
Received 10 February 2024, accepted 20 March 2024, date of publication 27 March 2024, date of current version 2 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3382001

An Edge-Based Digital Twin Framework for
Connected and Autonomous Vehicles:
Design and Evaluation
CLAUDIA CAMPOLO 1,2, (Senior Member, IEEE), GIACOMO GENOVESE 1,2,
ANTONELLA MOLINARO 1,2,3, (Senior Member, IEEE),
BRUNO PIZZIMENTI 1,2, (Student Member, IEEE), GIUSEPPE RUGGERI 1,2, (Member, IEEE),
AND DOMENICO MARIO ZAPPALÀ 1,2, (Student Member, IEEE)
1DIIES Department, Mediterranean University of Reggio Calabria, 89124 Reggio Calabria, Italy
2Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT), 43124 Parma, Italy
3Laboratoire des Signaux et Systémes, CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France

Corresponding author: Claudia Campolo (claudia.campolo@unirc.it)

This work was supported in part by the MOST—Sustainable Mobility National Research Center; in part by European Union (EU)
Next-GenerationEU through Piano Nazionale di Ripresa e Resilienza (PNRR)—MISSIONE 4 COMPONENTE 2, INVESTIMENTO
1.4—D.D. 1033 17/06/2022 under Grant CN00000023; in part by the ‘‘Mobility for Passengers as a Service’’ (MyPasS) Project funded by
Italian Government [through the Programma Operativo Nazionale (PON) (2014–2020) Initiative]; and in part by European Union
Next-GenerationEU under Grant PNRR DM n. 351.

ABSTRACT Connected and Autonomous Vehicles (CAVs) will be provided with multiple sensing and
connectivity options as well as embedded computing and decision-making capabilities. The resulting
technological landscape paves the way for the deployment of a plethora of innovative applications involving
different stakeholders, such as insurance companies, car repairs, car manufacturers and public authorities.
In such a context it is crucial to collect data in an efficient manner, not to burden the vehicle itself and the
network infrastructure, while also providing an interoperable data sharing among all the involved players.
The Digital Twin (DT) concept can play a key role to properly retrieve, store and share data as well as to
exploit them to monitor, predict and improve the vehicle safety and driving experience. This work proposes a
comprehensive frameworkwhich encompasses the presence of an edge-basedDT interactingwith the vehicle
and the remote applications. It leverages properly specified interfaces and semantic models for different
types of data provided by on-board sensing and learning capabilities. A Proof-of-Concept (PoC) has been
developed to assess the practicality of the proposal and its performance in terms of communication and
computation footprint under a variety of settings.

INDEX TERMS Connected and autonomous vehicles, digital twin, multi-access edge computing, MQTT,
OMA-LwM2M.

I. INTRODUCTION
The impressive recent progresses in the Information and
Communication Technology (ICT) domain are significantly
changing our daily life. Take the concept of vehicle,
for instance, which is rapidly progressing towards the
idea of a Connected and Autonomous Vehicle (CAV) to
enable a safer, more sustainable, comfortable and efficient

The associate editor coordinating the review of this manuscript and

approving it for publication was Jonathan Rodriguez .

mobility. This would be possible by retrieving data (e.g.,
speed, coolant temperature) through the vehicle’s Electronic
Control Unit (ECU) or acquired via other on-board sensors
(e.g., accelerometer, gyroscope, cameras, Light Detection
and Ranging (LiDAR)) and by using data as inputs for
communication and control decisions. This continuous data
stream by feeding the driving assistance system, on the one
hand will enable applications of different autonomy levels,
according to the SAE J3016 standard [1]. On the other
hand, performing autonomous driving tasks by solely relying

46290

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-3281-6680
https://orcid.org/0000-0002-6135-6946
https://orcid.org/0000-0003-2731-300X
https://orcid.org/0000-0002-4562-4568
https://orcid.org/0000-0002-2664-2322
https://orcid.org/0009-0005-8027-4793
https://orcid.org/0000-0001-9829-0955


C. Campolo et al.: Edge-Based DT Framework for CAVs: Design and Evaluation

on on-board sensors has limitations on coverage and/or
detection accuracy. Indeed, vehicles can promptly share
the aforementioned data with nearby vehicles, pedestrians
and infrastructure elements in real-time to improve the
perception of the environment and safely coordinate their
maneuvers. Different Vehicle-to-Everything (V2X) commu-
nication technologies can be used to such a purpose, such
as IEEE 802.11p/bd [2], and Fifth Generation (5G)-related
connectivity solutions like 5G New Radio (NR) V2X [3] and
Sixth Generation (6G) in the near future.

The ambitious CAV’s idea can be enabled at a large
scale by the synergies of communication, computing,
and automation technologies, also encompassing embedded
Machine Learning (ML) algorithms, that work together to
promptly and reliably share and process the big amount of
massively collected data. Indeed, the capability to perceive
the environment and perform learning tasks coupled with
novel radio interfaces pave the way to a plethora of
innovative applications in urban areas and smart cities,
ranging from cooperative perception and maneuvering to
environmental sensing, from air pollution monitoring to
remote diagnostics [4], [5]. Notwithstanding, to achieve
the objectives of such ambitious applications, the on-board
computing vehicle capabilities need to be complemented by
resources available at edge and cloud facilities which can
enable the cooperative implementation of computation-heavy
tasks, by hiding the complexity of the CAV environment to
the applications.

The emerging Digital Twin (DT) paradigm [6] can embody
the intermediate entity between applications and the vehicle.
While being continuously synchronized with the vehicle, the
DT can feed applications built upon collected real-time and
historical vehicle data and augment the vehicle’s capabilities.
Moreover, it can model the vehicle and help simulating and
predicting its behaviour.

While the DT concept has been around since many years,
its application to the automotive domain is still in its infancy.
With the exception of a few works, e.g., [7], solutions in the
literature mainly target the definition of a DT for a specific
vehicle-related task, e.g., trajectory prediction scheme for
platoons [8], support at non-signalized intersections [9],
vehicle stability monitoring [10].
In the aforementioned works, concrete implementation

details about data collection and delivery from the vehicle as
well as about their storage and processing at the DT paired
with the vehicle, are also typically not provided. Moreover,
an holistic evaluation of the most relevant metrics to
characterize the DT performance in terms of communication
and computing footprint, from a deployment perspective,
is also missing.

Moreover, most of them miss workflows and data models
to enable an efficient and interoperable data sharing, as well
as their storage. Indeed, the data generated by the vehicle
are considered as the new gold by several stakeholders in
the ecosystem, e.g., insurers, car repairs and manufacturers,

public authorities [11]. Hence, access to them by third parties
should be easily enabled.

In this work, in order to fill these gaps, we aim to
complement the existing literature by providing the following
main original contributions:

• A comprehensive general-purpose architectural frame-
work is proposed of an edge-based Vehicular Digital
Twin (VDT), where the different physical and virtual
components are identified and their role explained.

• Interfaces among the physical and the digital coun-
terparts, as well as among the VDT and third-party
applications exploiting vehicle data, are specifically
designed, with relevant workflows. Such interfaces are
defined both in terms of communication protocols as
well as data models.

• A Proof of Concept (PoC) is designed to practically
implement the envisioned framework by leveraging off-
the-shelf hardware and software components. In partic-
ular, in the PoC, the VDT is deployed as a containerized
microservice at the edge of the network.

• Experimental results are reported in terms of com-
munication and computation footprint, under different
workloads to mimic different representative CAVs
applications, in order to provide guidelines for the actual
deployment of the envisioned framework.

The rest of the paper is organized as follows. In Section II,
related works are scanned. In Section III, the proposed
architecture is presented. In Section IV, the experimental
setup and the main findings of the conducted evaluation are
discussed. Section V reports the final remarks and hints on
future works.

