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A B S T R A C T

Digital Twins (DTs), which are paired to Internet of Things (IoT) devices to represent them and augment their
capabilities, are gaining ground as a promising technology to enable a wide variety of applications in the sixth-
generation (6G) ecosystem, ranging from autonomous driving to extended reality and metaverse. In particular,
‘‘social’’ IoT (SIoT) devices, which are devices capable to establish social relationships with other devices,
can be coupled with their virtual counterparts, i.e., social DTS (SDTs), to improve service discovery enabled
by browsing the social network of friend devices. However, the mobility of SIoT devices (e.g., smartphones,
wearables, vehicular on board units, etc.) may require frequent changes in the corresponding SDT placement in
the edge domain to maintain a low latency between the physical device and its digital replica. Triggering SDT
relocation at the right time is a critical task, because an incorrect choice could lead to either increased delays or
a waste of network resources. This work proposes a learning-powered social-aware orchestration that predicts
the mobility of SIoT devices to make more judicious migration decisions and efficiently move the paired
SDTs accordingly, while ensuring the minimization of both intra-twin and inter-twin communication latencies.
Different machine learning (ML) and deep learning (DL) algorithms are used for SIoT device mobility prediction
and compared in terms of a wide set of meaningful metrics in order to identify the model that achieves the
best trade-off between prediction accuracy and inference times under different scenarios. Simulation results
showcase the improvements of the proposal in terms of reduced network overhead (by up to a factor of 3)
and intra-twin and inter-twin communication latency (by up to 10%) compared to a more traditional solution,
which activates the relocation of the DTs at fixed time intervals following periodic optimizations.
1. Introduction

Fifth-generation (5G) networks are aimed at providing three types
of services as identified by the International Telecommunication Union
(ITU), which are [1]: massive machine-type communication (mMTC),
ultra-reliable low-latency communication (uRLLC), and enhanced mo-
bile broadband (eMBB). Among them, mMTC caters to a vast number of
typically resource-constrained heterogeneous Internet of Things (IoT)
devices, establishing data communications without human interaction
and for which high data rate support is not critical.

According to the Social Internet of Things (SIoT) paradigm [2],
IoT devices are enabled to establish friendship relationships as humans
do. ‘‘Friend’’ devices can be located in the same place, carried by
people who meet frequently, or belong to the same model, vendor, or
production batch. Establishing social relationships (e.g., with devices
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of the same brand, of the same owner, in the same place) enables
IoT devices to effectively search through social links for the desired
services/data provided by their friend trustworthy devices [3]. For
instance, a device may ask for software updates to devices of the same
brand or for location-based services to devices in the same area.

In recent years, the digital twin (DT) concept has attracted sig-
nificant interest in the IoT domain [4] and is expected to become
a key pillar for more demanding sixth-generation (6G) IoT deploy-
ments [5]. Indeed, for a wide range of disruptive applications, from
self-driving cars navigating complex environments to immersive expe-
riences in metaverse environments, there is a need for technological
advancements and evolutions towards 6G networks, providing higher
bandwidth, higher connection density, lower latency, among others,
compared to 5G systems [6].
https://doi.org/10.1016/j.comcom.2024.07.019
Received 6 February 2024; Received in revised form 30 June 2024; Accepted 30 Ju
vailable online 7 August 2024 
140-3664/© 2024 The Author(s). Published by Elsevier B.V. This is an open access ar
c-nd/4.0/ ). 
ly 2024

ticle under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 

https://www.elsevier.com/locate/comcom
https://www.elsevier.com/locate/comcom
mailto:olga.chukhno@unirc.it
mailto:nadezda.chukhno@tuni.fi
mailto:araniti@unirc.it
mailto:claudia.campolo@unirc.it
mailto:antonio.iera@dimes.unical.it
mailto:antonella.molinaro@unirc.it
https://doi.org/10.1016/j.comcom.2024.07.019
https://doi.org/10.1016/j.comcom.2024.07.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2024.07.019&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


O. Chukhno et al.

m
p
a
a

Computer Communications 226-227 (2024) 107918 
As digital counterparts of physical entities, DTs mimic the properties
and conditions of real-life objects through models and data [7], while
also predicting their behaviors. Furthermore, DTs can virtually augment
the capabilities of IoT devices with limited computing, storage, and
battery resources.

In particular, DTs endowed by social component, i.e., social DTs
(SDTs), can improve data exchange and facilitate service discovery
across the SIoT network [8–10] by leveraging information exposed by
SDTs on behalf of resource-constrained physical devices. SDTs can be
placed at the network edge to guarantee near real-time interactions
with their physical counterparts, the so-called intra-twin communica-
tions [11]. In addition, applications that may need to quickly browse the
social network by visiting SDTs of ‘‘friend’’ devices, e.g., to search for
services by asking trusted entities or to build cooperative ones, could
benefit from looking for those SDTs in the same edge server or closer
ones, to experience low-latency inter-twin communications.

One challenge in this context is the mobility of SIoT devices [12].
SIoT devices may be very heterogeneous, ranging from smartphones to
wearables carried by people [13] to vehicular on-board units installed
in cars [14]. This diversity results in different mobility profiles, from
pedestrian to vehicular patterns. A person’s dynamic and frequently
changing movement profile is characterized by stops, changes in di-
rection, and potentially irregular speeds. In contrast, cars present a
more predictable mobility profile featuring higher speeds, well-defined
routes, and fewer stops.

Device movements may necessitate frequent changes to SDT place-
ment, with SDTs that may need to migrate among edge servers when-
ever a physical device roams across cells and changes connectivity
points, which may be more or less frequent depending on the specific
application, such as in the case of vehicles, drones, or pedestrian
motion. Problems related to SDT migration increase when the cell cov-
erage decreases, i.e., when the connection between physical and digital
devices operates at extremely high frequencies, such as millimeter-
wave or terahertz, and/or to serve high-density networks [15].

Although the general issue of DT migration is quite well investigated
in the recent literature [16–19], it becomes more challenging for SDTs.
This is because the migration of an SDT may imply that the SDTs of its
friend devices are to be migrated as well to meet the targeted overall
navigability latency in the SIoT network. The frequency at which the
SDT relocation decisions are triggered is a crucial factor to consider.
Frequently triggering relocation can incur high migration costs in terms
of the amount of SDT-related data transfer between edge servers and
of increased complexity. However, rarely triggering relocation may
severely decrease the system performance.

Triggering the relocation of SDTs either at fixed intervals, regardless
of the device mobility, as we proposed in our previous work [8], or
simply according to the current position of SIoT devices, as in [20],
results in suboptimal performance and does not adequately capture the
device mobility and requirements.

In this context, the present work builds on our previous proposal [8]
by providing the following main original contributions:

• We define the SDT interfaces, functions, and components and aug-
ment SDTs with machine learning (ML) and deep learning (DL)
capabilities fed by the data retrieved from the paired physical
devices to predict their mobility.

• We propose a novel learning-powered SDT migration algorithm,
where the decision about whether a relocation of an SDT needs to
be triggered is taken according to (i) the predicted future mobility
of the SIoT devices and (ii) latency requirements.

• A set of popular ML and DL algorithms, i.e., Support Vector
Regression (SVR), ensemble regression learning methods such as
Random Forest (RF) and Extreme Gradient Boosting (XGBoost),
𝑘-Nearest Neighbors (𝑘NN), and Neural Networks (NNs) such as
Long Short-Term Memory (LSTM) network, are compared among

each other and evaluated in different scenarios (datasets) and
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also through a cross-validation approach to identify the most
suitable model for mobility prediction to be implemented in the
SDT ecosystem.

