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Abstract— The accurate quantitative estimation of the
electromagnetic properties of tissues can serve important
diagnostic and therapeutic medical purposes. Quantitative
microwave tomography is an imaging modality that can
provide maps of the in-vivo electromagnetic properties of
the imaged tissues, i.e. both the permittivity and the electric
conductivity. A multi-step microwave tomography approach
is proposed for the accurate retrieval of such spatial maps of
biological tissues. The underlying idea behind the new imag-
ing approach is to progressively add details to the maps
in a step-wise fashion starting from single-frequency qual-
itative reconstructions. Multi-frequency microwave data is
utilized strategically in the final stage. The approach results
in improved accuracy of the reconstructions compared to
inversion of the data in a single step. As a case study,
the proposed workflow was tested on an experimental
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microwave data set collected for the imaging of the human
forearm. The human forearm is a good test case as it
contains several soft tissues as well as bone, exhibiting a
wide range of values for the electrical properties.

Index Terms— Quantitative microwave tomography,
biomedical microwave imaging, tissues electric properties
estimation, experimental medical imaging, electromagnetic
inverse scattering.

I. INTRODUCTION

KNOWLEDGE of the electromagnetic properties (EPs) of
biological tissues, i.e. the relative permittivity εr and

the electrical conductivity σ , is useful in several biomedical
applications [1], [2], [3], [4], [5], [6], [7]. The EPs can
be related to the typology and physio-pathological status of
biological tissues [8], [9]. Indeed, as the EPs of malignant
tissues can differ from those of normal tissues, they can play
the role of diagnostic biomarkers.

The estimation of in-vivo EPs is also relevant in hyperther-
mia treatment planning, design of electromagnetic medical
implants, dosimetry, safety and shimming in magnetic reso-
nance imaging (MRI) scanners [1], [2], [3], [4], [5]. Indeed,
in the above medical applications, one needs an accurate
knowledge of the field distribution within the region of the
body being treated or imaged and the field distribution is
directly dependent on the spatial distribution of the EPs.
As measurements within the region are usually not possible,
the field evaluation relies on numerical simulations, requiring
accurate knowledge of the EPs distribution.

Several databases have been reported in the literature that
collect the EPs of biological tissues, usually arising from
measurements of ex-vivo tissue samples, with limitations on
inter-subject variability. An example is the IT’IS database [10].
However, according to some studies a non-negligible differ-
ence can exist between ex-vivo and in-vivo EPs. In particular,
based on the results in [11], [12], [13], [14], and [15], the ex-
vivo EPs could differ from the actual in-vivo EPs up to 25% for
permittivity and 30% for conductivity. Moreover, in [16], [17],
and [18] it is observed that the dehydration fraction plays a key
role in the measurement of the tissue EPs, so changes between
in-vivo and ex-vivo dielectric properties can be attributed to
tissue hydration.

Thus, there is a need for gaining a fundamental under-
standing of the EPs of tissues and for a non-invasive imaging
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Fig. 1. Sketches of the experimental microwave imaging prototype (a) proposed in [28] and of the measured data arrangement (b). In (b) the red
pairs refer to disregarded signals due to direct coupling issues.

modality to obtain the in-vivo (subject-specific) estimation of
their value. Moreover, according to the precision medicine,
there is also the need to investigate and to consider in medical
applications the natural human body variability, that is the fact
that different individuals can exhibit different EPs for the same
tissue [19].

There are several research efforts attempting to
non-invasively image the EPs of the biological tissues:
electrical impedance tomography [20], magnetic induction
tomography [21], magnetic resonance electrical impedance
tomography [22] and magnetic resonance based electrical
properties tomography [23], just to cite a few. Due to its use
of non-ionizing radiation and its potential implementation
using relatively inexpensive and portable devices, quantitative
microwave tomography (MWT) has gained increasing interest
for its use in EPs tomography with respect to other medical
imaging techniques [1], [9]. However, MWT exhibits a
low spatial resolution and involves the solution of an
inverse scattering problem, which is both non-linear and
ill-posed [24], [25], [26], [27].

In this respect, the paper has at least two interesting
elements of innovation. First, it introduces a new effective
three-step method in order to arrive at an accurate and a
stable reconstruction of the EPs. Second, by virtue of the
above, it improves the fundamental knowledge about tissue
properties, contributing to an open debate about the differences
between ex-vivo and in-vivo EPs. Results of using quantitative
MWT for the extraction of the in-vivo EPs of human limbs
are provided by processing the data from different human
volunteers, with varying ages and levels of adipose tissue,
collected by the MWT system developed by the Electromag-
netic Imaging Laboratory at University of Manitoba (UofM)
[28] working at the frequency range is [0.8,1.2] GHz. More
specifically, a novel MWT workflow is introduced that consists
in the consecutive construction of three EP images of improved
accuracy and resolution from the same collected microwave
data. This stepwise procedure creates images with progres-
sively increasing information, starting with segmentations of
anatomical regions containing only qualitative information of
the EPs and culminating in fully quantitative EP images.

