiver with
good precision, and it can be used mainly in an external environment. Indoor, however,
the accuracy drops dramatically due to the inability to penetrate most building materials.
Currently, much of human life takes place inside buildings, and it is increasingly necessary
to know the location of a mobile device. Inside buildings, due to the lack of line of sight, the
loss of the signal, the multiple errors due to multipathing that are created, and the problem
of inconsistent time delays, it is not possible to rely on the satellite system. This limitation
hinders the implementation of GPS in indoor localization systems, although it can be solved
using “high-sensitivity GPS receivers or GPS pseudoliths” [9]. Pseudoliths (contraction of
“pseudo-satellites”) are RF transmitters that emit signals similar to GNSS, allowing a more
accurate localization closer to the receivers than traditional GPS transmitters installed on
board satellites. Transmissions reach places where GPS struggles typically, such as deep
urban canyons, forests, and valleys. Pseudoliths can be placed where they can increase
or replace GPS signals from satellites However, the cost of implementation can be an
obstacle to this system’s application. Therefore, other technologies should obtain real-
time information on humans and objects in indoor areas [10]. In the literature, there are
different experiences on indoor localization [11]. There are different technologies capable
of localizing objects or people indoors in an accurate manner, but this is achieved by using
specialized and rather expensive hardware and sensors that must though be placed in
advance within a confined space; such systems also reach sub-millimeter accuracies but to
the detriment of usability, cost, and scalability.

Compared with outdoor localization, indoor localization is more complex because
the indoor communication channel varies significantly with the environment and depends
heavily on many factors, such as building structure, room layout, and construction materi-
als.

Positioning systems can use 2D [12] or 3D [13] models. The latter has a higher posi-
tioning accuracy but requires higher costs due to the hardware infrastructure. The lower
cost of solutions based on 2D models favors their wide use in applications where accuracy
is not to be favored. The technologies usually used in 2D models are Bluetooth, ZigBee,
and Wi-Fi. In 3D models, on the other hand, infrared, ultrawideband, and ultrasound are
applied. In the field of solutions based on 2D models, the one on fingerprints [14] coupled
with Wi-Fi systems applicable for outdoor and indoor positioning is widespread.

There are different indoor positioning systems [15] depending on the technology used,
and sometimes they can even be combined (Figure 1). There is no perfect solution; each
has its strengths and weaknesses.

An efficient home care system must have characteristics that improve the quality of
life; it is necessary to design a suitable environment to recognize where and what the
elderly are doing successfully. The integration of the exact position of the person within
the recognition system of human activities is essential to intervene promptly in case of
unforeseen events and falls. Therefore, it is crucial to assist the elderly to avoid incorrect
actions in case any behavioral changes are observed.

We have found that, in the literature, there is little experience on the effectiveness
of the combination of IPS and HAR technologies. This work aims to explore possible
systems that can offer a comprehensive solution. The methodology used in developing
the work was based on the in-depth analysis of the activities’ multiple aspects of the
localization and recognition approaches. We report the different technologies available
and examine techniques and algorithms. We compared them with each other, highlighting
advantages, disadvantages, and characteristic elements. We also research the testimonies
on the integrated and compared systems to identify a possible solution that could satisfy
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different contexts. Lastly, the surveys confirm the issue’s complexity and the need for new
research efforts. The work concludes with possible scenarios for future developments.
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Section 2 describes the main features of an indoor positioning system; Section 3
analyzes the techniques used in localization; Section 4 illustrates the applied algorithms;
Section 5 reviews the technologies; Section 6 describes the various applications developed;
Section 7 concludes the paper. Figure 2 shows an outline of the relationships between the
sections.
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2. IPS

The principle of operation of an indoor positioning system (IPS) uses reference sensor
nodes with known positions that send a ranging signal to the mobile device attached to
the target. Then, the mobile device perceives the request signals and issues a ranging reply
to the reference sensor. At this point, the traveling time of the ranging signal between
the transmitter sensor node and the moving target can be calculated. The measured data
are transferred to a data center using positioning algorithms, and we can determine the
target’s exact position. Therefore, for the localization of unknown nodes, we must first
measure some metrics and then use the algorithm to calculate the position itself, as shown
in Figure 3 [16].
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In the first phase of the process, between fixed and mobile nodes, all the characteristic
information of the signals is exchanged, such as direction, length, time of arrival, and
coordinates of the referent node. In the second phase, however, the obtained parameters
are transferred to the calculation algorithm to determine the exact position of the moving
object.

Positioning systems can be distinguished according to the principle applied, such as
proximity, range, and scene analysis.

Proximity uses the maximum received signal strength of an anchor node to calcu-
late the location of the moving node. The near-field communication (NFC) technique is
commonly used. We can easily implement the system; however, the accuracy is of a low
level.

The range is based on measuring the distance of the communication signals. The
location of the target node is determined either according to the direction or distance. For
example, the angle of arrival (AoA) is usually applied for the first one. The time parameter
(ToA or TDoA) or signal properties (RSSI) can be used for the second.

Scene analysis is a pattern recognition class of methods that uses the characteristics
of a scene from a particular viewpoint to match patterns. The currently measured wireless
characteristics are compared to prestored characteristics for each pattern to determine a
match. We use the best match as the current location of the mobile node. The commonly
used method is fingerprinting [14]. The system’s accuracy is excellent but burdensome,
as it takes a long time to collect the characteristics needed for each pattern and requires
substantial storage space. Moreover, changes to the environment may require the char-
acteristics to be re-evaluated. In recent years, numerous indoor positioning technologies
have been developed [17], which differ in the type of hardware used and the localization
algorithm. Each has been developed for a specific need and has attributes that make it
preferable in certain respects and characteristics or limited by its very nature if used for
an application other than that assumed. To understand which of these technologies is the
most suitable to apply in a specific context, it is necessary to create metrics against which to
evaluate each technology.

Evaluation Metrics

For the best choice of the most suitable system for the requested application, it is
advisable to examine a series of performance indices [18]. For example, some applications
may require low-cost IPS, while others may require high accuracy, such as healthcare
systems. Below are the commonly used parameters.

1. Accuracy is the main feature that evaluates the average difference between the de-
tected and actual positions (ground truth) [19]. Generally, this value is not fixed but
oscillates concerning various parameters; thus, the reference is made to minimum
and maximum values. Depending on the technology used, we can have the values in
meters reported in Table 1.

2. Coverage indicates the functional surface within which the examined technology is
effective. Depending on the type of technology used, it takes on different values.
IPS coverage usually ranges from a few meters to scalable systems that can cover
multiple large environments by adding hardware. In the case of challenging-to-
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scale technologies, this value represents the maximum local area covered, while,
in the application of techniques that can scale (increasing their level of coverage),
it represents the distance or area that can be covered by a single cell. Generally,
technologies with more excellent coverage typically imply lower accuracy. In Table 1,
the values of coverage are reported in meters.

3. Scalability indicates the possibility with which the technology can be extended,
referring both to the coverage area and to the number of users supported simultane-
ously [20].

4. Security and privacy represent the level of control of access to the subjects’ personal
information.

5. Cost includes all the costs necessary for the implementation and operation of the
system, such as infrastructure costs, installation and maintenance, and energy con-
sumption to run the components. The latter represents a fundamental parameter to
ensure system continuity and higher mobility [21].

6. Complexity represents the level of complexity of designing, constructing, and main-
taining an IPS.

7. Support/infrastructure represents the hardware necessary for the system to operate,
i.e., if specific equipment is needed, or it can refer to the integration of an infrastructure
located in the localization area, such as sensors or transmitters. The density and cost
of these additional infrastructures weigh on the expansion capacity of the technology
if it is necessary to use more nodes of the infrastructure.

8. Continuity indicates the property of continuous operation of an IPS over an appro-
priate time to perform its specific function, including acceptable outage frequency.

9. Usability/user acceptance represents how convenient and usable the technology is to
the end user. A simpler infrastructure is easier to use.

10. Privacy is a crucial aspect to keep in mind that is not always carefully evaluated in IPS
systems. Security mechanisms should be in place to improve user privacy, protecting
data from intrusion or misuse [22].

Table 1. Range of accuracy (meters) and coverage (meters) for technology.

Parameter Wi-Fi Ultrasound Infrared Bluetooth Rigid ZigBee UWB

Accuracy 1–10 0.01–0.1 5–10 2–15 0.5 (passive)
1 (active) 1–5 0.1–1

Coverage 20–50 2–10 1–5 1–30 1–100 10–100 0.50–10

From the analysis of the tabulated values, a broad scenario of adoptable solutions can
be seen depending on the specific design needs. In particular, for accuracy, each technology
has its own range of applicability, and none overlaps the other.

3. Signal Measurement Techniques

There are different approaches for this phase, one based on time, another on the
receiving angle, and a third on the received signal strength [23].