II. RELATED WORK
Originally developed to improve manufacturing pro-
cesses [12] and even before by the National Aeronautics
and Space Administration (NASA) to simulate aerospace
vehicles [13], the DT concept can be also leveraged in the
automotive domain [14], [15]. By creating digital models that
simulate the behavior and interactions of physical entities
(e.g., drivers and vehicles) in a transportation network, it is
possible to optimize routes, schedules, and other factors to
improve efficiency, reduce congestion, and enhance user
experience.

Applications that can benefit fromDTs associated to CAVs
are extensively discussed in [16]. They range for instance
from onboard diagnostics to the creation of High Definition
(HD) digital maps. Similar topics are addressed in the work
in [17].

In [18] the DT is leveraged to create the virtual model of
a 5G CAV in order to analyze and emulate its performance
under different road and connectivity scenarios in a safe,
reliable and secure manner.

The work in [8] proposes a DT-based real-time trajectory
prediction scheme for platoons. In particular, the platoon

VOLUME 12, 2024 46291



C. Campolo et al.: Edge-Based DT Framework for CAVs: Design and Evaluation

leader collects the sensing data in real time and processes the
trajectory prediction with neural networks distributed among
platoon members. It also maintains a DT to optimize the
update of the model, to ensure the prediction accuracy and
minimize the consumption of communication and computing
resources. In [9] a DT is developed to support a cooperative
driving system at non-signalized intersections, whereas a
DT vehicle stability monitoring system based on the side
slip angle is designed in [10]. An overview of different
DT platforms that can be used in Electric Vehicle (EV)
applications is presented in [19].
Initially, the DTs of vehicles and of other physical entities

were deployed in the cloud [20], but then deployment at the
edge became an asset. The work in [21] proposes to model the
behaviour of DTs of humans (commuters) and public trans-
port vehicles in the context of Mobility as a Service (MaaS).
There, the Constrained Application Protocol (CoAP) and the
Message Queue Telemetry Transport (MQTT) protocol are
considered as potential candidates for interactions between
physical entities and DTs hosted at edge facilities.

Due to the mobility of the vehicle, the DT at the edge may
need to be migrated so that the digital model of the vehicle
and its augmentation is in the closest edge computing node
to the vehicle to ensure low-latency interactions. This issue is
tackled in [22] and [23].
The work in [24] proposes a Driver Digital Twin (DDT) for

the online prediction of personalized lane change behavior,
allowing CAVs to predict surrounding vehicles’ behaviors
with the help of DT technology. A hierarchical cloud-edge
architecture is considered, enabling both real-time and bulk-
batch collection, processing and analytics of personal data.

A comprehensive Mobility Digital Twin (MDT) frame-
work is developed in [7], which is defined as an Artifi-
cial Intelligence (AI)-based data-driven cloud-edge-device
framework formobility services. The proposedMDT consists
of three entities in the physical space (namely, human,
vehicle, and traffic), and their associated DT in the digital
space. The authors scan different off-the-shelf solutions to
be concretely deployed for data collection and processing.
However, they provide early experimental results.

The work in [25] proposes an end-to-end framework to
efficiently perform data collection, offloading, and process-
ing aimed at the construction of a high-fidelity and real-time
DTmodel for CAVs. Edge facilities are considered to provide
the capabilities of real-time data processing and pre-built DT
model storage. However, the work provides too high-level
details about the proposed framework, by mentioning the
main functions only.

Whatever the deployment option (edge/cloud), the choice
of the application-layer messaging protocols and of data
models plays a crucial role in the interactions between the
physical entities and their digital counterparts and between
the latter ones and applications.

Moreover, the computing footprint associated to the DT
needs to be adequately understood to provide guidelines for
their actual deployment at available edge/cloud facilities.

To the best of our knowledge, such issues are poorly
investigated in the literature and motivate our work.

III. THE PROPOSED FRAMEWORK
A. TARGETED OBJECTIVES AND REFERENCE
ARCHITECTURE
To enable innovative applications for smarter mobility, proper
solutions need to be devised to complement the capabilities
of next-generation vehicles. In this work we propose to
leverage the DT concept to serve this purpose. The actual
DT deployment entails the design of a comprehensive archi-
tecture where all the interacting components are specifically
detailed, along with interfaces among them, for a holistic
understanding of all the required workflows.

The main components of the envisioned architecture (see
Fig. 1) are: (i) the vehicle representing the physical entity with
embedded OBU and on board sensors; (ii) the digital twin
of the vehicle, i.e., the VDT, with the related data models
and repositories; (iii) the southbound interfaces, which
allow the interactions between the vehicle and its digital
representation, a.k.a. intra-twin communications; (iv) the
northbound interfaces, which allow the interactions between
the VDT and applications which may need to consume the
services it provides.

The following objectives are specifically targeted and
motivate the design choices for each envisioned architectural
component:

• Low latency. Both southbound and northbound inter-
faces should envision communication protocols which
ensure the retrieval of data, regardless of the specific
network connectivity option, in near real-time whenever
needed,1 e.g., for edge-assisted cooperative perception.
The placement at the edge or cloud of the VDT should
also account for such a requirement.

• Low communication footprint. The burden on the
network for interactions over the southbound and
northbound interfaces should be kept low, given the
expected amount of massively transmitted data to feed
the VDT. Hence, compact and efficient data models
and low-overhead communication protocols are needed.
This is especially true for the southbound interfaces
which may involve data exchange over a radio interface,
expected to be increasingly loaded.

• Interoperable data sharing. Data retrieved from vehicles
are heterogeneous in nature and may require to be con-
sumed by different applications for different purposes.
Hence, semantic-rich data models should be leveraged
to ensure interoperability.

• Efficient data storage. The huge amount of data retrieved
by the VDT need to be stored with low hardware and
software costs.

• Flexible and future-proof design. The hardware and
software components as well as protocols should be

1Please notice that the real-time requirement may not hold for all
applications.

46292 VOLUME 12, 2024



C. Campolo et al.: Edge-Based DT Framework for CAVs: Design and Evaluation

FIGURE 1. The reference architecture.

designed and selected to ensure their simple extensions
with additional capabilities/functionalities and to sup-
port novel applications. Selected application protocols
should be also selected to be radio technology-agnostic
so to account for the quick advancements in the V2X
connectivity realm [4].

In the following, each component of the reference archi-
tecture is described in detail.

B. THE VEHICLE
The physical entity is a next-generation vehicle which is
equipped with a plethora of sensing devices and communi-
cation interfaces in order to retrieve different kinds of data,
ranging from, but not limited to, kinematics to environmental
and context data.

1) CAN BUS
Kinematics-related data are retrieved from the vehicle’s
CAN bus. The standards used on CAN bus communications,
such as the SAE J1979 [26], are crucial for reliable and
efficient data exchange. By establishing communication with
the vehicle’s on-board diagnostics (OBD-II) system, it is
possible to retrieve parameters such as engine speed, coolant
temperature, and more. The acquired data are presented in a
standardized format, including unique Parameter Identifiers
(PIDs), data length indicating the size of the data payload,
and the corresponding data value. The data collection process
follows a request/response method using standard PIDs to
obtain their value. CAN bus data can be leveraged by the
vehicle itself but also shared with other vehicles in proximity,
e.g., to implement a Cooperative Adaptive Cruise Control

(CACC) system that enables vehicles to travel in a platoon
while minimizing the inter-vehicle spacing [27].

2) ON BOARD SENSORS
The embedded localization module and perception sensors
provide additional data. Specifically, information such as
latitude, longitude, and timestamp are recorded through
Global Navigation Satellite System (GNSS), enabling geo-
referencing of vehicular data and real-time vehicle position
tracking. This way, data gained from other installed on board
sensors become more informative. By merging data acquired
by vehicle cameras with GNSS data, our framework provides
insights into the objects surrounding the vehicle and their
locations. If shared with nearby vehicles such data enable
cooperative driving, and applications focused on road safety
and efficiency (such as forward collision avoidance) [28].