• An extensive performance evaluation campaign is conducted un-
der relevant scenarios to show the advantages of the proposal
both compared to a solution that blindly triggers the repositioning
of SDTs between edge servers at pre-established time intervals
and to the ground truth in which the movement of the device
is a priori known.

The remainder of this paper is organized as follows. In Section 2,
we present the motivation for this research and review the related
works. In Section 3, we introduce a learning-powered social-aware
orchestration that predicts the mobility of devices to make better migra-
tion decisions and efficiently move SDTs accordingly while minimizing
both intra-twin and inter-twin communication latencies. The simulation
results are presented in Section 4. Finally, in Section 5, conclusions are
drawn, and future works are outlined.

2. Background and motivations

2.1. IoT device mobility

SIoT devices are highly heterogeneous in computing, storage, and
connectivity capabilities, and they differ in mobility patterns [12].
They encompass smartphones, wearables, devices on board the vehicle,
sensors and actuators, printers, laptops, tablets, smart glasses, etc.
Moreover, they may be carried by humans during their daily activities
across different locations, or they can be statically placed.

Understanding, characterizing, and predicting device mobility have
been the subject of numerous research experiments and studies in
various fields outside communication engineering, such as psychology,
neuroscience, and intelligent transportation. Indeed, device mobility is
affected by several dimensions, as discussed in the following.

Time-dependent mobility. One phenomenon that affects device
obility is time, and recent literature has broadly examined daily
atterns. In [21], the busiest days of the week and hours have been
nalyzed in terms of device movement, identifying morning, midday,
nd evening peak hours (i.e., 7 am–9 am, 12pm–1pm, and 4pm–6pm)

and non-peak hours (i.e., 10 am–11 am) for pedestrian and bicycle
activities.

According to [22], pedestrian motion patterns vary throughout the
week. On weekdays, pedestrian traffic tends to be the busiest, with
several peaks. On weekends, it gradually increases throughout the day
with a peak in the early afternoon, after which it gradually decreases.
Moreover, each day has its peculiarities, e.g., evening and night hours
are typically more active on Fridays and weekends than on other
weekdays [21]. Similar observations are provided in [23,24], where
it is shown that during working hours, device activity in the office is
high, while on weekends, holidays, evenings, and nights, device activity
is rather low. Furthermore, device motion patterns are correlated with
population growth [21].

Device-dependent mobility. According to [22], bicycle activity
has peak hours between 8 am and 10 am, whereas pedestrian activity
starts an hour earlier. At approximately 2pm, there is a second peak
during the lunch break that ends at 4pm, which is different from
the pedestrian motion with peaks at 12pm–1pm and 4pm–6pm. The
evening peak hours are consistent with the pedestrian traffic. The
weekend bicycle patterns resemble weekdays, peaking at 4pm and
8pm [22]. In contrast, vehicle movement, characterized by higher
speeds and predetermined routes, differs from pedestrian and bicycle
mobility due to road constraints and urban congestion [14].

As a further example, extended reality (XR) usage results in di-
verse movement patterns compared to mobile phone usage due to
unique content presentation and navigation experience [13]. XR causes

movements with shorter stride lengths, longer stance times, and higher
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speed variability. Moreover, the pace changes are substantially lower
in the case of XR during dual-tasking compared to the motion pattern
of users with mobile phones, validating XR stability and multitasking
sustainability [25].

Space-dependent mobility. Mobility patterns also vary based on
location and can be highly unpredictable [22]. Despite fluctuations
over time and location, there is a geographical pattern in the motion
activity and information flows [26].

Bicycle traffic is but one example of a space-dependent motion
pattern [22], where local activity cycles differ from global patterns.
The activity peaks near a university occur from 8 am to 1pm, which is
ypical for institutions that offer morning classes or workplaces. More-
ver, room occupancy and mobility patterns inside universities differ
epending on room type (meeting room, laboratory, or office) [27].
fternoon peaks from 3pm to 4pm result from lunch breaks or shifts
etween the morning and afternoon classes. Another spike appears
fter 8pm likely linked to the nearby bars and restaurants. A location
ear a hospital and office buildings shows increased activity around
am driven by steady work schedules rather than fluctuating university
ourse start times. Residential districts, however, exhibit the opposite
ehavior, where people leave in the morning and return later in the
fternoon or evening. On weekends, areas near malls display a unique
imodal distribution due to the attraction of afternoon visitors.
Situation-dependent mobility. Analyzing situation-dependent mo-

ility, i.e., during emergencies, is essential for SIoT research. In this
ase, unexpected activity peaks may occur due to specific conditions
hat trigger a response. In contrast, there may be complete cessation of
evice movement during lockdown. However, there is a lack of data on
patio-temporal movement patterns during catastrophes and other rare
vents [26].
Summary. Various factors, such as time, device type, space, and

ircumstances, influence the mobility profile of generic devices and of
IoT devices as well. Demographics, such as the age and family status
f human users, may also play a role in shaping mobility patterns [28].
hese complex behaviors are expected to significantly impact the place-
ent of the SDT at the network edge and call for adaptive migration

lgorithms that properly capture such dynamics.

.2. DT placement and migration at the edge

DT basics. Initially conceived by the National Aeronautics and
Space Administration (NASA) in the ’60 to support the early space
rograms, the concept of DT has recently been revamped in many
ndustries, ranging from manufacturing to automotive, passing by the
elco domain [4,29]. A DT is a virtual counterpart of a physical object.
ypically, a DT architecture mainly consists of three main components:
i) the physical object, e.g., a vehicle, a smartphone, a sensor; (ii) the
orresponding DT in charge of modeling, describing, monitoring, and
redicting the behavior of the physical object; (iii) the bidirectional
nteractions between the physical entity and its digital representation,
.k.a. intra-twin communications. Through these interactions, the phys-
cal object regularly updates its virtual counterpart about its status and
an also be controlled/configured by it [15].

Thanks to a DT providing a living copy of the physical object and
ognitive capabilities, its entire lifecycle, from design to operation, can
e monitored precisely, predicted, improved, and optimized where and
hen needed to provide the users with the best possible experience,
ithout affecting the physical domain. For instance, a DT in the man-
facturing context can predict when equipment is wearing down or
eeds repair, improve the machine’s performance, extend its lifetime,
nd learn how to redesign to do even more [29].

DTs must be consistently synchronized with the corresponding phys-
cal entities. Moreover, raw and heavy data often need to be exchanged,
.g., to build the DT model. Hence, it is crucial to make intra-twin

ommunication fast and efficient [15]. e
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Literature overview. Placing DTs at the edge can facilitate faster
nd more efficient intra-twin communications. Edge placement has
een catalyzing the interest of the research community. For example, a
loudlet placement strategy has been proposed in [16], which accounts
or the cost of edge server deployment and the delay between physical
bjects and their DTs.

In the case of device mobility, a DT placement decision can be
tale and unable to meet the intra-twin latency constraint. Hence, DT
igration should be triggered. For instance, in Fig. 1, the SDT of user 𝑎,
𝑇 (𝑎), is placed at the edge server, 𝑀𝐸𝐶 ℎ𝑜𝑠𝑡1, reachable through
ccess Point (AP) 𝐴𝑃1. When user 𝑎 moves and connects to a new AP,
𝑃2, keeping 𝐷𝑇 (𝑎) at the same edge server may result in a long intra-

win communication latency. In such a case, SDT migration needs to
e triggered to the new closest edge server, 𝑀𝐸𝐶 ℎ𝑜𝑠𝑡2. However, the
obility of the devices alone is not sufficient to trigger migration. To

nable migration towards the target edge server, its capabilities should
e sufficient to host the DT, and the incurred network overhead for
ransferring the DT should also be accounted for.