3.1. Time-Based Methods
3.1.1. Time of Arrival (TOA)

The time of arrival (TOA) [24] method calculates the distance between the emitter and
the receiving node considering the time elapsed between the emission and reception of the
signal. It is also called time of flight (ToF) because it measures the signal transmission time
between the receiver and the transmitter. Knowing the speed of propagation of the signal
in the middle and the time taken to get from one point to the other (time of flight or flight
time), the space traveled is directly calculable as follows:

Ri = v ∗ t, (1)
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where v is the speed of the signal employed, which is the transmission time of the signal
received by node i, and Ri is the distance of signal transmission received by node i. Then,
the location of the target is estimated using triangulation. For this method to be effective, it
is necessary to have three reference points (also called anchors). Graphically representing
the system, the node of which we want to calculate the coordinates would be given by the
intersection of the three circumferences with the center of the reference nodes (Figure 4). In
that case, we would have the following equations:

(x1 − x)2 + (y1 − y)2 = R2
1

(x2 − x)2 + (y2 − y)2 = R2
2

(x3 − x)2 + (y3 − y)2 = R2
3

, (2)

where (x, y) are the coordinates of the target node.
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This approach, however, has the big flaw of requiring the transmitter and receiver
to be synchronized, which is not always feasible. To achieve high accuracy, this issue of
the TOA technique can be compensated for by combining it with UWB (ultrawideband, a
radio-based communication technology). This technology uses a short pulse duration to
filter the signals caused by reflection to improve the overall performance.

3.1.2. Time Difference of Arrival (TDOA)

With this technique, the arrival times of various reference signals are evaluated, and,
from the difference in these times, it is possible to determine the location of the target
node [25]. The difference in signal arrival time at two reference points is used to calculate
the distance difference between the target and the reference points [26]:

∆d = v ∗ (∆t), (3)

where v is the speed of the signal employed, and ∆t is the difference in arrival time at each
reference point. In two dimensions, this leads to the following form:

∆d =

√
(x2 − x)2 − (y2 − y)2 −

√
(x1 − x)2 − (y1 − y)2, (4)

where (x1, y1) and (x2, y2) are the known positions of the beacons.
Unlike the TOA, the transmitted messages do not convey a timestamp because the

difference in the time of receipt is already sufficient information to guarantee localization.
Instead, through the multilateration technique, by comparing the arrival times of the
signals in pairs, it is possible to build a system of hyperboles whose intersection determines
our position (Figure 5). Unlike TOA, in the TDOA method, not all nodes need to be
synchronized; it is sufficient that the anchor nodes are synchronized.
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3.1.3. Round Trip Time (RTT)

The RTT represents the time between sending a signal plus the time required to
confirm that signal [27]. In some of its implementations, it is a technology that utilizes the
fine timing measurement (FTM) protocol to measure time with picosecond resolution. It
allows a mobile device to determine its distance from an access point (AP) by measuring
the duration of a time interval of transmission of radio waves traveling back and forth
between the transmitter and receiver, which are generally called the initiator and responder.
With it, the distance of the target node (R) is obtained with the following equation:

R =
(tRT − t)c

2
, (5)

where tRT represents the time of the signal to travel from a node and vice versa, t represents
the hardware’s default delay time, and c is the transmitted signal’s speed. This method
solves the synchronization problem. Instead of using two local clocks in both nodes to
calculate the delay, a single node is used to record the transmission and arrival times.
Errors in estimating RTT distance and user location due to factors such as multipath fading
occur most often in an indoor environment. The following factors that may be detrimental
are related to the topology of the network infrastructure used for the connection between
transmitter and receiver:

• Propagation delay, which depends on the distance between the transmitter and the
receiver;

• Processing delay that depends on the number of nodes on the network. A node can
also experience congestion by slowing the connection and increasing the RTT.

3.2. Receiving Angle
Angle of Arrival

This is based on determining the angles between the propagation direction of the
received signal and two or more predetermined references [28]. At least two AOA measure-
ments from two different references are necessary to estimate a mobile’s position location
(Figure 6). To improve accuracy, three beacons or more are used for position estimation.
This measurement can be made using directional antennas or antenna arrays. The position
estimation is performed by comparing the carrier phase or signal amplitude across multiple
antennas. With AOA, no time synchronization between nodes is required. This technique,
however, has limitations because, as distance increases, accuracy decreases. It is affected by
the phenomenon of multipath and NLOS.
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3.3. Connectivity
Received Signal Strength (RSS)

This method is based on the received power of a signal, measured in dBm, and on
the relationship between the attenuation of the signal and the distance traveled (Figure 7).
Knowing the power with which the signal is emitted and, of course, the power with which
the signal arrives at the receiver, it is possible to calculate its attenuation. In fact, since the
attenuation of the signal is directly proportional to the distance, with the use of theoretical
and empirical models based on the law of signal propagation, it is possible to derive
the distance once the attenuation is known [29]. Devices using this technique have the
advantage of being low power consumption essential features in the case of WSN (wireless
sensor network) nodes, which typically have limited power.
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The Friis formula can be used to evaluate the signal strength received:

PR = PT
GTGRλ2

(4π)2dn
, (6)

where PR is the received signal power, PT is the transmitted signal power, GR is the gain of
the receiving antenna, GT is the transmitting antenna gain, λ is the wavelength (λ = c/f,
where c is the speed of wave propagation, and f is its frequency), d the distance in meters,
and n the signal propagation constant, also called propagation exponent, dependent on the
environment in which we are located.

Considering that the power of the transmitted signal decays with distance, we can
modify the previous relationship with the log-normal shadowing model used in wireless
communications [30]:

Pr(d) = P0 − 10n log d/d0 + ζσ, (7)

where Pr(d) is the received power at distance d, P0 is the received power measured at
reference distance d0, n is the path-loss exponent, and ζσ is the zero-mean Gaussian noise.

Table 2 compares the different signal measurement techniques through their main
characteristics.
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Table 2. Comparison of signal measurement techniques.

Technique Accuracy Cost Advantages Disadvantages

TOA High High Scalability, does not require any fingerprint Needs time synchronization, difficult to
implement, produces multipath effects

TOP High High
No need time synchronization among
devices and received nodes, does not

require any fingerprint

Requires time synchronization between the
received nodes, difficult to implement in

narrow bandwidth, multipath effects

RTT High High Does not require time synchronization, low
complexity

Affected by multipath effects and noise,
different processing time delays

AOA Medium High No need for any fingerprint, no need for
time synchronization, low number of APs

Requires additional directional antennas,
decreases in accuracy as distance from

source increases

RSS Low Medium
No need for synchronization, can be used

with different technologies, easy to
implement

Suffers from multipath effect, noise, can
require fingerprint

4. Localization Methods

In the second phase, through the measured parameters of the signal and the known co-
ordinates of the reference nodes, the coordinates of the unknown nodes can be determined.
There are several positioning techniques; among the most important are trilateration,
triangulation, multilateration, and fingerprinting.

4.1. Trilateration or True-Range Multilateration

Lateration, also called range measurement, computes the position of an object by
measuring its distance from multiple reference positions. It is a technique that calculates
the physical position of the target node by knowing the positions of the three fixed non-
collinear referent nodes in the 2D space. Finding a location in two dimensions requires
distance measurements from three non-collinear points. In three dimensions, distance
measurements from four non-coplanar points are required. Using the geometry of the
circles, it is possible to determine the positioning of the moving node [31]. Circles are
drawn with the coordinates of the reference node as their center and radii equal to the
estimated distance, for which, ideally, the target node is located at the point of intersection
of the three circles (Figure 8). When more reference points are used than necessary, then we
speak of multilateration or true-range multilateration. The circumference can be described
through the following equation:

(x − xi)
2 + (y − yi)

2 = r2
i , (8)

where (xi, yi) are land coordinates of the various centers, and ri is the radius of the i-th circle.
Accordingly, the coordinates of the target node can be obtained by solving the following
system:

(x − x1)
2 + (y − y1)

2 = r2
1

(x − x2)
2 + (y − y2)

2 = r2
2

(x − x3)
2 + (y − y3)

2 = r2
3

. (9)

In practice, since the distance estimated is never perfect, the coordinates of the target
node are rarely found at the point of intersection of the three circles; hence, it is likely that
it is located within the area of intersection between the circles or even that the circles do not
touch. To overcome this drawback, the AML (adapted multilateration) method developed
by Kuruoglu et al. can be adopted [32] based on an iterative process applied to the three
beacon nodes. Two circles are drawn around two randomly chosen beacon nodes. If the
intersection point is unique, the coordinates of this point are acquired. If the circles do not
touch, the spokes are increased proportionally to touch each other in one place. If, on the
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other hand, the two circles touch each other at two points, the one that has a distance from
the third beacon closest to the estimate of the distance calculated for this node is chosen.
At the end of the iterative process, the average of the coordinates that will determine the
position of the target node is calculated.
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termined coordinates of the reference nodes. In three-dimensional angulation, obtaining 
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4.2. Triangulation

Triangulation uses the geometric properties of triangles to compute object locations [33].
When the AOA measurement is available, the triangulation technique can be used to esti-
mate the location of the target node using trigonometric laws [34]. The node at unknown
coordinates estimates its angle to each of the two reference nodes and, on the basis of
these angles and the positions of the reference nodes, computes its position using simple
trigonometrical relationships (Figure 9). The position of the target node can be determined
by the intersection of the direction lines of the pair of angles formed concerning the refer-
ence nodes (A, B). After obtaining the angles θ1, and θ2, the physical position of T, which
represents the target to be located, can then be calculated on the basis of the predetermined
coordinates of the reference nodes. In three-dimensional angulation, obtaining a precise
position requires one length, one azimuth, and two angle measurements. Triangulation is a
complex technique, requiring knowledge not only of the position of beacons but also of
their spatial rotation. Therefore, calculations are not more complex than trilateration.
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4.3. Pseudo-Range Multilateration

Pseudo-range multilateration, also known as hyperbolic positioning, is the process
of locating an object by accurately calculating the difference in arrival time (TDOA) of a
signal emitted by the object to three or more receivers [35]. In this case, the time of emission
of the traveling signal is unknown. This technique bases the estimation of the position of
a node on the minimization of the difference between the estimated distance via TDOA
and the actual distance obtained from the known coordinates. Considering that the time
of arrival is proportional to the space traveled by the signal itself, it is possible to identify
the position of a target. For example, consider a target that emits a signal in an unknown
position with x, y, and z coordinates in an area equipped with a multilateration system
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with n receivers (P1, P2, . . . , Pn). The time the signal takes to reach each receiver by the
emitter is given by dividing the space by the signal speed assumed as the speed of light c.