By improving the accuracy of the final images and reducing
the reconstruction artifacts contained therein (compared to
more traditional single-step imaging methods), this workflow
provides a much-improved specificity for the imaged tissues.

The paper is organized as follows. In Section II, the basic
mathematical formulation of the inverse scattering problem
underlying MWT is reported. In Section III, the data set
collected using the MWT at the University of Manitoba
is briefly described. Sections IV-VII provide details of
the proposed quantitative three-step procedure with some
simulated and experimental results reported and discussed in
Sections VIII and IX. Discussions and conclusions are stated
in Sections X and XI.

II. FORMULATION OF THE INVERSE SCATTERING
PROBLEM

The canonical two-dimensional (2D) scalar field prob-
lem with transverse magnetic (TM) polarized fields is
considered. A time-harmonic field problem using the e jωt

time-dependence is assumed and dropped.1 The 2D TM
assumption has been shown to be a relatively good approxima-
tion for human forearm imaging [28]. Moreover, line sources
can be considered to model the actual dipole antennas used to
collect the data.

The inverse problem consists of reconstructing the
complex-valued equivalent relative permittivity εr

(
r
)
, in an

imaging domain � ⊆ R2 that accounts for both the dielectric
response as well as the conductivity. The background relative
permittivity is denoted by εb (it can be a complex quantity,
as described in the next section for the data at hand). Then, the
contrast function encodes the target properties and is defined
as χ

(
r
)

=
εr(r)−εb

εb
. All materials are assumed non-magnetic.

A schematic of the mathematical setup corresponding to the
UofM system, described in [28], is depicted in Fig. 1 (see also
Section III for more details). NR receivers and NT transmitters
are located on the measurement line 0 that uniformly encircles
the imaging domain. To represent the unknowns, a rectangle
of Np = Nx × Ny pixels over � is considered. With this

1The symbol “ j” denotes the imaginary unit.
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formulation, a discrete version of the scattering equations can
be obtained [29]:

etot − einc = Ai (x ⊙ etot ) , (1)
esct = Ae (x ⊙ etot ) . (2)

In these equations x ∈ CNp×1 represents the unknown
complex-valued contrast vector, einc, etot ∈ CNp×NT are the
vectors which sample the incident and total fields over �, and
esct ∈ CNR×NT holds the measured scattered field collected
for each transmitter-receiver pair. The operator “⊙” refers to
the Hadamard product (i.e., element-wise product in � for
each transmitter), while Ai and Ae are the complex matrices
that represent the discrete version of the integral scattering
operators [30], [31]. The two integral operators are defined
on X × T, with X ⊂ L∞ (�) the subspace of the possible
contrast functions, T ⊂ L2 (�) a proper subspace for the
total electric fields inside the object, and with value on two
proper subspaces for the scattered field inside and outside the
object, Se ⊂ L2 (0) and Si ⊂ L2 (�), respectively. The kernel
of these operators is the Green’s function pertaining to the
background medium [29].

Eqs. (1)-(2) incorporate the case of multiple incident views,
which allows for the collection of more data in a configuration
known as “multiview-multistatic” (MVMS). Thus, to retrieve
the geometrical and electromagnetic features of the targets
located in the imaging domain, the solution of both Eqs.
(1) and (2) is required to determine the contrast function x,
and thus the complex-valued permittivity, from the collection
of the scattering field samples esct . It is well known that
finding a solution to such an inverse problem is not trivial
because it is nonlinear and ill-posed [26], [27]. Thus, some
approximations and proper regularization strategies must be
adopted to mitigate these issues with the aim of obtaining
more stable and reliable recoveries.

It is well-known that blind inversion, i.e., without supplying
the inversion with prior information about the target, typically
produces poor results that contain many reconstruction arte-
facts. On the other hand, incorporating prior information can
significantly improve the imaging performance [32], [33].

III. DATA SET DESCRIPTION

The UofM data set is composed of both adult male and
female forearms whose ages are between 30 and 48 [28]. The
selected volunteers are characterized by different percentages
of subcutaneous adipose tissues, which allows us to test the
imaging capability of the new MWT framework for a wide
range of tissue scenarios.

The data was collected using an in-house MWT prototype
that is composed of 24 dipole antennas with a quarter wave-
length balun that surround the investigation area, as shown
in Figure 1(a). The antennas are equally spaced and located
on a circle of radius 9.4 cm from the center of the chamber
and at mid-height of the cylindrical imaging chamber having
metallic walls. The effective operating frequencies range from
0.8 to 1.2 GHz and data was collected by using 0.1 GHz steps.
Further details regarding this system and the experimental
acquisition protocol can be found in [34] and [35].