Hence, deciding when and where migrating a DT is a challenging
ssue. In [17], the DT placement and migration problem is formulated
nd solved through a Deep Reinforcement Learning (DRL)-based al-
orithm aimed at reducing average system latency. Moreover, since
raining a complete DRL model can incur long latency and heavily
onsume computing resources, a DT migration method based on trans-
er learning, where decisions are triggered at fixed time intervals, is
roposed.

In [18], online DT migration and resource management in multi-tier
omputing networks are addressed. The goal is to minimize the data
ynchronization latency between the DT and its physical counterpart
y considering time-varying network conditions and user mobility.
he framework utilizes convex optimization methods to determine the
ptimal allocation of communication and computation resources at
ach edge server, whereas a decentralized partially observable Markov
ecision process formulation is employed to address the migration
roblem.

DTs placement and migration are also addressed in [30] to account
or both mobility of users and dynamics of resource demands. There,

game-theoretical approach is leveraged, and a Shapley value-based
cheme is designed. Dynamic DT placement is considered in [31],
here efficient algorithms are devised to maximize user service sat-

sfaction measured through the Age of Information (AoI) of DT data.
imilarly, in [32], the focus is on mobility-aware continuous service
rovisioning in a DT-assisted MEC network that involves mobile objects
nd is implemented through the placement of DTs. DTs may also need
o interact among them whenever they accomplish complex tasks in
cooperative manner [15]. In such cases, placement decisions should

lso account for the latency incurred in inter-twin communications.
A service entity placement problem, which considers activation,

lacement, proximity, and co-location costs, has been presented in [20].
he DT social aspect has been considered in our previous work in [8],
here a mathematical model for the optimal SDT placement at the
dge, which minimizes both the delays (i) between physical devices and
heir virtual counterparts and (ii) among the SDTs of friend devices, has
een formulated and an efficient heuristics developed for it. There, the
elocation of the SDTs is triggered at fixed time intervals, regardless
f the device mobility, which may result in wasted resources for
nnecessary migration events. In this work, we aim to overstep this
imitation in [8] while keeping, instead, the same efficient heuristic
lgorithm.

ML techniques can be used to predict the mobility of the physical
evices and proactively determine the optimal destination of their
orresponding DTs, as theoretically argued in [15,19]. Then, in [33],
service migration scheme in DT-enabled MEC networks is proposed,
hich leverages traffic prediction and federated deep reinforcement

earning to optimize service migration decisions and improve cost

fficiency. However, when considering social DTs, migration of an SDT
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Table 1
Comparison of DT placement and migration solutions.

Ref., year Placement Migration Orchestration of DTs Optimization Heuristics Motion prediction Social features Real dataset

[20], 2018 ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓

[16], 2019 ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓

[11], 2020 ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓

[17], 2021 ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗

[8], 2022 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

[30], 2023 ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗

[31], 2024 ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗

[19], 2023 ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗

[15], 2023 ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗

[18], 2024 ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓

[32], 2024 ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗

Our work ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Fig. 1. The SIoT-Edge framework.
may require re-locating the SDTs of its friend devices to meet the
targeted navigability latency of the SIoT network. To the best of our
knowledge, the potential of ML in making more socially conscious
migration decisions has not been well investigated, hence motivating
the contributions of this study. Table 1 presents a comparison between
the most closely related research and our work.

3. Proposed framework

Our work builds upon the SIoT-edge framework, which is graphi-
cally sketched in Fig. 1 and initially proposed in [8]. It is aligned with
the European Telecommunications Standards Institute (ETSI) Multi-
access Edge Computing (MEC) architecture [34]. In this context, the
4 
placement of SDTs is decided by theMEC orchestrator handling a certain
number of edge servers. In this work, we extend the previous frame-
work in [8] to more judiciously trigger SDT migration decisions by
augmenting SDTs with cognitive capabilities to predict device mobility
and support the MEC orchestrator.

In the following, the main pillars of the proposed framework are
shortly recalled, and the conceived enhancements are described. The
main notations are collected in Table 2.

3.1. SIoT devices and SDTs

SIoT devices can connect in many ways, e.g., through device-to-
device (D2D) links to other devices or through the 5G Radio Access
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Fig. 2. Main components and interfaces of SDT.

Network (RAN) facilities, such as Base Stations (BSs)/APs, to remote
entities. Each SIoT device is paired with its SDT, which describes
the physical counterpart and provides it with additional storage and
computing capabilities.

The main components of the SDT are reported in Fig. 2. The
southbound interface allows the SDT to collect data from the physical
counterpart. Such data may encompass sensing, storage, computing,
and networking capabilities, as well as the running status of the corre-
sponding resources. Among the collected data, the position of the phys-
ical device is periodically transmitted to the SDT. The data repository
stores both real-time and historical data retrieved from the physical
counterpart. Such data are used to describe the physical object, to
model its status, and to predict its future behavior.

Thanks to the data repository, the SDT can cache and aggregate
the raw data transmitted by the IoT device before IoT applications can
process it. In doing so, the SDTs can interact with remote applications
on behalf of the paired physical devices by relieving their pressure.

Compared to a conventional DT, the SDT also stores information
on the social links created by the physical device based on the SIoT
paradigm, which we refer to as Friend Table in the data repository. For
each friend device, it contains information on the device type and the
SIoT relationship. It could be: Co-Location Object Relationship (C-LOR)
stablished among devices located in the same place, Ownership Object
elationship (OOR) defined among devices that belong to the same
wner, Parental Object Relationship (POR) defined among devices be-
onging to the same production batch, Social Object Relationships (SOR)
stablished due to sporadic or continuous contact of users/devices [2].

An IoT device may exploit friendship information because it may
uery friend devices, discover services offered by them, and/or ex-
hange data with them. In our design, the SDT itself can interact
5 
with its peers on behalf of the physical device (e.g., to implement
distributed cooperative learning processes for better predictions). In
particular, the sidebound interface is leveraged for such a purpose,
and the information stored in the Friend Table is exploited to discover
friend SDTs.

Each SDT includes a set of functions that are responsible for carrying
out its tasks also according to the envisioned applications and mainly
devoted to describing and predicting the behavior of the corresponding
physical device. Among them, a specific module is meant to predict the
future location of the paired SIoT device.

3.2. Edge infrastructure

Each SDT is designed and deployed as a virtualized application,
i.e., MEC app (e.g., through containers) in the MEC architecture, and
nstantiated in edge servers. The latter, referred to as MEC hosts, may
e associated with BSs/APs.

SDT placement at the edge ensures low-latency interactions with
hysical pairs [35]. Moreover, by running at the edge, the SDT can
ore easily interact with other SDTs and also with natively provided

ontext-aware edge services, as those offered by the ETSI MEC archi-
ecture [34].

The core of the edge infrastructure is the MEC orchestrator. It is
ware of the resources and capabilities of the edge network and deter-
ines the most suitable MEC hosts for instantiating virtualized appli-

ations based on latency, processing requirements, available resources,
nd mobility conditions.