T1 = 1
c (
√
(x − x1)

2 + (y − y1)
2 + (z − z1)

2)

T2 = 1
c (
√
(x − x2)

2 + (y − y2)
2 + (z − z2)

2)

T3 = 1
c (
√
(x − x3)

2 + (y − y3)
2 + (z − z3)

2)

...........................................

Tn = 1
c (
√
(x − xn)

2 + (y − yn)
2 + (z − zn)

2)

. (10)

Assuming that the point Pn in 3D coincides with the origin of the system, we have that
Tn is expressed as

Tn =
1
c
(
√

x2 + y2 + z2). (11)

The differences in the time of arrival concerning the reference site are

τ1 = T1 − Tn = 1
c (
√
(x − x1)

2 + (y − y1)
2 + (z − z1)

2 −
√

x2 + y2 + z2)

τ2 = T2 − Tn = 1
c (
√
(x − x2)

2 + (y − y2)
2 + (z − z2)

2 −
√

x2 + y2 + z2)

τ3 = T3 − Tn = 1
c (
√
(x − x3)

2 + (y − y3)
2 + (z − z3)

2 −
√

x2 + y2 + z2)

......................................................................

τn−1 = Tn−1 − Tn = 1
c (
√
(x − xn−1)

2 + (y − yn−1)
2 + (z − zn−1)

2 −
√

x2 + y2 + z2)

, (12)

where (xi, yi, zi) with variables from 1 to n are the known locations of the various receivers.
Each of the above equations represents a hyperbola; from the system’s resolution, the
emitter coordinates are obtained.

From a graphical point of view, the coordinates of the source can be determined by
the intersections of the above hyperbolas, as shown in Figure 10. A hyperbola is defined as
a geometric place of the plane having as a constant the difference in distances from the foci
that, in our case, are the reference sensor that is the first to receive the signal from the target
and the umpteenth sensor that receives the same signal.
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In addition, to avoid conflict between the emitters, a minimum separation distance
between the various nodes must be ensured by defining a protection zone around each
node so that any other node does not infiltrate it.

4.4. Fingerprinting

Fingerprinting is a popular method of localization because of its good accuracy com-
pared to other methods [36]. Traditional fingerprinting is based on RSSI but can also be
based on static magnetic field measurements. This technique consists of two phases: a
first offline phase of scene analysis and sampling, and a second online phase of pattern
matching. In the offline phase, the signals from the different access points are acquired
and subsequently stored in a database with the coordinates of the client device. This
information can be deterministic or probabilistic. For example, in the online tracking phase,
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the user’s estimated position is obtained by matching the positions stored in the fingerprint
database (Figure 11). Such systems may provide an average accuracy of 0.6 m [37]. Any
change in the environment, such as removing or adding furniture, changes the “fingerprint”
corresponding to each location; hence, the fingerprint database needs to be updated.
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5. Signal Technologies

The communication platform used in WSN systems is crucial in assessing that the
accuracy of elderly care systems is between 0.5 m and 1 m. The value of the update rate
must be at least 5 s. The classification can be made according to the main medium used
to determine the position. The technologies used are radiofrequency signals, ultrasound,
infrared, optical signals, and inertial measurements.

5.1. Radiofrequency-Based Systems (RF)

Radiofrequency communication is wireless communication with electromagnetic wave
frequencies ranging from 3 kHz to 300 GHz [38]. Frequency affects its capabilities such as
coverage, penetration, and resistance to obstacles (Figure 12). Therefore, there are three
categories of wireless technologies used for different applications: long-distance wireless
technology, medium-distance technology, and short-distance technology [39]. RF-based
positioning systems can cover long distances because they use electromagnetic waves that
are not disturbed by the presence of objects or people. On the basis of this technology,
networks such as RFID (radiofrequency identification), WLAN (wireless local area network),
Bluetooth, and UWB (ultrawideband) have been created. The first few can be classified as
narrowband-based technologies, while the last is a wideband-based technology.
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RFID-based systems use two basic components: readers and tags. Tags can be active
or passive depending on the power source. For example, the power supply of a passive
tags comes from the electromagnetic energy transmitted by the nearest RFID reader. It
cannot send data but only receive it. Active tags are powered by their battery and have a
range of action up to 100 m from the reader [40]. Therefore, active RFID tags are helpful for
long-range localization and object tracking. However, active RFID technology is unreliable
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for submeter accuracy and unavailable on many mobile devices. Passive RFID tags do not
integrate the battery and backscatter received signal from the base station. Moreover, they
are low-cost and require only a chip tag and an antenna. They are suitable for submeter
detection and have a detection range of up to 10 m [41].

WLAN often operates according to the standard IEEE 802.11 at 2.4 GHz within the
ISM band and has a range of about 50–100 m; however, the 5 GHz is now widely used for
transmission due to less interference, less noise, higher constant connection, and higher
speed [42].

The above IEEE standard is also known as Wi-Fi from the trademark name of the
Wi-Fi Alliance. Wireless local area network (WLAN) technology allows you to connect to a
network using radio waves. From an architectural point of view, it can be compared to a
local small-scale cellular coverage network with radio transceiver devices such as access
points (APs). To increase the connectivity range of a single access point (approximately
100 m) and, thus, be able to cover a larger area, more access points are commonly used,
connected with information exchange entirely via radio interfaces, but with a loss in the
system’s spectral efficiency. Its wide diffusion is due to mobile devices such as laptops,
tablets, mobile phones, and other devices capable of connecting to a wireless network. Wi-Fi
technology has an advantage over other technologies thanks to the presence in multiple
environments of Wi-Fi access points, and the widespread use of mobile devices enabled by
this technology [43]. Therefore, its advantages are as follows: widely distributed hotspots
that make indoor positioning services widely usable; wide access freedom, which, thanks
to the widespread distribution of existing Wi-Fi infrastructure, does not require network
expansion with an apparent reduction in costs; the signals are not severely affected by not
line of sight (NLOS). Most WLAN positioning systems are based on RSS, combined with
the fingerprinting technique. In general, Wi-Fi positioning techniques can be categorized
into four groups: RSSI based, fingerprint-based, AOA-based, and TOF-based. Positioning
based on fingerprinting and RSS is the most accurate method but involves building a
database, resulting in a more significant workload, and it requires about three or four Apps
per 100 m2, making it more expensive. Continuous Wi-Fi scanning consumes a substantial
amount of battery power, rendering it disadvantageous for long-term use. This technology
is very flexible since, within its radio coverage, nodes can communicate without restrictions.
Radio waves can penetrate walls, and senders and receivers can be placed anywhere. Wi-Fi
enables the addition of additional users.

BLE (Bluetooth Low Energy) is one of the low-power connectivity standards that
operates in the 2.4 GHz ISM band. It can connect devices over a relatively short range,
70–100 m, with 24 Mbps. BLE beacons have the following characteristics: small size, cost-
effectiveness, use their battery as a power supply, and can approximately calculate the
distance to the beacon, thus estimating the user’s internal location if in the range of more
than two beacons [44]. It does not need expensive hardware for accurate localization, and
direct LOS is unnecessary. Theoretically, up to 10 cm accuracy can be achieved at distances
between beacons and anchors less than 1 m in low-noise environments. BLE is designed
with very short ranged wireless transmissions. Adjusting the transmission power makes it
possible to extend the range up to 100 m. Although both Bluetooth and Wi-Fi operate in the
2.4 GHz frequency band, there is generally no interference between the signals. Therefore,
both technologies can be used in positioning systems to obtain better results by combining
their best performances [45]. RSSI and trilateration algorithms are used to determine the
exact position of the mobile device [46]. It is a competitive technology thanks to its low
energy consumption and good level of accuracy. The latter depends on the Bluetooth
node’s stability and indoor propagation’s environmental conditions.

UWB is a radio technology for short-range communications with high bandwidth
greater than 500 MHz and a carrier frequency greater than 2.5 GHz, featuring low power
consumption [47]. Its large bandwidth allows obtaining a high data transmission speed,
short wavelength, and high temporal resolution. Another valuable property of UWB is
that signals can easily pass through obstacles. These features have made UWB suitable for
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indoor wireless positioning. The detection of TOA and time difference of arrival (TDOA),
which allow a higher accuracy than other localization algorithms due to the high temporal
resolution of UWB signals, where the multipath effect is minimized, are applied to calculate
the distance between a reference point and the target. In addition, it is possible to add UWB
beacons to existing Wi-Fi infrastructure. The hybrid method combines the availability of
Wi-Fi infrastructure, which reduces cost, and the accuracy of UWB when deploying their
algorithm; in such hybrid systems, the localization error is limited to 20 cm [48].

ZigBee is a specification based on the IEEE 802.15.4 standard [49]. It uses the 868 MHz
bands in Europe, the 915 MHz bands in the United States and Australia, and 2.4 GHz in
other regions. ZigBee technology is mainly used for applications belonging to integrated
systems provide low transmission speed and low consumption. The ZigBee protocol allows
the network to have a reduced expenditure of energy resources by exploiting only the
energy contained in the battery incorporated in the individual nodes.