For each volunteer, measurement data are available for
the arm submerged in several matching fluids of deionized
water having different concentrations of table salt. For the
results presented in this paper, the matching medium with
a concentration of salt of approximately 3.1 grams/liter has
been adopted. The presence of salt in the immersion medium
introduces losses that reduce the modelling error in the com-
putational inversion model. The relative permittivity of the
adopted matching medium in the frequency range of [0.8,
1.2] GHz is approximated as a constant of 77, while its
electric conductivity is taken to vary in the range of [0.72,
0.93] S/m. This amount of loss has been shown to effectively
mitigate the modelling error incurred by i) assuming a 2D
TM approximation, and ii) ignoring the metallic walls of the
chamber and assuming an unbounded medium, i.e. to reduce
the mismatch between the assumed computational model
(unbounded, 2D homogeneous matching medium) and the
physical experiment. Indeed, the reflections from the metallic
chamber are significantly attenuated in case of losses in the
immersion medium and one is allowed to neglect the presence
of the metallic chamber [28]. On the other hand, if the
metallic chamber is considered, the Green’s function must be
substituted with the one pertaining to the enclosed chamber,
which can be found numerically, but adds to the complexity
of the adopted scattering model.

For each volunteer, 19×24 single-frequency data points (S-
parameter measurements) were collected without considering
the monostatic contribution and disregarding the signals col-
lected by the four antennas closest to the transmitter position,
which can be contaminated by the direct coupling. The overall
data organization is reported and sketched in Figure 1(b).
The experimental scattered-field data to be inverted for each
volunteer was obtained by first subtracting the measurements
obtained for the empty fluid-filled chamber (representing the
incident field) from the total-field measurements and then
calibrated using a calibration coefficient. The calibration coef-
ficient is obtained by taking the ratio of the modelled to
measured scattered-field for a 8.89 cm diameter metallic
cylinder. Details regarding this procedure can be found in [34]
and [36].

IV. THE PROPOSED MULTI-STEP MICROWAVE
TOMOGRAPHY APPROACH

An overview of the proposed approach is illustrated in
Figure 2. More specifically, qualitative images are first gen-
erated from the scattered-field data using qualitative inverse
scattering techniques [37]. Then, a novel segmentation proce-
dure is used that attempts to introduce an average value for
the EPs within the segmented regions. These low-resolution
quantitative images are introduced as starting guess within a
multi-frequency distorted Born iterative method (DBIM) [38],
[39].

In particular, in the first step, qualitative imaging tech-
niques such as the Linear Sampling Method (LSM) [40],
the Orthogonality Sampling Method (OSM) [41], Bound-
ary retrieval through Inverse source and Sparsity (BIS) [42]
and the Born Approximation (BA) [43], [44], [45] are
applied to single-frequency experimental data and compared in
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Fig. 2. Scheme of the proposed three-step inversion procedure.

order to extract morphological information of the anatomical
region under investigation. Then, in the second step, the
obtained qualitative maps are combined and processed, and
the Distorted Born Approximation2 (DBA) [45] inversion is
performed to create a low-resolution quantitative image. In the
third step, the latter is used as an initial guess for the final
quantitative estimation of the EPs.

The detailed explanation of each single step is reported in
the following three Sections.

V. STEP I: EXTRACTION OF MORPHOLOGICAL
INFORMATION FROM QUALITATIVE METHODS

The aim of the first step is to acquire a preliminary under-
standing of the unknown target within the imaging domain
from the data. For this purpose, qualitative methods [37] are
adopted as they offer the advantages of solving a simplified
problem or an auxiliary linear one, with the absence of
false solutions and a negligible computational burden. In fact,
they can be exploited to gain preliminary understanding of
shape and/or other characteristics of the unknown objects.
Moreover, they overcome the limitations of linearized methods
and the difficulties related to non-linear optimization while still
allowing one to deal with a limited computational burden [37].

In the following, we considered two “sampling” methods
that are the LSM and the OSM [40], [41]. The idea underlying
LSM and OSM is based on sampling the investigation domain
in an arbitrary grid of points and computing in each point an
indicator function whose energy will assume different values
depending on whether the sampled point belongs or not to
the scatterer. To this end, the LSM indicator function is
computed by solving an auxiliary linear but ill-posed problem,
while the OSM does not explicitly require the solution of a
linear problem, as the indicator function is just related to the
evaluation of a scalar product. The equation underlying the
LSM is the far field equation and in the following it is solved
by using the Tikhonov regularization [40]. On the other hand,
in the case of far field zone, the OSM is simply the scalar
product between the Green’s function and the scattered data.

2The distorted Born approximation is BA applied in case of inhomogeneous
background.

Interestingly, OSM has been proven to be able to identify
different contrast regions within inhomogeneous targets [46].