.3. Framework formulation

The MEC orchestrator can interface with the SIoT server through an
pplication Programming Interface (API) to obtain information about
ocial links among devices. It orchestrates the proper placement of SDTs
ccording to the time-efficient enhanced Social-aware Closest Edge
lacement (eSoCEP) algorithm that we proposed in [8]. The operation
s executed in a discrete-timing manner using a sequence of time slots
∈  = {0,… , 𝑇 } in order to capture the mobility features and

enable dynamic decision-making among the sets of SIoT devices and
edge servers.

We aim to jointly minimize the intra-twin communication latency
and the latency among SDTs of friend devices while ensuring that delay
bounds for intra-twin communications are met, whenever requested,
and effective utilization of the available resources for heterogeneous
SDT demands is guaranteed. Note that minimizing the first latency
contribution results in placing SDTs as close as possible to their physical
counterparts, while also reducing the amount of traffic that passes
through the edge network segment. The second latency contribution
accounts for the fact that SDTs may often interact with each other to
provide (low-latency) SIoT-based services.

This can be mathematically formulated as follows [8]:

min
∑

𝑖∈𝑉𝑃

∑

𝑘∈𝑉𝑆

𝑥𝑖𝑘(𝑡)𝐿𝑖𝑘(𝑡)

+
∑

𝑖∈𝑉𝑃

∑

𝑘∈𝑉𝑆

∑

𝑗∈𝑉𝑃

∑

𝑙∈𝑉𝑆

𝑥𝑖𝑘(𝑡)𝑥𝑗𝑙(𝑡)𝑝𝑖𝑗 (𝑡)𝐿𝑘𝑙(𝑡), (1)

.t.

𝑖𝑘(𝑡) ∈ {0, 1}, ∀ 𝑖 ∈ 𝑉𝑃 , ∀ 𝑘 ∈ 𝑉𝑆 , ∀ 𝑡 ∈  , (2)
∑

∈𝑉𝑆

𝑥𝑖𝑘(𝑡) = 1, ∀ 𝑖 ∈ 𝑉𝑃 , ∀ 𝑡 ∈  , (3)

𝑖𝑘(𝑡) ≤ 𝐿max𝑖 , ∀ 𝑖 ∈ 𝑉𝑃 , ∀ 𝑘 ∈ 𝑉𝑆 , ∀ 𝑡 ∈  , (4)
∑

∈𝑉𝑃

𝑥𝑖𝑘(𝑡)𝐶𝑃𝑈𝑖(𝑡)
𝑎𝐶𝑃𝑈𝑘

≤𝑇𝐻𝑅𝐶𝑃𝑈 , (5)

∑ 𝑥𝑖𝑘(𝑡)𝐷𝑖(𝑡)
𝑎𝐷

≤𝑇𝐻𝑅𝐷, (6)

𝑖∈𝑉𝑃 𝑘
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Table 2
Main notations.

Framework parameters

 Time horizon
𝑉𝑃 Set of SIoT devices
𝑉𝑆 Set of SIoT edge servers
𝑥𝑖𝑘 Binary variable representing whether SDT of device 𝑖 is placed into edge server 𝑘
𝑥𝑗𝑙 Binary variable representing whether SDT of device 𝑗 is placed into edge server 𝑙
𝐿𝑖𝑘 Latency between device 𝑖 and its SDT
𝐿𝑘𝑙 Latency between each pair of edge servers 𝑘 and 𝑙
𝑝𝑖𝑗 Probability that characterizes the intensity of data exchange between SIoT devices 𝑖 and 𝑗
𝐿max𝑖 Maximum tolerated latency between physical device 𝑖 and its SDT
𝑎𝐶𝑃𝑈𝑘 CPU capability of edge server 𝑘
𝑎𝐷𝑘 Disk capability of edge server 𝑘
𝑎𝑅𝐴𝑀𝑘 Memory capability of edge server 𝑘
𝐶𝑃𝑈𝑖(𝑡) CPU requirement to execute the SDT of device 𝑖
𝐷𝑖(𝑡) Disk requirement to execute the SDT of device 𝑖
𝑅𝐴𝑀𝑖(𝑡) Memory requirement to execute the SDT of device 𝑖
𝑇𝐻𝑅𝐶𝑃𝑈 CPU utilization threshold
𝑇𝐻𝑅𝐷 Disk storage utilization threshold
𝑇𝐻𝑅𝑅𝐴𝑀 RAM utilization threshold

Learning-specific parameters

𝑆 Dataset size
𝑛samples Number of training samples
𝑛features Number of features
𝑛estimators Number of trees in ensemble algorithms
𝑑depth Depth of the tree
𝑟success Number of successive models
𝑛vectors Number of support vectors
Sliding window Size of sliding widow
𝑛hidden Number of hidden units of LSTM layer
∑

𝑖∈𝑉𝑃

𝑥𝑖𝑘(𝑡)𝑅𝐴𝑀𝑖(𝑡)
𝑎𝑅𝐴𝑀𝑘

≤𝑇𝐻𝑅𝑅𝐴𝑀 , (7)

here 𝑥𝑖𝑘(𝑡)/𝑥𝑗𝑙(𝑡) is a placement decision variable that takes the
alue 1 if SDT of device 𝑖∕𝑗 is mapped to edge server 𝑘∕𝑙), otherwise

𝑥𝑖𝑘(𝑡)/𝑥𝑗𝑙(𝑡) = 0, and 𝐿𝑖𝑘(𝑡) represents the latency between device 𝑖 and
ts SDT, while the latency between each pair of edge servers 𝑘 and
is denoted by 𝐿𝑘𝑙(𝑡). The probability 𝑝𝑖𝑗 (𝑡), where 0 ≤ 𝑝𝑖𝑗 (𝑡) ≤ 1,

haracterizes the intensity of data exchange between SIoT devices 𝑖
nd 𝑗, and is linked to the connections in the SIoT. 𝐿max𝑖 denotes the

maximum latency between physical device 𝑖 and its SDT deployed at
edge server 𝑘. The CPU, disk, and memory capabilities are denoted by
𝑎𝐶𝑃𝑈𝑘, 𝑎𝐷𝑘, 𝑎𝑅𝐴𝑀𝑘, respectively. The requirements to execute SDT
f device 𝑖 correspond to 𝐶𝑃𝑈𝑖(𝑡), 𝐷𝑖(𝑡), and 𝑅𝐴𝑀𝑖(𝑡), whereas the

threshold values for CPU, disk storage, and RAM utilization are denoted
by 𝑇𝐻𝑅𝐶𝑃𝑈 , 𝑇𝐻𝑅𝐷, and 𝑇𝐻𝑅𝑅𝐴𝑀 , respectively.

Constraint (3) ensures SDT placement without replication, while
Constraint (4) represents physical device-SDT proximity constraints.
Finally, Constraints (5)–(7) ensure efficient resource utilization and
prevent server overload.

This problem is widely acknowledged to have NP-hard complexity,
which renders its solution computationally intensive through exhaus-
tive search. Therefore, we employ our graph-based heuristics (eSoCEP)
proposed in [8], which tackles the complex problem of optimally
placing the SDTs of devices on edge servers to minimize communication
costs, as per (1). It breaks down the problem into smaller and more
manageable pieces. Specifically, it identifies tightly connected groups of
SIoT devices that communicate frequently with each other. Within each
group, it identifies the most efficient way to connect SDTs to servers by
using a spanning tree. The algorithm then repeats this process for each
group of devices, prioritizing the most critical connections within each
group. Finally, it assigns servers to each SDT based on the results from
the previous steps.