The vehicle can also be utilized as a probe vehicle,
as described in [29] and [30], for application like environmen-
tal monitoring using various sensors. For instance, ‘‘Lambda
probe’’ or ‘‘NOx sensor’’ data acquired from the CAN bus
can be merged with data retrieved from additional modules
installed on board, such as particulate CO2 sensor, or duster
sensor. This integration enables real-time georeferencing
of emission monitoring in the view of enabling a more
sustainable mobility.

3) THE ON BOARD UNIT
A device is available on board to collect data from
the CAN bus and the available on board sensors before
passing them to the VDT through the available commu-
nication interfaces. Next-generation vehicles are expected
to be equipped with several V2X radio interfaces, e.g.,

VOLUME 12, 2024 46293



C. Campolo et al.: Edge-Based DT Framework for CAVs: Design and Evaluation

5G Vehicle-to-Infrastructure (V2I) and sidelink Vehicle-
to-Vehicle (V2V) connectivity. Hence, instead of using a
single network, the interaction between the vehicle and the
VDT can occur through the 5G V2I connectivity and/or
other options available for medium/long-range connectivity
(cellular Fourth Generation (4G), Wi-Fi). Exploiting hetero-
geneous interfaces would ensure a seamless and low-latency
connectivity so to enable an efficient data synchronization
between the vehicle and the VDT [31]. Starting from the
retrieved raw data, preliminary processing is executed at the
On Board Unit (OBU). This processing mainly concerns data
aggregation and formatting in a JavaScript Object Notation
(JSON) string with a specific structure, in agreement with
the data models and semantics of the VDT. Specifically, this
string has two main components:

• The timestamp, ‘‘tmstp’’, retrieved from the GNSS
module.

• An array, ‘‘e’’, containing a collection of the retrieved
data reported in key-value format. The key (i.e., the ‘‘n’’
field) is the resource identifier (i.e., an integer number),
while the value (i.e., the ‘‘v’’ field) is the actual resource
value.

For example, the OBU produces strings such as:

{‘‘tmstp′′
: ‘‘2023 − 06 − 19T9 : 32 : 34 + 02 : 00′′,

‘‘e′′
: [{‘‘n′′

: ‘‘0′′, ‘‘v′′
: 10}]}

Besides data collection, the OBU can be equipped
with cognitive capabilities. In particular, similarly to [32],
we assume that object detection capabilities are available on
board to promptly identify road signs, vehicles, pedestrians
and their relative position, as streamed from the camera, with
greater accuracy than human drivers. The task can be also
(partially) offloaded to the edge whenever more powerful
computing capabilities are needed, as suggested for instance
in [33] and [34]. In our architecture, the VDT can assist the
vehicle in performing the cognitive task, if endowed with ML
models.

C. THE VDT
Each vehicle is paired with a digital counterpart called the
VDT. The VDT is deployed as a containerized microservice
at the edge of the network and it is responsible for describing
the physical counterpart, modeling/adapting its behavior, and
providing for it additional storage, computing, and analytics
capabilities. In particular, the VDT is deployed as a container
to ensure the digital component to be lightweight and occupy
a few computing and storage resources, by also facilitating
migration procedures [23].
The chosen placement at the edge is meant to ensure

low-latency interactions with the physical counterpart [35].
Moreover, by running at the edge, the VDT can more
easily interact with other VDTs and also with natively
provided context-aware edge services, as those provided by
the European Telecommunications Standards Institute (ETSI)
Multi-access Edge Computing (MEC) architecture [21]. The

migration of the VDT from an edge server to another one is
needed to ensure proximity to the paired vehicle.

1) VDT DATA AND REPOSITORIES
The VDT is constantly synchronized with the physical coun-
terpart from which it gets kinematics, position, perception
and environmental-related data which are transmitted in a
standardized format, as detailed in the following.

The VDT processes, parses, and stores the received data.
Both real-time and historical data are stored to serve a wide
set of monitoring applications and also encompassing those
which can predict the vehicle’s future behavior. For example,
by leveraging kinematics data, it is possible to manage traffic
flow, monitor vehicle mechanical parts status and schedule
maintenance routine before severe issues, thus increasing
road safety and efficiency.

As vehicles’ OBUs might also run local processing
(e.g., to aggregate data, to run inference upon collected
data), the VDT does not only store the output of those
operations making them available for further processing,
but also has a blueprint of the configuration of those
tasks and their performance figures in terms of consumed
resources.

Raw and/or pre-processed perception data retrieved by
the VDT from the vehicle are made available to other
microservices (at the edge).

They can be merged with those acquired by other
VDTs hosted either in the same or nearby edge servers,
so enabling cooperative perception applications based on
retrieved features map (e.g., maps describing context around
the vehicle) that expands the vehicle’s field of view [36].
In our design, the VDT storage capability relies on

a different container running a high-performance non-
relational database that can handle high-level concurrency
Create, Read, Update, and Delete (CRUD) operations and
frequent updates.

Having a non-relational database allows to easily and
quickly store and manage large amounts of data due
to its intrinsic properties such as high data throughput,
scalability, flexibility, and support for multiple operation
transactions [37]. Hence, this design choice complies with the
need for high data freshness and a minimum 10 Hz update
frequency required by CAV applications to track vehicle
status and position in real-time [32].

Deploying the database as a separate container enables
more flexible migration procedures [38]. For instance,
considering themobility of a vehicle and of the corresponding
VDT, from edge node A to edge node B, a new copy
of the stateless VDT can be easily created at edge node
B to ensure proximity, while the original VDT is still
working at edge node A. As the new VDT at edge node
B takes over, the received data will be stored in a new
instance node of the database cluster created at node
B. Clusterization will ensure synchronization between the
two database nodes, the newly created and the former
one.

46294 VOLUME 12, 2024



C. Campolo et al.: Edge-Based DT Framework for CAVs: Design and Evaluation

2) VDT DATA MODELS
To ensure that data retrieved by the VDT can be easily under-
stood by the VDT itself and other parties (such as mobility
and insurance providers), other VDTs in case of cooperative
(driving) applications, and guarantee interoperable data
sharing, they need to be presented in a standardized manner.
To this aim, we rely on the Open Mobile Alliance (OMA)
Lightweight Machine-to-Machine (LwM2M) protocol [39],
designed for Internet of Things (IoT) devices. The OMA-
LwM2Mstandard defines a lightweight client-server protocol
leveraging descriptive semantic models of involved devices
written as eXtensible Markup Language (XML) schema.2

Themodels define objects (e.g., a vehicle, a traffic light, etc.),
each representing a specific hardware or software component,
and associated object’s resources (e.g., latitude, longitude,
sensors, network’s parameters, etc.) that include attributes
like value, unit, maximum and minimum values.

To ensure unique identification of resources, the standard
mandates the use of Uniform Resource Identifier (URI) paths
composed ofObjectID/InstanceID/ResourceID. Each field in
the above mentioned URI is allowed to assume numerical
values. In certain cases, multiple instances of the same object
may exist on a device, like a temperature sensor, and the
InstanceID component is used to distinguish them.

The OMA maintains a publicly accessible registry of
standard objects and resources, facilitating contributions
from developers to create new standard objects or utilize
customized objects within their respective environments [40],
[41]. By employing identifiers to label and encode informa-
tion, the OMA-LwM2M offers a compact and efficient data
model, well suited to minimize the data transfer requirements
over the southbound interfaces.

In our framework, a vehicle is represented as a set of
OMA-LwM2M objects, some of them already existing in
the registry, other defined on purpose. Furthermore, part
of those objects are mandatory as they represent basic
data common to all vehicles, while others are optional as
representing additional information specific to a group of
vehicles or even to a single vehicle. An example of those
additional resources are pollution monitoring sensors that can
be added to some probe vehicles performing environmental
monitoring. Among the optional objects we can also list those
objects containing the blueprint and the performance figures
of the applications running on a given vehicle.