The characteristics of this protocol are IEEE 802.15.4 standard, a speed of 250 kbps,
coverage of 10–100 m, and type mesh. It is a short-range communication standard such as
Bluetooth and Wi-Fi, which covers a range of 10 to 100 m but differs from those used for
high-speed data transmission communication.

The ZigBee IEEE 802.15.4 standard defines two distinct types of devices: FFD (full
function device) nodes that can perform all the functions defined by the ZigBee standard
and RFD (reduced function device) nodes that can perform only a limited number of
functions; in particular, they are nodes that cannot forward traffic to the other nodes, but
only act as sources or final recipients of traffic. Communication equipment of the ZigBee
protocol is divided into three types: coordination equipment, routers, and terminals. The
coordinator is an FFD and is responsible for the overall management of the network, starting
the network, setting the parameters of the network, and transferring the packets of the
application. It can also be used as a router. The router is used in tree and mesh topologies to
expand network coverage. It is usually located either in the central area of the network. Its
function is to find the best route to the destination to transfer a message. It can perform the
same functions as the coordinator except for the start of the network. The terminal device
can be an RFD responsible for collecting and transmitting data. ZigBee nodes consume
almost no energy when at rest. ZigBee technology provides three structures: star, tree, and
mesh. The star structure is the simplest and consists of a coordinator and a few end devices.
The end devices are all connected to a single coordinator node, and all communications
pass through this coordinator. The tree topology consists of a coordinator, a few routers,
and end devices. Routers allow extending network coverage; end devices are connected
in groups to each router and can only communicate with their coordinator. In the case of
disabling the latter, the nodes connected to it remain isolated and cannot communicate
even with the nearest nodes. The mesh topology, a peer-to-peer network, consists of a
coordinator, several routers, and end devices. A mesh topology is self-healing, which
means that the node will find an alternative path to the destination during transmission
if a path fails. The range of the network can be easily changed by adding or removing
multiple devices. Figure 13 shows the three topologies. Commonly, the RSS signal is used
to estimate the distance between two or more ZigBee sensor devices [50].
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5.2. Ultrasound-Based Systems

Ultrasonic systems are most commonly used in short-range measurement [51]. The
signals have several advantages, such as a slow propagation speed, a negligible penetration
in walls, and a low cost of the transducers. They do not interfere with electromagnetic
waves and have a relatively short range. Instead, they use building material and air as a
propagation medium. The accuracy achieved by ultrasound-based systems is typically a
few centimeters. These characteristics are attractive for use in indoor positioning systems.
The distance between the beacon and the target node can be calculated by measuring the
time of flight (TOF) of the ultrasonic signal, while the Friis formula can be used to evaluate
the power budget and the SNR at the target. Using ultrasonic signals, the measurement
of time is more accessible than in the case of radio waves due to the lower speed of the
acoustic waves and, therefore, the lower temporal resolution required for the measurement
itself. The TOF measurement requires a correct temporal synchronization of the network
nodes [52].

The target coordinates can be estimated by multilateration concerning some beacons
distributed in known places. These systems are called acoustic measurement systems
because the systems function using sound waves. Ultrasound is stealthy for the human ear
compared to the sound wave. Additionally, this system is associated with RF technology to
fulfill the synchronization requirement [53]. Ultrasound has, in addition, several advantages
over electromagnetic waves when the application of implantable devices in healthcare
is considered. The presence of water in the human body produces attenuation of the RF
waves; therefore, it is necessary to increase the transmission power. This increase can be
translated into soft-tissue heating because of absorption. This factor increases the size and
weight of an implantable sensor. On the other side, the choice of ultrasound technology
allows for the creation of implantable sensors at the level of micro-dimensions and low
energy consumption [54] due to the relatively low attention to transmitting power to
implanted sensors encountered in the human tissues. Furthermore, they are not affected
by interference, in the transmission of data for patient monitoring, due to the presence of
other electromagnetic devices.

5.3. Infrared-Based Systems (IR)

Infrared (IR) radiation is electromagnetic radiation, the wavelength between 700 nm
and 1 mm is greater than that of the visible spectrum but less than that of radio waves [55].
Its main advantage is its wide availability since many devices are equipped with IR sources.
However, as they require line-of-sight communication and fail to penetrate opaque obstacles
such as walls, their use is limited in individual rooms. It is a very reliable system as light
cannot pass through the walls; hence, it is impossible for a tag to detect light from an
anchor without being in the same room. It is, however, subject to interference from other
sources of IR devices or possibly blinded by direct sunlight. For precise localization, many
anchors are required, and we can have difficulties due to the low quality of the signal
strength measurements required to calculate the position. Mobile node localization can be
used as a measurement method for estimating the angle of arrival of the IR signals [56].
These systems can be divided into two types: direct infrared systems and diffuse infrared
systems. The former uses a point-to-point data transmission standard achieving low-power
communication. It requires line of sight (LOS) communication or a very short distance
between the devices. The latter has a stronger signal than direct IR; it has a more extended
reach (9–12 m). It uses wide-angle LEDs, which emit signals in many directions [57].
Another system tested is based on a single photodiode (PD) and multiple LEDs; it uses the
angular diversity transmitter, which consists of multiple LEDs and a biconvex lens [58].
Furthermore, systems based on mixed IR and ultrasound [59] or acoustic signatures have
been proposed [60].
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5.4. Magnetic Field-Based Systems

This technology is used for low-frequency localization. It is based on a platform with
a reference station that radiates a magnetic field and a magnetic sensor capable of receiving
the radiated field. It is a system that measures position using the Earth’s magnetic field
disturbances caused by steel structural elements in a building. Their presence deforms
the geomagnetic field in a way that varies spatially but is temporally stable. In known
positions, land variations of the geomagnetic field in the indoor environment are recorded
to build magnetic maps to be used as fingerprints to identify the positions of an unknown
target [61]. It is a method that combines the magnetic field measured by the sensor when the
user is in a specific position with the fingerprints present in the magnetic map to estimate
the user’s position. However, the accuracy of the location of the magnetic fingerprint can
be influenced by the smartphone’s orientation and affected by geomagnetic storms. In
addition, it depends on the accuracy of the localization of the magnetic field, the density of
fingerprints, and the quality of the acquisition and maintenance process of magnetic maps.
Therefore, the current magnetic field positioning technology is mainly combined with other
indoor positioning technologies such as Wi-Fi [62] or inertial sensors (IMU) [63] to improve
the accuracy. A significant advantage of this type of system is that it offers high accuracy
and is not affected by most obstacles; hence, multipath or non-line-of-sight (LOS) errors are
avoided. To these must be added the advantages of achieving safety, reliability, and a low
cost without additional infrastructure requirements.

The system can use the environmental magnetic fields produced by iron inside re-
inforced concrete structures of modern buildings that create local variation in Earth’s
magnetic field (geomagnetism). Generally, a nonuniform magnetic field produces different
magnetic observations depending on the path used. Therefore, positioning can be deter-
mined using fluctuations in these environmental magnetic fields. An optimized compass
chip inside a smartphone can sense and record these magnetic variations to map indoor
locations [64]. Magnetic fields can be generated by a coil powered by alternating current
(AC) or pulses of direct current (DC). Electromagnetic fields can also be used to obtain a
position by combining the use of electric fields and magnetic fields. The two sources of
fields are static charges that produce electric fields and currents which produce magnetic
fields. Oscillating charges produce both magnetic and electric fields.

5.5. Optical System

Optical positioning systems can be divided into two main categories: systems in which
a moving sensor must be located, whereby reference information is required, and systems
in which fixed cameras detect images of moving objects without reference information. In
the first case, it is possible to use LEDs that emit light as markers and a series of sensors
photodiodes mounted in predefined positions that measure the angle of arrival of the light
so that each segment of the space of interest falls within the field of vision of two units [65].
The data collected by the fixed sensors allow for calculating the position of the marker. In
the second case, the images acquired by the cameras are combined with computer vision
technologies to obtain the object’s positioning [66]. Multiple static cameras can track objects
with a high update rate. The obtained accuracies are of the order of tens of micrometers,
and the cost of the system increases.

5.6. Inertial System

An inertial system represents the positioning solution based on an inertial measure-
ment unit (IMU) sensor. IMUs combine accelerometers (for measuring linear acceleration),
gyroscopes (for measuring rotational speed), and optionally, a magnetometer (for measur-
ing magnetic direction). This information can accurately determine orientation, velocity,
and position [67]. This technique qualifies for accuracy, energy, and efficiency, provided
that the inertial sensor is attached to the subject’s body. However, the measurements are
prone to errors and require using Kalman-type filters. In addition, its cost is relatively
high and often requires implementing the network infrastructure. By processing signals
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from these devices, it is possible to track the position and orientation of a device. The
double integration of measured acceleration provides the relative position of an object
concerning an initial position. Absolute positioning information may be obtained by fusing
INS with complementary sensors. The signal-less localization method is based on mobile
sensors such as accelerometer, gyroscope, magnetometer, and barometer, to track users by
continuously estimating their displacement using dead reckoning [68]. With this technique,
a sensor node uses its previous calculated position for localization at successive intervals.
Although dead reckoning can provide the best available information about the current
location with simple algorithms, it is subject to significant approximation errors. Another
hybrid solution is to host the fake Wi-Fi printing with inertial sensors, overcoming the
drawbacks of standalone solutions [69]. Figure 14 shows an architectural schema of an IPS
application.
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Table 3. Comparison of indoor localization systems.