The algorithm has to process 𝑛 devices in groups and within each
group, as well as to analyze the communication patterns between all
devices (up to 𝑛 devices). Here, 𝑂(𝑛) is the complexity due to the cycle
over all vertices of the graph, which is, in the worst case, equal to the

number of SIoT devices (𝑛). Moreover, the algorithm searches for the

6 
largest connected component in terms of the number of communica-
tions between all vertices (SIoT devices). The upper bound for it is 𝑂(𝑛).
As a result, this nested processing over potentially many groups leads
to 𝑂(𝑛2) complexity [8].

Complexity also affects the processing time at the edge server. It
is worth noticing that experiments reported in our previous work [8]
already demonstrated that the processing time required at the edge
server to run eSoCEP for a large number of devices is up to 93% lower
than the time needed to find the optimal solution through a standard
solver, showing that the proposed heuristics also scales well with the
number of devices, while providing near-optimal performance.

3.4. Learning-triggered SDT migration

In [8], the heuristics deciding the placement of SDTs and, hence,
their potential migration, was run in the MEC orchestrator at fixed time
intervals regardless of device mobility. However, this choice may not be
efficient in a dynamic environment. The small cell radius of wireless
networks transmitting at the millimeter-wave (or upcoming terahertz)
bands may cause frequent handovers and possible consequent switching
of SDTs among MEC hosts to ensure low-latency intra-twin communica-
tions. However, changing edge servers at fixed intervals or simply doing
this upon cell switching is inefficient from a network perspective and
can waste resources without necessarily improving the service delivery.

In this work, in contrast to [8], heuristics execution at the MEC
orchestrator is triggered by the SDTs themselves only when the predicted
mobility patterns for the paired SIoT devices may adversely affect the
intra-twin communication latency. Specifically, each SDT is equipped
with ML/DL capabilities that enable the prediction of mobility of the
corresponding physical device based on previously recorded mobility
patterns.

Leveraging its embedded ML/DL model (Fig. 2), each SDT pe-
riodically infers the next predicted location of the paired physical
device, which might imply a change of network attachment. In such
a case, it checks whether its actual edge placement will still satisfy
the targeted latency constraints for intra-twin communications. Only
if this is not the case, then the SDT triggers the MEC orchestrator
to run the heuristics responsible for the SDT relocation according to



O. Chukhno et al.

t
m
t
a
r

o
n
r
e

3

c
t

l
d
a
d
r

2
1

l
c
b
G
p
s
q

×
T
i
m
s

a
T
d
T
t
a

d
r
[
m

t
d
a

d
i
o
w
f
r

(
f
d
a

Computer Communications 226-227 (2024) 107918 
Fig. 3. Visual overview of the proposal.

he new predicted location. It should be noted that the relocation
ay consequently involve several SDTs. This is because, besides intra-

win communication latency, inter-twin communication latency can
lso be affected by the relocation of the SDTs of devices tied by social
elationships.

All SDTs periodically report their predicted positions to the MEC
rchestrator by piggybacking the SDT relocation trigger only when
eeded. The reporting frequency may be set according to the specific
equirements of the services and dynamics of the ML/DL algorithms
mbedded within SDTs.

.5. Learning-based mobility prediction

The SDT includes a specific module for predicting the future lo-
ation of its paired SIoT device. To do so, SDT relies on ML/DL
echniques, such as LSTM, RF, SVR, XGBoost, and 𝑘NN, which are

suitable for time series forecasting [36–39]. This class of models well
matches the problem at hand, thanks to their ability to model sequences
of observations over time and capture complex patterns in the motion
data [40,41]. The ML/DL model is trained by using both historical
data about the mobility pattern in a given area and also real-time data
collected through the SIoT device.

Significance of mobility prediction: Mobility prediction can be applied
for a variety of real-time applications, such as selecting the best ac-
cess point [42], allocating resources effectively [43], optimizing load
balancing [44], and controlling seamless handovers for users [45]. In
the context of SDTs, as we demonstrate in Section 4.3, the mobility
prediction of virtual devices facilitates SDTs’ placement and migration
to reduce the service discovery latency.

Cooperative sensing and tracking technologies can be leveraged
to improve the accuracy of the position information. For example,
high-level sensing and localization can be obtained from low-level raw
measurements, such as channel state information (CSI) and received
signal strength indicators (RSSI) between peers through D2D commu-
nications and local area networks, i.e., Wi-Fi [46,47]. D2D links can
also facilitate localization and sensing through cooperative positioning,
where peers can exchange necessary data, such as common physical
layer estimates and position information, to increase the positioning
accuracy [48].

Fig. 3 depicts a schematic representation of the proposal, which
includes two main components: learning-triggered SDT migration and
learning-based mobility prediction, discussed in Sections 3.4 and 3.5,
respectively.

4. Performance evaluation

We conduct a two-step evaluation study to assess the performance
of the proposed learning-powered SDT migration strategy. We first
compare different ML/DL techniques used in step 1 for the prediction

of SIoT device mobility to identify the best-performing technique. As

7 
a software environment, Python is leveraged for this stage due to
its extensive libraries for ML/DL. The eSoCEP heuristics, run in step
2, is implemented in a MATLAB environment, which offers strong
capabilities for graph-based algorithms. The execution of the algorithm
is triggered by SDTs running device mobility predictions once the
intra-twin communication latency is at risk.

4.1. Scenarios and settings

We consider the reference scenarios as detailed in the following.
Scenario 1-Mixed. The simulation scenario corresponds to a 4 km2-

arge area of the city center of Santander in which 113 heterogeneous
evices, including smartphones, cars, tablets, smart fitness devices,
nd smartwatches, move and establish social relationships, as per the
ataset in [12]. This dataset tracks interactions among IoT devices in
eal-world scenarios1 and employs the Small World in Motion (SWIM)

mobility model [49].
Each device in the dataset establishes social relationships of types

OOR, C-LOR, SOR, and POR distributed with percentages of 50%, 15%,
1%, and 14%, respectively. We presume the probability values 𝑝𝑖𝑗 (𝑡) =
for OOR connections and 𝑝𝑖𝑗 (𝑡) = 0.1 for C-LOR, SOR, and POR [8].

We assume a 3GPP-compliant hexagonal grid with 8 BSs, each co-
ocated with an edge server. Each device has an SDT implemented as a
ontainer at the edge. SDTs are associated with four types of containers
ased on CPU and RAM demands. High-CPU medium (2000 MIPS/0.85
B) and extra-large (2500 MIPS/3.75 GB) SDTs are for mobile
hones and cars with autonomous navigation, respectively, while
martwatches, sensors, tablets, smart fitness gadgets, and printers re-
uire small (1000 MIPS/1.7 GB) or micro (500 MIPS/613 MB) instances.
Scenario 2-Pedestrians. The simulation scenario extends over 250 m
500 m, featuring 8 BSs with an intersite distance of 120 m [50].

o emulate real-life user behavior in diverse application scenarios, we
mplement a pedestrian flow simulation based on the social force-based
odel of human behavior [25,51]. Pedestrian motion is simulated at a

peed of 3 km/h.
The interactions among the 113 SIoT devices are randomly gener-

ted, maintaining the same probability values as in Scenario 1-Mixed.
he demands of the SDTs and delay constraints between a physical
evice and its SDT are also consistent with those in Scenario 1-Mixed.
he difference lies in SDTs being associated with a single container
ype, i.e., extra-large (2500 MIPS/3.75 GB) SDTs since pedestrians are
ssumed to carry mobile phones.