Specifically, we considered the following mandatory
objects:

• Device (ID 3): This is a standard OMA object containing
a description of a generic device (the vehicle itself in our
case). It contains 23 resources conveying information
such as the manufacturer, the model number, the serial
number.

• Global Navigation Satellite System (ID 3430): This is
a standard OMA object providing all the information

2http://openmobilealliance.org/tech/profiles/LWM2M.xsd

required to calculate the position/location of the vehi-
cle [42]: e.g., latitude, longitude, elevation and others.

• Vehicle CAN Data (ID 19019): This is a customized
OMA object to describe data related to the vehicle’s
kinematics, extracted from the CAN bus. Creating a
custom OMA object model implies the definition of
the identifiers necessary to pinpoint the object and
its resources; referring to the OMA-LwM2M standard,
we chose this model ID (i.e., 19019), in the range allo-
cated for models registered by individuals or companies.
A short description of the model is reported in Table 1.
Without loss of generality, a subset of kinematics-related
data, as extracted by the CAN bus and transmitted by
vehicular OBU, are represented as resources. Others can
be flexibly added.

To give a practical example of our design, the URI
19019/0/0 refers to the vehicle resource Revolutions per
Minute (RPM) identified by the OMA-LwM2M path Objec-
tID/InstanceID/ResourceID. In such example: the ObjectID
is the Vehicle CAN Data ID (19019); the InstanceID is
0; and the ResourceID is the RPM resource ID equal to
0 as described in the OMA-LwM2M XML semantic meta
model of the Vehicle CAN Data custom Object previously
introduced and reported in the following table.

Besides the mandatory objects, a vehicle might be
described by further optional objects. The inclusion of
optional objects makes our data model easily extensible at
any time to describe the specific features of a single vehicle
as well as the possible aftermarket add-ons installed during
the vehicle’s lifetime. As an example, if a vehicle is equipped
with an external CO2 sensor, the standard OMA object
6047 should be included in the description of that vehicle.

In the same manner, our proposed data model can be
extended to take into account all the specific tasks performed
in the OBU. Particularly relevant to this work are object
detection ML inference tasks running on the vehicles which
can be easily represented through an OMA-LwM2M object
using theOMA-TinyML object model we devised in [43]. The
VDT could ask a vehicle to perform object detection to serve,
for instance, an application responsible for the cooperative
creation of HD digital maps [34]. A short description of the
aforementioned object is reported in Table 2.

Specifically, the resource called ‘‘AI Application’’ indi-
cates the executed inference task (e.g., object detection),
the resource ‘‘Model’’ denotes the utilized ML model (e.g.,
Convolutional Neural Network (CNN)), the resource ‘‘CPU’’
indicates in GHz the computing capabilities available on the
device where the inference task is running (e.g., 2.5 GHz),
the resource ‘‘Start Inference’’ allows to trigger on-demand
the task execution, and the resource ‘‘Output’’ describes
the inference output using a JSON-formatted string. In our
context, the latter resource has values such as ‘‘[[264, 250,
544, 377]][‘car’][0.92]’’, describing where the object has
been detected inside the analyzed frame (i.e., the first four
numbers represent the box center offset along x and y axis, the

VOLUME 12, 2024 46295



C. Campolo et al.: Edge-Based DT Framework for CAVs: Design and Evaluation

TABLE 1. OMA-LwM2M model for object Vehicle CAN Data (ID 19019).

TABLE 2. OMA-LwM2M model for object OMA-Tiny ML (ID 20000).

box width and height in pixels), class (i.e., car), and related
detection accuracy (i.e., 0.92).

D. THE SOUTHBOUND INTERFACES
The southbound interfaces allow data exchange between the
real vehicle and its virtual counterpart, the VDT.

Whatever the radio interface available on board, according
to the protocol implemented by the vehicular OBU, the
VDT can expose multiple southbound interfaces protocols,
e.g., MQTT [44], CoAP [45], which provide a reliable and
efficient two-way communication, and more protocols can be
flexibly added. In the following, without loss of generality
and similarly to [20] and [46], we rely on MQTT.

MQTT is a communication protocol designed for the
IoT that adopts a lightweight approach and employs the
publish/subscribe paradigm [47]. MQTT clients can operate
as both publishers and subscribers. The latter ones subscribe
to a particular topic and receive notifications when a new
message related to that topic is published by a publisher
through a broker, which acts as a server with themain purpose
of forwarding packets between publishers and subscribers.
MQTT topics are organized in a hierarchical structure with
forward slashes (/) used as delimiters. Each level of the
hierarchy must have at least one character to be considered
valid. The protocol offers low overhead interactions and
supports real-time messaging. These features make it suitable
for time-sensitive applications in the CAVs context, where a
vehicle can be at the same time a data publisher or subscriber,
for example, to publish telemetry data and to receive external
commands to/from the VDT. In the envisioned framework
all MQTT publish messages include a payload formatted in
JSON, adhering to the OMA-LwM2M semantics.

Our framework supports the bidirectional communication
between the actual vehicle and its VDT by leveraging
three primitives defined using three different topic prefixes,
namely:

• cmnd: this primitive is employed by the VDT to trigger
command execution on the vehicle and to force/query

the publication of the device resource status. For
example, the VDT operates it to trigger actuation on
the vehicle’s settings or to query the actual status of the
vehicle. Moreover, this primitive can be used to enable
the VDT to observe some telemetry data that the vehicle
publishes over time without the need to issue multiple
requests.

• stat: this primitive is utilized by the vehicle to answer a
query (i.e., a cmnd publish) formerly issued by the VDT
as well to notify the VDT about a punctual update on
a specific vehicle’s parameter (e.g., an alarm indicator
lighting on) using this interface.

• tele: this primitive is utilized by the vehicle to exchange
telemetry data with the VDT at fixed time intervals. It is
utilized to periodically notify the VDT about the value of
the data describing its status (i.e., RPM, Position, CO2,
etc.) in the observation process. Optionally, telemetry
can be set to forward messages only when resource data
change value.

Those primitives are supported through MQTT messaging
as follows. Either entities, the vehicle and the VDT, subscribe
topics such as prefix/VIN/ObjectID/InstanceID/ResourceID
where prefix represents the specific communication prim-
itive to be implemented, Vehicle Identification Number
(VIN) identifies the vehicle to be monitored, and Objec-
tID/InstanceID/ResourceID have the semantic URI formerly
described. To cumulatively subscribe to a block of topics,
the MQTT wildcard # can be used to indicate all the topics
hierarchically below it and wildcard+ can be used to indicate
all the topics regardless of what may be contained in the topic
level where the special plus character is used. As an example,
the string tele/VIN_x /# indicates a subscription to all the
telemetry topics concerning the vehicle identified by VIN_x.
Instead, the string +/VIN_x/# indicates a subscription to all
the topics concerning the vehicle identified by VIN_x regard-
less the prefix. In the same way, a subscription finishing at
the InstanceID level (e.g., tele/VIN_x/19019/0) is utilized
for a single OMA Object, and a subscription terminating
at the ResourceID level (e.g., tele/VIN_x/19019/0/0) refers
to a single OMA Resource belonging to an OMA Object.
The actual communication is carried out by posting/receiving
messages on the most appropriate topic. As an example,
a vehicle, identified by VIN_x, wishing to communicate to its
VDT telemetry information, such as an update that its coolant
temperature has reached 98 ◦C , should post this value on the
topic tele/VIN_x/19019/0/3.
Furthermore, in alignment with the evolutions proposed in

the OMA standard [48], the southbound interfaces support
OMA-like ‘‘Read’’ and ‘‘Read-Composite’’ operations. The
Read operation allows to request reading for: (i) single
object, specifying the ObjectID in the path, which includes
all the instances and, therefore, all the resources of the
instances; (ii) single object instance, specifying Objec-
tID/InstanceID path, which includes all resources of that
instance; and (iii) single resource, specifying the entire

46296 VOLUME 12, 2024



C. Campolo et al.: Edge-Based DT Framework for CAVs: Design and Evaluation

ObjectID/InstanceID/ResourceID path, which includes only
the resource specified in the declared path.