As far as the BIS method is concerned, it takes advantage
from recent results in the area of sparsity promoting techniques
and, provided some conditions hold true, it can retrieve the
boundary of unknown targets (rather than their support). Such
a method exploits the so-called joint sparsity [47] of the
induced currents in the case of perfect electric conductors,
and of the equivalent currents in the case of dielectric objects.
It is based on the solution of a constrained convex problem,
whose objective function to be minimized involves the l1 norm.
As such, it has a higher computational burden compared to
LSM and OSM. On the other hand, it does not require the
definition of a threshold to identify the target support.

The Born approximation [43], [44], [45] was also used
as a first step to gain a preliminary understanding of the
shape or other characteristics of the unknown objects. In fact,
even when used beyond its range of validity,3 it can usually
recover some useful preliminary information about the shape
and location of the scatterer.

In processing the calibrated forearm data, no prior infor-
mation related to the position or boundaries of the forearm
is assumed. Moreover, a square of side-length l� = 12 cm
was assumed as the imaging domain, discretized in 120 ×

120 cells. Only for the BIS method, the domain was discretized
in 40 × 40 cells (to reduce the computational burden), while
an error on the data equation lower than 30% was permitted
(see [42]). The antennas were modelled as filamentary currents
located on a circumference of radius r0 = 9.4 cm and
embedded in a homogeneous medium with electromagnetic
properties of the deionized water and salt. The infinite-domain
2D Green’s function for a lossy medium was used in the
scattering operators. For this first step of the workflow the
working frequency was fixed to 1 GHz, which is the center of
the considered bandwidth.

Figures 3-5 report the results for three volunteers, referred as
A, B and C, respectively. As can be seen, LSM, BA, BIS and
OSM are consistent in identifying the position, the shape, and
the size of the relevant forearms. In particular, BIS retrieves the
boundary of the limb, while both the OSM and the BA maps
allow one to identify the presence of a denser region inside
the forearms, for what concerns volunteers A and C. These
regions probably correspond to the bones, the Ulna and the
Radius. Instead, in the case of volunteer B, some ambiguities
are present in the two maps, and one cannot identify the
position of bones.

To provides a baseline as reference for the anatomy of each
considered volunteer, an MRI image of each forearm is also
shown, obtained with a 0.2 T Esaote E-scan XQ (T1 gradient
echo protocol). The MRI scans were taken at the same time
of the MWT scans and are part of the original experimental
dataset. It is worth noting that the MRI and MWT images
reported in Figures 3-5 are not co-registered, even though
the axes are the same. The accuracy of the co-registration
is limited since the volunteer’s arm and body positions were

3BA holds true in case of scatterers with weak electromagnetic contrast and
small dimension in terms of the wavelength.
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Fig. 3. Volunteer A. T1-weighted MRI image (a). Normalized support indicators at 1GHz obtained via LSM (b), OSM (c), BA (d) and BIS (e). The
maximum thickness of the adipose tissue is 3.9 mm [28].

Fig. 4. Volunteer B. T1-weighted MRI image (a). Normalized support indicators at 1GHz obtained via LSM (b), OSM (c), BA (d) and BIS (e). The
maximum thickness of the adipose tissue is 7 mm [28].

Fig. 5. Volunteer C. T1-weighted MRI image (a). Normalized support indicators at 1GHz obtained via LSM (b), OSM (c), BA (d) and BIS (e). The
maximum thickness of the adipose tissue is 4.3 mm [28].

different in the MRI and MWT systems. In the former, the
volunteer was supine, and arm held horizontally, while in the
latter case the arm was held vertically with the hand clenched
in a fist resting on a pad at the bottom of the chamber.

VI. STEP II: CREATION OF THE STARTING GUESS

To improve the qualitative images resulting from Step I
and create a suitable initial guess for the multi-frequency
quantitative inversion, the morphological information from
the LSM map was exploited to identify shape and inter-
nal inhomogeneities. In fact, the other qualitative recoveries
showed in Figures 3-5 can be richer in terms of morphological
information, but these approaches are less stable. For instance,
while for volunteers A and C, the OSM and the BA methods
can retrieve the bone, in case of volunteer B, both OSM and
BA maps exhibit some artifacts which cannot be associated to
the presence of the bones. Of course, the previous discarded
qualitative maps can be used to validate the successive results.

Specifically, to retrieve further information, the so-called
distorted Born approximation (DBA) was adopted. It is impor-
tant to note that DBA is BA applied to the case of a numerical
inhomogeneous background, that is, with respect to a reference
known or estimated image, and thus it allows one to retrieve
some of the contrast variations and improve the estimated
reference image.

In the following, some implicit information is included, i.e.
the anatomical region under test is assumed to contain adipose
tissue, muscle and bone. The presence of the skin was not
considered because its thickness is below the resolution limit
in the selected frequency range.