As regards the settings common to both scenarios, edge server CPU,
isk, and RAM capabilities correspond to 24000 MIPS, 2 TB, and 24 GB,
espectively. The disk demands of SDTs are uniformly distributed in
10, 50] GB, whereas the delay between a physical device and its SDT
ust be within 1 − 10 ms.

The latency between devices and edge servers, as well as the la-
ency between edge servers, is directly proportional to the physical
istances between them [16,20]. This relationship is established using
coefficient for the distance-to-latency mapping of 3.33 ms/km [52].

The dataset contains 𝑛features = 113 columns representing each
evice and 𝑆 rows representing the number of zones where the device
s located at each timestamp. Since device mobility depends on the time
f the day and rush hours, among other factors discussed in Section 2.1,
e take the dataset size of 𝑆 = 1000 for scenario 1 and 𝑆 = {1000, 2000}

or scenario 2, assuming that after 1000 timestamps the model will be
etrained.

The simulations for both scenarios cover a 5-hour time interval
corresponds to 𝑆 = 1000), within which, according to the proposed
ramework, the placement and migration of SDTs are triggered on-
emand by running the eSoCEP heuristics when utilizing the ML/DL
lgorithm at SDTs to predict mobility. Position data are sampled every

1 https://www.fiware.org.

https://www.fiware.org/developers/data-models/
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Table 3
Theoretical complexity analysis of ML/DL models.

Algorithm Type Training complexity Inference complexity

LSTM layer DL 𝑂(4 sliding window ⋅ 𝑛features ⋅ 𝑛hidden + 4𝑛2hidden + 3𝑛hidden + 𝑛hidden ⋅ 𝑛features) 𝑂(sliding window ⋅ 𝑛features ⋅ 𝑛hidden)
RF ML 𝑂(𝑛estimators ⋅ 𝑛samples ⋅ log(𝑛samples) ⋅ 𝑑depth) 𝑂(𝑛estimators ⋅ 𝑑depth)
SVR ML 𝑂(𝑛2samples ⋅ 𝑛features + 𝑛3samples) 𝑂(𝑛vectors ⋅ 𝑛features)
𝑘NN ML 𝑂(1) 𝑂(𝑛samples ⋅ 𝑛features)
XGBoost ML 𝑂(𝑛estimators ⋅ 𝑛samples ⋅ log(𝑛samples) ⋅ 𝑑depth ⋅ 𝑟success) 𝑂(𝑟success ⋅ 𝑑depth)
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1s. We analyze the settings with 𝑛features = 113 devices and 𝑆 samples
that reflect their current locations. We perform training and validation
tests on a standard laptop PC equipped with 16 GB of RAM and an Intel
Core i7-1260P CPU @ 2.10 GHz and run the code using Python 3.10.6.

4.2. Mobility prediction using ML/DL techniques

We compare the performance of the following ML/DL techniques to
identify the one to be implemented at SDTs:

• LSTM is a type of Recurrent Neural Network (RNN) that models
time-series data by learning temporal dependencies and patterns.
Due to its ability to capture long-term dependencies and han-
dle variable-length input sequences, LSTM is widely used for
mobility prediction [40]. Our model consists of the LSTM layer
with 𝑛hidden = 16 hidden units and Rectified Linear Unit (ReLU)
activation function, the sliding window of length 50, one fully
connected hidden layer with 256 units and ReLU activation func-
tion, and one fully connected layer with 𝑛features = 113 units. The
model is compiled using Mean Absolute Error (MAE) as the loss
function, Adam optimizer, and 40 epochs with a unit batch size.

• Random Forest is an ensemble learning technique that uses de-
cision trees to build multiple models and aggregate their predic-
tions. Random Forest handles noisy and high-dimensional data,
which is suitable for motion prediction and time-series forecast-
ing [39]. We implement random forest with 𝑛estimators = 200 trees
and depth 𝑑depth = 4.

• SVR is a type of Support Vector Machine (SVM) that can perform
regression tasks by identifying the optimal hyperplane that best
fits the data by handling non-linear relationships between input
and output variables [53]. We implement SVR with the radial
basis function kernel, regularization parameter of 1, and epsilon
0.1.

• 𝑘NN can be applied to motion prediction by utilizing historical
motion data (e.g., previous positions, velocities) as the train-
ing set, where similar past motions help predict future move-
ments based on proximity to neighboring motion patterns, mak-
ing it suitable for trajectory forecasting or behavior prediction
in scenarios like object tracking, vehicle motion, or human ac-
tivity recognition [54]. We implement 𝑘NN, utilizing 5 nearest
neighbors.

• XGBoost is an ensemble learning method that uses gradient boost-
ing to build a predictive model by combining the outputs of
multiple individual models, typically decision trees, in an additive
manner. It works by sequentially improving upon the mistakes
of previous models to create a more accurate and robust fi-
nal model [41]. We implement XGBoost with 𝑛estimators = 100
estimators and depth 𝑑depth = 6.

The complexity of the considered ML/DL algorithms is summa-
rized in Table 3. It is important to note that the nested nature of
the operations in the LSTM model and the dependence on the input
sequence length (i.e., sliding window) makes it difficult to express the
exact complexity in a single big-𝑂 notation. However, the training and
inference complexities are primarily determined by the terms listed in
Table 3.

We compare the performance of the above ML/DL models under dif-
ferent 𝑡𝑟𝑎𝑖𝑛/𝑡𝑒𝑠𝑡 split ratios, meaning that 𝑡𝑟𝑎𝑖𝑛% of the mobility dataset
8 
Table 4
Training and inference times, 90∕10% train/test split ratio, for both considered
scenarios.

Dataset size Mixed Pedestrians Mixed Pedestrians

1000 1000 2000 1000 1000 2000

Training time Inference time

[s] [s] [s] [s] [s] [s]

LSTM 183.595 205.771 429.740 0.056 0.052 0.051
RF 0.572 0.592 1.388 0.008 0.007 0.008
SVR 0.109 0.229 0.823 0.012 0.009 0.013
𝑘NN 0.037 0.034 0.039 0.363 0.412 0.256
XGBoost 2.124 2.006 3.384 0.001 0.001 0.001

is used for training and 𝑡𝑒𝑠𝑡% for testing. A good quality prediction
can be obtained by updating the model for every 1000 samples (as
demonstrated below). We employ an initial random seed of 51 to ensure
eproducibility.

We measured not only standard metrics based on absolute values,
uch as MAE, root mean squared error (RMSE), and accuracy measured
s 100−mean absolute percentage error (MAPE), but also the coefficient
f determination, R2 score, which measures the ability of the model to

fit the data and accurately predict the dependent variable based on the
independent ones [55].

As per Scenario 1-Mixed, as shown in Table 4, 𝑘NN has the shortest
raining time since there is no traditional training phase when the
lgorithm explicitly learns a model based on the training data. Instead,
he entire dataset itself effectively becomes the model. SVR’s training
ime is 109ms providing a fast performance, followed by RF (571ms)
nd XGBoost (2.12 s), and then LSTM, which has a longer training
ime (183.6 s) but a more data-adaptable structure. We also provide
ne-sample inference time to understand how quickly the models can
espond to the new mobility data and let each SDT make predictions to
rigger a potential migration promptly. In contrast to the training time,
he XGBoost model offers the fastest inference speed with latency in the
rder of 0.7 ms.