Technology Measure Method Cost Advantages Disadvantages Accuracy (m)

RFID Proximity, RSS
TOA, TDOA, AOA High

Does not require LOS
between TR and RT,

simultaneous and fast
reading of multiple tags

Small coverage,
multipath effect and

signal fluctuation,
limited capabilities of

passive tags

0.5 (passive)
1 (active)

WLAN RSS, TDOA Medium

Does not require LOS,
presence in multiple
buildings, medium

scalability

Complex methodology,
system redesign in case

of changes in the
environment

10–50

Bluetooth TDOA, RSS Low–
medium

Good accuracy, no need
additional infrastructure,

does not require LOS,
present in most

smartphones

RF interference, limited
coverage and mobility 2–15

UWB TDOA High

Low energy consumption,
high accuracy, passes

through walls and any
other obstacles

Needs time
synchronization, limited
coverage, performance

degrades in NLOS.

0.1–1

ZigBee RSS, AP ID Low Low power consumption

Requires special
equipment, vulnerable

to interference caused by
a wide range of signal

types

1–5

Ultrasound TOA, TDOA Medium Good accuracy, not
affected by multipath

Interference by
high-frequency sound,

loss of signal for
obstruction

0.01–0.1

Infrared AOA, TOA, TDOA Medium Low power, no multipath
effect, medium accuracy

Does not penetrate walls,
requires LOS, sunlight

interference, short range
5–10
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Table 3. Cont.

Technology Measure Method Cost Advantages Disadvantages Accuracy (m)

Magnetic AOA, TOA Medium Medium power
consumption

Requires magnetic field
mapping, errors increase

with the size of the
fingerprinting map

1–3

Optical Scene analysis,
proximity Medium

Performance
improvement by fusion of
image data with data from

other sensors

The transformation from
the image space into the

object space requires
additional depth

information

0.1

Inertial Dead reckoning Low Great reliability, reduced
size

Cumulative errors, high
complexity

Error range 0.5–2%
total traveled

distance

6. Systems for HAR

Human activity recognition (HAR) is an application area aimed at determining peo-
ple’s activities and the context in which they are addressed. In HAR systems, different
technologies based on visual, nonvisual, and multimodal sensors are used to analyze
and process data and images necessary to understand people’s behavior. Some analyses
of the activities performed are carried out by human operators with the help of camera
networks. This solution is currently used in security and surveillance services to visualize
people’s behavior and detect anomalies to activate intervention services [70]. With the
progress made by the new generations of cameras and intelligent classification systems,
the contribution of operators is being reduced or even replaced with automatic systems,
improving the efficiency and effectiveness of observation and the analysis process. The
availability of these systems has found wide application in the home care field, making
up for the shortage and expensive availability of caregivers. The use of visual sensors in
the field of the healthcare system has been very effective in fall detection, especially for
the elderly who suffer from cognitive loss. The results based on this technology stand at
accuracy values of 99%.

Nonvisual systems are predominantly used in ambient assisted living (AAL) applica-
tions. Sensors are used that can collect a lot of information. They can be environmental
detectors, microphones, or wearable devices. The collected data are sent to intelligent
systems for classification. The solution based on multimodal sensors uses different sensory
devices distributed in different parts of the body to collect real-time data to be analyzed for
monitoring the health conditions of the elderly. The availability of smartphones equipped
with multiple sensors: inertial, environmental, heart rate, and respiration rate has made
these devices a suitable platform for collecting real-time data for innovative HAR solutions.
These sensors offer a guarantee of privacy, are more efficient, and provide accurate phys-
iological data but are not easily accepted by the elderly for wearability problems. Their
misuse can lead to erroneous assessments and trigger signs of false emergencies. Table 4
shows a comparison between the three different types.

HAR systems represent the most suitable technology to monitor and assist the elderly
and disabled people in ensuring their safety and wellbeing. They aim to identify the
activities the elderly carries out daily regarding domestic work, personal hygiene, and
free time. These activities implicitly identify where the older person is, as they are closely
related to specific rooms within the house. Continuous real-time monitoring of activities
and physiological data allows the identification of potentially dangerous situations. The
precise identification of the patient’s whereabouts facilitates the interventions of health
assistants in case of emergency or urgency. Therefore, by combining an IPS system, we have
additional information to estimate a more accurate positioning and improve the recognition
of activities. Combining these two themes requires an intelligent environment to deduce
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where and what a person is doing successfully. In addition, infrastructure-based solutions
use dedicated equipment installed in buildings, which increases implementation costs but
produces more accurate estimates; solutions without infrastructure reduce localization
accuracy with lower costs.

Table 4. Comparison of HAR technologies.

Typology Advantages Disadvantages Accuracy

Visual-sensor
Ease of use, ease of analysis from images,

data reliability, alternative to multiple
sensory devices,

Privacy, sensitive to environmental
conditions, higher cost, increased

processing power, longer processing time
99%

Non-visual sensors

Detection of any information about
behavior, no privacy issues, lower cost, less

processing power, lower power
consumption, less processing time

Need for a large set of sensors, data
reliability, system vulnerability due to

sensor malfunction, lower accuracy values
70–80%

Multimodal sensor
Suitable for the collection of data of

different nature, lightweight devices, lower
power consumption, less processing time

Need for multiple sensors, acceptance
issues, need to wear sensors, efficient

fusion algorithms
99%

HAR, developed to assist the elderly, can be seen according to different approaches
such as health monitoring, ambient assisted living (AAL) for smart homes, and security
and surveillance applications. Healthcare monitoring systems are designed to monitor the
situations of individuals and provide valuable tools for emergencies. For this purpose,
there are several functions, such as human tracking, fall detection, security alarm, and
cognitive assistance. Wearable sensors and environmental sensors are used.

Ambient assisted living (AAL) involves using AR techniques to ensure that older
people in the home remain safe and lead independent lives. In a smart home, devices
are user-centric and integrated into the living environment of individuals. Cameras and
inertial sensors generally monitor their activities and interaction with the environment.
For the elderly, it is an advantage as it helps prevent, treat, and improve their wellbeing.
Figure 15 shows the architecture of a HAR system.
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The evolution of artificial intelligence technology has had a substantial impact on the
development of forecasting models. This factor has favored using deep learning technology
in constructing forecasting models within HAR systems. Their approach differs from
statistical models, even though the two systems have the same aims. Both are used for
forecasting and data mining. The statistical model is a mathematical function used to
approximate reality. It is used to construct a data representation and to analyze any existing
relationships between variables by establishing scale and significance. It is, in fact, based
on the acquisition of raw data and its transformation into information that can be used to
create a basis of a statistic learning model.

On the other hand, machine learning is based on the ability to learn from data instead of
using preprogrammed algorithms, as well as use data to build and improve forecast models
and evaluate performance based on new data that has not yet been learned. Statistical
models to explain the relationships between variables must use hypotheses, confidence
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intervals, and inferences to validate hypotheses. Statistical data operate on smaller volumes
of data than those used by ML models. The accuracy of statistical models is lower than
that of ML models due to the impossibility of creating complex relationships between data.
Being complementary, the tendency is to make the two systems coexist.

In machine learning, the federated learning model represents an innovative approach
within HAR systems [71]. It represents a machine learning technique that allows the
formation of predictive models by training an algorithm on multiple decentralized edge
devices or servers that contain local data samples without exchanging them. Furthermore,
it has the peculiarity of using decentralized private data without centralized collection.
Federated learning is a machine learning technique in which the model is created without
data sharing between users. The model can be downloaded by each user with their mobile
device and updated with their local data. Local updates are then aggregated into the global
model through an iterative process. This technology helps overcome all issues associated
with privacy, data security, and access authorization. A peculiarity of this technology is the
possibility of using different signal transmissions for the same type of activity. The need for
frequent communication between nodes during the process requires sufficient computing
power and memory as well as high-bandwidth connections to exchange model parameters.

To improve localization prediction subject to uncertainties due to the variables at
play, Jamil et al. [72] implemented an accurate compensation mechanism on a combined
PDR and BLE positioning system. The hidden Markov model was used for recognition
of activities. The approach by correcting the involuntary acceleration of the body and the
distortion of the magnetic sensor accurately determines the speed and position.

Taking into account the characteristics of positioning systems and the performance
needs of a HAR system, it follows that integrated monitoring, localization, and tracking
system should have the following characteristics: low power consumption, high accu-
racy, sufficient coverage, easy scalability, short return time, less computation, low cost,
noncomplex infrastructure, and insensitivity to obstacles.

The solution must have the right compromise about the design needs; there is currently
no technology that meets all the characteristics mentioned.

6.1. Intelligent Metasurfaces

In this subsection, an attractive, innovative technology is reported: intelligent meta-
surfaces, representing an emerging research topic that involves various disciplines, with
digitization, programmability, and intelligence capabilities. Intelligence refers to the ex-
traordinary property of making decisions, self-programming, and performing tasks without
human intervention. It is an attractive technology for its potential to configure the propaga-
tion environment, making it more controlled.

In wireless transmissions, a penalizing phenomenon for radio waves is represented
by the presence of the adverse effects produced by the propagation of incident EM waves;
walls, ceilings, floors, and objects act as scatters, creating multipath paths. Controlling
the propagation of radio waves can mitigate these adverse effects. Research in recent
years in wireless technology has led to the creation of reconfigurable intelligent surfaces
(RISs). These metasurfaces can counteract the adverse effects caused by path loss, signal
absorption, and multipath fading, effectively controlling the EM response in reflected,
refracted, and diffracted waves.