To determine the morphological structure of the above
tissues composing the forearm, an accurate segmentation pro-
cedure and an enumerative analysis was performed, which
consists in the generation of different profiles from LSM and
DBA qualitative maps, according to the following sub-steps.

II.a) Generation of trial adipose-muscle profiles. The nor-
malized LSM maps IL SM were labelled according to a set
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of threshold intervals as follows: those pixels wherein t f,i ≤

IL SM < tm,i are labeled “fat”; the pixels wherein tm,i ≤

IL SM ≤ 1 are labeled “muscle”, while in the other cases a
label associated with the background is assigned. Here, the
subscript i spans each of 20 equally spaced thresholds t f,i in
the range [0.4, 0.7] and a further 20 thresholds tm,i in the range
[0.5, 0.8], respectively; thus, a total of 400 combinations for
the pair of threshold-interval is obtained.4

Then, for each of the 400 combinations, a reference contrast
profile xre f,a was created by filling each labeled region with
the corresponding ex vivo EP, corresponding to muscle and
adipose tissue [28]. In particular, the values εx = 10 − j
and εx = 50 − 20 j were used for adipose tissue and muscle,
respectively.

II.b) Identification of the bone extension. DBA [45] was
performed for each of the 400 segmented reference profiles
xre f,a . Then, the normalized DBA maps, IDB A, were thresh-
olded with a further 20 equally spaced thresholds tb,k within
the range [0.5, 0.8] to obtain an estimate of the bone region.
In those pixels wherein tb,k < IDB A ≤ 1 the label “bone” was
associated. Then, the ex vivo EP εx = 12.4 −3 j was assigned
to this segmented region and superimposed on the profiles
xre f,a . Thus, 8000 reference profiles xre f,b were generated
in total, by means of the above sub-steps 2.a)-2.b), each
quantized into four levels, i.e.:

label =


background, 0 ≤ IL SM < t f,i

f at, t f,i ≤ IL SM < tm,i

muscle, tm,i ≤ IL SM ≤ 1
bone, tb,k ≤ IDB A ≤ 1

(3)

with tb,k ∈ [0.5, 0.8], k = 1, . . . , 20, and “label” referring to
the tissue associated with that quantized threshold-interval.

A sketch of the thresholds per each tissue for Volunteer C
is reported in Figure 6 for the sake of clarity.

II.c) Identification of the best starting guess. For each of the
8000 generated profiles xre f,b, a forward problem was solved,
and the obtained data were compared with the calibrated
experimental data. The profile that generated modelling data
having the minimum mean square error with the calibrated
data was selected as a starting guess for the following and final
quantitative analysis. This was considered the “best” initial
guess having the most accurate morphological structure with
segmented EPs of the forearm.

The obtained starting guesses are composed of three tis-
sues, and the EPs are approximated with a stepwise constant
function. This is a common assumption for instance in the
case of therapeutic treatment planning or when field exposure
must be quantified. Thus, this step results in an effective
EP segmentation, or discrete-level quantitative morphological
reconstruction, of the investigated limb.

VII. STEP 3: QUANTITATIVE ESTIMATION OF EPS VIA
MULTI-FREQUENCY INVERSION

The nonlinearity of inverse scattering problems contributes
to the occurrence of so called “false solutions” typically mani-

4Despite the ranges are partially overlapped, this does not represent an issue,
since any unrealistic profile is automatically discarded within sub-step II.c.

Fig. 6. Iso-value levels for the initial guess generation of Volunteer C,
within steps II.a) and II.b).

festing as reconstruction artifacts [31]. Hence, the exploitation
of a suitable starting guess plays a key role in developing
accurate and reliable reconstructions of the EPs. Thus, the best
profile obtained in Step II is exploited for local minimization
strategies to obtain reliable estimates of the in vivo dielectric
properties of the biological tissues. In particular, a multi-
frequency distorted Born iterative method (MF-DBIM) [38],
[39] is adopted to perform the quantitative dielectric estimation
of tissue properties. The operative frequency band is [0.8, 1.2]
GHz with a frequency step of 100 MHz, and an ohmic model
for the complex permittivity was adopted:

εx
(
r , ω

)
= ε′

x
(
r
)
− j

σx
(
r
)

ωε0
, (4)

in which the quantities ε′ and σ are considered independent
from the frequency in the selected bandwidth and represent
the unknown functions to be determined.

This assumption holds true due to the considered band-
width [28]. It is worth noting that the multi-frequency data
adopted for the inversion were processed simultaneously and
not in a frequency hopping fashion. This choice allows the
use of the multi-frequency information to improve the recovery
performance by reducing the impact of the noise on the quality
of the retrieved profile.