Using the newly added Read-Composite request instead,
received packets can be composed by resources belonging to
different objects as described in the example below:

{‘‘tmstp′′
: ‘‘2023 − 06 − 19T9 : 32 : 34 + 02 : 00′′,

‘‘e′′
: [{‘‘n′′

: ‘‘3430/0/1′′, ‘‘v′′
: 38.168755},

{‘‘n′′
: ‘‘3430/0/2′′, ‘‘v′′

: 15.644197},

{‘‘n′′
: ‘‘19019/0/0′′, ‘‘v′′

: 779}]}

where the Latitude and Longitude resources of the GNSS
object (ID 3430) are conveyed along with the Engine RPM
resource of the Vehicle CAN Data object (ID 19019).
Such operation allows to read any combination of objects,
object instance and resources of different objects in a single
communication (i.e., MQTT publish packet) reducing the
number of packets exchanged for the same number of
transferred resource’s values.

Then, southbound interfaces are devoted to vehicle
management which includes data collection for monitoring
purpose such as vehicle control. The control can be exercised
both through the parametric setting of resource values and
through the sending of commands (i.e., using the OMA-
LwM2MExecute operation). To this end, a topic starting with
the cmnd prefix is used to indicate that the published data are
commands. Furthermore, the actuation topic has to continue
up to the ResourceID level to perform the action by a specific
OMA-LwM2M resource. Thus, a topic used to initiate actions
is as follows:

cmnd/VIN/ObjectID/InstanceID/ResourceID

For instance, to control the RPM of the vehicle identified
by VIN_x, the VDT should post the value of RPM it wishes
to set under the the topic cmnd/VIN_x/19019/0/1. In the
same way, the VDT can trigger an inference process on
board the vehicle by publishing a message under the topic
cmnd/VIN_x/20000-
/0/3.

E. THE NORTHBOUND INTERFACES
These specific interfaces are exposed by the VDT in favor
of several applications and/or services interested in the data
retrieved/processed by the VDT.

Applications and services may request access through
web-oriented protocols and based on the Representational
State Transfer (RESTful) approaches. In fact, the northbound
interfaces of the VDT use the HyperText Transfer Protocol
(HTTP) enabling not only reading operations but also
management operations on vehicle. The expected primitives,
based on HTTP methods, are: READ, READ realtime,
WRITE, EXECUTE, OBSERVE, DELETE Observation.

In order to maintain semantic interoperability, the message
payload is based on the OMA-LwM2M semantics in JSON
format. Moreover, interfaces to request aggregated and/or

filtered data based on the keys declared in the body of the
HTTP request are added to the aforementioned primitives.

IV. PERFORMANCE EVALUATION
The evaluation study aims at (i) providing a preliminary
but realistic PoC of the proposed framework by leveraging
off-the-shelf hardware and software components, properly
combined and overhauled to meet the targeted objectives and
(ii) assessing the communication and computation footprints
of the envisioned components and workflows, under different
settings.

A. EXPERIMENTAL SETUP
In the following the main hardware and software components
are described in detail and graphically sketched in Fig. 2(a),
whereas the corresponding experimental set-up is shown in
Fig. 2(b).

1) HARDWARE COMPONENTS
An ELM327 module is used for translating CAN bus
messages coming from ECU. On the one hand, it is connected
to the vehicle’s CAN bus through the OBD-II port, and on the
other hand to the ESP32microcontroller (i.e., one of the OBU
components) via Bluetooth.

The purpose of this system is to extract data from the
CAN bus and parse it using specific code running on the
microcontroller.

The system retrieves various data from the CAN bus,
such as kinematics parameters, sensor readings, vehicle
diagnostics. Such raw data are then processed and merged
with GNSS coordinates obtained from an Adafruit Ultimate
GNSS Breakout receiver [49], a high-quality and energy-
efficient GNSS module that can track up to 22 satellites
on 66 channels, with an excellent high-sensitivity receiver,
and a built-in antenna. This GNSS module is connected to
the ESP32 microcontroller. The latter one is responsible for
sending the merged data to the VDT hosted on an edge server.
For the purpose of experimentation, the edge server facility is
implemented by a laptop with CPU Intel Core i7-6500U, 12
GB RAM and 512 GB SSD.

For the ease of PoC implementation, the cognitive tasks
concerning the on-board object detection are performed
through a laptop, to which the USB camera is connected.

2) SOFTWARE MODULES
Different software modules complement the hardware setup.
The following three lightweight and easy to deploy libraries
are hosted at the OBU side:

• The ELMDuino [50] is the library employed to perform
queries through the ELM327 module. In particular, this
library is based on the OBD-II standard and enables the
reading of the data reported in Table 1, without knowing
OBD-II specifics (e.g., PIDs).

VOLUME 12, 2024 46297



C. Campolo et al.: Edge-Based DT Framework for CAVs: Design and Evaluation

FIGURE 2. The developed PoC: main hardware and software components.

• The library chosen to convert GNSS signals acquired
into location data, such as latitude, longitude, timestamp,
is TinyGPS++ [51].

• The library used to perform on-board object detection
tasks is cvlib [52]. Indeed, our system relies on a Python
script where cvlib functions are employed to acquire a
video streaming through a USB camera and then process
it. Specifically, the leveraged ML model is Yolov4-
Tiny [53], a tiny version of the well-known Yolov4
model, based on a CNN, designed to run using fewer
hardware resources.

All the aforementioned libraries are open source.
AnMQTT client is also hosted at the OBU. The Mosquitto

client implementation [54] has been chosen since it is con-
sidered one of the most popular MQTT implementations due
to its simplicity in installation, operating system portability,
and a few lines of code [55], well matching the OBU
constraints.

The envisioned framework also relies on three Docker
containers running on the device acting as an edge server.
Specifically, we chose Docker [56] as a lightweight virtual-
ization platform due to our requirements for scalability at the

46298 VOLUME 12, 2024



C. Campolo et al.: Edge-Based DT Framework for CAVs: Design and Evaluation

FIGURE 3. Trip of the experimental test-bed in the city of Reggio Calabria.

edge. In particular, our Docker ecosystem is composed of the
following containers:

• The Mosquitto container: it runs the namesake
Mosquitto Docker image and serves as the MQTT
broker, responsible for facilitating communication
between the VDT and the vehicle. Its scalability
compared to other MQTT open-source implementations
has been recently proven in [57].

• The VDT container: it runs our custom image for the
VDT. It is specifically designed to include an MQTT
client, to parse received data using the OMA-LwM2M
data models and to interact with the repository.

• The InfluxDB2 container: it runs the InfluxDB2 Docker
image and acts as the repository for the VDT. InfluxDB2
is a high-performance time series database that allows
efficient storage, querying, and retrieval of time-
stamped data [58]. Its usage to create a DT platform
is also foreseen in [59], where an Industry 4.0 context
is considered. The InfluxDB2 container integrates
seamlessly with the VDT container, providing a robust
and scalable solution for storing and managing the VDT
data; interactions occur through HTTP primitives.

B. METRICS
The following metrics have been measured.

FIGURE 4. Intra-twin communication footprint for different sets of data
and data transmission frequencies using Read and Read-Composite
operations.

FIGURE 5. VDT processing time for different sets of data and data
transmission frequencies using Read and Read-Composite operations.

• Intra-twin communication footprint: it refers to the
amount of kbit/s transmitted over the southbound
interfaces from the OBU to the VDT through MQTT
publish messages with the tele primitive as well as
the relevant signaling messages (e.g., TCP ACK). It is
measured through the tcpdump tool [60]. Such a metric
allows to assess how the presence of the VDT impacts
the network load over the radio segment.

• VDT processing time: it is computed as the time taken by
the VDT to parse data received (in JSON format) from
the OBU and store them in the InfluxDB2 container.
It provides a measure of when data are actually usable
after being retrieved.