A metasurface is an artificial planar structure that contains repeated conductive ele-
ments, i.e., meta-atoms, on a dielectric substrate. The meta-atom is integrated with tunable
functional materials and is designed to be reprogrammable. There are two different topolo-
gies of these surfaces: a programmable thin wallpaper and a programmable thin glass.
Both have the following characteristics:

• Do not emit new radio waves;
• No power amplification;
• Low power consumption for operation;
• Low processing capacity for surface configuration.
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It is a technology that is applied in different sectors. Metasurfaces can be installed
in buildings to improve coverage, increase spectral efficiency and reduce exposure to EM
radiation [73]. They can also be used on cars, trains, and planes to improve communication
between infrastructure and carriers while reducing passenger exposure to the EM field. In
smart homes, RISs can be used to improve device connectivity. In smart clothing, the meta-
atom is integrated with tunable functional materials and is designed for reprogrammable
clothing. RISs are used to make wearable body networks for monitoring people’s health.
In the field of communications, this enables the creation of wireless networks that can be
reconfigurable to adapt to changes in the surrounding environment.

In wireless transmissions, RISs can be used as antennas to replace conventional antenna
arrays because they do not need to process incoming signals to send them to the intended
receiver. Instead, they reflect the signal transmitted directly from the base station to the
receiver. They are dynamic but passive elements that function as reflectors and can be
controlled individually, whose phase response can be adjusted and optimized for beam
orientation and focus. This solution is advantageous as it allows efficient communication,
reducing the power consumption and hardware cost of conventional phased arrays [74].

Li et al. [75] studied intelligent metasurfaces tracing their future development as an
intelligent platform for data mining, communication, energy harvesting, and sensing by
directly processing illuminated information-carrying waves.

They explored the applications of intelligent metasurfaces in developing new wireless
architectures and intelligent sensing.

Artificial intelligence is the core of intelligent surfaces, and the combination with
deep learning techniques has made it possible to design intelligent devices and systems.
Cui et al. [76] newly proposed coding and programmable metamaterials, where each meta-
atom has a finite number of quantized physical states and can be used to encode digital
information. The intelligent metasurface integrates the reprogrammable coding metasur-
face with deep learning algorithms by acquiring the intelligence of self-programming and
decision making to adapt to changing surroundings without human supervision.

Exciting applications in which the presence of intelligent surfaces is fundamental are
the creation of holograms and the creation of so-called invisibility cloaks, thanks to their
ultrathin structure properties, programmability, and intelligence.

The growing need for wireless information transfer has stimulated research to identify
solutions that can implement the efficiency of such networks. For example, metasurface-
assisted wireless communications improve performance. Two solutions are possible: one
in which radio signals, which are emitted by the transmitter and dispersed in space, can
be retrieved and directed toward the desired user improving the SNR ratio, and the other
in which additional information is encoded by the intelligent surfaces and transferred to
users.

Three new architectures have been identified:
Non-modulated metasurface backscatter communication (NMMBC) systems func-

tion as conventional wireless systems in which there is an RF vector to transport infor-
mation and a mixer in which the modulation and demodulation of the signal are carried
out. The presence of the intelligent metasurface can be considered an extension of antenna
arrays in conventional systems; it serves, in practice, to increase the number of information
channels.

Modulated metasurface backscatter communication (MMBC) systems can be applied
to overcome the problems related to the possible interception of information distributed in
space without radiation directions, typical of the previous architecture. In these systems,
the intelligent metasurface that carries the information directly modulates the radio signal
coming from RF, simultaneously playing the role of mixer and antenna.

Ambient modulated metasurface backscatter communication (AMMBC) systems have
no need for dedicated RF sources or a new frequency spectrum because the emitter can be
an environmental RF source of the type of TV tower, Bluetooth, cellular base stations, or
Wi-Fi. The metasurface plays three roles: mixer, antenna, and energy collection collector. It
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has the advantage over traditional ambient backscatter systems, ensuring secure multiuser
communications and higher transmission speeds.

Intelligent surfaces have also proven efficient for intelligent sensing by enabling the
connection between the physical and digital worlds. Three techniques are possible:

• Nearly digital-computing-free intelligent sensing.

A reprogrammable deep imager represents a usable model in which the metasurface
is trained with data that can be obtained from the principal components analysis (PCA).
With this method, it is possible to obtain the radiation patterns as required by machine
learning at the physical level. The intelligent metasurface, in this case, performs a physical
calculation function by producing the PCA characteristics from the input of the raw data
as in an analog calculation. Therefore, the detection is carried out almost without digital
processing.

• Hybrid-computing-based intelligent sensing.

An approach can be adopted on the basis of applying an analog preprocessing phase
of high-dimensional data with an intelligent surface at the physical level, followed by a
digital postprocessing phase carried out with deep neural networks at the digital level. On
the basis of this criterion, Li et al. [77] proposed using smart EM cameras by integrating
ANNs into intelligent metasurfaces to detect the movements of the hands and breathing
of the subjects. The intelligent EM camera detects people in real time in a scene with high
spatiotemporal resolution, and checks the EM wave fields toward the points of interest to
better recognize the points of the body.

• Hybrid-computing-based intelligent integrated sensing.

Data acquisition at the physical layer and postprocessing of data at the digital level
are integrated as a whole and are learned simultaneously. Two measurement networks
have been designed: a measurement network called m-ANN and a reconstruction network
called r-ANN, jointly optimized to extract information in a variational autoencoder.

6.2. Related Work

Different experiences in which the combined study of HAR and IPS is addressed are
reported. For example, Jamil et al. [72] developed a compensation mechanism, EPBCM,
to improve location prediction by reducing drift and position errors caused by navigation
algorithms. The model incorporates three algorithms: the HMM module for detecting
accelerometric values for activity recognition and two others for localization based on PDR
and BLE beacon. An unscented Kalman filter (UKF) is used in estimating position and
orientation. Inertial sensors from a smartphone were used for data collection. The HMM
model was applied to inertial data to recognize the activities carried out by the owner of
the mobile device. Through a 3D navigation system, the movements of the subjects were
traced. For the calculation of proximity between the smartphone and the fixed position of
the beacon, the average weighted centroid localization algorithm (AWCLA) was applied.
The EPBCM algorithm uses an estimation combiner to combine the position coordinates of
the two position algorithms to obtain a position with less error. Localization based on the
BLE beacon is applied as a compensation algorithm. The process is divided into several
steps through which the data is filtered. On the sensory data, the orientation estimation is
carried out with the help of the UKF.

The Kalman filter is applied to the beacon signals for noise cancellation, attenuation
of RSS measurements, and integration of raw measurements of the signals. The authors
developed several performance analyses to ascertain the significance of the proposed
mechanisms, such as position accuracy, comparison between performed and estimated
tasks, and validity of orientation estimation based on AHRS and UHF. The results of
HMM-based activity detection were verified with the K-mean clustering technique. The
comparison between the real data of six different locations and those estimated with
EPCM revealed an error ranging from 0.01 to 0.65 depending on the reference position.
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A comparison was also made between the positions estimated with the three algorithms
(EPBCM, PDR, and BLE beacon) and the real ones. XEPCM’s estimates were the most
accurate. To evaluate the performance of the activity tracking system, the trajectories of the
route taken from one floor to the upper floor using two flights of stairs were displayed. The
analysis confirmed the effectiveness of the tool. Several pedestrian walking experiments
were performed to further evaluate performance and compare the smartphone’s position
with the various landmarks along the way. The estimated trajectory differed slightly from
the real one.

Vandewiele et al. [78], as part of an innovative home project, introduced a system
to recognize human activities using a network of sensors, including video cameras. The
classic sensors of smart homes, dedicated to contact, temperature, motion, light, and any
other device capable of connecting via a wireless communication medium, are distributed
everywhere and can be used as constituent elements of behavior detection and recognition
algorithms. The information provided by the cameras can be redundant but is helpful in
case of malfunction of the sensors and is still useful in situations where several subjects
perform actions simultaneously and the sensors cannot detect them on their own.

The application aims to recognize daily living activities in an elderly care context. The
authors proposed a qualitative model for recognizing human activities on the basis of an
unsupervised learning approach using episodic extraction techniques. Due to the variety
of activities carried out in sequence, the authors focused their experiments on recognizing
the “meal preparation” activity due to the system’s accuracy. The first results showed that
the system could learn fragments of activities rather than entire activities. To measure the
system’s performance, they extracted 13 episodes learned from the training data occurring
when meals are prepared. Next, they tested the recognition system on the 11 sequences of
accurate data, and 77% of these patterns were detected.

Moreira et al. [79] proposed an interesting application based on sensory data acquired
through a smartphone and a convolutional long short-term memory (ConvLSTM) for the
classification of human activities within an indoor environment network. They considered
nine activities for classification. The authors associated the recognition system with a
pre-existing positioning system with which they evaluated human activities considering
different test paths in a multistory building obtaining an average positioning error of 2.4 m.
Through inertial sensors, the internal positioning system can recognize the type of activity,
e.g., a flat path or a climb of stairs. They also integrated the proposed HAR model with the
fingerprint-based positioning system used by Guimaraes et al. [80]. A filter fusion system
was also used to combine several sources of information. Moreover, more than 84% of floor
transitions were correctly identified and performed in those routes, better estimating the
user’s current position in a multistory building. The results showed that combining the
recognition of activities with the positioning system improved the identification results.