Concerning the minimization procedure, the general prob-
lem dealt with at the step of the DBIM approach can be
summarized as:

1e(k−1)
sct = A(k−1)

e

(
1x(k)

⊙ e(k−1)
bck

)
, (5)

with 1e(k−1)
sct = emeas

sct − e(k−1)
sct being the difference between

the measured scattered field and the simulated scattered field
at receivers locations at the (k − 1)-th iteration, A(k−1)

e and
e(k−1)

bck are respectively the external radiating operator and
the background field pertaining to the contrast profile x(k−1).
For this study, Eq. (5) is solved by adopting an iterative
conjugate-gradient least-square minimization algorithm and by
enforcing constraints on the feasible values of permittivity and
conductivity (which must be respectively larger than 1 and
positive) only within the support identified according to Step
II. Further details regarding the implementation of the adopted
minimization scheme for the internal loop of the DBIM can
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Fig. 7. Test against a 2D simulated scenario: permittivity (a) and conductivity (b) of the reference profile. Normalized support indicators obtained
via LSM (c) and DBA (d), and 2D histograms of the retrieved tissue EPs for the muscle (e) and the bone (f).

be found in [48]. At every DBIM step, the variation of the
contrast function 1x(k) is calculated and used to evaluate the
next update as:

x(k)
= x(k−1)

+ 1x(k). (6)

Furthermore, the inhomogeneous Green’s function utilized
in the external radiating operator A(k−1)

e as well as the
background field e(k−1)

bck are updated as well at each iteration
of the external loop of the DBIM minimization procedure.
That is, at each outer-loop iteration, a new Green’s function is
numerically evaluated with respect to the updated background,
which also includes the updated contrast function. Thus, the
electric field related to the new background contrast function
(from which the name “background field”, ebck) is evalu-
ated by means of an in-house method-of-moments forward
solver. The previous procedure is repeated until convergence
is reached [38], [39], [49], [50], [51]. For the DBIM minimiza-
tion procedure, a stopping rule is considered by appraising the

normalized residual error N REk =

∥∥∥1e(k−1)
sct

∥∥∥2

∥emeas
sct ∥

2 at each iteration.

If N REk is less than 10−5, the procedure is stopped, and x(k)

is taken as the solution to the overall problem.

VIII. NUMERICAL ASSESSMENT OF THE MULTI-STEP
PROCEDURE

To assess the accuracy and robustness of the proposed three-
step procedure, a 2D numerical simulated test was performed.
The 2D scenario aims at mimicking the anatomy of Volunteer
A and it is shown in Figure 7 (a)-(b). The working frequency
is 1 GHz, the antennas are schematized as filamentary currents
rearranged as in the actual experimental MWT system. The
data were corrupted with an additive white Gaussian noise with
SNR = 30 dB. The numerical phantom has been obtained by
segmenting a MRI map of Volunteer A and by associating

to each tissue the ex-vivo EPs, but incremented to mimic
in-vivo EPs according to [14]. Finally, to deal with a more
realistic scenario, the EPs in each voxel of the model have been
perturbed by a 10% uniformly-distributed random fluctuation.

Figure 7 (c)-(d) show the qualitative recoveries resulting
from step I-II detailed in of Section V-VI, while Figure 7
(e)-(f) report the 2D histograms of the retrieved EPs for bone
and muscle tissues. In the 2D histograms, the sum of all bar
amplitudes is 1. Moreover, the higher the amplitude associated
to a given pair (ϵ, σ ) the larger the number of pixels having
(ϵ, σ ) as EPs.

The results show that the method is able to accurately
retrieve the support as well as the true EPs values of the
muscle. Indeed, an higher number of pixels have EPs close to
the simualted in-vivo value. As far as the bones are concerned,
they are correctly detected, but their EPs are not accurately
retrieved, probably due to the lower electromagnetic signal
penetration, as also discussed in the following Section.

IX. EXPERIMENTAL RESULTS

Figures 8-10 illustrate the retrieved permittivity and con-
ductivity maps for three volunteers obtained by starting the
local minimization procedure MF-DBIM from the best initial
guess derived in Step II (Figures 8-10 (b),(d)).

As it can be noticed, the quality of the MWI reconstruc-
tions is better for those volunteers characterized by a thinner
subcutaneous adipose layer (i.e., Volunteers A and C). More
specifically, the two volunteers reported in Figures 8 and 10
correspond also to those ones with the highest ratio of the
width-to-maximum adipose thickness (similar to the findings
reported in [28]). However, it is evident that the amount of
subcutaneous adipose tissue strongly impacts on the quality
of the recoveries in a negative fashion , i.e., the thicker the
adipose layer, the lower the quality of the MWT images.
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Fig. 8. Volunteer A: normalized DBA indicators at 1 GHz (a). Initial relative permittivity (b) and electric conductivity (d) maps derived from qualitative
information (details in Section VI). Retrieved relative permittivity (c) and electric conductivity (e) via MF-DBIM approach.