• Edge resource utilization: it refers to the amount of
computational resources spent at the edge to run the
VDT and InfluxDB2 containers, during their operations.
It is measured through the Linux utility top and allows
to infer the scalability of the proposal.

C. RESULTS
Results have been derived for different sets of data
being transmitted by the OBU to the VDT, during

VOLUME 12, 2024 46299



C. Campolo et al.: Edge-Based DT Framework for CAVs: Design and Evaluation

FIGURE 6. CPU usage for different sets of data and data transmission
frequency values using Read and Read-Composite operations.

experiments conducted with a vehicle moving in a urban
scenario:

• The set denoted as Tracking includes timing and GNSS
data, specifically latitude and longitude information,
from Object 3430.

• The set of data denoted as Telemetry, along with the
latitude and longitude, conveys additional kinematics
data, corresponding to resources of the Object 19019,
as per Table 1.

• The set denoted as CAV encompasses the previous sets
of data plus those carrying inference results in terms
of detected objects, corresponding to the Object 20000.
During the conducted journey, the average number of
detected objects per frame is equal to 3.14.

The 10 km-long followed path is shown in themap reported
in Fig. 3.

Experiments have been performed when varying the
update frequency of data transmission from the OBU to the
VDT, from 1Hz up to 10 Hz. The lowest frequency resembles
Floating Car Data (FCD) scenarios [29], whereas the highest

FIGURE 7. RAM usage for different sets of data and data transmission
frequency values using Read and Read-Composite operations.

frequency valuemay resemble the sampling frequency of data
from cameras and LiDARs [61]. Such a value is considered
to conduct a stress test both over the radio interface and on
containers to be hosted at the edge server.

For all reported results, the OMA LwM2M Read-
Composite operation which selectively reads several
Resource Instances of different Objects in a single request
is benchmarked against the conventional Read operation.
For the Tracking data, carrying a single Object, the Read
and Read-Composite operations are the same. Hence, in the
following Figures, the corresponding bar is only reported for
the Read operation, to avoid cluttering the plots.

The first set of results in Fig. 4 reports the intra-twin
communication footprint. As expected the larger the amount
of data transmitted, the higher the communication footprint,
with a maximum amount of data in the order of 60 kbit/s in
the worst case, i.e., CAV setting, 10 Hz and Read operation.
Despite the small footprint, as the number of involved
vehicles (it could be hundreds in large cells) increases,
it could heavily burden the uplink channel of the cellular

46300 VOLUME 12, 2024



C. Campolo et al.: Edge-Based DT Framework for CAVs: Design and Evaluation

network, thereby threatening the delivery of traditional traffic
or hindering the timely data exchange between the vehicle
and the correspondingVDT. Interestingly, thanks to the Read-
Composite operation, the total amount of data transmitted
can be reduced up to 24% for the CAV data transmitted with
a 10 Hz frequency. This is because it allows the transmission
of a single (larger) MQTT publish message containing
information regarding different OMA objects, instead of a
packet per each object and incurs a lower transport signaling
(i.e., 50% and 66% less in Telemetry and CAV scenarios,
respectively).

The VDT processing time is shown in Fig. 5. The
metric reasonably increases as more data are published, i.e.,
when passing from Tracking to CAV data. More time is
needed to parse the received message(s) and store retrieved
resources in the InfluxDB2 container, making them available
to other parties and/or processing modules. Whatever the
data transmission frequency value, the metric is higher
for the Read operation, because multiple packets need to
be processed to retrieve the same set of data. When the
Read-Composite operation is enabled, instead, packets even
received at 10 Hz do not experience bottlenecks while being
processed (the processing time does not significantly exceed
100 ms, even when CAV data are considered).

The lower processing time values at 10 Hz compared to
the lower frequency values can be explained by a sort of
granularity effect. In fact, as shown in Fig. 6(a), up to 10 Hz
the CPU consumed by the VDT container remains under the
capacity of a single core, i.e., 3.1 GHz in our case, then it is
reasonable to assume that the VDT container is using a single
core. At 10 Hz the computational load of the VDT increases
so that the VDT container gets more processing resources and
starts using more than a single core. This intuition is again
confirmed by Fig. 6(a) which shows that the overall CPU
consumed by the VDT container exceeds the resources of a
single core. As a consequence, having now two cores at its
disposal, the VDT can perform much better by experiencing
a lower processing time compared to the case with a lower
data transmission frequency.

In both Fig. 6(a) and Fig. 6(b), the CPU utilization
respectively, at the VDT and InfluxDB2 containers, increases
as the amount of data and the frequency with which
they are transmitted increase. Interestingly, processing a
large MQTT message (as foreseen by the Read-Composite
operation) requires fewer resources at the VDT compared to
processing multiple small size MQTT messages (as foreseen
by the Read operation), conveying the same information.
The same trend holds for the CPU usage at the InfluxDB2
container which overall is very low. Again, utilizing the
Read-Composite operation ensures higher scalability. Indeed,
reducing the amount of resources needed per VDT, means
that more VDTs can be deployed at the same edge
server.

RAM usage is affected by the frequency and the amount
of exchanged data, usually rising as these parameters
increase. Furthermore, the values are either below or do not

exceed significantly 4% and 1% for VDT and InfluxDB2,
respectively, as shown in Fig. 7(a) and Fig. 7(b).

V. CONCLUSION AND FUTURE WORKS
In this paper, we have presented the design of an edge-
based DT framework for CAV. All the components of the
envisioned framework (i.e., the physical entity, the VDT, and
southbound and northbound interfaces) have been described
in detail along with the rationale behind the relevant design
choices and selected deployment options.

A comprehensive PoC has been developed to showcase
the viability of the proposal. Moreover, metrics have been
measured to understand the performance in terms of commu-
nication footprint over the vehicle-VDT radio interface and
computation footprint of the VDT at the edge infrastructure.

The analysis has been conducted also from a networking
perspective to provide, especially to network operators,
helpful insights on the requirements of a VDT framework to
be practically deployed at a large-scale.

Results show that the Read-Composite operation is
efficient in terms of used communication and computing
resources. We can expect that larger benefits can be achieved
when further OMA LwM2M objects are subscribed at once
and, hence, multiple data are retrieved.

Future works will address the extension of the VDT with
cognitive components and the assessment of their computing
and communication burden.

REFERENCES
[1] SAE. Taxonomy and Definitions for Terms Related to Driving Automation

Systems for On-Road Motor Vehicles. Accessed: Feb. 5, 2024. [Online].
Available: https://www.sae.org/standards/content/j3016_202104/

[2] G. Naik, B. Choudhury, and J.-M. Park, ‘‘IEEE 802.11bd & 5G NR V2X:
Evolution of radio access technologies for V2X communications,’’ IEEE
Access, vol. 7, pp. 70169–70184, 2019.

[3] A. Bazzi, A. O. Berthet, C. Campolo, B. M. Masini, A. Molinaro, and
A. Zanella, ‘‘On the design of sidelink for cellular V2X: A literature review
and outlook for future,’’ IEEE Access, vol. 9, pp. 97953–97980, 2021.

[4] H. Zhou, W. Xu, J. Chen, and W. Wang, ‘‘Evolutionary V2X technologies
toward the Internet of Vehicles: Challenges and opportunities,’’ Proc.
IEEE, vol. 108, no. 2, pp. 308–323, Feb. 2020.

[5] S. Lu, N. Ammar, A. Ganlath, H. Wang, and W. Shi, ‘‘A comparison of
end-to-end architectures for connected vehicles,’’ in Proc. 5th Int. Conf.
Connected Auto. Driving (MetroCAD), Apr. 2022, pp. 72–80.

[6] B. R. Barricelli, E. Casiraghi, and D. Fogli, ‘‘A survey on digital twin:
Definitions, characteristics, applications, and design implications,’’ IEEE
Access, vol. 7, pp. 167653–167671, 2019.