Ruan [81], to create an innovative system in which individuals are not required to
wear any device, proposed an approach for location and asset recognition using passive
RFID tags. The project aims to help older people live longer independently and safely
in their own homes, with minimal support from their caregivers. The author structured
the application with three modules: the wireless RFID sensor network (WRSN), activity
discovery (AD), and activity monitoring (AM). The WRSN module verifies the applicability
of RFIDs and wireless sensors for identifying the location and activities of individuals. The
sensory data and RFIDs collected with the previous module are extracted and grouped
with the AD module to detect individuals’ routine activities automatically. Lastly, the AM
module recognizes the actions and leases they are carried out. To achieve the intended
goal, a series of passive tags and a reader equipped with antennas create an RSS field that
ensures that the RSSI signal covers the area under consideration. RSSI vectors from known
locations are used to train the classifier, which later predicts a position reported by a new
RSSI vector. For the tracking phase, the author used a traditional kNN model enriched
with probabilistic information to evaluate the probability of the positions obtainable from
the RSSIs vectors used for constructing the emission matrix in the hidden Markov model
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(HMM). In the phase after obtaining the transmission matrix, the author applied the Viterbi
search algorithm to determine the most likely path of the subject. For the reconnaissance
phase of human activities, an array of passive RFID tags is placed within the area under
consideration. Lastly, the basic principle of sparse representation is applied to create
the activity recognition model. With the help of dictionary-based learning, structural
information is identified among the RSSI signals of the different activities.

Meanwhile, a feature selection method was used to extract signal patterns based on
filters for canonic correlation analysis. The last phase of the study focused on analyzing
the activities related to the residential context, verifying whether the elderly usually carry
out their daily activities or are found abnormal, such as requiring timely assistance. For
example, an activity reasoning engine based on a suitable sensor based on Open Cyc,
the world’s largest and most complete common-sense knowledge base with more than
300,000 concepts, has been developed for this phase. The study did not report the accuracy
values found in the estimates made.

Furthermore, Dao et al. [82] adopted an integrated system based on UHF RFID passive
tags and KNN method. A landmark reference tag grid was applied in their system. The
RSSI tag is the principal value used to determine the location of the target tags using
the K-nearest neighbor (KNN) algorithm. Their solution is based on a low-cost system
that uses a small number of passive reference tags and a single antenna reader to locate
objects and mounts a mobile tag. Information about the tag is stored in a file containing
a number, ID, collection time, and RSSI value of collected tags. The path loss is applied
to construct an error map for all reference locations based on this data. Subsequently, this
error map and RSSI values are used in the context of the KNN method to locate the object’s
coordinates. The reference tag grid based on the landmark model includes 28 reference
positions. The target positions are distributed randomly in this tag grid. The RSSI value
of tags is collected at a fixed antenna position. The process for the RSSI collection in the
database is divided into two phases: a first phase in which the data of all the reference
tags are collected, and the second phase which is dedicated to collecting the target position
data. The measurements for each of the target positions as for the reference positions are
repeated 10 times. The process is systematically repeated from the first to the last target
position. The results obtained showed a localization error of about 32 cm.

Guo et al. [83] proposed an articulated platform based on the use of sensors on smart-
phones to identify the subjects’ activities, as well as to identify the internal environment.
The project does not require additional devices. They combined pedestrian dead reckon-
ing (PDR), human activity recognition (HAR), and landmarks to acquire accurate indoor
location information. The authors applied a hidden Markov model to deduce the user’s
initial position. From the detection of the activities of individuals, an indoor semantic land-
mark model was created to study the activities and trajectories. To estimate the subject’s
position, the PDR is initially applied, to which landmarks are later added to correct the
position. With the phone’s sensors, HAR is used to identify user activity. In addition, with
HMM, the user’s initial position is then estimated. The PDR–smartphone system, with
the help of inertial and orientation sensors, allows for tracing the user’s trajectory. The
process includes step detection, step length estimation, direction estimation, and trajectory
correction. As a supervised learning method to deduce user activities from sensory data,
the KNN algorithm is applied, and, with the help of landmarks, the accuracy is then
improved. As landmarks are used as the key points in a trajectory, a landmark list can
denote a trajectory. There are three types of landmarks added to the list: stairs, turn, and
doors. Adding semantic information to the landmark and the adjacent segment, we get a
semantic description of a trajectory. Experiments conducted to fully evaluate the proposed
approach not only showed high localization accuracy but also highlighted the effect of the
landmark on location accuracy. The accuracy of the classification was greater than 99% in
detecting stairs and walking activities. Lastly, the results on the localization error showed
that the PDR errors increase with distance, and a high average localization accuracy (0.59)
was achieved; they used the landmark to correct the cumulation errors.
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Wang et al. [84] designed an original application with a model based on Wi-Fi finger-
prints starting from the consideration that people’s behaviors can influence the propagation
of the Wi-Fi signal and introduce specific patterns in Wi-Fi signals, called Wi-Fi fingerprints,
which can be further explored to identify human activities and locations. They proposed
a novel deep learning framework for joint activity recognition and indoor localization
using Wi-Fi channel state information (CSI) fingerprints. Although there are numerous
applications in which the Wi-Fi CSI has been studied for human activity detection, there
is a lack of evidence that the joint study of activity recognition and internal localization
has been addressed. They proposed a novel one-dimensional convolutional neural net-
work (C1D) based on ResNet [85], comprising two branches, one for recognizing activities
and the other for internal localization. To verify the validity of the model, they used the
IEEE 802.11n protocol with two USRPs (universal software radio peripherals) and with a
dataset appropriately prepared for a potential human–computer interaction application.
The dataset contained six hand gestures: hand up, hand down, left hand, right hand, hand
circle, and hand cross. The test was carried out by a volunteer who repeated these activities
15 times in each 16 different locations, realizing 1394 samples (after excluding the invalid
data). This produced different Wi-Fi fingerprints when performing the same activity but at
different locations and activities in one location. The system contains two sets of personal
computers and USRPs, which work as Wi-Fi transmitters and receivers. Lastly, an Ettus
clock synchronizes the two sets. The experimental results confirmed the model’s validity
by reporting accuracy values of 88.13% on the recognition of the activity and 95.68% on
indoor localization.

Fiorini et al. [86] proposed a well-organized work in which they designed a system
with body information, vital signs, and the user’s internal position aggregated to improve
the recognition of activities. The proposed model integrates wearable sensors capable
of monitoring cardiac activity (electrocardiogram, ECG), body posture, and acceleration
of the lumbar area and an environmental localization network capable of estimating the
user’s position. The localization network is implemented in such a way as to locate both
range-free and range based. From an architectural point of view, the system consists of
a hardware layer, a communication layer, and a data processing module. The hardware
component consists of three sensors: an STMicroelectronics iNEMO-M1 inertial sensor,
a Zephyr Bioharness (BH3) Bluetooth chest strap that can monitor the ECG, and ZigBee
wireless location sensors. The network configuration consists of a ZigBee coordinator
(ZC), a data logger (DL), a wearable mobile node (MN) equipped with an omnidirectional
antenna, and a set of ZigBee anchors (ZAs). The ZAs are installed in a fixed position in
the experimental site on the walls and inside the furniture to detect the location within
the rooms accurately and is equipped with 60◦ sectoral antennas to improve the SNR
ratio of RSS signals. Each ZA calculates the user’s position as a function of the RSS signal
exchanged between the nodes and transmitted this value to the DL. The communication is
based on the ZigBee module for localization and the Bluetooth module for ECG.

As far as the processing system is concerned, a PC collects all the data through four
modules. One module for capturing ECG data, one to collect data from inertial sensors, two
to collect RSS data from DL, and another to calculate the user’s position. Three supervised
machine learning algorithms were used for the classification: decision tree (DT), support
vector machine (SVM), and artificial neural network (ANN). Two classification models
were created for each algorithm, one containing information about the user’s location to
assess whether the user could improve accuracy and the other without location information.
Two techniques were used to validate the models: fivefold cross-validation (5CFV) and
LOSO. The training dataset was created using nine subjects, while the test dataset included
an unknown subject to testing how good the model is in the presence of new data. The
model was ultimately tested in a realistic environment with a total of 3279 samples taken
from 10 users to recognize the following activities: sitting to work at the PC, sitting to
watch TV, lying on the couch, sitting in the kitchen, and sitting in the bathroom. The results
showed that the three models, while presenting different accuracy values, all showed clear
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improvements with the information on the location. The DT went from 0.924 to 0.999, the
SVM went from 0.995 to 0.999, and the NN went from 0.839 to 0.917.

Redondi et al. [87] developed an interesting system based on wireless sensor networks
(WSNs) to supervise patients within a nursing home. It provides two main features:

• Monitoring of the patient’s status. Various information is collected on the patient’s
status concerning standing, walking, supine, and prone activities.

• Localization and tracking of patients. The exact knowledge of the patients allows a
quick intervention of the assistants in case of need.

The architecture of the system consists of the following elements: a personal localiza-
tion and personal system (PLTS) module, a personal monitor system (PMS), and a network
architecture (NA) composed of fixed nodes (AN) and mobile devices (MN) mounted on
patients to provide information to be sent to an automated central controller. The PLTS
module uses a localization algorithm based on the intensity of the received signal (RSS). The
PMS uses a decision tree-based classifier (DT) to recognize acquired movements correctly.
The PLTS module, to improve localization and tracking, uses particle filtering to “smooth
down” the fluctuation of the RSSI sample. The personal monitoring algorithm is based
on hierarchical DT, where the classification output is perfected at each tree level; general
classifications are carried out in the highest levels with low-effort threshold decisions.