Fig. 9. Volunteer B: normalized DBA indicators at 1 GHz (a). Initial relative permittivity (b) and electric conductivity (d) maps derived from qualitative
information (details in Section VI). Retrieved relative permittivity (c) and electric conductivity (e) via MF-DBIM approach.

Fig. 10. Volunteer C: normalized DBA indicators at 1 GHz (a). Initial relative permittivity (b) and electric conductivity (d) maps derived from qualitative
information (details in Section VI). Retrieved relative permittivity (c) and electric conductivity (e) via MF-DBIM approach.

In the reconstructions, the position and shape of the bone
regions and the arms are fully in agreement with results in
previous works in [28] and [52]. It is important to note that
in [28] the prerequisite morphological information is obtained
from initial blind imaging results using manual estimation,
while in [52] it is obtained via an ad hoc image segmentation
using a simulated annealing technique. Herein, instead, the
improved strategy utilizes qualitative reconstructions followed
by an accurate tissue-property based segmentation procedure
that also considers the bone regions.

Complementary to the maps shown in Figures 8-10, Table I
reports the average in vivo permittivity and electric con-
ductivity values estimated via this MWT approach for each
tissue and volunteer. As confirmed by the previous work [11],
[12], [13], [14], [15], [16], [17], [18], several of the in vivo
tissue EPs are not the same as those measured ex vivo.
These differences can be due to temperature changes, tissue
dehydration, and devascularization of the excised tissues.

To better analyze the quantitative results reported in
Figures 8-10, Figure 11 also shows the 2D histograms of
the retrieved EPs for each volunteer and tissue. It is worth

mentioning that the ex-vivo values reported in Figure 11 refer
to the bone tissues that compose the slice of the forearm hosted
in the imaging domain (i.e., the cortical and marrow yellow
bones).

Despite the spread of the retrieved EPs values, it is possible
to notice, also considering the information reported in Table I,
that the average values in the muscle are characterized, with
respect to their corresponding ex vivo values [10], [53], [54],
by a slight increment in terms of permittivity and conductivity.
This trend is less evident in the case of volunteers with a
thicker adipose-tissue layer.

A. Sensitivity Analysis of the Proposed Procedure

Due to the open debate about the difference between ex-vivo
and in-vivo dielectric properties, the retrieved values cannot be
validated as there is no ground truth for comparison. Moreover,
we are retrieving the EPs of three specific human volunteers
and, due to the physiological variability of tissues found in
the human body, they can be different from the ones of
further volunteers. However, in order to somehow validate and
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Fig. 11. Two-dimensional histograms of the retrieved permittivity and conductivity values per each volunteer. The recoveries were obtained by
means of quantitative multi-frequency inversion (MF-DBIM) as described in Sections VII. Filled circular markers refer to the reference ex-vivo values
as reported in [28] per each tissue. (a)-(c): retrieved permittivity and conductivities values in the muscle area defined by the initial guess reported in
Figures 8-10(b),(d) at the end of quantitative MF-DBIM inversion for volunteers A, B and C respectively; (d)-(f): retrieved permittivity and conductivities
values in the bone area defined by the initial guess reported in Figures 8-10(b),(d) at the end of quantitative MF-DBIM inversion for volunteers A,
B and C respectively.

TABLE I
AVERAGE VALUES OF THE IN-VIVO EPS ESTIMATIONS REPORTED IN FIGURES 8-10

check the estimated EPs, other articles [28], [35], [55] can be
considered wherein the Manitoba dataset was processed.

On the other hand, to test the robustness of the proposed
three-step procedure, this subsection presents a sensitivity
analysis, which involves the use of different ex-vivo EP values
associated to the internal tissues in the enumerative step
described in Section VI, in particular steps II.a) and II.b).

The attention is focused on the bone tissue, since a few types
exist, each characterized by different EPs (i.e., cancellous,
cortical, yellow and red marrow), which are reported in most
ex-vivo databases, while only a single type of muscle is usually
reported [10]. Due to the in-house microwave acquisition
system adopted in this work, the human forearm area under
examination is the central part of the long bones “Ulna”
and “Radius”, also known as “diphysis”. The diphysis is
the hollow, tubular shaft that runs between the proximal and
distal ends of the bone. Inside the diphysis is the medullary
cavity, which is filled with yellow marrow bone in the adult.
Conversely, the outer walls of the diphysis are composed of
dense and hard compact bone, that is the cortical bone [56].
Thus, for the considered case study, it makes sense to consider

only these yellow marrow and cortical bone tissues. However,
to explore the sensitivity of the proposed approach, all the four
different kinds of bone tissue were considered.

For the sake of simplicity and brevity, the proposed
sensitivity analysis is shown only for Volunteer A.
In particular, Figures 12 and 13 illustrate the corresponding
2D histograms for the bone and muscle tissues, respectively.
As can be seen, the muscle tissue does not depend on
the choice of the initial ex-vivo parameter of the bone,
as confirmed in Figure 13. Thus, the proposed procedure is
robust and stable for what concerns the muscle estimation.
Conversely, there is a certain dependence on the ex-vivo
parameters adopted in step II for the bone tissue. Nevertheless,
despite the very different ex-vivo values for the bone, the
inversion procedure does not diverge and remains in the range
of values characterizing the bone tissue.