[7] Z. Wang, R. Gupta, K. Han, H. Wang, A. Ganlath, N. Ammar, and
P. Tiwari, ‘‘Mobility digital twin: Concept, architecture, case study,
and future challenges,’’ IEEE Internet Things J., vol. 9, no. 18,
pp. 17452–17467, Sep. 2022.

[8] H. Du, S. Leng, J. He, and L. Zhou, ‘‘Digital twin based trajectory
prediction for platoons of connected intelligent vehicles,’’ in Proc. IEEE
29th Int. Conf. Netw. Protocols (ICNP), Nov. 2021, pp. 1–6.

[9] Z. Wang, K. Han, and P. Tiwari, ‘‘Digital twin-assisted cooperative driving
at non-signalized intersections,’’ IEEE Trans. Intell. Vehicles, vol. 7, no. 2,
pp. 198–209, Jun. 2022.

[10] J. Wang, C. Zhang, Z. Yang, M. Dang, P. Gao, and Y. Feng, ‘‘Research on
digital twin vehicle stability monitoring system based on side slip angle,’’
IEEE Trans. Intell. Transp. Syst., 2024.

[11] D. A. Kountche, F. Raissi, M. R. Rakotondravelona, E. Bonetto,
D. Brevi, A. Martin, O. Otaegui, and G. Velez, ‘‘Monetisation of and
access to in-vehicle data and resources: The 5GMETA approach,’’ 2022,
arXiv:2208.11335.

VOLUME 12, 2024 46301



C. Campolo et al.: Edge-Based DT Framework for CAVs: Design and Evaluation

[12] M. Grieves and J. Vickers, ‘‘Digital twin: Mitigating unpredictable,
undesirable emergent behavior in complex systems,’’ in Transdisciplinary
Perspectives On Complex Systems: New Findings and Approaches, 2017,
pp. 85–113.

[13] E. Glaessgen and D. Stargel, ‘‘The digital twin paradigm for future NASA
and U.S. Air Force vehicles,’’ in Proc. 53rd AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dyn. Mater. Conf., 20th AIAA/ASME/AHS Adapt.
Struct. Conf., 2012, p. 1818.

[14] W. A. Ali, M. Roccotelli, and M. P. Fanti, ‘‘Digital twin in intelligent
transportation systems: A review,’’ in Proc. 8th Int. Conf. Control, Decis.
Inf. Technol. (CoDIT), vol. 1, May 2022, pp. 576–581.

[15] G. Bhatti, H. Mohan, and R. Raja Singh, ‘‘Towards the future of smart
electric vehicles: Digital twin technology,’’ Renew. Sustain. Energy Rev.,
vol. 141, May 2021, Art. no. 110801.

[16] C. Schwarz and Z. Wang, ‘‘The role of digital twins in connected and
automated vehicles,’’ IEEE Intell. Transp. Syst. Mag., vol. 14, no. 6,
pp. 41–51, Nov. 2022.

[17] S. M. M. Hossain, S. K. Saha, S. Banik, and T. Banik, ‘‘A new era
of mobility: Exploring digital twin applications in autonomous vehicular
systems,’’ in Proc. IEEE World AI IoT Congr. (AIIoT), Jun. 2023,
pp. 493–499.

[18] H. X. Nguyen, R. Trestian, D. To, and M. Tatipamula, ‘‘Digital twin
for 5G and beyond,’’ IEEE Commun. Mag., vol. 59, no. 2, pp. 10–15,
Feb. 2021.

[19] M. Ibrahim, V. Rjabtšikov, and R. Gilbert, ‘‘Overview of digital twin
platforms for EV applications,’’ Sensors, vol. 23, no. 3, p. 1414, Jan. 2023.

[20] D. P. Proos and N. Carlsson, ‘‘Performance comparison of messaging
protocols and serialization formats for digital twins in IoV,’’ in Proc. IFIP
Netw. Conf. (Networking), Jun. 2020, pp. 10–18.

[21] C. Campolo, G. Genovese, A. Molinaro, and B. Pizzimenti, ‘‘Digital twins
at the edge to track mobility for MaaS applications,’’ in Proc. IEEE/ACM
24th Int. Symp. Distrib. Simul. Real Time Appl. (DS-RT), Sep. 2020,
pp. 1–6.

[22] Y. Zhou, A. K. Bashir, J. Wu, Y. D. Al-Otaibi, X. Lin, and H. Xu, ‘‘Secure
digital twin migration in edge-based autonomous driving system,’’ IEEE
Consum. Electron. Mag., vol. 12, no. 6, pp. 56–65, 2023.

[23] C. Campolo, A. Iera, A. Molinaro, and G. Ruggeri, ‘‘MEC support for
5G-V2X use cases through Docker containers,’’ in Proc. IEEE Wireless
Commun. Netw. Conf. (WCNC), Apr. 2019, pp. 1–6.

[24] X. Liao, X. Zhao, Z. Wang, Z. Zhao, K. Han, R. Gupta, M. J. Barth,
and G. Wu, ‘‘Driver digital twin for online prediction of personalized lane
change behavior,’’ IEEE Internet Things J., 2023.

[25] Y. Liu, H. Wang, Z. Cai, D. Chen, and K. Han, ‘‘Poster: Enabling
high-fidelity and real-time mobility digital twin with edge computing,’’
in Proc. IEEE/ACM 7th Symp. Edge Comput. (SEC), Dec. 2022,
pp. 281–283.

[26] SAE. J1979 E/E Diagnostic Test Modes; J1979_201408.
Accessed: Feb. 5, 2024. [Online]. Available: https://www.sae.org/
standards/content/j1979_201408/

[27] G. Nardini, A. Virdis, C. Campolo, A. Molinaro, and G. Stea, ‘‘Cellular-
V2X communications for platooning: Design and evaluation,’’ Sensors,
vol. 18, no. 5, p. 1527, May 2018.

[28] J. He, Z. Tang, X. Fu, S. Leng, F. Wu, K. Huang, J. Huang, J. Zhang,
Y. Zhang, A. Radford, L. Li, and Z. Xiong, ‘‘Cooperative connected
autonomous vehicles (CAV): Research, applications and challenges,’’
in Proc. IEEE 27th Int. Conf. Netw. Protocols (ICNP), Oct. 2019,
pp. 1–6.

[29] O. Briante, C. Campolo, A. Iera, A. Molinaro, S. Y. Paratore, and
G. Ruggeri, ‘‘Supporting augmented floating car data through smartphone-
based crowd-sensing,’’ Veh. Commun., vol. 1, no. 4, pp. 181–196,
Oct. 2014.

[30] D. Budimir, N. Jelušić, and M. Perić, ‘‘Floating car data technology,’’
Pomorstvo, vol. 33, no. 1, pp. 22–32, Jun. 2019.

[31] J. Zheng, T. H. Luan, Y. Zhang, R. Li, Y. Hui, L. Gao, and M. Dong,
‘‘Data synchronization in vehicular digital twin network: A game theoretic
approach,’’ IEEE Trans. Wireless Commun., vol. 10, no. 15, pp. 13235–
13246, 2023.

[32] J. Hochstetler, R. Padidela, Q. Chen, Q. Yang, and S. Fu, ‘‘Embedded deep
learning for vehicular edge computing,’’ in Proc. IEEE/ACM Symp. Edge
Comput. (SEC), Oct. 2018, pp. 341–343.

[33] S.-W. Kim, K. Ko, H. Ko, and V. C. M. Leung, ‘‘Edge-network-assisted
real-time object detection framework for autonomous driving,’’ IEEE
Netw., vol. 35, no. 1, pp. 177–183, Jan. 2021.

[34] Y. Xue, Y. Zhang, Q. Liu, D. Chen, and K. Han, ‘‘CoMap: Proactive
provision for crowdsourcing map in automotive edge computing,’’ 2023,
arXiv:2302.03204.