Regarding prediction accuracy on unknown data, XGBoost outper-
orms the other models in terms of RMSE, MAE, accuracy, and R2

core across a majority of the training dataset sizes, as depicted in
ig. 4. Notably, a training ratio of 0.90 stands out as the optimal choice
or achieving the highest accuracy-related scores within the current
ataset. In this case, the accuracy of XGBoost exceeds 97%, the highest
alue among the evaluated techniques, meaning that, on average, the
redictions made by the regression model deviate by merely 3% from
he actual target values.

Moreover, the R2 score of the test data approaches 1, indicating
hat the model can account for ≈95% of the variation in actual target
alues. This confirms that the model makes accurate predictions, with
he remaining 5% of variance due to factors not captured by the model.
omparatively, among the other models, 𝑘NN emerges as the second-
est performer in terms of accuracy, MAE, RMSE, and R2 score up to
0∕20% of train/test split ratio (and on the whole train/test split ratio
nterval for RMSE), albeit with notably longer inference times in the
rder of 0.36 s. SVR exhibits good enough accuracy solely for a training
atio of 0.90, while RF and LSTM lag notably behind XGBoost in terms
f accuracy. The training progress of LSTM (that learns iteratively
hrough backpropagation) is presented in Fig. 5. In stradeoffXGBoost
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Fig. 4. Scenario 1-Mixed: RMSE, MAE, accuracy, and R2 score as function of the
rain/test split ratio, dataset size 𝑆 = 1000 samples.

Fig. 5. Scenario 1-Mixed: LSTM loss function value (MAE) as training processes in 40
epochs, 90∕10% train/test split ratio, dataset size 𝑆 = 1000 samples.

presents an advantageous balance among the key factors. It delivers a
compelling tradeoff between the training time (higher than 𝑘NN, SVR,
and RF, yet still relatively small), inference time (the shortest), and
accuracy (the highest), making it a notably favorable choice.

In Scenario 2-Pedestrians, as presented in Table 4 and Figs. 6 and
7, an intriguing shift unfolds from the previously observed outcomes.
Remarkably, 𝑘NN’s performance in terms of MAE, RMSE, accuracy, and
9 
Fig. 6. Scenario 2-Pedestrians: RMSE, MAE, accuracy, and R2 score as function of the
rain/test split ratio, dataset size 𝑆 = 1000 samples.

Fig. 7. Scenario 2-Pedestrians: LSTM loss function value (MAE) as training processes
in 40 epochs, 90∕10% train/test split ratio, dataset size 𝑆 = 1000 samples.

R2 score closely mirrors that of XGBoost, presenting a compelling match
in results (up to 6 decimal places). However, despite this near parity,
𝑘NN maintains a drawback in its inference time, which is a crucial
factor for time-sensitive applications. Additionally, RF demonstrates
results akin to those of XGBoost in Scenario 2-Pedestrians, showcasing
proximity in MAE, accuracy, and R2 score. Conversely, SVR exhibits
good results, particularly when the training ratio exceeds 0.80, whereas
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Fig. 8. Scenario 2-Pedestrians: RMSE, MAE, accuracy, and R2 score as function of the
train/test split ratio, dataset size 𝑆 = 2000 samples.

Fig. 9. Scenario 2-Pedestrians: LSTM loss function value (MAE) as training processes
in 40 epochs, 90∕10% train/test split ratio, dataset size 𝑆 = 2000 samples.

LSTM continues to reveal limitations, proving that it is less suitable for
this specific task.

In addition, given the relatively modest movement speed in pedes-
trian mobility scenarios, we conduct additional tests with an increased
number of samples in the Scenario 2-Pedestrians dataset. As previously
underscored, our recommendation still advocates retraining the models
periodically, specifically at every 1000 sample interval, owing to the
10 
Table 5
5-fold cross-validation. The mean value is provided.

Dataset size Mixed Pedestrians Mixed Pedestrians

1000 1000 2000 1000 1000 2000

MAE RMSE

LSTM 0.066 0.069 0.142 1.172 0.089 0.184
RF 0.058 0.043 0.094 3.363 0.056 0.117
SVR 0.077 0.105 0.216 2.277 0.116 0.234
𝑘NN 0.052 0.035 0.076 5.369 0.053 0.110
XGBoost 0.042 0.034 0.077 1.581 0.053 0.111

dynamic nature of the data. This imperative emerges evident upon
examining Figs. 8 and 9 with dataset size 𝑆 = 2000 samples, wherein
a discernible decline in accuracy and R2 score is apparent alongside
an escalation in MAE and RMSE metrics. These observed fluctuations
signify the evolving nature of the dataset, underscoring the necessity
for regular model updates to sustain optimal predictive performance.
Similar to the findings observed in Scenario 1-Mixed, it is noteworthy
that a training ratio of 0.90 emerges as the optimal choice within the
context of Scenario 2-Pedestrians. What also remains consistent across
oth considered scenarios is the undeniable supremacy of XGBoost over
ther ML/DL techniques.
Cross validation: To test how ML/DL models work on unseen data,

e provide results for 5-fold cross-validation while considering MAE
nd RMSE (see Table 5). This involves training models using various
ubsets of data (5 subsets), subsequently yielding an average output
or the final result. This approach also helps mitigate the potential for
verfitting, thereby enhancing the overall effectiveness of the model.
esults demonstrate that, on average, the models generalize well on
ifferent parts of the dataset.

Therefore, based on the results for Scenario 1-Mixed and Scenario
-Pedestrians for both train/test split and cross-validation, in the fol-
owing, we leverage the XGBoost algorithm (showing a good accuracy
nd inference speed) in the SDT to predict the movement of the paired
hysical device.

.3. ML-powered SDT migration

We compare the proposal against an approach in [8] representative
f blind solutions, where SDTs relocation is triggered at fixed time
ntervals, whose duration 𝑡 is equal to 1, 5, 10, 15, 20, 25, and 30
in, irrespective of changes of the network attachment, and leveraging
evice location retrieved at the previous time interval to take the
ecision. Our proposal, instead, is analyzed for the mobility prediction
nterval, which is equal to 1 s.

The following metrics are measured and reported in Tables 6 and 7:

• Number of times the relocation algorithm is run to assess the
complexity incurred by the proposal at the orchestrator to trigger
the migration of SDTs;

• Number of migrated SDTs calculated as the total number of SDTs
migrated from one edge server to another throughout the whole
simulation time.

• Network overhead computed as the total amount of data trans-
ferred (in GB) from one edge server to another to migrate the
SDT container.

• Service discovery latency derived as the sum of the intra-twin
communication latency and the latency experienced to reach the
SDTs of friend devices one by one.

As per Scenario 1-Mixed, the shortest service discovery latency is
chieved for 𝑡 = 1 min. Correspondingly, as a side effect, the high-
st number of migrated SDTs and incurred overhead are measured.
ence, this setting wastes too much network resources. On the other
and, longer time intervals between relocation decisions lower network
verhead but at the expense of a higher service discovery latency. Our
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Table 6
Migration-related metrics and service discovery latency (Scenario 1-Mixed).

Runs of relocation algorithm Number of migrated SDTs Network overhead Service discovery latency
[–] [–] [GB] [ms]

FixInt-migration (𝑡 = 1min) 300 930 27905 7.65
FixInt-migration (𝑡 = 5min) 60 324 9722 8.03
FixInt-migration (𝑡 = 10min) 30 243 7291 8.32
FixInt-migration (𝑡 = 15min) 20 196 5881 8.47
FixInt-migration (𝑡 = 20min) 15 156 4681 8.40
FixInt-migration (𝑡 = 25min) 12 162 4861 8.39
FixInt-migration (𝑡 = 30min) 10 118 3541 8.59
ML-triggered migration (𝑡 = 4.9min) 63 363 10892 7.68
Table 7
Migration-related metrics and service discovery latency (Scenario 2-Pedestrians).