X. DISCUSSION

The debate about the difference between ex-vivo and in-vivo
dielectric properties is still open. In this respect, the proposed
paper aims at contributing to this debate by providing.
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Fig. 12. Two-dimensional histograms of the bone EP values as resulting from the sensitivity analysis with different ex-vivo parameters for the initial
guess: (a) marrow red bone, (b) cancellous bone, (c) marrow yellow bone and (d) cortical bone. The legend of the plots shows the ex-vivo values of
the two tissues which compose the bone in the imaging region.

Fig. 13. Two-dimensional histograms of the muscle EP values as resulting from the sensitivity analysis with different ex-vivo parameters for the
initial guess: (a) marrow red bone, (b) cancellous bone, (c) marrow yellow bone and (d) cortical bone. The legend of the plots shows the ex-vivo
values of the muscle.
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Considering the results of Figures 12 and 13, some differ-
ences between ex-vivo and in-vivo values can be observed.
More in detail, the estimated modal values for the muscle
tissue are higher (up to 12% for the relative permittivity
and 4% for the electric conductivity) with respect to their
corresponding ex-vivo values. Conversely, with respect to
the bone tissue, there is not the same stability as with the
muscle case. However, these trends seem quite reasonable,
as the forearm bones are small structures at the selected
operating frequencies (i.e., close to the resolution limits of
the imaging system), and surrounded by a lossy, large tissue
(i.e., the muscle), that strongly limits the penetration of the
electromagnetic signal. Furthermore, the signal propagating
inside the muscle, after passing the skin, the subcutaneous
adipose layer and the muscle, impinges on the external surface
of the bone (the cortical one), that is less dense in terms of
EPs with respect to the surrounding tissue, thus contributing to
a stronger reflection of the signal with a consequent limitation
of its penetration and, therefore, of the quantitative imaging
performance. This circumstance is also confirmed by the
numerical assessment in Section VIII.

Nevertheless, this analysis highlights one main point of this
work, which aims at investigating the potential differences
between in-vivo and ex-vivo EPs of biological tissues. As a
matter of fact, and observing the results reported in Figure 13,
it is possible to see that independently from the choice of the
ex-vivo values of the bone in step II, the estimated in-vivo
EPs of the muscle look quite stable.

Furthermore, it is worth noting that there is a physiological
variability of the biological tissues among the human subjects
which further complicate the analysis, as proved by the results
reported in Figure 11. Conversely from the case of Volunteer
A (Figures 11 (a),(d)), the volunteers characterised by a thicker
layer of adipose tissue show a more spread 2D statistical
distribution of their tissue EP values, which implies a wider
range for both the retrieved relative permittivity and electric
conductivity (Figures 11 (b),(c),(e),(f)). By considering also
further articles which processed the adopted experimental
dataset [28], [35], [55], it is possible to observe that they
provide results consistent with the ones presented in this paper.
Thus, it is undoubted that the presence of the adipose layer
strongly impacts the recovery performance, requiring proper
regularization strategies to be adopted in order to obtain more
reliable quantitative recoveries of the tissue EPs, such as
estimating adipose thickness via proper pre-processing or via
alternative strategies, as shown in [28].

An underlying limitation of the proposed analysis is related
to unavoidable modelling error introduced by adopting a
simplified 2D geometry rather than a 3D one. This assumption
neglects the multiple scattering operating among close areas
located at different heights. As in previous work, the strategy
of adding losses into the matching medium adopted in the
experiments can mitigate this limitation, but at the expense of
reducing the power of the propagating signal [35].

XI. CONCLUSION

In this paper, a novel multi-step quantitative MWT approach
for the EP retrieval of biological tissues was described. The

methodology exploits morphological information derived from
single-frequency qualitative inversion steps with the aim of
providing a suitable initial guess for multi-frequency quanti-
tative imaging via local minimization procedures.

As a case study, microwave data obtained for the human
forearm collected by the Electromagnetic Imaging Laboratory
at the University of Manitoba was utilized. The retrieved
in vivo tissue EPs have been compared with those obtained
from the literature using ex vivo measurements. Confirming
the results of others published in the literature, these values
were different, probably due to temperature changes, tissue
dehydration, and devascularization as well as the natural
variability of tissues found in the human body.

Future work includes the testing of the proposed approach
with further volunteers, the improvement of the refinement
strategy with better performing quantitative inversions and
the more realistic case of three-dimensional geometries. It is
important to note that 3D geometry implies a fully vectorial
inverse scattering problem and a higher computational burden
and memory requirements.
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