[35] M. Picone, M. Mamei, and F. Zambonelli, ‘‘A flexible and modular
architecture for edge digital twin: Implementation and evaluation,’’ ACM
Trans. Internet Things, vol. 4, no. 1, pp. 1–32, Feb. 2023.

[36] Q. Yang, S. Fu, H. Wang, and H. Fang, ‘‘Machine-Learning-
Enabled cooperative perception for connected autonomous vehicles:
Challenges and opportunities,’’ IEEE Netw., vol. 35, no. 3, pp. 96–101,
May 2021.

[37] N. Jatana, S. Puri, M. Ahuja, I. Kathuria, and D. Gosain, ‘‘A survey and
comparison of relational and non-relational database,’’ Int. J. Eng. Res.
Technol., vol. 1, no. 6, pp. 1–5, 2012.

[38] C. Puliafito, A. Virdis, and E. Mingozzi, ‘‘The impact of container
migration on fog services as perceived by mobile things,’’ in Proc. IEEE
Int. Conf. Smart Comput. (SMARTCOMP), Sep. 2020, pp. 9–16.

[39] Lightweight Machine to Machine Technical Specification Core; V1_1-
20180612-C, Open Mobile Alliance, San Diego, CA, USA, 2018.

[40] Open Mobile Alliance. OMA-LwM2M Object Editor. Accessed:
Feb. 5, 2024. [Online]. Available: https://devtoolkit.openmobilealliance.
org/OEditor/default.aspx

[41] Open Mobile Alliance. OMA-LwM2M Object and Resource Reg-
istry. Accessed: Feb. 5, 2024. [Online]. Available: https://technical.
openmobilealliance.org/OMNA/LwM2M/LwM2MRegistry.html

[42] Open Mobile Alliance. OMA Global Navigation Satellite System
Model. [Online]. Available: https://raw.githubusercontent.com/openmobil
ealliance/lwm2m-registry/prod/3430.xml

[43] C. Campolo, G. Genovese, A. Iera, and A. Molinaro, ‘‘Virtualizing AI
at the distributed edge towards intelligent IoT applications,’’ J. Sensor
Actuator Netw., vol. 10, no. 1, p. 13, Feb. 2021.

[44] A. Banks and R. Gupta, MQTT Version 3.1.1, OASIS Standard 29, 2014,
p. 89.

[45] Z. Shelby, K. Hartke, and C. Bormann, ‘‘The constrained application
protocol (CoAP)(RFC 7252),’’ Jun. 2014. Accessed: Feb. 5, 2024.
[Online]. Available: http://www.rfc-editor.org/info/rfc7252

[46] F. Flamigni, P. Pileggi, O. Barrowclough, and J. Haenisch, ‘‘First report on
standards relevant for digital twins,’’ in Proc. Change2Twin Consortium,
2020.

[47] V. Karagiannis, P. Chatzimisios, F. Vazquez-Gallego, and J. Alonso-Zarate,
‘‘A survey on application layer protocols for the Internet of Things,’’ Trans.
IoT Cloud Comput., vol. 3, no. 1, pp. 11–17, 2015.

[48] Lightweight Machine to Machine Technical Specification: Core
Approved Version: 1.2.1, Open Mobile Alliance, San Diego, CA, USA,
Dec. 2022.

[49] Adafruit. ADAFRUIT Ultimate GPS Breakout. Accessed: Feb. 5, 2024.
[Online]. Available: http://www.adafruit.com/product/746#description-
anchor

[50] PowerBroker2. ELMDuino. Accessed: Feb. 5, 2024. [Online]. Available:
https://github.com/PowerBroker2/ELMduino

[51] M. Hart. TinyGPS++. Accessed: Feb. 5, 2024. [Online]. Available:
http://arduiniana.org/libraries/tinygpsplus/

[52] A. Ponnusamy. (2018). Cvlib—High Level Computer Vision Library for
Python. [Online]. Available: https://github.com/arunponnusamy/cvlib

[53] C.-Y. Wang, A. Bochkovskiy, and H. M. Liao, ‘‘Scaled-YOLOv4: Scaling
cross stage partial network,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2021, pp. 13024–13033.

[54] Mosquitto. MQTT Open-Source Implementation. Accessed: Feb. 5, 2024.
[Online]. Available: https://mosquitto.org/

[55] E. Bertrand-Martínez, P. D. Feio, V. de Brito Nascimento, B. Pinheiro,
and A. Abelém, ‘‘A methodology for classification and evaluation of IoT
brokers,’’ in Proc. LANOMS, 2019.

[56] D. Merkel, ‘‘Docker: Lightweight Linux containers for consistent devel-
opment and deployment,’’ Linux J., vol. 2014, no. 239, p. 2, 2014.

[57] M. Bender, E. Kirdan, M.-O. Pahl, and G. Carle, ‘‘Open-source MQTT
evaluation,’’ in Proc. IEEE 18th Annu. Consum. Commun. Netw. Conf.
(CCNC), Jan. 2021, pp. 1–4.

[58] InfluxData. InfluxDB. Accessed: Feb. 5, 2024. [Online]. Available:
https://www.influxdata.com/

[59] A. Costantini, G. Di Modica, J. C. Ahouangonou, D. C. Duma, B. Martelli,
M. Galletti, M. Antonacci, D. Nehls, P. Bellavista, C. Delamarre, and
D. Cesini, ‘‘IoTwins: Toward implementation of distributed digital twins
in Industry 4.0 settings,’’ Computers, vol. 11, no. 5, p. 67, Apr. 2022.

[60] V. Jacobson, C. Leres, and S. McCanne. (1989). TCPDUMP. [Online].
Available: https://ee.lbl.gov/ftp.html

[61] M. Buchholz, J. Muller, M. Herrmann, J. Strohbeck, B. Volz, M. Maier,
J. Paczia, O. Stein, H. Rehborn, and R.-W. Henn, ‘‘Handling occlusions
in automated driving using a multiaccess edge computing server-based
environment model from infrastructure sensors,’’ IEEE Intell. Transp. Syst.
Mag., vol. 14, no. 3, pp. 106–120, May 2022.

46302 VOLUME 12, 2024



C. Campolo et al.: Edge-Based DT Framework for CAVs: Design and Evaluation

CLAUDIA CAMPOLO (Senior Member, IEEE)
is currently an Associate Professor in telecom-
munications with the Mediterranean University of
Reggio Calabria, Italy. Her main research interests
include vehicular networking and future internet
architectures.

GIACOMO GENOVESE is currently a Researcher
with CNIT Consortium, ARTS Laboratory,
Mediterranean University of Reggio Calabria,
Italy. His research interests include the IoT
heterogeneous gateways design, the IoT device
virtualization, digital twin, and edge computing
technologies.

ANTONELLA MOLINARO (Senior Member,
IEEE) is currently a Full Professor in telecom-
munications with the University Mediterranean
of Reggio Calabria, Italy, and Université
Paris-Saclay, France. Her current research inter-
ests include 5G/6G networks and connected
vehicles.

BRUNO PIZZIMENTI (Student Member, IEEE)
is currently pursuing the Ph.D. degree with the
Mediterranean University of Reggio Calabria,
Italy. His research interests include connected
and autonomous vehicles, the IoT, and device
virtualization.

GIUSEPPE RUGGERI (Member, IEEE) is cur-
rently an Associate Professor in telecommunica-
tions with the Mediterranean University of Reggio
Calabria, Italy. His current research interests
include self-organizing networks, the IoT, and the
social IoT.

DOMENICO MARIO ZAPPALÀ (Student Mem-
ber, IEEE) is currently pursuing the Ph.D. degree
with the Mediterranean University of Reggio
Calabria, Italy. His research interests include
connected and autonomous vehicles, platooning
techniques, and edge solutions.

Open Access funding provided by ‘Univ Mediterranea di Reggio Calabria’ within the CRUI CARE Agreement

VOLUME 12, 2024 46303