In contrast, more detailed classifications are carried out in the lower levels. The
algorithm uses signals from a biaxial accelerometer linked to the waist to classify the
movement. A window-by-window classification scheme has been adopted in which the
movement is classified by analyzing the data collected in a 1 s window. Once the two
components of the acceleration have been separated, the acceleration signal is examined to
see if the patient is in a state of movement or rest. Since the energy spent during movement
is greater than the rest activity, the tests are carried out for a fixed threshold value that the
authors have placed equal to 0.2 in their tests. The authors used the acceleration value to
detect a possible fall, starting from the consideration that if the acceleration takes a value
more significant than the normal one equal to 1 g, this value can indicate a critical event such
as fall detection. Experimental values showed that the accuracy of the localization system
was about 2–3 m with a node arrangement still approximately equal to 0.15 knots/m2. As
for the accuracy of the movements, the values were almost all close to 100.

Bibbò et al. [88] designed an innovative home care system for the elderly and patho-
logical conditions. The system provides services to assist an integrated system for older
adults. They developed the system architecture on an IoT platform capable of guaranteeing
three functions:

• Data collection connected to the patient activity such as inertial, physiological, envi-
ronmental, and localization data;

• Design of a convolutional neural network for activity recognition;
• Identification of the exact elderly position.

In order to verify the classification level of the AI model, the authors applied virtual
reality technology [89]. The system’s core was the STM32L475 microcontroller IoT node,
which embeds a network of sensors such as an accelerometer, gyroscope, magnetometer,
temperature sensor, and proximity sensor, which belongs to the MCU based on the core
Arm Cortex-M4. It also integrates wireless connectivity such as Wi-Fi, NFC, BLE, and sub-
GHz bands. The Kalman filter algorithm then fuses the data collected by the sensors; the
data are sent to the CNN for classification. The authors used the Keras model to design the
CNN architecture trained on the wireless sensor data mining (WISDM) dataset. Thirty-six
people collected the data through the smartphone with a sampling of 20 values for every
person. The activity recognized were upstairs, downstairs, sitting, standing, and walking.

The neural network was composed of two convolutional layers, two ReLu layers, two
pooling layers, and two fully connected layers. In order to detect the exact position of the
people, the system was integrated with an ultrasound network made by beacons and mobile
nodes. The beacons are placed at the corners of a square 4 × 4 × 3 m3 at the top of the ceiling
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while the patient wears the tag. The localization system is based on an RF synchronization
between transmitter and receiver, an ultrasonic chirp signal for measurement of the distance,
and the multilateration process to compute the distances. Distances are calculated by
measuring the time of flight, the time elapsed from the transmitter to the receiver. The
communication system uses the ANT protocol (wireless communication protocol of ANT
wireless), which is not affected by interference in the transmission between different devices.
The authors created a script to configure and establish the communication on the same
Wi-Fi network between the server on which the patient’s coordinates are recorded and the
system board that represents the client to which the information on the exact position of the
subject is to be transferred. The results showed that the accuracy of the recognition of the
assets was greater than 99%. In contrast, the accuracy of the positioning was of the order of
cm in consideration of the accuracy of the measurement that was equal to about 1.7 mm,
which we can consider an accurate value as it is greater than the limit value obtainable with
the Cramér–Rao formula (CRB) [90]. Table 5 shows a comparison of the systems analyzed.

Table 5. Comparison of HAR-IPS systems.

Author Adopted System Technology Technique Accuracy

Jamil [72] Inertial sensors of smartphone PDR-BLE EPBCM/HMM 99%

Vandewiele [78] Cameras and smart home sensors Visual/Wi-Fi Unsupervised model 77%

Moreira [79] Inertial sensors of smartphone Fingerprints ConVLSTM 84%

Ruan [81] RFID Wi-Fi KNN Not declared

Dao [82] UHF/RFID Landmark Wi-Fi KNN 32 cm error

Guo [83] Inertial sensors of smartphone PDR KNN 99%

Wang [84] Inertial sensor Wi-Fi fingerprints C1D 88% recognition,
95% localization

Fiorini [86] Inertial–physiological sensor
(ECG) Bluetooth DT/SVM/ANN

0.924–0.994 DT
0.995–0.999 SVM
0.839–0.917 ANM

Redondi [87] Anchors/mobile device Wi-Fi DT 99%

Bibbò [88] MEMS/ultrasound Wi-Fi CNN 99% recognition
1 cm localization

From the analysis of the solutions, we can observe no standard solution was adopted by
the designers. Combining IPS with HAR improved prediction accuracy. The mainly applied
technology was Wi-Fi with the use of inertial sensors. In addition, for the prediction of
activities, the use of ML models that allow obtaining high values of accuracy was preferred.
Figure 16 shows an integrated HAR and IPS system.
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7. Discussion

The approach to this work was that of qualitative research, starting from the analysis
of the state of the art of technologies, techniques, and algorithms that have carefully sought
indoor positioning systems that can be applied in the tasks of localization and assistance to
older adults. The completeness of the analysis was also examined from the point of view of
the main evaluation metrics. Considering the requirements for home care applications that
require good levels of accuracy, short return times, and less computation, it was observed
that there are not many testimonies on this issue in the literature. We believe that combining
location information and tracking, inertial, physiological, and environmental data can
assist in creating an efficient home care system. Together with intelligent systems that can
identify the activities carried out, the use of aggregate information on the positions and
movements made by the elderly allows accurate monitoring of people in need of assistance.
Through the combined use of this information, caregivers can assess abnormalities and
deviations from habitual behaviors that may indicate a decline in the elder’s abilities. The
exact knowledge of the position also facilitates interventions in emergencies and avoids
potentially dangerous situations. The growth in the number of elderly people in need of care
who wish to continue living in their homes while maintaining their habits has stimulated
the creation of increasingly innovative home care systems to avoid hospitalizations with
apparent savings in care costs. New technologies with significant advances in accuracy and
speed, as well as the availability of smartphones equipped with integrated technologies
such as Wi-Fi, Bluetooth, IMU, and high-definition cameras, can be used to improve
the quality of location systems. However, integrated systems for elderly care require
performance that is incompatible with long processing times and solutions that use special
devices and specialized infrastructures. Acquisition, installation, and maintenance costs
must be low in order for them to be accepted by users. No solution can satisfy the use of an
IPS system in all indoor scenarios. Therefore, the problem of indoor positioning requires
further research to obtain cost-effective solutions with good performance. IoT technology
and hybrid architectures open up a broad scenario in which designers can experiment with
new approaches to fill the existing gaps.

With the advent of IoT, recent technologies can provide various solutions to collect and
transmit data, including location information. LTE and 5G broadband cellular networks
are, in fact, suitable technologies for IoT environments. However, it must be considered
in the design that the presence of heterogeneous devices significantly affects the system’s
performance.

Innovative applications that integrate inertial sensors with wireless technologies can
represent an exciting approach for scalability, accuracy, and cost. It is a solution that has the
advantage of locating the position of all Wi-Fi devices without the installation of additional
hardware and software, and there is no need for the line of sight.

The combination of different technologies represents a valid solution to improve
system accuracy. It allows using the best features of each to find the most suitable solution
to satisfy the adaptability in different indoor scenarios, heterogeneity of the network
components, energy consumption, and accuracy. However, the use of multiple technologies
can require more memory and computational time, affecting the cost.

In general, a localization network can use additional information from one or more
sensors, additional data obtained from radio systems, or additional position estimates
obtained from nearby references. An aspect to consider is the multipath effects and the
reflection signals present during the transmission of the signal in closed environments.

The guiding principle should be to use data already available so as not to increase
nodes’ costs or resource requirements in a pre-existing network. The two most critical
decisive factors in the choice of the localization system are accuracy and price. However,
the question of the impact of the localization scheme on network performance should not
be overlooked. For example, the choice of passive beacons or active transmitters could, at
best, slightly interfere with communication or, in the worst case, impose a severe limitation
on the network’s communication capabilities.
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8. Conclusions

The main contribution of this article was to investigate how different localization
technologies have contributed to improving the accuracy in recognizing the activities
carried out by the elderly within their home or in the nursing home. Location information
is crucial to know the context in which the user is located to provide assistance services
to improve the quality of life. In the literature, there are not many testimonials in which
information on the patient’s position inside closed environments was combined with
systems for recognizing daily activities. We presented a detailed description of the different
indoor location detection techniques and commonly used technologies in the proposed
revision. We also provided an analysis of the various solutions adopted, highlighting the
distinctive aspects of each. In addition, each author chose their technological architecture
on the basis of needs to be met and the parameters to be privileged (energy efficiency,
precision, scalability, coverage, cost, and availability of resources). From the diversity of
the solutions presented, it is clear that there is no standard solution, but each has its limits
due to accuracy, sophisticated models, limited coverage areas, or high costs. The choice
of the right solution for the hypothesized application depends on factors influencing the
system’s performance. This study can provide an evaluation scheme for the choice of the
suitable solution for realizing an integrated application for home care for the elderly. The
solution to be adopted must derive from a balanced compromise among the following
parameters: cost, available resources, characteristics of environments, required accuracy,
and computational complexity.

The advent of IoT technology and connectivity improvement will allow hybrid so-
lutions in which it will be possible to combine different technologies to improve system
performance.
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