Runs of relocation algorithm Number of migrated SDTs Network overhead Service discovery latency
[–] [–] [GB] [ms]

FixInt-migration (𝑡 = 1min) 300 711 21334 7.01
FixInt-migration (𝑡 = 5min) 60 376 11282 7.13
FixInt-migration (𝑡 = 10min) 30 309 9272 7.29
FixInt-migration (𝑡 = 15min) 20 280 8402 7.41
FixInt-migration (𝑡 = 20min) 15 213 6391 7.49
FixInt-migration (𝑡 = 25min) 12 189 5671 7.63
FixInt-migration (𝑡 = 30min) 10 144 4321 7.79
ML-triggered migration (𝑡 = 7.2min) 42 342 10262 7.09
Fig. 10. Gap of proposed and benchmark solutions from the ground truth in terms of service discovery latency.
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roposal has approximately triggered the relocation of SDTs at every 𝑡
equal to 4.9 min.

Scenario 2-Pedestrians demonstrates a similar behavior to Scenario
1-Mixed, with our proposal securing the second position in terms of
service discovery latency (following the fixed rerun every 1 min).
However, there is a more significant reduction in the number of SDT
relocations w.r.t. the fixed rerun every 1 min. Reallocation is triggered
approximately every 7 min. Such a trend can be ascribed to the fact
that slowly moving devices, those carried by pedestrians, are only
considered in Scenario 2-Pedestrians. Moreover, the amount of migrated
data is roughly half of what is migrated every 1 min.

Such results imply a significantly lower network overhead and, ad-
ditionally, a lower computing footprint at the orchestrator for executing
the SDT migration algorithm.

To further assess the viability of the proposal, we measure the
impact of the effectiveness of the prediction on the service discovery
latency. To this aim, Fig. 10(a) and (b) report the gaps achieved by the
previously compared schemes from the ground truth, where the device
movement sampled at every 1 s is a priori known, and the SDT migration
is always triggered accordingly.

As per Scenario 1-Mixed, our proposal exhibits proximity of 98.8%
to the ground truth (thus, a gap of less than 2%). The gap of the
benchmark from the ground truth, on the other hand, is almost always
higher than in our proposal as it ranges from around 6% (𝑡 = 5 min) to

13% (𝑡 = 30 min). Also, in Scenario 2-Pedestrians, our proposal exhibits t
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a proximity of 98.7% to the ground truth. In contrast, the gap of the
benchmark from the ground truth is constantly increasing, comprising
approximately 0.1%, 2%, 4%, 6%, 7%, 9%, and 11%, respectively, when
the algorithm is rerun every 1, 5, 10, 15, 20, 25, and 30 min. The only
exception in both cases is for 𝑡 = 1 min, but in this case, we have seen
from the previous measurements that the migrations performed and the
network load for the migrations have approximately halved compared
to our proposal.

As a further experiment, we report in Fig. 10(c) the gap achieved in
Scenario 2-Pedestrians when incorporating different probability values
for data exchange between SIoT devices, 𝑝𝑖𝑗 (𝑡), to resemble different
ocial behaviors (denoted as Scenario 2-Pedestrians (B)). Specifically,
he probability to exchange data is set to 𝑝𝑖𝑗 (𝑡) = 1 for OOR and SOR
onnections, whereas it is set to 𝑝𝑖𝑗 (𝑡) = 0.3 for C-LOR, and to 𝑝𝑖𝑗 (𝑡) = 0.1
or POR connections. The proposal, in this case, is 99% close to the
round truth.

.4. Guidelines for practical deployment

In the following, we provide some suggestions on how to deploy the
roposed framework in practical settings.
Social relationships creation and maintenance. We assume that

oT devices establish social relationships according to the framework
resented in [56]. There, social ties are established and managed with

he support of the network service provider (NSP), which could either
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be a mobile network operator or a fixed telco provider. In [56], the
maintenance and collection of information about the social network
to be shared with entities/applications consuming it are handled in
a distributed manner to reduce the computational burden, grant a
ood level of privacy, and provide high scalability as the number of
IoT devices increases. In particular, there, information about social
elationships are locally kept by each SDT, in the Friend Table, as in
ur work.
SDT migration decision. In our case, the MEC orchestrator re-

eives, via proper APIs, information about social relationships from the
SP and leverages them to make the SDT placement and replacement
ecisions over the edge servers under its control. The MEC orchestrator
hen implements the conceived eSoCEP heuristics. The latter one can
e implemented in a very short time and it has been shown in [8] to
cale very well with the number of SIoT devices.
SDT implementation and management. SDTs can be deployed

through the Docker container technology as proposed in [57] for DTs
deployed in the vehicular context. The motion prediction time can be
deployed as a separate container, running Python routines to execute
the motion prediction algorithm. Measured inference times are in the
order of milliseconds up to hundreds of milliseconds, in the worst case.
Hence, the mobility can be predicted in an efficient manner, with not
so much burden on the SDT side. An open source container orches-
tration engine, such as Kubernetes, can be leveraged for automating
deployment, and managing containerized applications in a scalable
manner, as proposed, for instance, in an SIoT-like context in [10], to
support the instantiation and relocation of SDTs as decided by the MEC
orchestrator.

All in all, both numerical results as well as the identified possible de-
ployment options that match the conceived theoretical framework, sug-
gest that the proposal can aim for scalability under different perspec-
tives, even under large-scale SIoT implementations. Of course, there is
room for improvement and for assessing the suggested implementation
options.

5. Conclusions and future works

The proliferation of SIoT devices and their SDTs poses a challenge
to orchestration procedures related to the placement and replacement
of SDTs at the network edge. Fixed-interval relocation of SDTs may not
be efficient and may lead to resource wastage. This work proposes a
learning-based social-aware orchestration that predicts device mobility
and makes judicious decisions about where and when to migrate SDTs
efficiently. The proposed approach outperformed a fixed-interval ap-
proach for relocation and achieved a proximity of 99% to the ground
truth in terms of service discovery latency.

However, several issues regarding SDT design remain to be ad-
dressed and deserve further investigation. They include, among oth-
ers, the design of privacy-preserving solutions for position data re-
trieval [58]. More specifically, the collection and processing of position
data for prediction purposes raises privacy concerns that require pro-
tection measures against potential attacks targeting learning models
within SDTs. This implies the need to implement intrusion detection
systems and secure communication protocols to identify network-based
attacks, such as signature-based anomalies in network traffic patterns,
and to ensure network security.

Regarding ML-assisted mobility prediction, DL-based prediction
methods may deserve special attention when dealing with increased
variability (both temporal and spatial) in motion patterns. In general,
to improve the accuracy of the prediction, it may be appropriate
to train the model on a large number of samples, which consider
greater variability in the movement dynamics of SIoT devices. From this
perspective, a possible emerging problem is related to the complexity
of using a single model such as LSTM when dealing with long-time
series data [59]. Similarly, combining LSTM with other neural networks
can lead to a more complex and difficult-to-train structure [60]. In this
12 
case, model transfer can be a useful approach, which allows training
the model on a large number of samples and updating it with current
data to provide predictions. This is faster and can be done in real-
time because the model already has some weights, and training it from
scratch is not needed.
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